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a b s t r a c t

The inertia may play an important role in the unsteady behavior of a flapping foil.
Of particular relevance in forward flapping locomotion is how the foil inertia may
affect its time-averaged propulsive performance. This is the question addressed by
the present study from a general, nonlinear formulation of the unsteady interaction
with the surrounding fluid of a thin, flexible, two-dimensional and non-uniform foil
undergoing prescribed pitching and heaving motion of any amplitude about an arbitrary
pivot axis. For a rigid foil it is shown that, although the unsteady inertial forces and
moments may be much larger than the unsteady aerodynamic forces and moments
if the fluid density is much smaller than the foil density, the inertia does not affect
the cycle-averaged propulsive performance for harmonic pitching and heaving motion,
independently of their amplitude. Inertia may affect only the cycle-averaged moment if
the mean angle of attack is not zero, but without affecting the cycle-averaged power
input, and therefore the propulsive efficiency. When a small flexural deflection of the
foil is considered, although the cycle-averaged inertial thrust and lift also vanish for any
amplitude of the pitching and heaving harmonic motion, the cycle-averaged power input
does not. Thus, the foil inertia contributes through the moment and power to the time-
averaged propulsive performance for any flexural deflection of the foil, obtained her e
analytically in terms of the trailing edge location for general pitching and heaving motion
of any amplitude and phase and small flexural deflection amplitude. Simple analytical
results are also provided for inertia dominated deflection, characterizing the conditions
that minimize the power consumption. The results are valid for arbitrary chord-wise
distribution of mass, thickness and (sufficiently large) stiffness of the foil.
© 2023 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC

BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

Inertia has been found to play a vital role in the structural dynamics of flapping foils, and therefore in their propulsive
erformance, obviously more markedly in aerial than in aquatic propulsion due to the much lower fluid/foil density
atio (Daniel and Combes, 2002; Combes and Daniel, 2003; Zhu, 2007; Michelin and Llewellyn Smith, 2009; Yin and Luo,
010; Wu, 2011; Kang et al., 2011; Bergou et al., 2015; Olivier and Dumas, 2016; Shkarayev and Kumar, 2016; Zhang et al.,
017; Iverson et al., 2019). Although inertia is relevant for the instantaneous lift and thrust forces in aerial flapping flight
ven for rigid foils, it is for flexible foils where its effect becomes more important because the foil inertia contributes,
ogether with the fluid forces, to the foil deformation, which in turn contributes to the unsteady aerodynamic forces and
oments on the foil, thus doubly influencing the propulsive performance.
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Characterizing the contribution of inertia to the propulsive performance of a flapping foil is not an easy task because the
omplex, nonlinear fluid–structure problem which has to be solved numerically (Kang et al., 2011; Zhang et al., 2017; Goza
nd Colonius, 2017; Brousseau et al., 2021). This characterization is relevant even in experimental measurements, where
he inertial forces and moments have to be subtracted from the measured reactions to obtain the aerodynamic force and
oment, which is not an easy task for flexible foils (Yeo et al., 2013; Shkarayev and Kumar, 2016; Lankford and Chopra,
022; Sanmiguel-Rojas et al., 2023). Fortunately, in some situations one may use simpler inviscid models, sometimes
omplemented with the small flapping amplitude assumption, from which the effect of inertia can be more easily
omputed, even analytically (Zhu, 2007; Alben, 2008; Michelin and Llewellyn Smith, 2009; Moore, 2014; Fernandez-Feria
nd Alaminos-Quesada, 2021).
In forward flapping locomotion one is mostly interested in the time-averaged propulsive performance, especially in the

ycle-averaged thrust force and propulsive efficiency for periodic flapping kinematics. For a rigid foil, though it is known
hat the time-averaged power due to inertia vanishes for a purely heaving motion (Heathcote and Gursul, 2007; Kang
t al., 2011), no general exact result for arbitrary flapping kinematics is available to the best of the author’s knowledge,
or for the more general problem of a flexible foil. In the present work the inertial contributions to the flapping forces and
oments are obtained from the general, nonlinear formulation of the unsteady interaction with the surrounding fluid of a

hin, flexible, two-dimensional and non-uniform foil undergoing prescribed pitching and heaving motion of any amplitude
bout an arbitrary pivot axis. The theory is valid for arbitrary chord-wise distribution of mass, thickness and stiffness of
he foil. Time averages of the inertial contributions to the thrust force and power input are obtained from these general
xpressions for harmonic kinematics assuming small flexural deflection amplitude, valid for sufficiently large stiffness of
he foil.

. Formulation of the problem

We consider a two-dimensional flexible foil of chord length c (when at rest) immersed in a uniform fluid stream of
elocity U in the x direction and undergoing pitching and heaving motion about an arbitrary pivot axis located at x = xp
nd z = h(t) in any instant of time t , where h(t) is the heaving motion. The tangent to the foil centerline at this point has
n angle with respect to the x axis α(t), corresponding to the pitching motion (see Fig. 1). The foil has variable density
s(s) and thickness ε(s), where s is the Lagrangian coordinate along the foil centerline, −si(t) ≤ s ≤ sf (t), with s = 0
orresponding to the pivot axis, s = −si(t) to the leading edge, and s = sf (t) to the trailing edge. The reference frame is
uch that, in absence of pitching and heaving motion, the foil centerline lies on the x axis between −c/2 and c/2, with the
ivot axis at x = xp. When pitch and/or heave are applied at the pivot axis, the foil moves according to the fluid–structure
nteractions but xp remains fixed in the reference frame (x, z). The instantaneous chord length of the foil is si(t) + sf (t),
pproximately equal to c for large extensional rigidity (defined below).
For a thin beam (ε/c ≪ 1) with structural bending rigidity EI , which in general depends on both s and t , and extensional

igidity characterized by a structural tension T (s, t), the nonlinear equation of motion can be written as (Doyle, 2001)

