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A B S T R A C T   

Distribution companies have the responsibility to provide a quality service to their customers, according to the 
existing regulation. Reliability issues, such as power outages, are registered in databases for a quantitative 
evaluation of this quality. This paper uses one of these historical records to make a statistical analysis of service 
restoration times, applied to the particular case of underground cables in medium voltage networks. An algo-
rithm is proposed to fit the raw data to the probability density functions typically used in reliability analysis. The 
best-fitted distribution is determined in each case according to the information provided by a set of goodness-of- 
fit tests. Different groups are considered for the elements of the systems, concerning their functionality and 
voltage level. The presented procedure is applied to an electrical network with more than 350 feeders. Results 
have been obtained globally, showing that the observed service restoration time is lower than the estimated 
maximum limit in 98.00% of cases. The probability functions provided by the proposed algorithm can be used to 
improve the accuracy of the reliability models for the electric power system.   

1. Introduction 

Reliability of power supply is an important concept related to the 
quality of the service provided by electrical utilities, [1]. In this context, 
power outages, either momentary or sustained in time, must be correctly 
characterized in terms of frequency and duration. Specifically, the 
interruption duration is deeply analyzed by distribution system opera-
tors (DSOs) to determine the so-called power availability of the system. 
Although major failures are rare events in electric power systems, 
especially with the arising of smart grids, [2], their effect on consumers 
might be quite severe. For this reason, power restoration plans are 
required, [3,4]. 

A customary way to quantify the reliability of electrical networks is 
based on the use of international key performance indicators (KPIs), 
dependent on the durations of different system failures and their fre-
quencies [5,6]. An example of a KPI is the well-known system average 
interruption duration index (SAIDI). These indices are also used by the 
concerned authorities to economically penalize the distribution 
companies. 

To adequately determine the previously mentioned KPIs, historical 
records are typically used to statistically characterize some parameters 

related to the reliability of the system [7–9]. Failure rate (FR) and time 
to repair (TTR) are the most reported among these parameters, given 
their importance in reliability assessments. The first one concerns the 
number of times that a particular element of the system fails in a spec-
ified period. Regarding TTR, this parameter is directly related to the 
duration of permanent faults in the network, when topological recon-
figuration is not possible, for example, in rural areas with a radial 
configuration. In the case of meshed networks, the duration of power 
outages is typically denoted as time to restore the supply (TTRS), [10]. 
In the context of the remarkable amount of data included in the his-
torical records used by DSOs, several techniques are presented in [11] 
and [12] to deal with this information, such as those based on artificial 
intelligence (AI), used to predict the behavior of power systems with a 
high penetration of renewable energy sources. 

Regarding the availability of historical records, some publications 
indicate a shortfall in data from medium voltage (MV) networks, 
compared to high voltage (HV) levels [13,14]. Furthermore, references 
[7] and [15] report a lack of research related to service restoration 
procedures using real data. In several analysis, such as those presented 
in [16] and [17], the values considered for the FR and mean time to 
repair (MTTR) are taken from the limits established by grid codes, giving 
evidence of a lack of information in this regard, since these values do not 
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represent the actual reliability parameters. In addition, these values of 
FR and MTTR present remarkable variability with the network topology, 
operating conditions and the characteristics of the involved elements, 
[18]. Such variations should be considered by the estimation method, as 
that described in this paper. 

As stated previously, the reliability-related parameters presented are 
used to obtain the KPIs of the network under evaluation, [19], and also 
to improve these quality indices, as proposed in [20]. In addition, these 
parameters are involved in a wide range of applications, such as the 
implementation of preventive and corrective action plans for individual 
elements of the system, [21], protection design, [22], or reconfiguration 
modeling in radial networks, [23]. 

Regarding service restoration, reference [24] presents a literature 
review from 2006 to 2016, showing that recent research is focused on 
black-start, network reconfiguration and load restoration using 
emerging technologies. 

