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Alzheimer’s disease is the most common form of dementia, and epidemiological studies
support that type 2 diabetes (T2D) is a major contributor. The relationship between
both diseases and the fact that Alzheimer’s disease (AD) does not have a successful
treatment support the study on antidiabetic drugs limiting or slowing down brain
complications in AD. Among these, liraglutide (LRGT), a glucagon-like peptide-1 agonist,
is currently being tested in patients with AD in the Evaluating Liraglutide in Alzheimer’s
Disease (ELAD) clinical trial. However, the effects of LRGT on brain pathology when AD
and T2D coexist have not been assessed. We have administered LRGT (500 µg/kg/day)
to a mixed murine model of AD and T2D (APP/PS1xdb/db mice) for 20 weeks. We
have evaluated metabolic parameters as well as the effects of LRGT on learning
and memory. Postmortem analysis included assessment of brain amyloid-β and tau
pathologies, microglia activation, spontaneous bleeding and neuronal loss, as well as
insulin and insulin-like growth factor 1 receptors. LRGT treatment reduced glucose levels
in diabetic mice (db/db and APP/PS1xdb/db) after 4 weeks of treatment. LRGT also
helped to maintain insulin levels after 8 weeks of treatment. While we did not detect
any effects on cortical insulin or insulin-like growth factor 1 receptor m-RNA levels,
LRGT significantly reduced brain atrophy in the db/db and APP/PS1xdb/db mice. LRGT
treatment also rescued neuron density in the APP/PS1xdb/db mice in the proximity
(p = 0.008) far from amyloid plaques (p < 0.001). LRGT reduced amyloid plaque burden
in the APP/PS1 animals (p < 0.001), as well as Aβ aggregates levels (p = 0.046), and tau
hyperphosphorylation (p = 0.009) in the APP/PS1xdb/db mice. Spontaneous bleeding
was also ameliorated in the APP/PS1xdb/db animals (p = 0.012), and microglia burden
was reduced in the proximity of amyloid plaques in the APP/PS1 and APP/PS1xdb/db
mice (p < 0.001), while microglia was reduced in areas far from amyloid plaques in
the db/db and APP/PS1xdb/db mice (p < 0.001). This overall improvement helped
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to rescue cognitive impairment in AD-T2D mice in the new object discrimination test
(p < 0.001) and Morris water maze (p < 0.001). Altogether, our data support the
role of LRGT in reduction of associated brain complications when T2D and AD occur
simultaneously, as regularly observed in the clinical arena.
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INTRODUCTION

Age remains the main risk factor for Alzheimer’s disease (AD).
Nevertheless, metabolic disorders, and type 2 diabetes (T2D)
specifically, may also increase the risk of AD by over twofolds
(Sims-Robinson et al., 2010; Ryu et al., 2019). Likewise, the
close relationship between AD and T2D has been long analyzed
(Biessels and Despa, 2018; Vieira et al., 2018). Studies on animal
models have shown that metabolic alterations may affect different
amyloid species and amyloid deposition, although the effects
seem to be highly dependent on the specific animal model used
(Ramos-Rodriguez et al., 2014; Wang et al., 2014; Chatterjee and
Mudher, 2018; Natunen et al., 2020). On the other hand, while
it is widely accepted that cognitive dysfunction is an important
and common comorbidity of diabetes, this effect does not seem
to be directly related to alterations in amyloid pathology, and
previous studies have reported no differences in cerebrospinal
fluid amyloid-β (Aβ)-42 levels, global or regional AD pathology,
or amyloid burden (Arvanitakis et al., 2006; Moran et al., 2015;
Pruzin et al., 2017; Biessels and Despa, 2018). Interestingly,
a recent study using PET with 18F-Florbetaben for global Aβ

standardized value uptake ratio shows that prediabetes, but not
T2D, is associated with higher Aβ levels (Luchsinger et al., 2020),
supporting further studies on the effects of metabolic disorders
and T2D treatments at this level. It has also been suggested that
the inconsistent findings relating T2D to AD pathology might be
due to the inclusion of heterogeneous diabetic populations and
not accounting for glycemic control. In this sense, individuals
with undiagnosed diabetes have increased risk of dementia when
compared with individuals with well-managed diabetes and
without diabetes (McIntosh et al., 2019). In any case, T2D is a
risk factor for AD even after adjusting for vascular risk factors
(Wang et al., 2012; Huang et al., 2014). Even if only 10% of
diabetic patients end up suffering AD later in life, the number
of patients with AD in the world will double (Ryu et al., 2019).
Additionally, patients with AD have an increased risk of T2D,
and up to 81% of patients with AD have T2D or impaired fasting
glucose (Janson et al., 2004), supporting a two-way cross-talk
between both pathologies.