ρsε
∂2r
∂t2
−

∂

∂s

[
T

∂r
∂s

]
+

∂2

∂s2

(
EI

∂2r
∂s2

)
= f(s, t)+ Fpδ(s)− gδ′(s) , (1)

T (s, t) = E(s, t)ε(s)

[
1−

(
∂r
∂s
·
∂r
∂s

)−1/2]
, EI(s, t) =

E(s, t)ε3(s)
12

, (2)

where r(s, t) is the position vector of any point of the foil centerline s at the instant t . In the above equations

f = τ+ · n+ + τ− · n− , τ = −pI+ µ
(
∇u+ (∇u)T

)
, (3)

is the Lagrangian force (per unit area) exerted on the plate by the surrounding fluid, where τ is the fluid stress tensor, µ
the fluid viscosity, I the unit tensor and n+ and n− the unit normal vectors on each side of the plate at the given point r
(see Fig. 1). The fluid pressure p and velocity u satisfy the Navier–Stokes equations with appropriate boundary conditions.

The last two terms in the right-hand side of Eq. (1) account for a point force Fp (per unit span) at the pivot axis, and for
a point torque Mp, modeled as a couple of opposite point forces ±g at the pivot axis. Mathematically, the localized force is
modeled by Dirac’s delta function δ, and the localized torque by its derivative δ′, as previously formulated by Fernandez-
Feria and Alaminos-Quesada (2021) in the linearized limit and by Sanmiguel-Rojas et al. (2023) for the particular case of
a purely pitching motion about the leading edge. Here arbitrary pitching and heaving motion about any pivot axis are
considered to obtain general expressions for the inertial forces and moments.

Mp is the necessary torque to generate the pitching motion α(t), while the z−component of Fp, Fpz , generates the
heaving motion h(t). The x−component of Fp, Fpx, fixes the location xp of the pivot point on the x-axis of the reference
frame (x, z) (see Fig. 1). This reference frame can be a stationary frame for a tethered foil immersed in a uniform current
with velocity U along the x−direction at infinity, or a moving frame with the foil when it moves with velocity −Uex in
relation to a stationary fluid at infinity. In the first case, Fpx is the reaction force needed to keep xp fixed, and in the later
case Fpx is the total thrust force applied at the pivot axis to propel the foil with velocity −Uex. In either case, for given
xp, h(t) and α(t), Fp and Mp must be such that they ensure the following constraint conditions at the pivot point s = 0:

r = xpex + h(t)ez ≡ rp(t) and
∂r
= cosα(t)ex + sinα(t)ez ≡ eα(t) at s = 0 , (4)
∂s
2
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Fig. 1. Schematic of the flexible pitching and heaving foil (dimensional quantities).

here eα(t) is the unit vector tangent to the foil at the pivot point. On the other hand, the boundary conditions at the
ree leading and trailing edges of the foil are

−T
∂r
∂s
+

∂

∂s

(
EI

∂2r
∂s2

)
= 0 ,

∂2r
∂s2
= 0 for s = −si and s = sf . (5)

If the pivot axis coincides with either the leading or the trailing edge, i.e., if si = 0 or sf = 0, the corresponding boundary
condition is modified to (4). The pivot axis location here is arbitrary, but inside the foil, excluding the exact locations of
the leading or trailing edges.

2.1. Moment equations

Integrating Eq. (1) between s = −si and s = sf and applying the above boundary conditions,∫ sf

−si

ρsε
∂2r(s, t)

∂t2
ds = F(t)+ Fp(t) , F(t) ≡

∫ sf

−si

f(s, t)ds , (6)

where F is the total force (per unit span) exerted by the fluid on the plate.
Likewise, multiplying Eq. (1) vectorially by r − rp and integrating, after using integration by parts and the boundary

conditions, one gets∫ sf

−si

ρsε (r− rp) ∧
∂2r(s, t)

∂t2
ds = M(t)+Mp(t) , (7)

where

M(t) ≡ −M(t)ey =
∫ sf

−si

(r− rp) ∧ f(s, t)ds , Mp(t) ≡ −Mp(t)ey = eα(t) ∧ g(t) (8)

re the total bending moment (per unit span) with respect to the pivot axis that the fluid exerts on the airfoil and the
xternal moment about the pivot axis, respectively. Both M and Mp are positive when counterclockwise.
Notice that Eqs. (6) and (7) are simpler than those obtained in Sanmiguel-Rojas et al. (2023), despite the fact that

now a heaving motion is also included in the formulation, because the pivot point is not located at the leading edge. No
structural terms associated to the extensional and bending rigidities enter into the moment Eqs. (6) and (7) if the external
point force and the external moment are localized at an interior pivot point, however close to the foil ends.

