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Abstract
Non-intrusive load monitoring (NILM) is the problem of predicting the status or 
consumption of individual domestic appliances only from the knowledge of the 
aggregated power load. NILM is often formulated as a classification (ON/OFF) 
problem for each device. However, the training datasets gathered by smart meters 
do not contain these labels, but only the electric consumption at every time interval. 
This paper addresses a fundamental methodological problem in how a NILM prob-
lem is posed, namely how the different possible thresholding methods lead to differ-
ent classification problems. Standard datasets and NILM deep learning models are 
used to illustrate how the choice of thresholding method affects the output results. 
Some criteria that should be considered for the choice of such methods are also pro-
posed. Finally, we propose a slight modification to current deep learning models 
for multi-tasking, i.e. tackling the classification and regression problems simultane-
ously. Transfer learning between both problems might improve performance on each 
of them.
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NILM	� Non-intrusive load monitoring
VS	� Variance-sensitive thresholding

1  Introduction

Non-intrusive load monitoring (NILM) was proposed in 1992 by Hart [1] as a 
method to predict whether an individual appliance is active (ON) or inactive (OFF), 
by observing the total aggregated power load, having information of the nomi-
nal consumption of each appliance in each state. The first approach to NILM [1] 
employed Combinatorial Optimization, which at the time was the standard tech-
nique for disaggregation problems. For historical review of the evolution of NILM 
techniques, see for instance [2–4]. This first approach had a major shortcoming: the 
initial methods that employed combinatorial optimization performed the power dis-
aggregation on each instant independently of the others, without considering the 
load evolution through time. These original algorithms were very sensitive to noise 
and were only accurate for houses with very few appliances. Thus, they could not be 
applied to real-life scenarios.

NILM algorithms received renewed attention at beginning of the twenty-first cen-
tury, mostly thanks to the increased number of datasets coming from smart electric 
meters installed in domestic residences. These meters are able to record the power 
load from a household at short time intervals (one hour or less) and send those val-
ues to the electric company. The first open-source NILM datasets were published in 
2011, and they triggered further research activity by setting benchmarks for models’ 
comparison. These datasets stored high frequency time series for both aggregated 
and appliance power load [5–7]. For a recent comprehensive review on NILM data-
sets, see [8, 9]. Many of them are publicly available in the NILM-EU wiki.1

Soon after these datasets became available, the prevailing approach to NILM 
shifted from a combinatorial optimization approach to a supervised learning 
problem with times series in machine learning (ML) [10, 11]. Traditional ML 
methods such as hidden Markov models were initially used [12–14], while in 
recent years the incredible growth of deep learning (DL) algorithms has domi-
nated the field [15]. Some popular architectures applied to NILM are recurrent 
neural networks, which are designed to process sequential data [16–19]. Convo-
lutional neural networks, traditionally used for computer vision, have also been 
applied in NILM through the introduction of temporal poolings that facilitate the 
recognition of patterns at different time scales. These models have performed 
well even on datasets with low sampling rates [20–23]. Much of the recent effort 
of the NILM research community has been focused on improving the efficiency 
of estimation algorithms and computational speed, usually by presenting novel 
model architectures [17, 20] or even trying unconventional approaches such as 
finite state machines [24] and hybrid programming [25]. Unsupervised learning 
has also being proposed as a means to predict both the status and consumption 

1  http://​wiki.​nilm.​eu/​datas​ets.​html.

http://wiki.nilm.eu/datasets.html
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of the monitored appliances [26–28]. These works first apply event detection to 
determine the time when an appliance changes state, called “ON/OFF events”, 
and then use k-means to cluster these events depending on the increase (decrease) 
of the aggregated load caused by the ON/OFF event. The ability of these unsu-
pervised methods to associate the appliance consumption with its possible status 
is very relevant, as datasets used for supervised learning rarely include the real 
status, an issue that will be expanded further on this section.

The correlation between the state of the device switches and its consumption (as 
the former depends on the latter) has led some recent studies [29–31] to implement 
multi-task learning models. These algorithms are trained to predict both appliance 
status and power load at the same time. Learning both tasks simultaneously has been 
shown to improve performance due do transfer learning between the two tasks.

However, fewer works are devoted to investigating the formulation of the prob-
lem, and how this can affect the algorithm’s performance. For instance, uniformi-
zation of evaluation metrics for a better comparison of different models has been 
stressed by Pereira and Nunes [32], Makonin and Popowich [33], while depend-
ence of accuracy on sampling frequency has been treated by Ruano et al. [34]. This 
becomes a relevant issue when trying to leverage theoretical NILM results on high 
frequency benchmark datasets to real-life scenarios where records are sampled at 
lower rates.