Previous studies have shown that multiple players may
underline the crosstalk between AD and T2D (Sims-Robinson
et al., 2010; Ramos-Rodriguez et al., 2015; Infante-Garcia et al.,
2016; Salas and De Strooper, 2019). Animal models have
shown that metabolic alterations may affect and accelerate
AD pathological features, ultimately contributing to cognitive
impairment (Takeda et al., 2010; Ramos-Rodriguez et al., 2015;
Infante-Garcia et al., 2016). In line with these observations,
an ongoing project (Retinal and Cognitive Dysfunction in
Type 2 Diabetes, recognized, Clinical Trials gov registration

no. NCT04281186) funded by the European Commission
(H2020 program-GA 847749) is currently investigating common
mechanisms in the pathogenesis of diabetic retinopathy and
cognitive impairment in the T2D population. Moreover, since
AD has no successful treatment and brain insulin resistance
may be significantly affected; clinical trials on insulin have
been carried out. Regular insulin improves cognition in patients
with mild cognitive impairment or mild to moderate AD, and
is accompanied by improvements in tau-P181/Aβ42 ratio and
specific brain volumes on MRI (Craft et al., 2017). Similarly,
promising outcomes have been observed after intranasal insulin
administration, such as preserved general cognition. Exploratory
analyses revealed that changes in memory and function were
associated to Aβ42 levels and tau/Aβ42 ratio in cerebrospinal
fluid (Craft et al., 2012; Claxton et al., 2015). In line with
these observations, patients with untreated diabetes present
with higher phospho- and total-tau levels, higher phospho-
tau/Aβ42 ratios, and higher rates of progression to dementia
(McIntosh et al., 2019).

Other approaches have tried to improve cognitive function
by targeting the activity of central glucagon-like peptide 1
(GLP-1) receptors (Hölscher and Li, 2010). Liraglutide (LRGT),
specifically, is a GLP-1 receptor agonist that crosses the blood-
brain barrier (Perry and Greig, 2005) and is currently being tested
on patients with AD in the Evaluating Liraglutide in Alzheimer’s
Disease (ELAD) clinical trial (NCT01843075) (Femminella et al.,
2019). Studies that used in vitro and in vivo models show
that LRGT improves AD pathological features, such as amyloid
and tau pathologies, inflammation, or oxidative stress (McClean
et al., 2011; Chen et al., 2017; Duarte et al., 2020; Jantrapirom
et al., 2020), and cognitive alterations (Chen et al., 2017; Batista
et al., 2018) in AD. However, to our knowledge, LRGT has
not been tested on complex models that harbor both T2D
and AD. We have analyzed the long-term effects of LRGT
on APP/PS1xdb/db mice, a mixed murine model with severe
brain complications derived from chronic T2D and AD. The
APP/PS1xdb/db mice show brain atrophy and altered amyloid
pathology when compared with APP/PS1 mice. Increased tau
phosphorylation and spontaneous bleeding are also observed
in the APP/PS1xdb/db mice. These complications result in
early cognitive dysfunction that can be detected when T2D
is established, but amyloid pathology is still scarce (Ramos-
Rodriguez et al., 2015; Infante-Garcia et al., 2016). Altogether,
this mixed murine model reproduces a more complex version of
the pathology that includes classical neuropathological features
of AD and T2D. LRGT treatment may ameliorate metabolic
alterations and related vascular damage in diabetic mice while
limiting amyloid and tau pathologies, inflammation, or neuronal
damage associated with both AD and T2D. Therefore, by acting
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at different levels, LRGT may contribute in the maintenance
of cognitive status when AD and T2D coexist, as commonly
observed in the clinical arena (Janson et al., 2004).