For a flexible foil, we shall also use an additional moment of the beam Eq. (1). Multiplying it by s2 and integrating
etween s = −si and s = sf , after using integration by parts twice and applying the boundary conditions, one obtains,∫ sf

−si

ρsε s2
∂2r(s, t)

∂t2
ds+

∫ sf

−si

2s T
∂r(s, t)

∂s
ds+

∫ sf

−si

2EI
∂2r(s, t)

∂s2
ds = D(t) , (9)

D(t) ≡
∫ sf

s2f(s, t)ds . (10)

−si

3



R. Fernandez-Feria Journal of Fluids and Structures 120 (2023) 103907

2

n

s
a
e
i
t

w

T
E

a
r

i
(

3

c

w
T
E

.2. Nondimensional equations

To nondimensionalize the problem we use c/2, U and ρ as scaling factors, keeping the same symbols for the
ondimensional variables, except for the fluid forces and moments, for which the usual coefficients are used:

CL =
Fz

1
2ρU

2c
, CT =

−Fx
1
2ρU

2c
, CM =

M
1
2ρU

2c2
, CTp =

Fpx
1
2ρU

2c
, (11)

imilarly CLp and CMp . Notice that the thrust coefficient CT is positive when directed towards −x, as usual in propulsion
erodynamics, but we keep the same sign of CTp in relation to the x−component of Fp. Thus, CTp is the nondimensional
xternal force in the positive x direction that maintains the pivot point fixed at x = xp, or, equivalently, it is the component
n the direction −x of the total propulsion force exerted by the fluid plus the inertia of the foil. Additionally, we define
he flexural coefficients in the x and z directions as

CFx =
Dx

ρU2(c/2)3
CFz =

Dz

ρU2(c/2)3
, (12)

ith Dx and Dz the components of D defined in Eq. (10).
However, to account for the chord-wise variation of the structural properties of the foil, they are not scaled with

ρ, c/2 and U , but with their characteristic values (marked with subscript ‘‘0’’), keeping also the same symbols for the
nondimensional (order-of-unity) counterparts:

ρs(s)← ρs(s)/ρs0 , ε(s)← ε(s)/ε0, E(s, t)← E(s, t)/E0, T (s, t)← T (s, t)/(E0ε0). (13)

hus, for a uniform plate with constant density, thickness and rigidity, the nondimensional functions ρs(s) = ε(s) =
(s, t) = 1 and T (s, t) = [1− |∂r/∂s|−1], with both r and s scaled with c/2.
Using these definitions, the nondimensional versions of Eqs. (6), (7) and (9) are

R
2

∫ sf

−si

ρsε
∂2r(s, t)

∂t2
ds = (−CT + CTp )ex + (CL + CLp )ez , (14)

R
4

∫ sf

−si

ρsε (r− rp) ∧
∂2r(s, t)

∂t2
ds = −(CM + CMp )ey , (15)

R
2

∫ sf

−si

ρsε s2
∂2r(s, t)

∂t2
ds+ K

∫ sf

−si

sT
∂r(s, t)

∂s
ds+ S

∫ sf

−si

Eε3 ∂2r(s, t)
∂s2

ds = CFxex + CFzez , (16)

where

R =
4ρs0ε0

ρc
, K =

4E0ε0
ρU2c

, S =
4E0ε3

0

ρU2c3
, (17)

re the mass ratio (or effective inertia), the nondimensional extensional rigidity and the nondimensional bending rigidity,
espectively. Notice that for a uniform plate,

∫ sf
−si

ρsεds = sf + si.
If K →∞, Eq. (16) implies that T → 0, so that the foil is inextensible (|∂r/∂s| = 1 for any s and t) and sf + si = 2. If,

n addition, S → ∞, that equation also implies that ∂2r/∂s2 = 0, and one has a rigid foil, where r(s, t) is a straight line
it is a linear function of s) for any t . This case will be considered first for simplicity.

. Rigid foil

For a rigid foil, i.e., when K and S are both very large, the nondimensional position vector and its local acceleration
an be written in terms of h(t) and α(t) as

r(s, t) = rp(t)+ seα(t) = xpex + h(t)ez + s[cosα(t)ex + sinα(t)ez] , (18)

∂2r
∂t2
= ḧ ez + s

[
−

(
α̇2 cosα + α̈ sinα

)
ex +

(
−α̇2 sinα + α̈ cosα

)
ez

]
, (19)

here dots denote derivatives with respect to nondimensional time t . Note that in this case T = 0 as |∂r/∂s| = |eα| = 1.
hus, in addition to the constraint (4) at the pivot point, Eq. (18) satisfies both boundary conditions (5), so that only
qs. (14) and (15) are needed to relate the foil kinematics to the force and moment.
Substituting (19) into (14),

m
2
R

[
ḧ+ s0

(
α̈ cosα − α̇2 sinα

)]
= CL + CLp , (20)