NILM datasets typically include both the aggregated power load and that of each 
monitored device, but not the appliance status (i.e. whether it is ON or OFF). Thus, 
a regression problem to predict the consumption of each device is naturally defined 
by the data. However, most works in NILM address the classification problem of 
determining whether the device is ON or OFF, rather than its consumption at each 
time interval. Defining a classification problem requires establishing a threshold or 
some procedure to determine the output categorical variable from the continuous 
output power load. Our main observation is that this process involves an external 
choice of thresholding method which is not included in the initial problem formula-
tion. Depending on how this preprocessing step is performed, the performance and 
interpretation of the final results may vary in a significant manner. The main contri-
bution of this paper is to highlight this matter and to discuss several possible ways to 
define a classification problem from the native regression problem. Moreover, inter-
play of both classification and regression problems might improve accuracy through 
multi-task models.

The paper is organized as follows: Sect. 2 formally introduces the necessary nota-
tion to define regression and classification problems for time series in supervised 
learning. Section 3 introduces three different thresholding methods. Two different 
deep learning (DL) models are presented and explained in Sect. 4. The purpose of 
studying two different models is to have more robust results and to ensure that the 
reported variations are not model dependent. The detailed methodology is carefully 
explained in Sect. 5, including data preprocessing, definition of training, validation 
and test sets, loss functions, optimization algorithms, and evaluation metrics. The 
results are exhibited in Sect. 6 for three monitored devices with different character-
istics. Together with the results, we include a discussion on the criteria to choose the 
most convenient thresholding method. Section 7 shows a small modification to the 
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usual DL architectures to optimize both classification and regression. Finally, con-
cluding remarks and outline of open research problems are presented Sect. 8.

2 � Problem formulation

Although several different formulations exist, NILM is often posed as a supervised 
learning problem, where the model is trained to take the aggregate power as input 
signal and predict the power or state (ON/OFF) of each monitored appliance. This 
power load is measured by the smart meter at a constant rate �∗ , which produces 
a series of power measurements2 Pi at each sampled interval. For the analysis, it 
is often convenient to resample the original series at a larger sampling interval � , 
which is part of the preprocessing step. For instance, in this paper, the native sam-
pling interval for the UK-DALE dataset provided by the meters is �∗ = 6 s, but the 
series has been resampled for the analysis at intervals of � = 60 s.

The aggregate power Pj at instant j is the sum over all appliances:

where L is the total number of appliances in the building, P(�)

j
 is the power of appli-

ance � at time j, and ej is the unidentified residual load. All of these quantities are 
expressed in watts.

After resampling, the training set comprises a sequence of ntot records labelled as 
{Pi}

ntot
i=0

 . This series is split in chunks of size n that can be grouped in vectors as 
Pj = (Pjn,Pjn+1,… ,Pjn+n−1) . As a result, we have a total of ntrain = ntot∕n such 
series, each of which will be an input to the model. The output of the model is 
sequences P̂

(�)

j
 for each monitored appliance over the same time intervals. The pairs 

{Pj,P
(�)

j
}
ntrain
j=1

 are considered as independent points in the training set.
Supervised learning problems are usually referred to as classification or regres-

sion problems depending on whether the output variables are categorical or con-
tinuous. In the NILM literature, both of these approaches have been considered in 
different contributions, but there has been hardly no works devoted to the interplay 
between both formulations. It is precisely this gap that we would like to fill with this 
analysis.

In the regression approach, the target quantities are the power load P(�)

j
 for each 

device.
In the classification approach, the focus is on determining whether a given appli-

ance is at time j in a number of possible states, typically ON or OFF. We assume 
therefore, for the sake of simplicity, that the appliance � can be in one of two states 
at time j, which are s(�)

j
= 0 (OFF state) and s(�)

j
= 1 (ON state). It is not evident to 

(1)Pj =

L
∑

�=1

P
(�)

j
+ ej,

2  Strictly speaking, smart meters measure the energy consumption during the interval (t, t + �∗) divided 
by the length of the interval �∗.
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ascertain when a given appliance is ON or OFF by just looking at the power load. 
Thus, the usual criterion is to establish a threshold �(�) for each appliance and define

where H(x) denotes the Heaviside function

A correct definition of the classification approach thus involves a choice of threshold 
�(�) for each appliance � . A manual intervention to determine sensible threshold lev-
els for each device over a large dataset would be unfeasible, plus it introduces a sub-
jective element to the problem. Ideally, these thresholds should be determined by the 
series of data P(�)

j
 alone, rather than being externally fixed by human intervention. 

Different algorithms to determine thresholds are examined below, which lead to 
rather different outcomes depending on the complexity of the input signal.

3 � Thresholding

Given the input power signal, several different methods to set a threshold to deter-
mine the OFF and ON status of each appliance will be explored in this section.