MATERIALS AND METHODS

Experimental Design: Animals and
Treatments
AD-T2D mice were produced by cross-breeding APPswe/PS1dE9
(APP/PS1) [Tg (APPswe, PSEN1dE9) 85Dbo, stock no: 004462;
Jackson Laboratories, Bar Harbor, ME, USA) with db/db
mice (Harlan Laboratories, Boxmeer, Netherlands). APP/PS1
presents amyloid deposition at ≈4 months of age (Garcia-
Alloza et al., 2006), and db/db mice are a functional knock
out of the leptin receptor that only presents diabetic phenotype
in homozygosis. Since heterozygous db/db mice do not
present specific metabolic or central phenotype, the animals
were grouped as follows: Control (APP/PS1−/−db/db+/+,
APP/PS1−/−db/db± mice), APP/PS1 (APP/PS1±db/db+/+ and
APP/PS1±db/db± mice), db/db (APP/PS1−/−db/db−/− mice),
and APP/PS1xdb/db (APP/PS1±db/db−/− mice) as described
previously (Ramos-Rodriguez et al., 2015; Infante-Garcia et al.,
2016). The animals were randomly divided into groups and
received LRGT as reported previously (Hansen et al., 2015).
Briefly, the mice received an initial dose of subcutaneous LRGT
(25 µg/kg/day) that was increased to 50, 100, 150, 200, 300,
and 500 µg/kg/day daily during the first week From day seven,
500 µg/kg/day (133.3 nmol/Kg/day) of LRGT was administered
to the mice daily for 20 weeks. T2D debuts at ≈6 weeks of
age in db/db mice and by 26 weeks of age both AD and T2D
are fully established in APP/PS1xdb/db mice. Therefore LRGT
treatment commenced at 6 weeks of age an continued up to
26 weeks of age. Mice that did not receive LRGT received
daily subcutaneous filtered PBS (vehicle). In vivo experiments
included 31–34 females and 37–40 males randomly assigned to
the treatment to complete the groups (Control n = 9–10, Control-
LRGT n = 9–11, APP/PS1 n = 9–10, APP/PS1-LRGT n = 10–11,
db/db n = 7–9, db/db-LRGT n = 8–12, APP/PS1xdb/db n = 5–
7, and APP/PS1xdb/db-LRGT n = 7–8). Postmortem studies
included 9–31 males and 11–26 females, depending on the assays,
to complete the experimental groups (Control n = 3–8, Control-
LRGT n = 3–6, APP/PS1 n = 4–8, APP/PS1-LRGT n = 4–9, db/db
n = 3–7, db/db-LRGT n = 3–7, APP/PS1xdb/db n = 3–6, and
APP/PS1xdb/db-LRGT n = 3–6). All experimental procedures
were approved by the Animal Care and Use Committee of
the University of Cadiz in accordance with the Guidelines for
Care and Use of Experimental Animals (European Commission
Directive 2010/63/UE and Spanish Royal Decree 53/2013).

Metabolic Determination
Body weight, non-fasting blood glucose levels, and plasma
insulin levels were determined before the commencement of
the treatment and every 4 weeks until sacrifice at 26 weeks.
Blood glucose levels were measured from nicked tails using the
glucometer Optium Xceed (Abbott, London, United Kingdom).
For plasma insulin determination, blood was collected from the
tail vein and placed in tubes with potassium-EDTA (Sarstedt,

Nümbrecht, Germany). Blood samples were centrifuged for
7 min, 6,500 rpm at 4◦C, and plasma fraction was stored at –
80◦C until it was processed. Plasma insulin levels were measured
using an ultrasensitive mouse enzyme-linked immunosorbent
assay (ELISA) (Mercodia Inc., Winston-Salem, NC, USA).