−
m

Rs0
(
α̇2 cosα + α̈ sinα

)
= −CT + CT , (21)
2 p

4
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here

m =
∫ sf

−si

ρsεds , ms0 =
∫ sf

−si

ρsεsds , (22)

ith s0 the nondimensional position of the center of mass measured from the pivot axis at s = 0. Notice that mRs0/2 is
he nondimensional static moment. Remember that m = 2 for a uniform plate, with the center of mass at the center of
he foil, s0 = (sf − si)/2. In classical aerodynamic notation (Theodorsen, 1935), s0 = −a in this case, or minus the location
f the pivot point from the foil center.
Substituting (19) into (15), and taking into account that ex ∧ ez = −ey,

m
4
R

(
s0 cosα ḧ+ Ia α̈

)
= CM + CMp , (23)

with

Ia =
1
m

∫ sf

−si

ρsεs2ds =
1
6
(s3f + s3i ) = s20 +

1
3

, (24)

here Ia is the nondimensional moment of inertia, with the last two expressions in (24) corresponding to a uniform rigid
late [s0 = (sf − si)/2 and sf + si = 2].
For given foil kinematics h(t) and α(t), together with the expressions of the fluid force and moment, CT , CL and CM , in

terms of h(t) and α(t), Eqs. (20) and (23) provide the total vertical force CLp and moment CMp on the pivot point needed
to generate that kinematics, while (21) yields the total thrust force CTp that propels the foil. All these forces and moment
are composed of a fluid component plus an inertial component,

CLp = −CL + CLR , CTp = CT + CTR , CMp = −CM + CMR , (25)

where the inertial parts CLR , CTR , and CMR are given by the right-hand sides of Eqs. (20), (21) and (23), respectively.
Alternatively, if one measures experimentally the reactions CLp , CTp and CMp on the pivot axis together with the kinematics
h(t), α(t), Eqs. (20), (21) and (23) provide the fluid force and moment CL, CT and CM . In either case, it is essential to dispose
of explicit expressions for the inertial terms CLR , CTR , and CMR to evaluate the effect of inertia on the propulsive performance
of a (rigid in the present case) flapping foil, which is the aim of the present work. In particular, we are mostly interested
in the inertial contribution to the propulsion force

CTR = −
m
2
Rs0

(
α̇2 cosα + α̈ sinα

)
, (26)

nd in the inertial contribution to the power input needed to generate that thrust. The nondimensional power input at
he pivot point can be written as

CPp = ḣCLp + 2α̇CMp ≡ CP + CPR , with CP = −ḣCL − 2α̇CM (27)

he fluid contribution and

CPR = ḣCLR + 2α̇CMR =
m
2
R

{
ḣ
[
ḧ+ s0

(
α̈ cosα − α̇2 sinα

)]
+ α̇

(
s0 cosα ḧ+ Ia α̈

)}
(28)

he inertial contribution. The quotient between CTp and CPp is related to the propulsive efficiency (see below), and therefore
ne has to evaluate the inertial contributions (26) and (28) to find out the effect of inertia of the propulsive efficiency of
he foil.

Clearly, the inertial and fluid contributions to the propulsive performance are comparable to each other when R is of
rder unity, as it usually occurs in aerial flapping propulsion.

.1. Harmonic pitch and heave

Consider the nondimensional heaving and pitching harmonic motion

h = h0 cos(kt) , α = αs + a0 cos(kt + φ) , k =
ωc
2U

, (29)

here h0 and a0 are the heave and pitch amplitudes, respectively, αs a mean angle of attack, φ the pitch-heave phase
lag and k the nondimensional (reduced) frequency associated to the physical flapping frequency ω. Substituting (29) into
(26) and (28) one obtains the instantaneous inertial contribution to the propulsive performance, which is as relevant as
the instantaneous contributions of the fluid forces and moment if R is not small.

But, in the cruising regime with this periodic flapping, one is more interested in cycle-averaged quantities. For any
quantity Z(t), its time average is defined as

Z =
k

∫ t+2π/k

Z(t)dt . (30)

2π t

5
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Fig. 2. Power (a) and thrust (b) coefficients vs. t/T (T = 2π/k) for h0 = 0.05, a0 = 5◦ , φ = 0, αs = −5◦ , s0 = −a = 1/3, k = 1, and R = 20. The
orizontal lines are the corresponding time averages.

nterestingly, inserting (29) into Eqs. (26) and (28) and averaging, after some involved integrations of highly nonlinear
xpressions, it results that both CTR and CPR vanish (see Appendix A). This is so for any amplitude and phase of the flapping

oscillations, even if the mean angle of attack is not zero, αs ̸= 0. Therefore, the propulsive efficiency, defined as the ratio
of CTp and CPp , is independent of inertia for any value of R:

η =
CTp

CPp

=
CT

CP
. (31)

This general result is very relevant because, despite the fact that instantaneous experimental measurements of the
thrust force and power input may be quite affected by the inertial effects, especially in a wind tunnel, the cycle-averaged
measurements are exactly the contributions coming from the fluid force and moment. Curiously, the time-averaged
inertial moment does not vanish for a combined pitching and heaving motion with αs ̸= 0 and a pivot axis that does
ot coincide with the center of mass, s0 ̸= 0 (see Appendix A):

CMR = π
m
2
Rs0kh0J1(a0) cos(φ) sin(αs) , (32)

here J1 is the first order Bessel function of the first kind [for small amplitude, a0 ≪ 1, J1(a0) ≃ a0/2]. However, when
ombined with CLR to obtain CPR according to (28), this cycle-averaged moment does not contribute to the time-averaged
ower input. Notice that these results are valid for any distribution of density and thickness of the foil, and therefore for
ny moment of inertia Ia.
To visualize how the instantaneous inertial thrust CTR and power CPR may be comparable to the fluid thrust and power,

ut only the fluid components contribute to their time averages, Fig. 2 shows, as an illustration, results for small pitch
nd heave amplitudes in a uniform rigid foil, for which the fluid contributions CT and CP are also obtained analytically
see Appendix B). A mass ratio R = 20 is used, corresponding to a typical aerial flapping propulsion with ρs/ρ = 103 and
/c = 5 × 10−3. Further comparisons can be made using CT and CP computed numerically for higher pitch and heave
mplitudes, and for any other set of the flapping parameters, since the analytical expressions for the inertial contributions
TR and CPR remain valid for any amplitude of the pitch and heave motions. But this is out of the scope of the present
nalysis, focused on the general analytical characterization of the inertial effects on the propulsive performance of a
itching and heaving foil.