3.1 � Middle‑point thresholding (MP)

In middle-point thresholding, the set of all power values from appliance � in the 
training set {P(�)

j
}
ntot
j=1

 needs to be considered. A clustering algorithm is applied to 
split this set into two clusters which defines the centroid of each cluster. Typically, a 
k-means clustering algorithm can be applied for this purpose [35]. The two centroids 
for each class, after applying k-means, are denoted by m(�)

0
 (for the OFF state) and 

m
(�)

1
 (for the ON state). In middle-point thresholding (MP), the threshold for appli-

ance � is fixed at the middle point between these values

3.2 � Variance‑sensitive thresholding (VS)

Variance-sensitive thresholding (VS) was recently proposed as a finer version of MP 
by Desai et al. [36]. It also employs k-means clustering to find the centroids for each 
class, but the determination of the threshold now takes into account not only the 
mean, but also the standard deviation �(�)

k
 for the points in each cluster, according to 

the following formula

(2)s
(�)

j
= H

(

P
(�)

j
− �(�)

)

,

H(x) =

{

1 if x ≥ 0,

0 if x < 0.

(3)�(�) =
m

(�)

0
+ m

(�)

1

2
.
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The motivation is that, if 𝜎1 > 𝜎0 , then the threshold should move towards m0 in 
order not to misclassify the points in class 1 that are further away from the centroid 
m1 . As a matter of fact, points in the OFF cluster usually have less variance, so the 
VS approach often sets its threshold lower than the MP approach. A comparison of 
both thresholding methods on a specific set of power measurements can be seen in 
Fig. 1. Note that VS defaults to MP precisely when �0 = �1 , i.e. when both clusters 
have the same variance.

3.3 � Activation‑time thresholding

The last two methods only use data from the distribution of power measurements in 
order to fix the threshold for an appliance. It often happens that due to noise in the 
smart meters or devices, some measurements during short time intervals are either 
absent while the device is operating, or produce abnormal peaks during the OFF 
state. For this reason, to ensure a smoother behavior, Kelly and Knottenbelt [37] set 
both a power threshold and a time threshold. The power threshold could be fixed by 
MP or VS or fixed externally by hand as done in [37]. The time threshold (�(�)

0
,�

(�)

1
) 

specifies the minimum length of time that device � must be in a given state, e.g. 
if a sequence of power measurements are below �(�) for a time t < 𝜇

(�)

0
 , then that 

sequence is considered to be in the previous state (ON in this binary case).
In [37], both power and time thresholds are chosen empirically, after analyz-

ing the appliance behavior. Table 1 shows the values of the thresholds relevant to 
our work. The threshold � is chosen usually at lower values, as the time threshold 
already filters noisy records. It would be desirable to turn this thresholding method 
into a fully automated data driven algorithm, in order to remove all subjective inputs.

(4)
d =

�
(�)

0

�
(�)

0
+ �

(�)

1

�(�) = (1 − d)m
(�)

0
+ dm

(�)

1

Fig. 1   Distribution of a washing machine power load through all the monitoring time. The records per-
tain to house 2 of UK-DALE dataset. The graph was cropped vertically as 0 W consumption is more than 
17% of the total number of records. Black dashed lines mark the centroids found by k-means clustering (1 
watts and 1866 watts), while color dashed lines are the thresholds fixed by different methods
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Table 1   Activation-time 
thresholding (AT) values used in 
this work

� is the threshold that separates the consumption of ON and OFF 
states, �

0

 ( �
1

 ) is the time that the appliance consumption must spend 
below (above) the threshold to be considered OFF (ON)

Threshold Dishwasher Fridge Washing 
machine

� (W) 10 50 20
�
0

 (s) 30 1 3
�
1

 (s) 30 1 30

Fig. 2   Sample from the washing machine power load sequence, depicting how different thresholding 
methods classify each instance as ON or OFF. ON states are highlighted. a Variance-sensitive threshold-
ing (VS). b Middle-point thresholding (MP). c Activation-time thresholding (AT)
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Figure  2 compares the three thresholding methods. Each graph shows the 
three values of �(�) for a given device, together with the result of applying each 
thresholding method to the same input series. Observe that the same power data 
give rise to rather different series for the ON/OFF status depending on the choice 
of thresholding method. We thus see that there are multiple ways to define a 
classification problem given the input signal.

A comparison and a discussion of each thresholding method after training 
state-of-the-art NILM for regression and classification problems will be per-
formed in Sect. 6.

4 � Neural networks

Almost all state-of-the-art models propagate their inputs through one or more 
convolutional layers [38, 39]. This is done to ensure that the models are transla-
tion invariant. As NILM is related to time series, many studies also add recur-
rent layers (e.g. LSTM or GRU) to their networks [16, 18]. These layers tend to 
get very good results on sequence-related problems. In this work, two different 
models are considered: one that relies purely on convolutions, and other that 
also applies recurrent layers after the convolutions.

It is important to stress that both of these neural networks can be applied to 
train a classification model or a regression model, the only difference in their 
architecture lies in the last layer, where an additional softmax layer needs to be 
added for the classification problem.

Fig. 3   Architecture of each DL model. There are two possible outputs (appliance status or power con-
sumption), the model trains differently depending of which output we chose. Models are as follows: a 
CONV. b GRU​
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4.1 � Convolutional network

The first model (CONV) includes as feature extractor only convolutional layers, 
inspired on the architecture from the work of Massidda et al. [21]. The general scheme 
follows the classic approach to the semantic segmentation of images in computer 
vision. See Fig. 3a to better understand the following model explanation.