Morris Water Maze
Behavioral assessment commenced after 18 weeks of treatment
with LRGT. The acquisition phase was assessed 12 days prior to
sacrifice. The pool was a round tank of 90 cm in diameter and
water temperature was 21 ± 2◦C. The animals performed four
trials/day for 4 days, with the platform submerged in quadrant 2.
Swimming commenced in each of the four virtual quadrants that
the pool was divided in. Time limit was 60 s/trial, with a 10-min
intertrial interval. If an animal did not find the platform, it was
placed on the platform for 10 s. The retention phase started 24 h
after the acquisition phase was completed, and it consisted of a
single trial with the platform removed. Time required to locate
the platform in the acquisition phase, percentage of time spent
in quadrant 2 during the retention phase, and swim speed were
analyzed using the Smart software (Panlab, Barcelona, Spain).

Actimetry and New Object
Discrimination Task
Spontaneous motor activity test commenced the day after
completion of the MWM. The mice were placed in a rectangular
box (length 44 cm × width 22 cm × height 40 cm), and the
distance traveled for 30 min was recorded. The new object
discrimination test commenced the next day, as described
previously (Dere et al., 2005; Ramos-Rodriguez et al., 2013). The
animals were exposed to two objects, for habituation purposes,
that were not used again during the object exploration task.
On day 3, each mouse performed two sample trials and a
test trial. On the first sample trial, the mice were allowed to
explore for 5 min four copies of a novel object (navy balls)
arranged in a triangle-shaped spatial configuration. After a 30-
min delay, the mice performed a second sample trial with four
novel objects (red cones) arranged in a quadratic-shaped spatial
configuration, for 5 min. After 30 min, the mice performed
a test trial with two copies of the object from sample trial 2
(“recent” objects) placed in the same position, and two copies
of the object from sample trial 1 (“familiar” objects), with one
placed in the same position (“old non-displaced” object) and the
other in a new position (“familiar displaced” object). Integrated
episodic memory for “what,” “where,” and “when” paradigms was
analyzed as described previously (Dere et al., 2005). “What” was
defined as the difference in time exploring familiar and recent
objects, “where” was defined as the difference in time exploring
displaced and non-displaced objects, and “when” was defined
as the difference between time exploring familiar non-displaced
objects and time exploring recent non-displaced objects.

Rotarod
Motor coordination was assessed by the rotarod (Panlab Harvard
Apparatus, Barcelona, Spain). An animal was placed on a
horizontal rod (3 cm in diameter and 5.7 cm wide), which is
rotated around its longitudinal axis, and the animal must walk
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forward to remain upright and not fall off (the height to fall
is 16 cm). The animals were placed on the rod for 4 min at 4
revolutions per minute (rpm) for training purposes. During the
test, the speed was increased from 4 to 40 rpm within 1 min.
The time spent on the rod and the velocity when the animals
fall was recorded.

Tissue Processing and Cresyl Violet
Staining
The animals were sacrificed by intraperitoneal pentobarbital
overdose (120 mg/kg). Brains were immediately harvested and
weighed. Right hemispheres were dissected and frozen at –80◦C
until they were used. Left hemispheres were fixed in PFA 4%, and
30-µm coronal sections were obtained with cryostat (Microm
HM 525; Thermo Fisher Scientific, Madrid, Spain). Six sections
located at 1.5, 0.5, –0.5, –1.5, –2.5, and –3.5 from Bregma,
(Infante-Garcia et al., 2018), were selected. Briefly, the sections
were dehydrated in 70% ethanol for 15 min and then incubated
in a cresyl violet (Sigma, St. Louis, MO, USA) solution (0.5%
w/v) for 10 min. After washing, tissue was fixed in 0.25% acetic
acid in ethanol for 5 min, and subsequently in 100% ethanol and
xylene for 2 min. The sections were mounted with DPX (Sigma,
St. Louis, MO, USA). Images were acquired with an optical
Olympus Bx60 microscope with an Olympus DP71 camera. Cell
F (Olympus, Hamburg, Germany), Adobe Photoshop Elements
and Image J software were used to process the images and
measure cortex and hippocampus sizes.

Prussian Blue Staining
Sections contiguous to those used for cresyl violet staining
were incubated by Prussian blue iron staining and neutral red
counterstaining as described previously (Desestret et al., 2009),
to analyze spontaneous hemorrhages. Images were acquired with
an Olympus Bx60 (Olympus, Tokyo, Japan) microscope with an
Olympus DP71 camera (Olympus, Tokyo, Japan) to assess the
complete cortex and hippocampus. The images were analyzed
using the Image J software to quantify hemorrhage burden in the
cortex and hippocampus.