. Flexible foil

For a flexible foil we need at least an additional degree of freedom to characterize the foil motion, and, therefore, at
east one more moment equation such as (9), or its nondimensional form (16), to characterize this new degree of freedom.
simple quadratic function of s like, for instance, r(s, t) = rp(t)+seα(t)+s2d(t), with new nondimensional vector d scaled
ith 2/c , would be enough to account for the bending rigidity (EI) term in Eq. (9), and thus characterize the deflection
6
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in terms of the fluid forces through D. However, such a quadratic function, though satisfying the constraints (4) at the
ivot point, cannot met the boundary conditions at the foil edges (5). To satisfy the boundary conditions at one of the foil
dges (e.g., the trailing edge) one needs at least a quartic function of s. The simplest approximation is to assume that the
ivot point is sufficiently close to the leading edge, so that for −si ≤ s ≤ 0 one may assume a rigid foil (which therefore
atisfies automatically the boundary condition at the leading edge), and a quartic polynomial for s ≥ 0:

r(s, t) =
{
rp(t)+ seα(t) , −si ≤ s ≤ 0 ,

rp(t)+ seα(t)(1+ t1s2 + t2s3)+ s2d(t)(1+ d1s+ d2s2) , 0 ≤ s ≤ sf ,
(33)

here t1, t2, d1 and d2 are nondimensional constants selected to satisfy the boundary conditions (5) at s = sf ; i.e.,

t1 = −
(

T
s2T + 2(εo/c)2Eε3

)
s=sf

, t2 =
(

T
2s3T + 4(εo/c)2sEε3

)
s=sf

, (34)

d1 = −
4
3

(
sT + (εo/c)2Eε3/s
s2T + 2(εo/c)2Eε3

)
s=sf

, d2 = −
1
6s2f
+

4
3

(
sT + (εo/c)2Eε3/s

2s3T + 4(εo/c)2sEε3

)
s=sf

. (35)

Although this is just an approximation for small deflection d, actually the simplest one satisfying all the boundary
conditions, valid for sufficiently large bending stiffness S and pivot axis close to the leading edge, it allow us to obtain
simple analytical expressions for the effect of flexibility on the inertial terms, and therefore to understand explicitly how
flexibility may modify the above conclusions on the effect of inertia on the propulsive performance of a rigid foil. As shown
in Fernandez-Feria and Alaminos-Quesada (2021), this approximation captures almost exactly the first natural frequency
of the foil, but not the higher resonances. However, it is known that the best propulsive performance of a flexible flapping
foil in terms of maximum time-averaged thrust and propulsive efficiency is reached at or near the first resonant mode of
the foil for large enough bending stiffness, and for pivot axis close to the leading edge (Alben, 2008; Floryan and Rowley,
2018). The model can be simplified even further from the fact that, for a thin foil, ε0/c ≪ 1, the extensional stiffness is
much larger than the bending stiffness, K ≫ S, so that one may assume that T ≃ 0, and, consequently,

t1 ≃ 0 , t2 ≃ 0 , d1 ≃ −
2
3sf

, d2 ≃
1
6s2f

. (36)

hus, Eq. (33) with (36) is the simplest approximation that takes into account the flexibility of a general nonuniform foil
atisfying the boundary conditions (4)–(5), valid for large K and S, and a pivot point near the leading edge.
Defining the components of the nondimensional flexural deflection as

d(t) = dx(t)ex + dz(t)ez , (37)

ubstituting the above expressions into (14)–(16) and taking into account that

eα ∧ d̈+ d ∧ ëα = ey
[
−d̈z cosα + d̈x sinα − dx(α̈ cosα − α̇2 sinα)− dz(α̈ sinα + α̇2 cosα)

]
, (38)

d ∧ d̈ = ey(−dxd̈z + dz d̈x) , (39)

ne obtains three equations similar to (20), (21) and (23) for a rigid foil, but with additional flexural deflection terms,
lus two additional flexural equations for the components of d:

m
2
R

[
ḧ+ s0

(
α̈ cosα − α̇2 sinα

)
+ g2d̈z

]
= CL + CLp , (40)

m
2
R

[
−s0

(
α̇2 cosα + α̈ sinα

)
+ g2d̈x

]
= −CT + CTp , (41)

m
4
R

{
s0 cosα ḧ+ Iaα̈ + g2ḧdx + hd(dxd̈z − dz d̈x)

+ g3
[
d̈z cosα − d̈x sinα + dx(α̈ cosα − α̇2 sinα)+ dz(α̈ sinα + α̇2 cosα)

