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1. Introduction

Nanoparticles (NPs) are used in a wide 
range of applications, with many of their 
physical and chemical properties being 
size-dependent.[1] For instance, the cata-
lytic treatment (e.g., high operating tem-
perature) of supported metals can change 
the metal surface area due to processes 
such as sintering, resulting in a decrease 
in exposed surface area and hence in 
catalytic activity. Therefore, particle size 
distributions (PSDs) of NPs are routinely 
measured in industrial environments, 
with the requirement that they should 
be statistically reproducible, meaningful, 
and accurate.

The two complementary techniques 
typically used for measuring PSDs are 
transmission electron microscopy (TEM) 
and X-ray diffraction (XRD). The decon-
volution of XRD patterns is challenging. 
The mean crystal size is calculated over 
millions of scattering elements that can 
be misleading if the particles have mul-
tiple crystalline domains, e.g., twinned 

particles, core-shell particles, etc.[2,3] TEM, on the other hand, 
produces images containing hundreds or thousands of par-
ticles whose size distribution is measured with digital image 
processing techniques that are combined with algorithms for 
shape analysis and classification. Recently, it has been demon-
strated that the application of genetic algorithms or supervised/
unsupervised Artificial Intelligence (AI) methods for shape 
classification increases the quality and amount of information 
that can be extracted from TEM images.[4–7] The starting point 
of any image-based method is separating the particles from the 
background, a procedure called image segmentation. The most 
basic approach is an intensity-based segmentation that uses 
a global threshold value for classifying image pixels into two 
classes, particle or background.[8,9] In most cases, that simple 
approach fails due to particle overlapping or local variations 
of the diffraction conditions and the composition across the 
field-of-view. Better results are thus obtained by optimising the 
threshold according to the local intensities in the image.[10–12] 
The fact that in many practical cases NPs can be approximated 
to circles has been exploited to detect the NPs either using a 
Laplacian of Gaussian filter, that is a blob-detector that responds 
to circular image structures, or by fitting simple intensity 

An essential application of electron microscopy is to provide feedback to 
tune the fabrication of nanoparticles (NPs). Real samples tend to follow 
a size distribution commonly linked to the synthesis process used and in 
turn to their functional properties. This study presents an algorithm for 
measuring particle size distributions in electron microscopy images. State-
of-the-art methods based on Artificial Intelligence (e.g., Deep Learning) 
require extensive datasets of labeled images similar to those expected to be 
analyzed, and extensive supervised re-training is often required for cross-
domain application. In contrast, the non-AI algorithm described in this 
study is accurate and can be quickly set up for measuring new experimental 
images in different domains. The accuracy of the method is validated quanti-
tatively and comparing graphical and descriptive statistics. Different size 
distributions are measured on images of platinum and gold nanocatalysts 
supported on carbon black, amorphous carbon, and titanium dioxide crys-
tals. Also, images of platinum-iron core-shell NPs supported on thin amor-
phous carbon film are successfully analyzed. The limitation of evaluating 
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the images and the ground truth measurements presented here are shared 
as an open dataset.
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models of the projected shapes to the TEM image.[13,14] Also the 
identification of NPs edges using the circular Hough transform 
is a powerful method that can perform well with images with 
low-contrast and it is particularly useful for separating overlap-
ping particles.[15,16] The main limitation is that these methods 
are useful for detecting explicitly predefined geometries. AI 
approaches are the state-of-the-art in image analysis tasks, 
and supervised Deep Learning for image segmentation has 
demonstrated the potential for NP metrology in electron micro
scopy.[4,5,7,17–19] Nevertheless, the generalization of AI models to 
different domains (different types of samples and imaging con-
ditions) in electron microscopy has not been demonstrated yet. 
Setting up the software environment for implementing Deep 
Learning is still overwhelming, data collection and preparation 
is not an obvious task, and training the AI model requires large 
amounts of annotated data, thus rendering it often inaccessible 
to most microscopy users.

Template matching is a conventional yet powerful approach 
that can detect patterns in images but it has been largely unex-
plored for its application for the metrology of NPs.[20–22] This 
work presents TEMAS, TEmplate Matching and Adaptive Seg-
mentation, a non-AI algorithm for measuring PSDs that is 
simultaneously accurate and flexible (see Figure 1). The method 
is validated using statistical analysis of the PSDs measured on 
different samples acquired with different imaging conditions 
which are then compared to a ground truth.