The CONV model receives as input a vector with size Lin = 510 which represents 
the household aggregated power over an 81

2
 hour interval. The vector is propagated 

through an encoder, characterized by alternating convolution and pooling modules. 
Each encoder layer begins with a convolution of kernel size 3 and no padding, then 
applies batch normalization and ReLU activation, and ends with a max pooling of ker-
nel size 2 and stride 2. Only the last layer omits the max pooling step. Encoder layers 
increase the space of the features of the signal at the cost of decreasing the temporal 
resolution.

After that, the Temporal Pooling module aggregates the features at different resolu-
tions, which is reminiscent of inception networks [40]. Four different average poolings 
are applied, with kernel sizes 5, 10, 20 and 30; having the same stride as kernel size. 
Each of those layers then propagate their values through convolution layers of kernel 
size 1 and no padding, followed by a batch normalization and ReLU activation. All of 
their outputs are then concatenated.

Finally, the decoder module applies one convolution of kernel size 8 and stride 8, 
followed by batch normalization. It then bifurcates into two different outputs: the appli-
ance status and the appliance power. Both outputs are computed by propagating the 
network values through one last convolution layer of kernel size 1 and padding 1. In the 
case of status classification, a softmax activation layer is further applied. Both status 
and power load output vectors have the same sampling frequency as the input aggregate 
load, but they have a shorter length Lout = 480 as explained in Sect. 5.

4.2 � Bidirectional GRU network

Some authors tend to connect convolutional and recurrent layers to extract temporal 
correlations out of the input sequence [17, 37]. This second model follows a prototypi-
cal GRU scheme, depicted in Fig. 3b. The input and output layers are the same as in the 
previous model. For the processing units, the GRU model propagates the input vector 
through two convolutional layers with kernel size 20, padding 2 and stride 1, before 
applying the recurrent (bidirectional GRU) layers.

One can see that the model architecture is rather lightweight. However, GRU takes 
longer to train than CONV: adapting the GRU weights requires a lot of computation, 
compared to updating the weights of convolutional layers.
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5 � Methodology

5.1 � Preprocessing

In order to make our results reproducible and allow them to compare with other 
works, the analysis focuses on the UK-DALE dataset [7], which is a standard 
benchmark for NILM.

Only houses 1, 2 and 5 have been used for this work. The target appliances 
used in the analysis, which are found in the three buildings, are as follows: fridge, 
dishwasher and washing machine. This choice of houses and appliances is com-
mon in other works [21, 37, 41], as they seek to monitor appliances with distin-
guishable load absorption patterns and relevant contribution to the total power 
consumption (Tables 2 and 3).

Every power load series was down-sampled from 6 s to 1 min-frequency, tak-
ing the average value of the power in the time intervals. It should be stressed that 
sub-sampling the input series might cause relevant information loss, as perhaps 
high frequency power variations could be strongly associated with the identifica-
tion of a given device. The devices chosen in this study have high power loads 
and large operation times, so this sub-sampling will likely have a small effect in 
model performance for the particular choice of devices under study. The main 
reason to down-sample the input data, in accordance with Massidda et  al. [21] 
and other authors, is to train a model under less favorable, but more widely appli-
cable and realistic conditions, as NILM datasets often have a lower frequency.

After this down-sampling, every input sequence comprises 81

2
 hours of time, 

which amount to Lin = 510 records. Since the models use convolutions with no 
padding, the first and last records of each series are dropped in the output, thus 
leading to an output sequence having Lout = 480 records, i.e. 8 h. We have divided 
the original time series into input sequences with an overlap of 30 records 
between consecutive input sequences, so that the output sequence are continuous 
in time and have no gaps. Aggregate power load is normalized, dividing the load 
by a reference power value of 2000 W for numerical stability. Each input series is 

Table 2   UK-DALE dataset 
features Date of release 2014

Location United Kingdom
Number of households 5
Meter units Watts
Sampling frequency 6 s

Table 3   UK-DALE dataset 
contents

Building 1 2 3 4 5

Total time (days) > 365 235 39 206 137
Appliances 53 18 4 11 24
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further normalized by subtracting its mean. Thus, the following input and output 
series for the regression problem are defined

where P̄j =
1

Lin

∑Lin

i=1
Pj,i.

To define the classification problem, the target y(�)
j

 is the appliance status 
which is computed from P(�)

j
 using the thresholding methods described in Sect. 3. 

More specifically, we have

where s(�)
j

 is a series of binary values defined by (2).
The training set for each problem is built by adding the first 80% sequences 

from each of the three buildings, which amounts to 1941 sequences (describing a 
total time of 687 days of measurements). The validation set is built by using the 
subsequent 10% records from house UK-DALE 1, for a total of 183 sequences (65 
days), while the test set is composed of the last 10% sequences of the same build-
ing, having the same size as the validation set. This is summarized in Table 4.