For reliability assessment in electric power systems, Markovian 
models and Monte Carlo simulations are typically used, [25]. These 
techniques require specific values of the FRs, which are customarily 
modeled using a bathtub curve, as in [26–28] and [29], so that this 
parameter is taken as nearly constant during the component lifetime, 
[30,1]. In the particular case of the time to failure (TTF), if constant FRs 
are considered, TTF follows an exponential distribution, as can be found 
in [29]. However, it is shown in [31] that, according to the Laplace test, 
unscheduled FRs may not be considered as constant. Other reliability 
parameters, such as TTR or TTRS, are assumed to be random variables, 
represented by their corresponding probability density functions (PDFs), 
[9,32,33], used in the corresponding Monte Carlo simulations. The use 
of PDFs to statistically characterize reliability parameters, such as the 
SRT, is justified in reference [34], where the estimation of the system 
KPIs is addressed. 

At the industrial level in general, [35], and particularly in reliability 
of electric power distribution, [1], several PDFs are used, such as 
normal, lognormal, exponential, gamma, and Weibull. For example, 
exponential, Weibull, Rayleigh and gamma distributions are considered 
in [17] to be the most suitable to calculate time to failure and TTR values 
for different elements of the system, based on historical records and 
statistics from DSOs. However, in reference [17] none of the considered 
PDFs provided successful results in the estimation of KPIs. The 
log-logistic distribution, which is described in [36], is also used to model 
and analyze component lifetimes and FRs, [37,38]. 

This paper presents a methodology to fit real data, extracted from 
databases provided by DSOs to an appropriate PDF which can be sub-
sequently used in reliability models of the electrical network. In this 
work, the proposed procedure is applied to statistically characterize 
service restoration times (SRTs) of underground cables in MV networks, 

considering aggregated and disaggregated groups of elements. The ob-
tained results are finally validated in a MV network with 350 feeders. 
The main contributions of this work are summarized below:  

• The proposed technique deals with existing outliers in the database.  
• Best fitted PDFs are obtained according to statistical information 

exclusively.  
• Confidence intervals can be obtained for the SRTs, which would not 

be possible if the sample mean is used. 

The rest of the paper is arranged as follows: Section 2 describes how 
the data from the historical record are treated and Section 3 presents the 
proposed fitting algorithm. The obtained results and their validation are 
respectively included in Sections 4 and 5. Section 6 is devoted to a 
discussion on the applicability of the proposed technique, while the 
conclusion of the paper is presented in Section 7. 

2. Data pooling 

Information about incidents in electrical networks is collected by the 
corresponding utilities and saved in databases, as that used in this paper. 
Data are extracted from a Spanish MV network, the time period being 
from 2001 to 2013. Specifically, this work is focused on SRTs of un-
scheduled permanent faults in 15 kV and 20 kV underground cables. In 
this context, reference [1] states that the minimum time threshold to 
define a permanent interruption depends on the territory. In the 
particular case of the Spanish regulation, faults lasting more than 3 min 
are considered as permanent interruptions, used for the calculation of 
KPIs. For this reason, faults with a duration lower than 3 min are 
removed from the database. Each faulty element is registered in the 
database used in this work, so that interruptions originated in under-
ground cables are clearly identified. For the network under study, 
interruption causes and FRs are reported in [31]. Outages related to 
customer installations are not included in the database. 

Two different approaches are considered for processing the raw data 
used in this work. First, the whole population of SRTs is taken as a 
unique aggregated group, namely 15/20 kV. For the second approach, 
the components of the system are considered independently, as dis-
aggregated groups, in order to estimate the PDF of the SRT for each one 
of them. Regarding the latter approach, in the event of data deficiency or 
variability in the population, [39], a relationship between certain 
groups must be established to achieve a representative sample. For this 
purpose, the samples in 15 kV and 20 kV are grouped according to the 
type of insulation and joints, as stated in [31]. The resulting groups 
considered in this paper for the calculation of disaggregated SRTs are 
thermoplastic and thermosetting insulated cable for 15 kV (TTI15 kV), 
thermoplastic and thermosetting insulated cable for 20 kV (TTI20 kV), 
oil-paper insulation for 15 kV (OPI15 kV), oil-paper insulation for 20 kV 
(OPI20 kV), slices in 15 kV (Slice15 kV) and slices in 20 kV (Slice20 kV). 