2. Nanoparticle Metrology Workflow

2.1. Algorithm Description

Figure 2 shows an example of a bright-field TEM image of Pt 
catalyst NPs supported on carbon black (see sample descrip-
tion in the Experimental Section and Table  1). The image is 
in gray scale and contains hundreds of similar NPs with sizes 
that are a fraction of the field-of-view size, and with an average 
pixel intensity that changes strongly from particle to particle. 
The image represents the type of sample that is routinely 
analyzed in the industry of nanocatalysts and from which the 
detection, measurement and classification of the particles are 
of interest.[23]

TEMAS is based on performing segmentation of Regions-
of-Interest (ROIs) of the image containing approximately 
one NP that are detected using template matching. The algo-
rithm consists of the following steps (see also flowchart  
in Figure 1):

1)	 Generating a collection of templates,
2)	Template matching for detecting candidates ROIs containing 

single NPs,
3)	Keeping one representative ROI for each NP using the “Non-

maximum Suppression” (NMS) algorithm,
4)	Segmenting each ROI using Otsu’s thresholding,
5)	Filtering the binary ROIs, and
6)	Blob analysis of the binary ROIs using the Area-equivalent 

diameter.

The steps are detailed in the following sections  and in the 
Experimental Section.

2.1.1. NPs Detection Using Multi-Template Matching

TEMAS uses template matching to localize individual NPs 
across the image. First, the target image is scanned by one 
template, which is an image containing one NP. The template 
can be cropped from the target image or from another image 
similar to the one to be analyzed. Second, a similarity index 
between the template and the local patch of the target image is 
calculated at each position (see Experimental Section for imple-
mentation details). Finally, the positions with the most signifi-
cant similarities are identified as potential ROIs containing one 
NP. The similarity metric used in TEMAS is the normalized 
cross-correlation function that outputs a value between 0 and 1.  
The closer to 1, the more likely is the patch of the image con-
tains an NP. The selection criteria used in this work to select or 
reject an ROI is that the patch has a similarity ≥ 0.5. The number 
of particles detected (and also false positives) can be increased 
by decreasing the similarity threshold used during the template 
matching step. On the contrary, the number of undetected par-
ticles (or false negatives) increases when the similarity index 
is raised. We found in our experiments that using a threshold 
of 0.5 most of the particles present in the image were detected 
while false positives were kept to a minimum (when combined 
with the algorithm NMS explained in the following section).

In general, template matching is more robust if it is rotation 
and scale invariant. Because NPs have frequently circular sym-
metry, we did not considered  rotating the templates. Regarding 
to scale, we increased the NP detection capacity in TEMAS using 
template matching successively with a collection of templates 
(or multi-template matching) that can better represent the types 
and sizes of NPs present in the image (see Figure  1). There-
fore, for the application of TEMAS, the user must select several 
templates containing one NP. The NPs tend to be very similar 
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Table 1.  Description of the samples and imaging parameters.

Sample 1 Sample 2 Sample 3 Sample 4 Sample 5

NPs composition Pt, N2 @ 900 °C Pt Pt core-shell PtFe@FexOy Au

Sample support Carbon black Carbon black Carbon black Amorphous C film Crystalline TiO2

Microscope Tecnai F20 Tecnai F20 Philips CM200 LaB6 Tecnai G2 F30 Tecnai T20

Sensor type CCD CCD Digitized film CMOS CCD

Image size (pixels) 2048 × 2048 2048 × 2048 1956 × 1257 958 × 958 2048 × 2048

File Format bmp jpg tif png png
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Figure 1.  In the left, is the algorithm’s flowchart for measuring PSDs called TEMAS. In this concrete example, adaptive segmentation is done using 
intensity thresholding. Right, a selection of 225 ROIs containing approximately one NPs each. The ROIs were detected using multiple template 
matching.

Figure 2.  a) Bright-field TEM image of Pt catalysts supported on carbon black (sample 1 described in Table 1). b) Image annotated with ROIs containing 
NPs. The ROIs were localized using template matching with the two templates shown below the image. c) Contours of NPs segmented in each ROI. 
d) Detail of the results of the region marked inside the black square in a). e) Histograms of the PSD measured using local thresholding, global thresh-
olding, TEMAS and manual segmentation (ground truth or GT).
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except for intensity and size variations, hence 2–3 templates are 
enough to represent the variability of particles. For example, 
Figure 2c shows the application TEMAS using two templates of 
two NPs of different sizes cropped from the TEM image.