NeuN/DAPI Staining
Six sections located at 1.5, 0.5, –0.5, –1.5, –2.5, and –3.5 from
Bregma were selected and blocked with BSA 3% and Triton X-
100 0.5% during 1 h. Thereafter, the sections were incubated
overnight at 4◦C with anti-NeuN (Sigma, St. Louis, MO, USA)
(Ref. MAB377) (1:200). Alexa Fluor donkey anti-mouse 594 was
used as secondary antibody (Molecular Probes, Eugene, OR,
USA) (Ref. A21203) (1:1,000), followed by DAPI 1 mg/ml (Sigma,
St. Louis, MO, USA) (Ref. D9542) (1:3,000) counterstain for 1 h.
Amyloid plaques were stained with thioflavin S (TS) (Sigma,
St. Louis, MO, USA) (Ref. T1892) (0.01%) in H2O/ethanol
(1:1) for 10 min. The sections were mounted and photographed
using an Olympus Bx60 (Olympus, Tokyo, Japan) microscope
with an Olympus DP71 (Olympus, Tokyo, Japan) camera. The
percentage of NeuN-positive cells (normalized by total cells
stained with DAPI) was quantified in the cortex, close (<50 µm
from plaque border) and far (>50 µm) from amyloid plaques

using the Image J software (Ramos-Rodriguez et al., 2016;
Infante-Garcia et al., 2018).

Axonal Immunostaining
Axonal curvature was analyzed after immunostaining with an
SMI-312 antibody (Biolegend, San Diego, CA, USA) Ref. 837904)
(1:1,000) as described (Infante-Garcia et al., 2017). Briefly, six
sections 1 mm apart were pre-treated with hydrogen peroxide 3%
and Triton X-100.5% for 20 min and blocked with 3% BSA for 1 h.
Alexa Fluor goat anti-mouse 594 was used as secondary antibody
(Molecular Probes, USA) (Ref. A11005) (1:200) for 1 h. Amyloid
plaques were visualized with TS as described above. Micrographs
of stained tissue were obtained with a Laser Olympus U-RFL-T
(Olympus, Japan) fluorescent microscope and the MMIcellTools
software. The Image J software was used for analysis purposes.
Axon curvature ratio was calculated by dividing the end-to-end
distance of a dendrite segment by the total length between the
two segment ends. The distance to the closest amyloid plaque
was measured at three points along each neurite, and the average
distance was determined from these three measurements (Garcia-
Alloza et al., 2010). At least 40 neurites were analyzed in each
animal to complete 309–939 neurites/group. Curvatures were
pooled in the proximity of amyloid plaques (up to 50 µm
from the border), and neurites analyzed further from amyloid
plaques borders were considered in SP-free areas. In the Control
and db/db animals, axon curvature was compared with those
measured in the APP/PS1 mice further than 50 µm from SP, as
described previously (Garcia-Alloza et al., 2007a).

Aβ and Microglia Immunostaining
PFA-fixed 30-µm sections were pre-treated with 70% formic acid
for 10 min and blocked in 3% BSA and 0.5% Triton-X100 for
1 h. The sections were incubated with anti-Iba1 (Wako, Osaka,
Japan) (Ref. 019-19741) (1:1,000) and 4G8 (Biolegend, London,
United Kingdom) (Ref. 800702) (1:2,000), antibodies overnight
at 4◦C in 0.5% BSA followed by secondary antibodies Alexa
Fluor donkey anti-rabbit 488 (Molecular Probes, Eugene, OR,
USA) (Ref. A21206) and Alexa Fluor donkey anti-mouse 594
(Molecular Probes, Eugene, OR, USA) (Ref. A21203) (1:1,000)
for 2 h. Images were acquired using a Laser Olympus U-RFL-
T (Olympus, Tokyo, Japan) fluorescent microscope and the
MMIcellTools software. Microglia burden (% covered area) in
the cortex and hippocampus was also analyzed in the proximity
of (<50 µm) and far (>50 µm) from amyloid plaques in the
case of the APP/PS1 and APP/PS1xdb/db mice, and in random
selected areas in mice without amyloid plaques (Control and
db/db), as described previously (Garcia-Alloza et al., 2007b;
Ramos-Rodriguez et al., 2015). The Image J software was used to
analyze the number, size, and burden of Aβ deposits in the cortex
and hippocampus.