] }
= CM + CMp , (42)

m
2
R

[
Iaḧ+ fd

(
α̈ cosα − α̇2 sinα

)
+ g4d̈z

]
+ Sdz = CFz (43)

m
2
R

[
−fd

(
α̇2 cosα + α̈ sinα

)
+ g4d̈x

]
+ Sdx = CFx (44)

where the new nondimensional coefficients are

gn =
1
m

∫ sf
ρsεsn

[
1−

2s
3s
+

1
6

(
s
s

)2
]
ds =

26+ n(17+ 3n)
12(n+ 1)(n+ 2)(n+ 3)

sn+1f , n = 2, 3, 4, (45)

0 f f
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hd =
1
m

∫ sf

0
ρsεs4

[
1−

2s
3sf
+

1
6

(
s
sf

)2
]2

ds =
13
405

s5f , (46)

fd =
1
m

∫ sf

−si

ρsεs3ds =
1
2
(s4f − s4i ) , (47)

S =
2
3
S
∫ sf

0
Eε3

(
1−

s
sf

)2

ds =
2
9
sf S , (48)

ith the rightmost expressions of these coefficients corresponding to a uniform plate. From Eqs. (43) and (44) it is clear
hat the foil may be considered rigid (i.e., dx, dz → 0) if the nondimensional bending stiffness S →∞.

Given CFx and CFz as functions of h(t), α(t), dx(t) and dz(t) and their temporal derivatives, and given the pitching
and heaving motion, Eqs. (43)–(44) yield the flexural deflection components dx(t) and dz(t). Notice that to the flexural
eflection contributes both the fluid force through CF and the inertial force through the pitch and heave terms multiplied
y R, being both contributions comparable in aerial propulsion. In fact, for some insect species it has been shown that
ing deformation is mainly due to the wing inertia (Dudley, 2000; Combes and Daniel, 2003). Once d is known, together
ith the functions CL, CT and CM in terms of h(t), α(t) and dx,z(t), Eqs. (40) and (42) provide the reactions CLp and CMp ,
nd consequently the power input

CPp = ḣCLp + 2α̇CMp = CP + CPR , (49)

ith

CP = −ḣCL − 2α̇CM and CPR = ḣCLR + 2α̇CMR , (50)

hile Eq. (41) yields the thrust coefficient at the pivot point,

CTp = CT + CTR . (51)

n these expressions, CLR , CTR and CMR are the left-hand sides of Eqs. (40)–(42). The linearized limit of these equations,
.e., for small pitch and heave amplitudes, |α| ≪ 1, |h| ≪ 1, and with small deflection only in the z direction, dx = 0,
dz | ≪ 1, coincide with the equations derived in Fernandez-Feria and Alaminos-Quesada (2021) in the case of a uniform
oil. In that work the problem was solved analytically for a harmonic motion with αs = 0. For the equivalence between the
wo sets of equations one has to take into account that in the linearized limit of the mentioned reference xp = a, s = x−a,
0 = −a, si = 1+a, sf = 1−a, and that the sign of α has been changed. The present problem cannot be solved analytically
wing to the nonlinear inertial terms in the left-hand sides of Eqs. (40)–(44) and, more importantly, because no general
nalytical expressions of the fluid coefficients in the right-hand sides of the equations are known analytically for large
mplitudes of h, α and d [for small amplitudes these expressions were obtained in Alaminos-Quesada and Fernandez-
eria (2020)]. However, the time averages of the inertial terms in the left-hand sides of Eqs. (40)–(44) can be obtained
nalytically for a general harmonic motion, which is the main aim of the present work.

.1. Inertial terms for a harmonic motion

For a harmonic pitching and heaving motion like (29), the flexural deflection (37) may eventually reach also a harmonic
orm, which in general can be written as

dx = dxa cos(kt + φx) , dz = dza cos(kt + φz) . (52)

sing these expressions and (29) one may compute the time averages of the inertial terms, resulting:

C LR = 0 , CTR = 0 , (53)

CMR =
R
2
h0k2

[
S0J1(a0) cosφ sinαs −

g2
2
dxa cosφ1

]
, (54)

CPR = ḣCLR + 2α̇CMR = −
R
2
k3 [g2h0dza sinφz+

2g3(J1(a0)− 2a0J2(a0))(dxa sinαs sin(φ − φx)− dza cosαs sin(φ − φz))] , (55)

where J1 and J2 are the first and second order Bessel functions of the first kind, respectively. Therefore, for a flexible foil,
the cycle-averaged inertial thrust remains zero for any small flexural deflection, independently of its origin, passive or
forced, but the propulsive efficiency is affected by the inertia through a non-vanishing mean inertial power input. In the
linearized limit, when dxa ≃ 0 and a0 ≪ 1,

CP ≃
R
k3dza [−g2h0 sinφz + g3a0 cosαs sin(φ − φz)] . (56)
R 2
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o even without a mean angle of attack αs there is a contribution of flexibility to the time-averaged power input from
oth heaving and pitching motions, provided that there is a phase shift of the flexural deflection in relation to any of
hem (remember that all the phase shifts are measured in relation to the heaving motion). This contribution may vanish
r be negative for particular combinations of pitch and heave, thus enhancing the propulsive efficiency by minimizing the
otal power consumption. In the linear limit, when the power is given by (56), one may compute dza and φz analytically
for given pitching and heaving motion through Eq. (43) (Fernandez-Feria and Alaminos-Quesada, 2021). In general, the
deflection amplitudes and phases, dxa, dza, φx and φz , can be obtained by just tracking the trailing edge position either
numerically or experimentally. In the present nondimensional form the trailing edge location can be written as

r(s = sf , t) =
[
xp + sf cos[αs + a0 cos(kt + φ)]