To assess whether the train-test split is balanced, it will be useful to report how 
often a given device has been ON during the training and test sets, depending on 
which thresholding method has been applied. The results can be seen in Table 5.

It is important to stress a number of things from the observation of this table. 
First, the fraction of ON states is clearly dependent on the thresholding method, 
as it was already clear from Fig.  2. Next, dishwasher and washing machine are 

(5)Regression: xj =
Pj − P̄j

2000
, y

(�)

j
=

P
(�)

j

2000
,

(6)Classification: xj =
Pj − P̄j

2000
, y

(�)

j
= s

(�)

j
,

Table 4   Size of training, 
validation and test sets

Train Validation Test

Number of points (N) 1941 183 183
Total time (days) 687 65 65

Table 5   Fraction of activation 
time (in %) for each device over 
the train and test sets, i.e. the 
proportion of time that each 
appliance in operating (is in its 
ON state)

Threshold Set Dishwasher Fridge Washing 
machine

MP Train 0.77 42 0.97
Test 0.62 46 1.7

VS Train 0.83 44 1.8
Test 0.67 47 2.5

AT Train 2.3 42 4.6
Test 2.4 45 7.3
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only sparsely activated, while the fridge is considered to be ON roughly half of 
the time. In these two cases, we are dealing with an imbalanced class problem, 
which should be taken into account when defining and interpreting the appropri-
ate metrics. Finally, in all cases but specially for the washing machine, the preva-
lence of the positive class differs greatly from the training to the test set. This of 
course could happen because these periods have been chosen consecutive in time 
(in accordance with other works).

Another relevant problem in the NILM research is disaggregation accuracy 
when there is more than one appliance operating in the same time window. 
Once again, this problem is tied to the choice of a thresholding method, as it 
determines the operating times of each appliance and consequently the possible 
overlaps. Table 6 shows the frequency at which one or more of the devices were 
active simultaneously, depending on the thresholding method applied. MP pro-
duces the least amount of overlaps accounting for roughly 1% of the total time, 
while AT produces the most, exceeding a 3% of the time. In addition, AT is the 
only thresholding method that finds the three appliances operating at the same 
time, partly because this is the method that produces the highest amount of ON 
states in general.

5.2 � Training

Each of the models described in Sect. 4 was trained for 300 epochs. Training data 
were fed to the model in batches of 32 sequences, shuffled randomly.

The loss function for the regression problem is the mean square error or L2 
metric, given by

The standard choice of loss function for the classification problem is binary 
cross-entropy:

(7)L
(�)
reg

=
1

Ntrain

Ntrain
∑

j=1

1

Lout

Lout
∑

i=1

(

y
(�)

j,i
− ŷ

(�)

j,i

)2

.

Table 6   Fraction of time (%) 
where fridge, dish washer 
and washing machine were 
simultaneously active

Threshold Set Number of active devices

0 1 2 3

MP Train 56.76 42.50 0.73 0.00
Test 52.95 45.98 1.07 0.00

VS Train 55.25 43.61 1.14 0.00
Test 51.30 47.15 1.55 0.00

AT Train 54.08 42.99 2.87 0.05
Test 49.34 46.05 4.58 0.04
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where ŷ(�)
j

 is the probability that device � is ON at time step j.
During the 300 training epochs, we keep the model that achieves the minimum 

loss over the validation set, using an Adam optimizer for weights update, with a 
starting learning rate of 10−4.

Both data preprocessing and neural network training were performed on Python. 
Specifically, the models were written on Pytorch and trained in a GPU NVidia 
GeForce GTX 1080 with 8 GB of VRAM, NVIDIA-SMI 440.95.01 and CUDA 
v10.2. The code for this paper is available online3 and the data come from a public 
dataset, so all results reported in this paper are reproducible. Using the configura-
tion stated in this section, CONV models took from 7 to 8 min to train 300 epochs, 
while GRU architectures took 16 min. It is instructive to analyze how would these 
computational times scale with the number of monitored devices. For a different 
number of devices, both DL architectures stay the same except for the output layer, 
and computational complexity can be shown to scale linearly with this number. 
When training CONV (GRU) models with two output appliances, we saw an aver-
age decrease of 4% ( 3% ) on training time, and a 8% ( 6% ) decrease when training 
with just one device. An estimation of training time of both models for n output 
devices ( 2 ≤ n ≤ 20) would be:

 In this case, adding or subtracting devices did not have a significant impact on the 
overall performance, which is probably due to the fact that there are not many over-
laps among them (see Table 6).

5.3 � Metrics

Although metrics are clearly related to loss functions used for model training, the 
main difference is that the reported metrics are not required to be differentiable. 

(8)
(�)
class =

1
Ntrain

Ntrain
∑

j=1

1
Lout

Lout
∑

i=1
(

y(�)j,i ⋅ log ŷ(�)j,i + (1 − y(�)j,i ) ⋅ log(1 − ŷ(�)j,i )
)

,

CONV Training time ≈ 6 × (1 + 0.04 n) min

GRU Training time ≈ 15 × (1 + 0.03 n) min

3  https://​github.​com/​UCA-​Datal​ab/​nilm-​thres​holdi​ng.