Aβ40, Aβ42, and Aβ Aggregates
Enzyme-Linked Immunosorbent Assay
Soluble and insoluble Aβ40 and Aβ42 were quantified in the
cortex and hippocampus with colorimetric ELISA kits (Wako,
Osaka, Japan) (Aβ40, Ref. 294-62501; Aβ42, Ref. 290-62601)
as described, with minor modifications (Infante-Garcia et al.,
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2017). Tissue (5–10 mg) was homogenized in 50 µl of PierceTM

IP Lysis Buffer (Thermo Fisher Scientific, Madrid, Spain) (Ref.
87788) with HaltTM (Thermo Fisher Scientific, Madrid, Spain)
(Ref. 78440) phosphatase and protease inhibitor cocktail and
centrifuged (14,500 rpm) for 12 min at 4◦C. Soluble Aβ40 and
Aβ42 levels were measured in supernatants. The resultant pellet
was extracted with 50 µl of 70% formic acid and centrifuged
at 14,500 rpm for 10 min. Insoluble fraction was neutralized
and diluted 1:30 with 1M Tris (pH 11). Human Aβ40 and Aβ42
provided in the kit were used for standard curves. Aβ aggregates
were quantified using Human Amyloid β (82E1-specific) Aβ

Oligomers Assay Kit (IBL, Hamburg, Germany) (Ref. 27725). The
cortex was homogenized (1/5 w/v) in Tris-buffered saline (TBS;
20 mM Tris-HCl, 140 mM NaCl, pH 7.5) containing HaltTM

phosphatase and protease inhibitor cocktail. Homogenates were
then centrifuged (14,500 rpm) for 60 min at 4◦C. The supernatant
was collected and diluted 1:2 with EIA buffer provided in the
kit. All absorbances were measured spectrophotometrically at
450 nm (MQX200R2; Biotek Instruments, Burlington, VT, USA),
and data were expressed as pmol/g tissue.

Total-Tau and Phospho-Tau Levels
Total tau and tau phosphorylation levels were measured in
cortical and hippocampal samples as described previously
(Infante-Garcia et al., 2017). Tissue was homogenized in
PierceTM IP Lysis Buffer (Thermo Fisher Scientific, Madrid,
Spain) (Ref. 87788) with HaltTM (Thermo Fisher Scientific,
Madrid, Spain) (Ref. 78440) phosphatase and protease inhibitor
cocktail. The homogenates were sonicated and centrifuged at
4◦C for 5 min at 15,000 g. Supernatants were collected, and
protein concentration was determined by Bradford protein
assay (Bio-Rad, Madrid, Spain) (Ref. 5000006). Proteins were
separated on 10% acrylamide-bisacrylamide gels, followed by
electrophoretic transfer to PVDF membranes (Bio-Rad, Madrid,
Spain) (Ref. 1620177). Membranes were then immersed in
blocking buffer (Thermo Fisher Scientific, Madrid, Spain)
(Ref. WB7050) for 1 h and incubated overnight at 4◦C with
mouse anti-phospho-tau antibody (1:1,000) (clon AT8) Thermo
Fisher Scientific, Agawan, MA, USA) (Ref. MN1020) (1:1,000).
Membranes were washed and then incubated with Secondary
Antibody Solution Alk-Phos. Conjugated (Anti-Mouse) (Thermo
Fisher Scientific, Madrid, Spain) (Ref. 10013103), and a
chemiluminescent inmunodetection system for mouse and
rabbit primary antibodies (Invitrogen, Carlsbad, CA, USA). The
membranes were washed, and signal was detected using Novex
AP Chemiluminescent Substrate (Thermo Fisher Scientific,
Madrid, Spain) (Ref. WP20002) in a ChemiDoc MP (Bio-
rad, Madrid, Spain) imager. After stripping, the membranes
were incubated with anti-total tau (1:1,000) (DAKO, Glostrup,
Denmark) following the above procedure. Optical density
was semi-quantified after normalizing to β-actin (Sigma, OR,
USA) (Ref. A5441) (1:1,000) using the Image J software.
Phospho-tau/total tau ratios were represented as percentage
of control values.