The configuration of the network under study is weakly meshed, 
radially exploited, including a circuit breaker at the head of each MV 
feeder. In case of service interruption, the SRT can be reduced by means 
of a conventional service restoration strategy, [33], with the corre-
sponding switching operations, [13]. With the previous considerations, 
the SRT includes the time for the location and isolation of the fault, 
together with the time to restore the power supply through alternative 
paths. For each service interruption, the SRT is calculated using the 
database information and the following expression, as used in [6]: 

SRT = RTS − STS (1)  

where RTS corresponds to the timestamp of the moment when the ser-
vice of the last customer is restored, and STS refers to the timestamp of 
the instant when the supply is interrupted. 

List of Abbreviations 

A-D Anderson-Darling 
CDF Cumulative density function 
DSOs Distribution system operators 
FR Failure Rates 
GoF Goodness of fit 
KPI Key performance indicator 
K-S Kolmogorov-Smirnov 
MV Medium voltage 
OPI Oil-paper insulation 
PDF Probability density function 
SRT Service restoration time 
TTI Thermoplastic and thermosetting insulated cable 
TTR Time to repair 
TTRS Time to restore the supply  
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3. Proposed algorithm 

Once aggregated and disaggregated SRTs are obtained according to 
Eq. (1), a set of PDFs is fitted to the resulting data. These PDFs are used 
to obtain the expected values of the restoration times and confidence 
intervals for this variable, which cannot be derived from raw data. 
Additionally, the fitted functions might be included in reliability anal-
ysis based on Monte Carlo simulations to estimate the KPIs of the system 
and make the economic assessment of their possible violations. In this 
work, the considered distributions are exponential, gamma, Weibull, 
lognormal and loglogistic. To assess each of these fits, two goodness of 
fit (GoF) tests are used: Kolmogorov-Smirnov (K-S) and Anderson- 
Darling (A-D), [40]. 

For some groups, none of the GoF tests were satisfied for any of the 
PDFs considered because of the remarkable differences between 
observed and estimated data, especially for long SRTs with low- 
probability events. To overcome this problem, an algorithm is pro-
posed to improve the fitting process. With this technique, the low- 
probability events are detected and removed iteratively, until one or 
more GoF tests are satisfied for each PDF. These removed events might 
be associated to lack of accuracy of the considered PDF, arise of rare 
events, or even to errors in the recording of the involved timestamps. 
Finally, the best-fitted distribution is taken as that with the lowest 
number of removed events. Once the PDF is selected, the number of bins 
and their width in the representation of the resulting histograms are 
chosen according to the p-value provided by a chi-squared (X 2) test, 
[41]. 

Fig. 1.b illustrates an example where the proposed algorithm is 
applied to the aggregated group 15/20 kV. In this case, the loglogistic 
distribution resulted in the best-fitted PDF. For comparison purposes, 
Fig. 1.a shows the histogram of the 15/20 kV group before the algorithm 
is applied, together with the fitted loglogistic PDF. It can be noticed in 
the zoomed plot that data are better fitted after the proposed algorithm 
is applied, especially in the upper tail of the PDF, where unacceptable 
differences are obtained between observed and estimated SRTs (more 
than ten hours). In the case of Fig. 1.a, neither the K-S nor the A-D GoF 
tests are satisfied. 

The steps of the proposed algorithm, as summarized in the flowchart 
of Fig. 2, are described below: 

1. Pre-processing. The values of SRTs calculated using the raw data 
and Eq. (1) are pre-processed in order to remove unrealistic values, 
which might be associated to recording errors, such as negative SRTs. In 
the database considered in this work, no values are removed in the pre- 

processing. 
2. Data pooling. Creation of the different groups for the dis-

aggregated analysis of SRTs with the pre-processed values from the 
previous step. Regarding the aggregated analysis, the whole set of pre- 
processed data is considered as a single group. 

3. PDF fitting. For each group: 
3.1. For each PDF considered in this paper (parallel branches in the 

flowchart): 
3.1.1. K-S GoF test. After fitting the PDF, the K-S test is calculated 

considering a significance level of 0.05. The null hypothesis of this test, 
h, assumes no difference between the observed and the theoretical 
distribution. 

• If the null hypothesis is rejected (h = 0 in the flowchart), the prob-
ability of each event in the group is separately calculated using the 
fitted PDF.  