2.1.2. ROIs Selection Using NMS

Template matching performs a window scanning across the 
image to be analyzed with a stride that is smaller than the ROI 
dimensions. Windows close to each other can result in several 
ROIs pointing to the same NP. For this reason, it is necessary to 
devise a method to sift through the proposed ROIs and filter them 
to keep only one ROI representative of one NP. The task consists 
of selecting an ROI among many overlapping ones and in TEMAS 
this is done using NMS,[24,25] which is the most straightforward 
and efficient algorithm for this task. The selection criteria used in 
this work for selecting or rejecting an ROI with NMS is that the 
patches have an overlap ≤ 0.3 And the output of this step is a selec-
tion of N ROIs which have less than 30% of mutual overlapping.

2.1.3. Adaptive Segmentation

After detecting N patches (or ROIs) containing approximately 
one NP each, it is necessary to segment them to label its 

pixels. In TEMAS, Otsu’s method is used to determine the 
optimal thresholds for separating the NP from the image 
background.[8] For the samples containing single-core NPs 
(see examples in the Figures 2–4) only one threshold was 
calculated using Otsu’s method, the resulting binary ROIs 
contained blobs formed by groups of pixels classified into 
two classes (core, support). For samples made of core-shell 
NPs (see Figure  5), we segmented the image using a multi-
Otsu approach to find two optimal thresholds in each of the 
N ROIs. After segmentation, the ROIs contain blobs of three 
classes (core, shell, support).

2.1.4. Morphological Filtering and Blob Analysis

The ROIs are filtered using an opening operator (erosion fol-
lowed by dilation) to smooth the boundaries of the blobs by 
removing small protrusions, to break narrow isthmuses thus 
separating the touching particles, and to reduce noise by 
removing regions smaller than the size of a chosen structuring 
element. In the examples shown in this work, the opening 
operator was applied with a circular structuring element with 
a radius of 3 pixels. The final step in TEMAS consists in doing 
a blob analysis of each ROI. To reduce the potential error of 
measuring portions of nearby NPs cropped by the ROI only the 
largest blob is kept in each ROI.

Part. Part. Syst. Charact. 2023, 40, 2200170

Figure 3.  PSD of a sample of Pt nanocatalysts (sample 2) measured using TEMAS with three templates.
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2.2. Validation

2.2.1. Statistical Analysis

TEMAS was applied to five TEM images of single-core and core-
shell NPs supported on different materials, and acquired with 
different imaging conditions (see the description in Table  1). 
The results are displayed in the Figures 2–8 and compiled in 
Tables 2 and 3.

Each figure  displays: a) the original image, b) the original 
image with the overlays of boxes corresponding with ROIs 
selected, c) the original image with the overlay of the contours 
of the segmented NPs, d) detail of a), b), and c) and the tem-
plates used, and e) a graph with the plots of four histograms 
of the PSDs as calculated using different methods: TEMAS, 
ground truth measured using manual segmentation (“GT”), 
global thresholding (“global thresh”) and adaptive thresholding 
(“local thresh”), as described in the Experimental Section.

The PSDs were characterized using the following statis-
tical parameters:[26] the number of counts, N, the minimum 
and maximum diameter, min(Di) and Max(Di), the arithmetic 
mean, D

AE
, the Median, and the standard deviation, std. Descrip-

tive statistic can be misleading in some cases. For example, the 
standard deviation is very sensitive to the presence of a small 
number of outliers. Hence, we also evaluated the similarity of 
the shapes of the distributions with respect to the ground truth 
measured manually by comparing the graphs qualitatively, and 
computing numerically the p-value and D* of the “Two Sample 
Kolmogorov–Smirnov Test”.

2.2.2. Time Performance

Regarding computation speed, template matching tends to be 
slow because it requires a search over the whole input space 
for all (or part of) transformation space.[27] We found that in 
our experiments the total processing time (see Figure  8) of 
each image using TEMAS is proportional to NM being N the 
number of particles detected in the image and M the number 
of templates applied. Using our computational approach, a 
single particle measurement takes an average of 75 µs.

3. Discussion

The results demonstrate a remarkable correspondence 
between the PSDs obtained using TEMAS and the GTs. In 
contrast, the results obtained using alternative segmenta-
tion methods like Local and Global thresholding display 
significant errors.