IR-A, IR-B, and IGF-1R mRNA Expression
For rt-qPCR analysis, RNA was isolated from the cortex using
TRIzolTM (Invitrogen, Carlsbad, CA, USA) (Ref. 15596026)

following the instructions of the manufacturer and resuspended
in purified nuclease-free water. The RNA was quantified using
a BioTek SynergyTM Mx (BioTek Instruments, Inc., Winooski,
VT, USA) fluorometer. Complementary DNA (cDNA) was
obtained from 500-ng RNA using iScriptTM cDNA Synthesis Kit
(Bio-Rad Laboratories Inc., Hercules, CA, USA) (Ref.1708890)
on Techne Genius Thermal Cycler (Techne Ltd., Cambridge,
United Kingdom). The 15-µl RT-qPCR reaction mix contained
7.5 µl 2X iTaqTM Universal SYBR R© Green Supermix (Bio-Rad
Laboratories Inc., Hercules, CA, USA) (Ref. 1725122) 200 nmol
(for IR-varA, IR-varB, and rRNA18S) or 900 nmol (for IGF-
I) of forward and reverse primers, and 1 µl of the sample.
The PCR thermal profile included 40 cycles of denaturation
at 95◦C for 10 s, annealing at temperature according to each
set of primers (61◦C for IR-varA, 59◦C for IR-varB, 64◦C
for IGF-I, and 55◦C for rRNA18S) for 15 s, and extension
at 72◦C for 20 s, followed by melting curve analysis. Each
sample was analyzed in triplicate, and 6–9 mice per group
were included in the study. The mRNA level of rRNA18S was
used as internal control. Relative quantification values of mRNA
expression were calculated as 2–11Ct with the comparative
Ct method. First, internal control Ct values were subtracted
from the gene-of-interest Ct values to derive a 1CT value. The
relative expression of the gene of interest was then evaluated
using the expression 2−11Ct, where the value for 11Ct was
obtained by subtracting the 1Ct of the calibrator from each
1CT, using the mean of the control (Control animals) as the
calibrator. The oligonucleotide primers used in this study were
designed by BLAST and were obtained from Merck KGaA
(Madrid, Spain) for IR-varA (FW:TTTGTCCCCAGGCCATCC-
RV:ATCTGGAAGTGTGAGTGTGG), IR-varB (FW:AATGGTG
CCGAGGACAGTA-RV:ATCTGGAAGTGTGAGTGTGG) and
IGF-I (FW:CACAACTACTGCTCCAAAGACAAA-RV:TTTTC
CGTCACCTCCTCCAC); rRNA18S (FW:CTCAACACGGGAA
ACCTCAC-RV:CTCAACACGGGAAACCTCAC).

Statistical Analysis
One-way ANOVA for independent samples, followed by Tukey’s
b or Tamhane test, was performed when all the eight groups
under study were compared. One-way ANOVA was also
performed when only treated and untreated APP/PS1 and
APP/PS1xdb/db mice were analyzed (Aβ levels, amyloid plaques,
microglia, and neuronal curvature close to amyloid plaques).
Two-way ANOVA (groupXday) was performed to analyze the
acquisition phase in the MWM test. The SPSS v.24 software
was used for all the statistical analyses. One-way ANOVA
for independent samples was performed for further analysis
of individual days during acquisition in the MWM. Data are
presented as mean± SEM.