• The event with the lowest probability is removed iteratively, 
increasing the number of removed events (NRE) of the corresponding 
PDF, namely NRELL, NREG, NREW, NREE, NRELN for log-logistic, 
gamma, Weibull, exponential and lognormal, respectively.  

• This process is repeated until the null hypothesis of the K-S is 
accepted (h = 1 in the flowchart). 

3.1.2. A-D GoF test. After the null hypothesis of the K-S test is 
accepted, the A-D test with a 0.05 significance level is computed.  

• As for the previous GoF test, if the null hypothesis is rejected (h = 0), 
the probability of each event in the group is calculated separately 
using the fitted PDF.  

• The event with the lowest probability is removed iteratively, 
increasing the NRE of the distribution, until the null hypothesis of A- 
D is accepted (h = 1). 

3.2. Comparison of NREs and PDF selection. The best-fitted PDF is 
taken as that with the lowest NRE, i.e., that with the largest data 
population. 

4. Fitted PDFs. After analyzing the entire set of groups, the output of 
the proposed algorithm is composed of the selected PDFs for each one of 
them. 

Once a PDF has been selected for each one of the considered groups, 
the number of bins and their width for the representation of the results 
are taken as those with the highest p-value in a X 2 test. 

Fig. 1. Loglogistic PDF fitted for 15/20 kV group.  
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4. Results 

The performance of the proposed algorithm is assessed in this sec-
tion. Data from 2001 to 2012 will be considered for the distribution 
fitting, while the information from 2013 will be used in the next section 
for validation purposes. Table 1 shows the results obtained for the sta-
tistical characterization of SRTs for both aggregated and disaggregated 
groups. The information included in this table is as follows:  

- Number of events in the group before pre-processing.  
- Sample mean and standard deviation calculated from raw data.  
- Number of events in the group after pre-processing.  
- Number of events after applying the proposed method. 
- Best-fitted PDF and adjusted distribution parameters with the cor-

responding mean and standard deviation.  
- The 95% and 99% confidence intervals (CI) of the estimated SRTs. 

It can be observed that only the groups 15/20 kV and TTI 20 kV 

required data removal in order to obtain a correctly fitted PDF according 
to the GoF tests. Respectively, 96 and 51 events were removed from a 
total of 1782 and 1120. In all cases, the log-logistic distribution resulted 
to be the most adequate to represent the observed data. 

Additionally, substantial differences are observed between the mean 
and standard deviation calculated from the raw data and those obtained 
using the fitted PDF. For the aggregated SRT, the mean value obtained 
from the adjustment was 1.515 h, with a covariance close to two hours. 
Regarding the disaggregated groups, the highest mean SRT values were 
obtained for Slice15kV and TTI15kV, with an interruption time over two 
hours in both cases. Finally, Figs. 3 and 4 represent the observed data for 
these groups jointly with their adjusted PDFs and the cumulative density 
functions (CDFs). 

5. Validation of results 

The adjusted PDFs in the previous section can be used to estimate 
SRTs in radially-exploited meshed networks. In this section, information 

Fig. 2. Flowchart of the proposed algorithm.  

Table 1 
Information of the raw data and the fitted PDF for each group.  

Service restoration times - Underground cables - Fitted PDFs  
Aggregated Disaggregated 

Group 15/20 kV TTI 15 kV TTI 20 kV OPI 15 kV OPI 20 kV SLICE 15 kV SLICE 20 kV 

Initial number of samples 1782 440 1120 17 54 27 124 
Sample mean (hours) 2.411 2.245 2.544 1.650 2.953 2.305 1.681 
Sample standard deviation (hours) 6.641 2.955 8.013 1.091 6.122 2.056 2.098 
Number of samples after applying the algorithm 1686 440 1069 17 54 27 124 

Best-fitted PDF Loglogistic Loglogistic Loglogistic Loglogistic Loglogistic Loglogistic Loglogistic 

μ parameter 0.193 0.330 0.182 0.279 0.251 0.475 0.189 
σ parameter 0.360 0.469 0.354 0.290 0.462 0.469 0.396 