Table 7   Mean absolute error 
(MAE) (in watts) for regression 
models on each appliance

Model Dishwasher Fridge Washing 
machine

CONV 11.6 27.0 18.3
GRU​ 8.1 28.7 15.0

https://github.com/UCA-Datalab/nilm-thresholding
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When the output is a continuous variable, the chosen metric  is the L1 error or 
MAE rather than the Root Mean Squared Error, since the latter tends to give too 
much importance to large deviations.

When the output variable is categorical, the F1-score is an appropriate metric 
that combines precision and recall in balanced problems where there is no prefer-
ence to achieve a better classification of the ON or OFF classes.

6 � Results

6.1 � Regression problem

The metrics obtained over the test set by the two models (CONV 
and GRU) in the regression problem for each of the three appliances 
� = {dishwasher, fridge, washing machine} are shown below (Table 7).

To understand the complexity of disaggregating the power signal in NILM, a 
typical time series from the test set has been plotted in Fig. 4. The plot shows the 

Fig. 4   Output of the CONV regression model. Aggregated power load (input signal) is shown in gray, 
the real consumption of the device is represented by a light purple shadow, while the predicted load is 
depicted by a dark purple line. Devices are: a dishwasher and b fridge

Table 8   F
1

-scores for 
classification models on each 
appliance and threshold

Threshold Model Dishwasher Fridge Washing 
machine

MP CONV 0.93 0.87 0.93
GRU​ 0.84 0.87 0.87

VS CONV 0.93 0.87 0.88
GRU​ 0.84 0.87 0.82

AT CONV 0.91 0.86 0.97
GRU​ 0.90 0.86 0.96
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input signal Pj (aggregated power load), the real power P(�)

j
 and the predicted 

power P̂
(�)

j
 obtained from the CONV model for dishwasher and fridge.

In the first graph of Fig. 4, the model has identified correctly the two main power 
peaks of 2200 W corresponding to the dish washer, but has properly ignored other 
similar large peaks occurring earlier in the series. In the second graph, we observe 
that the fridge power estimation is often masked by the presence of other devices, 
having a mean value of just 100 W but a very periodic activation pattern. When the 
aggregate power load is small, the model is able to better resolve the signal coming 
from the fridge.

6.2 � Classification problem

As mentioned above, the classification problem is not uniquely defined since the 
raw data do not include the real intervals where each device was ON/OFF, but only 
its consumption. Thus, three different classification problems must be considered 
depending on the choice of thresholding method described in Sect. 3. For each pos-
sible value of (model, thresholding, device) , the F1-score over the test set is reported 
in Table 8.

The next to last line shows that our results are in good agreement with those 
reported by Massidda et al. [21]. Also, the results show that CONV has a slightly 
better F1-score that GRU for the classification problem in all three devices and 
thresholding methods, although both of them show a very good performance (see 
Fig. 5). In general, the classification problem for the fridge is harder, for reasons that 
have been already mentioned above.

It is also instructive to represent the input signal Pj , together with the real output 
signal P(�)

j
 describing the status of device � and the predicted status s(�)

j
 , to grasp the 

nature of NILM problem for classification. Figure 5 shows the output of CONV on a 
given series of records from the test set where the three devices have been ON 

Fig. 5   Output of the CONV classification model applying activation-time thresholding (AT). Aggregated 
power load (input signal) is shown in gray and the ON status (derived from AT on the real consumption) 
is highlighted with a light blue shadow, while the predicted activations (ON states) are depicted by dark 
blue dots. Devices are a dishwasher and b fridge
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(sometimes simultaneously). Observe that the model is able to discriminate, with a 
very good precision, the periods in which each of the devices are activated, just from 
the observation of the aggregated power signal.

6.3 � Reconstructing the power signal

A very natural question to address is which of the three proposed thresholding meth-
ods should be preferred. One would naively think that the one leading to a better F1

-score would be the best choice, if this was only based on prediction performance. 
However, placing a trivial threshold of zero would yield state ON for all time inter-
vals at the training and test sets, and any decent ML method would immediately 
learn this, thus reaching a perfect F1-score but having no useful interpretation at 
all. Thus, prediction performance should be balanced with a way of judging which 
method is more meaningful. In the absence of any other external information on 
when each device can be considered to be ON/OFF, an objective quantitative argu-
ment to tackle this question must be found.

For this purpose, we propose to reconstruct the power signal from each device 
and compare the reconstructed signal with the original power load of the device. We 
compute the average power P̄ON , (resp. P̄OFF ) for device � during the periods that 
are considered to be ON, (resp. OFF) after applying the thresholding method, and 
reconstruct the power series with these binary values.