]
ex +

[
h0 cos(kt)+ sf sin[αs + a0 cos(kt + φ)]

]
ez

+
s2f
2

[dxa cos(kt + φx)ex + dza cos(kt + φz)ez]

≃ ex + {h0 cos(kt)+ (1− a)[αs + a0 cos(kt + φ)]} ez +
(1− a)2

2
dza cos(kt + φz)ez , (57)

here the first two terms correspond to the motion as a rigid foil, and the last approximation is valid in the linear limit
dxa ≃ 0, h0 ≪ 1, a0 ≪ 1, xp ≃ a, sf ≃ 1 − a). Measuring the trailing edge location and knowing h(t) and α(t), from
his expression one may easily obtain dxa, dza, φx and φz , which inserted into (55) or (56) provides the cycle-averaged
ontribution of the inertia to the power input, independently of the origin of this flexural deflection.

.2. Inertia dominated deflection

To gain more insight about the particular conditions for which deflection affects the time-averaged power, we consider
ere the simplest case when the flexural deflection is mainly determined by the inertia of the foil, as it often happens
n aerial flapping locomotion (Dudley, 2000; Daniel and Combes, 2002). This situation occurs when the mass ratio R is
sufficiently large and one may neglect the fluid contributions CFx and CFz to the deflection in Eqs. (43)–(44). To simplify
further, we consider harmonic motion in the linear limit, so that only Eq. (43) is needed. Inserting (29) and (52) in complex
form into (43), one obtains explicitly

dzaeiφz =
k2

(
Iah0 + fda0eiφ

)
g4

(
2S

g4 mR
− k2

) . (58)

or any pitch an heave, the deflection amplitude peaks at the frequency

k = kr0 =

√
2S

g4 mR
=

√
280

71(1− a)4
S
R

, (59)

hich corresponds to the first resonant frequency of the foil about the pivot axis in vacuum, the last expression for a
niform foil (in dimensional form, ωr0 ≃ (ε/c2)

√
E/ρs for a pivot axis located at the leading edge, a = −1).

For a pure heaving or pitching motion, from Eq. (58) it results that φz = 0 or φz = φ, respectively, so that the time-
veraged power input vanish according to (56). Therefore, a combination of pitching and heaving motion with phase
̸= 0 is needed for the inertia to contribute to the time-averaged power input. Substituting (58) into (56) it turns out

hat CPR < 0 for k < kr0 and CPR > 0 for k > kr0 if φ < 180◦, and the opposite behavior is found if φ > 180◦. Thus, for a
iven pitch-heave motion with a phase shift smaller than 180◦ in a foil with structural properties and pivot point location

characterized by a resonant frequency kr0, to minimize the power consumption with the help of the inertial power one
as to flap with a reduced frequency slightly smaller than kr0. Conversely, if the reduced frequency k is fixed, one has

to choose the structural properties and pivot point location of the foil such that kr0 is slightly larger than k. This general
rend does not change much if the fluid contributions CFx and CFz to the flexural deflection is not negligible within the
present approximation.

5. Conclusions

The following general results have been obtained for the cycle-averaged inertial effects on the propulsive performance
of a foil undergoing harmonic pitching and heaving motion of any amplitude and phase about an arbitrary pivot axis and
passive small flexural deflection. The cycle-averaged inertial contribution to the propulsive performance, if any, is of the
order of the mass ratio R in relation to the fluid contribution.

• Inertial thrust and lift always vanish, CTR = C LR = 0, even for non-zero mean angle of attack (αs ̸= 0), for any
pitching any heaving motion and small flexural deflection.
9
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• For a rigid foil, the time-averaged inertial moment does not vanish when a non-zero mean angle of attack is present,
but it is negligible (it is quadratic in the heaving and pitching amplitudes) in the linear limit. In any case, this moment
never contributes to the inertial cycle-averaged power input, CPR = 0. Therefore, for a rigid foil, the inertia does not
contribute to the cycle-averaged propulsive performance: both cycle-averaged thrust and propulsive efficiency come
only from the fluid forces and moment, which simplifies the experimental measurement of these quantities with
force/torque sensors.
• When some degree of flexibility is present in the foil, both the time-averaged moment and power input do not

vanish even for null mean angle of attack, being both proportional to the flexural deflection amplitude. This flexural
deflection can be computed from the analytical expressions given here by just following (either numerically or
experimentally) the amplitude and phase of the trailing edge motion, thus allowing a straightforward computation
of the inertial effects in the power input. In the linear limit the deflection can be obtained analytically.
• The cycle-averaged inertial power input does not vanishes when the flexural deflection is out of phase with the

heaving and/or the pitching motions, and may become negative for certain kinematics, thus enhancing the propulsive
efficiency by reducing the total power consumption. For inertially dominated deflection, reduction in the power
consumption can be achieved only with combined, out of phase pitching and heaving motion, with a reduced
frequency smaller (larger) than the first resonant frequency of the foil for phase shift smaller (larger) than 180◦,
the closer to the resonant frequency the larger the power reduction.