Mean (hours) 1.515 2.057 1.489 1.523 1.881 2.382 1.588 

Standard deviation (hours) 1.417 4.973 1.351 0.980 4.123 5.848 1.865 
95% CI. Lower limit 0.421 0.350 0.423 0.563 0.329 0.404 0.376 
95% CI. Upper limit 3.496 5.526 3.406 3.101 5.018 6.404 3.882 
99% CI. Lower limit 0.232 0.162 0.235 0.349 0.154 0.186 0.195 
99% CI. Upper limit 6.330 11.980 6.120 5.010 10.765 13.900 7.469  
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of system failures from 2013 will be considered to compare observed 
and estimated restoration times, so that the proposed procedure can be 
evaluated. The network is composed by 350 MV feeders, with 100 re-
ported failures during 2013. In the sequel, the validation results are 
shown considering aggregated and desegregated groups. For the 
aggregated 15/20 kV group, Fig. 5 shows both estimated and observed 
SRTs, jointly with 95% and 99% CIs. For the sake of clarity, the observed 
restoration times are represented in descending order. It can be noticed 
that only thirteen elements (13%) presented SRT values out of the 95% 
CI, while this number is reduced to seven elements for the 99% CI, which 

represents 7.00%. 
Regarding the validation of the PDFs obtained for the disaggregated 

groups, the observed SRTs in 2013 have been divided according to these 
groups of elements. Fig. 6 represents the results obtained for the groups 
TTI15 kV (Fig. 6a), TTI20 kV (Fig. 6b), Slice15 kV (Fig. 6c), and Slice20 
kV (Fig. 6d). No failures were reported for the group OPI15 kV in 2013, 
while a single value of observed SRT was recorded for the group OPI20 
kV. For this reason, these groups are not included in the graphs. 

It is observed how the resulting number of cases out of the CIs is 
lower than those obtained for the aggregated group, concluding that the 

Fig. 3. Histogram of Slice15 kV, PDF (a) and CDF (b).  

Fig. 4. Histogram of TTI15 kV, PDF (a) and CDF (b).  

Fig. 5. Estimated and observed SRTs for the aggregated group.  
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disaggregated estimate of the SRT represents more accurately the real 
observations, compared to the 15/20 kV group. 

6. Discussion 

In this section, the results presented previously are summarized and 
discussed using Tables 2 and 3. First, Table 2 includes the results ob-
tained when a 95% CI is estimated for the SRTs. It can be noticed that, as 
stated previously, the accuracy is higher for the disaggregated groups, 
compared to the aggregated 15/20 kV group. 

In this table, the number of cases with observed SRTs has been 
distinguished below the lower limit (LL) of the 95% CI and the situations 
where the restoration time is above the upper limit (UL). The reason for 
such a distinction is that, in the first case (SRT<LL), even though the 
proposed algorithm has provided an inaccurate interval for the SRT, the 

estimate will be on the conservative side. Taking this matter into ac-
count, it can be concluded from Table 2 that, for disaggregated groups, 
93% observed SRTs are lower than the UL of the 95% CI. For the dis-
aggregated groups, the most unfavorable case turns out to be the TTI15 
kV group, with 80% observed restoration times under the UL. For the 
100 failures reported in 2013, the resulting number of SRTs under the 
UL for the six disaggregated groups is 95, so the results are more accu-
rate in this case, compared to the aggregated 15/20 kV group. However, 
considering both aggregated and disaggregated groups, the proposed 
estimation technique provides accurate intervals for restoration times, 
which can be subsequently used in the calculation of KPIs of the network 
under consideration, such as SAIDI. 

If a more conservative range is desired for the SRT, a 99% CI can be 
estimated using the presented method, the results being summarized in 
Table 3. As for the 95% CI, the most accurate results are obtained using 

Fig. 6. Estimated and observed SRTs for the disaggregated groups: a) TTI15 kV, b) TTI20 kV, c) Slice15 kV, d) Slice20 kV.  
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the disaggregated groups. In this case, 97% observed SRTs were lower 
than the estimated UL for the aggregated group, while this percentage is 
98% if disaggregated groups are considered. These results prove the 
accuracy of the method for the statistical characterization of SRTs pro-
posed in this paper. Furthermore, it can be concluded that the accuracy 
of the presented algorithm is higher when disaggregated groups are 
considered. 