Fig. 6   Device power load 
reconstruction from two dif-
ferent thresholding methods: 
middle-point thresholding (MP) 
in green and activation-time 
thresholding (AT) in blue. The 
real consumption of the device 
is shown in purple

Table 9   MAE scores (in 
watts) for classification models 
and intrinsic error after 
reconstructing the power load

Threshold Model Dishwasher Fridge Washing 
machine

MP Intrinsic 3.5 4.7 4.0
CONV 9.1 21.5 39.5
GRU​ 11.3 21.8 41.7

VS Intrinsic 4.4 4.8 6.6
CONV 9.3 21.0 40.8
GRU​ 11.6 22.2 41.9

AT Intrinsic 26.4 4.7 7.4
CONV 19.8 21.3 57.3
GRU​ 21.1 22.5 56.4
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More specifically, we have

and reconstruct a binary power load for device � as

The reconstructed power series can be seen, together with the original series in 
Fig. 6 for two of the thresholding methods, corresponding to the same data as Fig. 2.

The intrinsic error between the original P(�) and reconstructed series BP(�) can be 
defined as the MAE over the training set. The name intrinsic is justified because this 
error is prior to any prediction method. The results for the three devices and thresh-
olding methods are shown in Table 9.

From this comparison, it follows that the activation-time thresholding (AT) is 
the one having the largest intrinsic error, while MP offers the closest reconstructed 
power series. The fridge has similar intrinsic error for all three methods since the 
original series is very regular, being almost a binary series itself (see Fig. 4).

As we mentioned above, it is not enough to look only at the classification metrics 
in Table 8 to judge which is the best thresholding method for a NILM problem. For 
this reason, given the estimation output of the classification problem, we compute the 
reconstructed binary series and compare it with the original power series. MAE aver-
aged over the test set are reported in Table 9 for the two models (GRU and CONV).

The first thing to note is that naturally these metrics are generally larger than the 
intrinsic errors, as they incorporate the errors in the classification.

As shown in previous tables, CONV has a slightly better performance than GRU. 
It is also worth noting that the MAE for the washing machine has increased by a fac-
tor of 10 with respect to the intrinsic error, while in the other two devices, the factor 
is close to 4. The most likely explanation for this deviation is due to the train-test 
splitting: most of the error comes from activation periods, and these occur twice 
more often in the test than in the training set for the washing machine (see Table 5) 
while there is hardly no variation in the other two devices. This brings back the 
already mentioned remark on the importance of having a train-test split that pre-
serves the distribution of classes.

Finally, these MAE values should be compared with the ones obtained by training 
for a pure regression problem (see Table 7). We observe that the results are compa-
rable, and for the fridge they are even better in the reconstructed case. The explana-
tion comes from the fact that the raw power signal for the fridge is almost binary, so 
the reconstructed signal matches this behavior properly and the ON/OFF values P̄ON 
and P̄OFF calculated over the training set are very close to the real values. Thus, in 
this case good metrics for the classification problem immediately translate into good 

(9)P̄
(�)

ON
=

1

Ntrain

Ntrain
∑

j=1

1

Lout

Lout
∑

i=1

s
(�)

j,i
Pj,i,

(10)P̄
(�)

OFF
=

1
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1
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(�)

OFF

(
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scores for the reconstructed series. By contrast, addressing the regression problem 
directly is harder for the fridge, where the regression curve often fails to reconstruct 
this signal, specially when it is masked by larger signals coming from other devices 
(see Fig. 4b).

6.4 � Classification metrics on the regression problem

In the last section, models were trained for classification, but the MAE was evaluated 
for the reconstructed power signal and compared with the same metrics obtained by 
directly training the model for regression. In this section, the opposite procedure 
will be tackled: thresholding methods are applied on the real and predicted power 
signal obtained from the output of the regression model, and the F1 metric is then 
computed over these binary series. The results can be seen in Table 10.

These scores are on average worse than the ones from the original classifica-
tion approach (Table 8). In particular, F1-scores of AT for dishwasher and washing 
machine are extremely low, which is caused by the small power threshold set by 
the thresholding formulation (see Table 1). During periods of inactivity, regression 
models output values that, although being relatively small compared to the power 
peaks of dishwasher and washing machine, are high enough to surpass the AT power 
threshold, thus triggering the ON state and causing many false positives.

7 � Balancing classification and regression

This section explores a slight modification of the deep learning (DL) models intro-
duced in Sect. 4, to address a multi-task problem, i.e. to tackle the regression and 
classification problem at the same time. The network architectures contain two dif-
ferent heads, one for regression and the other for classification, but the whole fea-
ture extracting base is common to both. A weighted combined loss function can be 
defined that balances the loss of the two output layers in the following manner:

(12)L
(𝓁)
tot = w ⋅ L

(𝓁)

class
+ (1 − w) ⋅ L(𝓁)

reg
∕k,

Table 10   F
1

-scores for 
regression models after 
thresholding

Threshold Model Dishwasher Fridge Washing 
machine

MP CONV 0.89 0.77 0.93
GRU​ 0.90 0.74 0.91

VS CONV 0.77 0.78 0.81
GRU​ 0.81 0.75 0.83

AT CONV 0.09 0.76 0.46
GRU​ 0.27 0.72 0.65
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where L(�)

class
 is the binary cross-entropy (8), L(�)

reg
 is the Mean Squared Error (7), and k 

is a constant to normalize both losses so that they have comparable magnitude, pre-
dicted to be k = 0.0066 . The constant w ∈ [0, 1] allows to shift between pure classi-
fication and regression. The purpose of this combined training is to allow for trans-
fer learning between the regression and classification problem that, although 
strongly related, are indeed different ML tasks. Both models have been trained using 
different values of the weight w with MP thresholding (other methods showed a sim-
ilar behavior). For each value of w, the model is trained five times with random 
weight initializations, as explained in Sect. 5. We show the output metrics MAE and 
F1-score for varying w in the figures below. Only CONV model is displayed, as both 
models behaved similarly. The advantage of using a combined loss function for the 
NILM classification problem is clear by looking at Fig. 7.

Note that when w = 0 , the model does not train for classification. For this reason, 
we include for w = 0 a single point for the F1 curve, corresponding to applying the 
thresholding method on the regression output, as we did in Sect. 6.4. Likewise, for 
w = 1 , the model does not train for regression. Given the absence of a regression 
score for w = 1 , we employed the MAE obtained by reconstructing the power signal 
from the classification output, as explained in Sect. 6.3.

Looking at the results in Fig. 7, we observe a very different behavior for the 
fridge than for the other two devices, due to their different characteristics already 
mentioned. In the dishwasher and washing machine, the F1-score grows monoton-
ically with w. Likewise, the MAE in both models and devices tends to grow for 
larger w, which is natural since the model has a smaller weight for the regression 
problem. As for the extra points in the graphs, for the dishwasher, we see that the 
F1-score obtained by thresholding a pure regression output (red dot) is compara-
ble to the best score obtained by larger weights in classification. For the fridge, 
the behavior is different from the other two devices. While the F1-score behaves 
similarly, the MAE for regression decreases with w, which is clearly counter-intu-
itive: the model prioritizes classification loss, and in doing so it performs better 
in the regression problem as well. Also, the purely reconstructed signal for w = 1 
(blue dot) has a better MAE than any of the models trained for regression. This 
fact can again be explained by the second graph in Fig.  4: the regular (almost 
binary) activation pattern of the fridge is much better captured by a classification 

Fig. 7   Scores of the CONV model using middle-point thresholding (MP), trained for both regression and 
classification outputs, depending on the relative weight given to classification. Appliances are a dish-
washer, b fridge and c washing machine
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model with the right threshold than by a regression model, since the weak signal 
of the fridge is often masked by that of other devices.

In summary, the advantage of using a combined multi-task approach over a 
single classification/regression approach is seen to be device dependent. In 
the three devices considered, only for the fridge the single regression task was 
improved by considering also the classification problem. Further study is needed 
to ascertain which types of devices will improve in their NILM performance with 
combined loss functions.

8 � Conclusions and future research

Non-intrusive load monitoring is typically framed as a classification problem, 
where the input data are the aggregated power load of the household and the out-
put data are the sequence of ON/OFF states of a given monitored device. Creat-
ing a classification problem from the raw power signal data requires an external 
determination of the status by some thresholding method. Three such methods are 
discussed in Sect. 3 and how they lead to classification problems with different 
results. A discussion of what is the most appropriate method should not be based 
on the performance achieved by predictive models alone, but include also some 
objective way to judge the interpretability of the results. An objective criterion 
suggested in the paper is to use the intrinsic error, i.e. MAE between the original 
power series and reconstructed binary series.

Deep learning (DL) models can be trained to minimize the regression loss 
(7) or the classification loss (8), but it is also possible to combine both into a 
weighted loss introducing an extra hyperparameter. This parameter balances the 
weight given to both problems, that are effectively solved both at a time. The 
optimal choice of this parameter depends on the characteristics of the device.

This work can possibly be extended in a number of ways that the authors plan 
to tackle in the future:

•	 Thresholding methods should be extended to multi-state NILM, where each 
device can operate on a finite number k ≥ 2 of states. Automatic determination 
of the best number of states should be feasible from the power series by using 
hierarchical clustering or the elbow method. The intrinsic method described in 
the paper will generalize naturally to multi-state NILM classification.

•	 Thresholding methods should be entirely algorithmic. Two of them (MP 
and VS) already are but AT needs some parameters to be externally fixed. 
These free parameters, the time thresholds (�(�)

0
,�

(�)

1
) for each device, should 

rather be automatically determined to minimize the intrinsic error defined in 
Sect. 6.3.

•	 NILM requires to address chronological versus random splitting of records to 
form the training, validation and test sets. Similar issues are key in discussing 
fraud detection methods, where fraud techniques evolve in time and differ chron-
ologically throughout the time span of the dataset.
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•	 The study should be extended to larger datasets like Pecan Street [42] or ECO 
[43], addressing also the generalization capacity of DL models to cope with 
unseen devices not present in the training set.
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