The mean Area-equivalent diameter error using TEMAS 
for the five samples ranges between 0% for sample 1 and 7.7% 
for the shells of sample 4, and the mean error of the five sam-
ples is 3.8%. TEMAS is accurate also for classifying the mix-
ture of single-core and core-shell NPs of sample 4. A 14% of 
the NPs do not have shells according to the ground truth (and 
11% with TEMAS). The mean size of samples 1–3 is larger than 
the Median, indicating that the Pt NPs follow a lognormal dis-
tribution skewed right as expected for this type of sample.[2] A 
p-value closer to 1, which corresponds to a small D*, indicates 

Part. Part. Syst. Charact. 2023, 40, 2200170

Figure 4.  PSD of a sample of Pt nanocatalysts (sample 3) measured using TEMAS with three templates.
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a good fit of two distributions.[10] According to the p-value and 
D* values obtained, TEMAS provide size distributions that are 
much closer to the GT distributions (the “real” ones) than when 
using Global or Local thresholding. The contribution of false 
negatives and false positives particles is smoothed by the big 
number of particles analyzed. TEMAS’ accuracy can be fine-
tuned for particular problems by changing the cross-correlation 
threshold, and the overlapping value.

The main limitation for increasing the generalization 
capacities of AI models is the lack of annotated data that 
conveniently represent the variability of images be found 
in a specific domain (i.e., specific imaging modes and dif-
ferent types of samples). In this context, methodologies 
for synthetic image generation using image simulations[28] 
or photo-realistic rendering[29] are being proposed. How-
ever, these methods require explicitly creating the datasets 
for each different type of sample and technique. TEMAS 
can be used also for processing quickly a collection of TEM 
images to build an extensive database with thousands of 2D 
ROIs and their labels which can be used for training Deep 
Learning models.

The accuracy obtained with TEMAS may be similar to that 
of Deep Learning models based on Convolutional Neural Net-
works, CNNs. Recently, it has been shown that a CNN with only 
one convolutional layer can be enough to learn meaningful fea-
tures of NPs with comparable accuracy to the output of a deep 
CNN.[30] In a very simple description, CNNs contain sequen-
tial layers of image filters (equivalent to templates), which are 
then computed across the image using convolutions (equivalent 
to cross-correlation except for a sign and how we access the 
coordinates of the image). In this respect, TEMAS can be see 
as a shallow CNN with a convolutional layer with a few filters 
(equal to the number of templates used), in which instead of 
training the filters using supervised learning, a human select 2 
or 3 templates to be used by the algorithm. This hybrid human-
automated approach adds flexibility to TEMAS being an advan-
tage compared to CNN models that need to be retrained for new  
domains.

TEMAS is very flexible as templates can be easily found for spe-
cific application domain.The flexibility of TEMAS has been dem-
onstrated for different electron microscopy imaging modes and 
samples: single-core gold NPs supported on big 3D-supports as 

Part. Part. Syst. Charact. 2023, 40, 2200170

Figure 5.  a) TEM image of a sample of PtFe@FexOy core-shell nanoparticles (sample 4) deposited directly onto the carbon film of a TEM grid following 
hexane evaporation. b) Image annotated with ROIs containing NPs. The ROIs were localized using template matching with the two templates shown 
below the image. c) Image colored with the three classes of pixels: background, cores and shells. d) Detail of the results of the region inside the black 
square in (a). e) Histograms of the size distributions of the cores and the shells measured using local thresholding, global thresholding, TEMAS and 
manual segmentation (ground truth or GT).
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in the Figures 2–4 and 6, core-shell NPs supported on thin films 
in Bright-field TEM mode as in the Figure 5 or for an aberration 
corrected high-resolution scanning TEM (STEM) image of NPs 
acquired in high-angle annular dark-field mode as in the Figure 7.

TEMAS deals with the common problem of NP overlapping 
in two ways. Firstly, the NMS algorithm keeps only one NP of 
a group of overlapping ROIs (or NPs) and rejects the others. 
And secondly, the multi-template matching step outputs ROIs 

Figure 6.  Bright-field TEM image of Au NPs (sample 5) supported on crystals of TiO2.

Figure 7.  Dark-field scanning TEM (STEM) image of hybrid Au NPs supported on an amorphous carbon film.

 15214117, 2023, 2, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/ppsc.202200170 by U

niversidad D
e C

adiz, W
iley O

nline L
ibrary on [26/09/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



© 2023 The Authors. Particle & Particle Systems Characterization published by Wiley-VCH GmbH2200170  (8 of 10)

www.advancedsciencenews.com
www.particle-journal.com

Part. Part. Syst. Charact. 2023, 40, 2200170

containing approximately one NPs, by cropping neighbouring 
touching particles. Improvements to TEMAS for dealing with 
overlapping particles and segmentation accuracy can also be 
made by applying better methods of segmenting the ROIs, 
for example, applying the circular Hough transform or Deep 
Learning instance-based segmentation instead of using simple 
intensity-thresholding methods.