The expected SRT values obtained with the proposed method, using 
aggregated and disaggregated groups, can be used to estimate the SAIDI 
of the entire network under study, in order to evaluate the reliability of 
the system. SAIDI reported during 2013 was 58.015 min/customer. If 
the aggregated 15/20 kV group is considered, the expected SAIDI is 
48.861 min/customer, while this value results in 51.748 min/customer 
when disaggregated groups are analyzed. Finally, if the sample mean 
from the raw data is used to calculate the SAIDI, the obtained value is 
77.753 min/customer. It can be noticed that the proposed algorithm 
provides more accurate estimations of this indicator, considering both 
aggregated and disaggregated groups. In a similar analysis carried out 
using the reported data from 2001 to 2012, the estimations obtained 
from the fitting PDFs were closer to the reported values in 10 out of these 
12 years, giving evidence of the accuracy of the proposed method. 
Finally, the presented fitting procedure could be used to determine a 
confidence interval for the SAIDI, which could be used for a risk eval-
uation of the network. This kind of analysis would not be possible if raw 
data were used to estimate the SAIDI of the system. 

7. Conclusions 

This paper presents an algorithm for the statistical characterization 
of service restoration times, applied to underground cables in MV net-
works. This procedure sequentially removes low-probability events from 
the historical record, according to the value of the PDF considered in 
each case. Two separate GoF tests are used to determine whether the 
observed data can be represented by the corresponding distribution. The 
samples are combined into aggregated and disaggregated groups, ac-
cording to the characteristics and voltage level of the analyzed 
equipment. 

In all cases, the proposed technique selected the loglogistic distri-
bution as the one which best fits the reported data. For the aggregated 
group, the mean SRT is 1.515 h. Regarding the six disaggregated groups 

considered in this work, Slice15 kV and TTI15 kV presented the highest 
expected SRTs, both over two hours. The lowest restoration time was 
obtained for TTI20 kV, with an expected SRT below 1.5 h. 

The fitted PDFs have been assessed in their ability to predict the 
mean values of SRTs in a real MV network, also providing a confidence 
interval for these restoration times. For a whole year of information, 
SRTs have been calculated for a total of 100 faulty elements. The results 
presented show the accuracy of the proposed method, especially when 
disaggregated groups are considered. Taking a 95% CI, the observed SRT 
was lower than the upper limit of the interval in 95% of the cases. This 
percentage increases to 98% of cases if a 99% CI is used as a more 
conservative approach. When the expected SRT values obtained with the 
proposed method are used to estimate the KPIs of the whole network, 
disaggregated groups present more accurate results, with a SAIDI equal 
to 51.748 min/customer, the reported value being 58.015 min/ 
customer. 

The probability functions provided by the proposed algorithm can be 
used by the operators of distribution networks to build system reliability 
models, such as those based on Monte Carlo simulations. The reliability 
of the electrical network can be accurately estimated by means of these 
models, according to the corresponding topology. In this context, future 
work can be oriented to the application of the proposed method to 
different elements of the system and voltage levels, and using the fitted 
PDFs in Monte Carlo simulations, so that confidence intervals for system 
KPIs can be obtained. 
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Table 2 
Summary of 95% Cis for SRTs.  

Group No of failures Observed SRTs inside the CI Observed SRTs outside the CI 
Total SRT<LL SRT>UL SRT<UL (%) 

Aggregated 15/20 kV 100 87 13 6 7 93 
TTI15 kV 15 11 4 1 3 80 
TTI20 kV 63 57 6 4 2 96.83 
OPI15 kV – – – – – – 
OPI20 kV 1 1 0 0 0 100 
Slice15 kV 6 6 0 0 0 100 
Slice20 kV 15 14 1 1 0 100 
Sum of disaggregated 100 89 11 6 5 95  

Table 3 
Summary of 99% CIs for SRTs.  

Group No of failures Observed SRTs inside the CI Observed SRTs outside the CI 
Total SRT<LL SRT>UL SRT<UL (%) 

Aggregated 15/20 kV 100 93 7 4 3 97 
TTI15 kV 15 13 2 0 2 86.67 
TTI20 kV 63 60 3 3 0 100 
OPI15 kV – – – – – – 
OPI20 kV 1 1 0 0 0 100 
Slice15 kV 6 6 0 0 0 100 
Slice20 kV 15 14 1 1 0 100 
Sum of disaggregated 100 94 6 4 2 98  
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