The analytical results given here for the inertial contributions to the propulsive performance of a two-dimensional
flapping foil are valid for large extensional and bending rigidities and for a pivot axis location sufficiently close to the
leading edge. These restrictions are in fact not very relevant because it is known that the best propulsive performance of
a flexible flapping foil in terms of maximum time-averaged thrust and propulsive efficiency is reached at or near the first
resonant mode of the foil for large enough bending stiffness, and for pivot axis close to the leading edge (Alben, 2008;
Floryan and Rowley, 2018; Fernandez-Feria and Alaminos-Quesada, 2021). In fact, the quartic approximation used here for
the small flexural deflection captures almost exactly the first natural frequency of the foil (Fernandez-Feria and Alaminos-
Quesada, 2021). Obviously, the results are not directly applicable to a supper flexible foil, where higher resonances may
play a relevant role. But the present analysis adds further insight, through analytical results, about the qualitatively
different role played by the inertia on the propulsive performance of a foil undergoing small flexural deflections in relation
to its rigid-foil counterpart. If the smallest flexural deflection modifies the inertial effects qualitatively, it is expected that
larger and more complex flexural deflections would reinforce these differences quantitatively. The present results are
valid for any chord-wise distribution of the foil density, thickness and stiffness (i.e., Young’s modulus, provided that it is
large enough) of the foil, and for any pitch and heave amplitude.
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ppendix A. CTR , CPR and CMR for the harmonic motion of a rigid foil

The following integrals are performed with the help of the Mathematica software package. The integrals correspond-
ng to the cycle averages of the two terms inside the parentheses in Eq. (26) for CTR are, when using the harmonic motion
(29), ∫ 2π

k

0
[a0k sin(kt + φ)]2 cos[αs + a0 cos(kt + φ)] dt = 2πka0 cos(αs)J1(a0) , (A.1)∫ 2π

k

0
[−a0k2 cos(kt + φ)] sin[αs + a0 cos(kt + φ)] dt = −2πka0 cos(αs)J1(a0) , (A.2)

here J is the first order Bessel function of the first kind. Thus, the two terms cancel each other and C = 0.
1 TR
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The integrals for the cycle averages of the five terms inside the curly brackets in Eq. (28) for CPR are∫ 2π
k

0
h2
0k

3 sin(kt) cos(kt) dt = 0 , (A.3)∫ 2π
k

0
a0h0k3s0 sin(kt) cos(kt + φ) cos[αs + a0 cos(f + kt)] dt = 2πh0k2s0[a0J2(a0)− J1(a0)] cos(αs) sin(φ) , (A.4)∫ 2π

k

0
a20h0k3s0 sin(kt) sin2(kt + φ) sin[αs + a0 cos(kt + φ)] dt = −2πa0h0k2s0J2(a0) cos(αs) sin(φ) , (A.5)∫ 2π

k

0
a0h0k3s0 cos(kt) sin(kt + φ) cos[αs + a0 cos(kt + φ)] dt = 2πh0k2s0 cos(αs) sin(φ)J1(a0) , (A.6)∫ 2π

k

0
Iaa20k

3 sin(kt + φ) cos(kt + φ) dt = 0 , (A.7)

here J2 is the second order Bessel function of the first kind. The three non-vanishing terms cancel each other, resulting
CPR = 0.

Finally, from Eq. (23), the inertial contribution to the moment is

CMR =
m
4
R

(
s0 cosα ḧ+ Ia α̈

)
. (A.8)

he time average of the second term vanishes for a harmonic motion, while that of the first term is given by Eq. (32).

ppendix B. CP and CT for a pitching and heaving rigid foil from linear potential flow theory

The following expressions for CP and CT are from Theodorsen (1935) and Fernandez-Feria (2016), respectively, but
hey are reproduced here because include the contributions from a mean angle of attack αs ̸= 0, not considered in those
works. In addition, they are written with both α and the moment positive when counterclockwise.

CP = −ḣ
{
π

(
−α̇ − ḧ+ aα̈

)
− 2παs +ℜ [Γ0C(k)]

}
−α̇

{
π

2

[
−

(
1
2
− a

)
α̇ + aḧ−

(
a2 +

1
8

)
α̈

]
+

(
a+

1
2

)
παs −

1
2

(
a+

1
2

)
ℜ [Γ0C(k)]

}
, (B.1)

CT = αCL − πα̇
(
ḣ− aα̇ + α

)
+

(
ḣ− aα̇ + α

)
2παs −

(
ḣ− aα̇ + α

)
ℜ

[
2i
π

Γ0C1(k)
]

− α̇ℜ

[
Γ0

(
2
πk

(1+ ik)C1(k)+
i
k
C(k)

)]
, (B.2)

with

CL = π
(
−α̇ − ḧ+ aα̈

)
− 2παs +ℜ [Γ0C(k)] (B.3)

being Theodorsen’s lift coefficient (here positive upwards), Γ0 given by

Γ0 = −2π
[
ḣ+ (α − αs)−

(
a−

1
2

)
α̇

]
, (B.4)

nd the complex functions of the reduced frequency k

C(k) =
H (2)

1 (k)

iH (2)
0 (k)+ H (2)

1 (k)
, C1(k) =

1
k e
−ik

iH (2)
0 (k)+ H (2)

1 (k)
, (B.5)

ith C(k) the well known Theodorsen’s function.
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