4. Conclusion

It has been described an algorithm called TEMAS that can 
be used for accurately measuring PSDs using a combination 
of multiple templates matching and adaptive intensity thresh-
olding. It has been validated graphically and quantitatively on 
complex TEM images of single-core and core-shell NPs. The 
results demonstrate a remarkable correspondence with ground 
truth data. TEMAS is not suitable for real-time applications but 
the algorithm is very flexible, and the only requirement is to 

have access to a few templates extracted from images of the 
application domain of interest. NPs have frequently circular 
symmetry and similar sizes, nevertheless, the generalization 
of TEMAS can be improved for more complex shapes by using 
scale and rotation invariant template matching. Finally, we also 
propose that TEMAS can be of interest for generating large 
datasets of annotated NPs required for training Deep Learning 
models with application to NP metrology.

5. Experimental Section

Samples Description: Samples 2 and 3 were carbon-supported (Vulcan 
XC-72R) platinum particles (19.1 wt.%) provided by the Johnson Matthey 
Technology Centre. Sample 1 was similar to sample 2 and 3 but that after 
synthesis was further reduced in a rich N2 atmosphere at 900 °C. For 
studying samples in the electron microscope, dry powders were directly 
dispersed onto holey carbon TEM copper grids. These samples were 
used as electrocatalysts in Proton Membrane fuel cells which require 
high loadings of platinum, and must be able to provide high electrical 
conductivity, good reactant gas access, adequate water handling, and 
good corrosion resistance. Electrocatalysts with high dispersions are 
typically supported on mesoporous high-surface-area carbon blacks  

75
2m

g
>



 . Carbon black is a low-grade form of graphite, composed of 

crystallites and lacks 3D order. Sample 4 consisted of PtFe@FexOy core-
shell NPs deposited directly onto the carbon film of a TEM grid following 
hexane evaporation.[31] Sample 5 composed of powder catalysts of Au NPs 
supported on crystalline oxides had been prepared by carefully developed 
methods involving gold precipitation from solution.[32] Figure  7 is an 
aberration-corrected HAADF STEM image of 5 nm Au NPs capped with 
dodecanethiols (Au-SR) supported on a thin amorphous carbon film.[33]

Local and Global Thresholding: For local and global thresholding, the 
greyscale images were converted into a binary image using the Otsu’s 
method and filtered with an opening operator with a circular kernel of  
5 pixels. For local thresholding, different parts of an image were selected 
naively in a regular grid.[11] Global and Local thresholding methods were 
applied to the images of single-core NPs shown in Figures  1–6. The 
curves of the corresponding PSDs measured using both methods are 
labeled in the figures as “local thresh” and “global thresh.”

Computer Implementation: The algorithm was implemented with the 
software MATLAB 2021a and in a PC Intel Core i5-9300H CPU @ 2.40 GHz  
and with 32 GB of RAM.

Figure 8.  The processing time of TEMAS is linear with NM being N the 
number of particles detected and M the number of templates used.

Table 2.  Statistical measurements of the PSDs of platinum NPs.

Sample 1 Sample 2 Sample 3

Measures GT/TEMAS/Local/Global GT/TEMAS/Local/Global GT/TEMAS/Local/Global

N 567/587/849/338 1130/1207/2508/1105 1206/737/1036/1312

D
AE

 [nm] (error %)
5.9/5.9 (0%)/5.0/7.0 3.7/3.9 (5.4%)/4.8/5.8 3.8/3.9 (2.6%)/5.6/8.8

Median [nm] (error %) 5.6/5.6 (0%)/4.0/4.7 3.7/3.5 (5.4%)/3.8/3.8 3.8/3.6 (5.2%)/5.2/6.0

std [nm] (error %) 2.0/2.0 (0%)/3.5/10.2 1.2/ 1.1 (8.3%)/4.0/10.0 1.3/1.1 (15.1%)/2.4/13.4

min(Di
AE) [nm] 1.7/0.5/1.0/1.4 0.7/0.4/1.0/1.3 0.7/1.1/1.6/2.2

Max(Di
AE) [nm] 13.0/13.0/20.0/140.0 8.5/8.8/44.0/102.0 8.7/9.0/24.0/168.0

D* –/0.0635/0.3647/0.266 –/ 0.1394/0.1777/0.1723 –/0.1035/0.3696/0.5102

p-value –/0.1884/<10−5/10−13 –/<10−9/<10−21/<10−14 –/<10−4/<10−66/<10−143

Total time [s] ≈3600/34/–/– ≈6000/91/–/– ≈6000/59/–/–

Time per ROI [s] –/61 × 10−6/–/– –/75 × 10−6/–/– –/81 × 10−6/–/–

Number of templates 2 3 3
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For template matching, the normalized cross-correlation was 
calculated across the images using the function normxcorr2 which 
provides a similarity index between [0, 1] for each position of the 
template positioned at the image coordinates (u, v), and it is defined like

∑
∑ ∑

γ =
− − − −

− − − −
( , )

[ ( , ) ][ ( , ) ]

[ ( , ) ] [ ( , ) ]

, ,

, ,
2

,
2

u v
f x y f t x u y v t

f x y f t x u y v t

x y u v

x y u v x y

� (1)

where f is the image, t is the template, t is the mean intensity of the 
template, and fu, v is the mean intensity of the image under the template.

Regarding the implementation of the algorithm NMS an optimized 
code can be found in Ref. [34]. Intensity thresholding was applied using 
the function multithresh. Alternatively, similar functions can be found for 
the language Python. Template matching is available within the OpenCV 
library as cv.matchTemplate (with the option cv.TM_CCOEFF_NORMED). 
An optimized algorithm for NMS is available in Ref.  [35]. And intensity 
thresholding can be performed with the function threshold_multiotsu 
included in the Scikit-Image library.[9]

Ground Truth PSDs: The ground truth (GT) histograms of each of 
the five samples examined in this work were measured by manually 
annotating the TEM images. A drawing program was used to label 
the pixels of the images into one among two (particle-background) or 
three (particle-core-shell) classes. The labeled images were calibrated 
in nanometers (nm) and the diameters of the NPs were measured and 
saved as .txt files. The histograms shown in the figures were calculated 
using 30 bins and normalizing the distributions to the maximum counts 
value.

Statistical Definitions: The Area-equivalent diameter is defined like

π= 4
D

A
i
AE i � (2)

where the size of the particle is approximated to the diameter of a circle, 
Di

AE , that has an area, Ai, equivalent to the area reported for the particle. 
The arithmetic mean diameter is defined like

∑
= =1D

D

N
AE i

N

i
AE

� (3)

and the standard deviation is defined like

∑
=

−
−

=
( )

1
1

2

std
D D

N
i

N

i
AE AE

� (4)

The two-sample Kolgomorov–Smirnov (KS) test was applied 
to evaluate quantitatively if the normalized histograms measured 
automatically and the ground truth histograms came from the same 
distribution.[36] The KS test was carried out using the MATLAB 2021a 
function kstest2 using a significance level of 0.05. The significance 
level is the probability of rejecting the null hypothesis when it is true, 
and indicates a 5% risk of concluding that a difference exists between 
histograms when there is no actual difference.
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from the author.
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Table 3.  Statistical measurements of the PSDs of core-shells and gold NPs.

Sample 4 Sample 5

Cores Shells Single particle

Measures GT/TEMAS GT/TEMAS GT/TEMAS GT/TEMAS/Local/Global

N (percentage of total %) 403/347 469/391 66 (14%)/44(11%) 43/24/392/594

D
AE

 [nm] (error %) 3.0/3.1 (3.3%) 1.3/1.4 (7.7%) 1.9/1.9 (0%)/1.9/1.2

Median [nm] (error %) 3.1/3.0 (3.3%) 1.2/1.2 (0%) 1.9/1.9 (0%)/0.68/0.33

std [nm] (error %) 0.5/0.6 (20%) 0.5/0.8 (60%) 0.5/0.5 (0%)/1.6/5.0

min(Di
AE ) [nm] 0.2/1.2 0.1/0.2 0.7/0.3/0.2/0.5

Max(Di
AE) [nm] 5.2/7.8 4.9/6.3 2.8/2.7/8.7/1100

D* –/0.01910 –/0.12740 –/0.1541/0.631/0.9242

p-value –/1.0000 –/0.0170 –/0.8259/<10−13/<10−30

Total time [s] ≈4700/24 ≈4700/24 ≈360/3.0

Time per ROI [s] –/61 × 10−6 –/61 × 10−6 –/125 × 10−6/ −/−

Number of templates 2 3
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