RESULTS

Liraglutide Reduces Metabolic
Alterations in T2D and AD-T2D Mice
When we analyzed glucose level evolution along treatment,
we did not detect a significant groupXweek effect by two-
way ANOVA for independent samples [F(35, 380) = 1.18,
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p = 0.227]. However, further assessment of individual days
revealed that the LRGT treatment reduced glucose levels in
diabetic mice (Figure 1A). On week 6, in baseline untreated
animals, plasma glucose in the db/db mice and APP/PS1xdb/db
crosses were significantly increased compared with the Control
and APP/PS1 mice. This increase in non-fasting glucose levels
was more severe in the APP/PS1xdb/db animals (p < 0.001). By
10 weeks of age, glucose levels were significantly higher in the
untreated db/db and APP/PS1xdb/db mice when compared with
the LRGT-treated and untreated Control and APP/PS1xdb/db
mice (p < 0.01). Differences in glucose levels between the
untreated diabetic (db/db and APP/PS1xdb/db mice) and non-
diabetic mice were maintained up to week 26 (p < 0.01).
The LRGT treatment helped in limiting hyperglucemia in
the db/db mice, and glucose levels reached control values by
week 10 (after 4 weeks of LRGT treatment). Similarly, LRGT
reduced non-fasting glucose levels in the APP/PS1xdb/db mice
when compared with the untreated APP/SP1xdb/db animals by
10 weeks of age, and a similar profile was observed by 14 weeks
of age. By 18 weeks, glucose levels in the APP/PS1xdb/db-LRGT
mice were similar to those detected in the Control and APP/PS1
animals. Glycemic control was maintained in the db/db-LRGT
and APP/PS1xdb/db-LRGT mice until the end of treatment
(26 weeks of age).

When we analyzed insulin levels, we detected a significant
groupXweek effect by two-way ANOVA for independent samples
along treatment [F(35, 384) = 2.64, p < 0.01]. Further differences
were observed among the groups when we analyzed individual
weeks (Figure 1B). On week 6, basal insulin levels in untreated
animals were increased in the db/db mice, although differences
with the Control and APP/PS1 animals only reached statistical
significance in the APP/PS1xdb/db mice (p < 0.01). The fact that
insulin levels were significantly increased in the APP/PS1xdb/db
mice suggests an earlier metabolic compromise in the crossed
model that requires an increase in pancreatic activity. By
10 weeks of age, statistical differences were observed in the db/db-
LRGT and APP/PSxdb/db-LRGT mice when compared with
the non-diabetic animals (Control and APP/PS1), suggesting an

increase in insulin production in the LRGT-treated mice that
allows for better glycemic control (p < 0.01). This situation was
maintained from 14 to 26 weeks of age, and LRGT helped to
increase insulin levels in the diabetic mice (db/db-LRGT and
APP/PS1xb/db-LRGT) to control hyperglycemia.

We also detected a significant groupXweek effect by two-
way ANOVA for independent samples [F(35, 400) = 3.13,
∗∗p < 0.01] when we analyzed body weight. Further assessment
of individual weeks revealed that the LRGT treatment helped
maintain body weight in cachectic APP/PS1xdb/db mice, as
shown previously (Infante-Garcia et al., 2018; Hierro-Bujalance
et al., 2020) (Figure 1C). By week 6 at baseline, the untreated
diabetic mice (db/db and APP/PS1xdb/db) were overweight
when compared with the non-diabetic mice (Control and
APP/PS1) (p < 0.01). By week 10, all the diabetic mice, treated
and untreated, presented significantly higher body weight when
compared with the Control and APP/PS1 animals (p < 0.01),
and these differences were maintained up to week 18 (p < 0.01).
By week 22, the untreated APP/PS1xdb/db mice were still
overweight when compared with the Control and APP/PS1
animals (p < 0.01); however, a slight reduction in body weight
could be detected, indicative of a cachectic state, as described
previously (Infante-Garcia et al., 2018; Hierro-Bujalance et al.,
2020). Nevertheless, LRGT helped in maintaining the body
weight of the APP/PS1xd/db mice, avoiding weight loss from
week 22 until the end of the study (26 weeks).

Liraglutide Improves Cognitive
Impairment in APP/PS1xdb/db Mice
As described previously, episodic memory was affected in the
APP/PS1, db/db, and APP/PS1xdb/db mice in the new object
discrimination test (Ramos-Rodriguez et al., 2015; Infante-
Garcia et al., 2016), reaching statistical significance in the case
of “what” and “where” paradigms when all the groups under
study were compared (Figure 2A). Differences reached statistical
significance when the untreated APP/PS1xdb/db mice were
compared in the “what” and “where” paradigms (p < 0.01).

FIGURE 1 | Long-term liraglutide (LRTG) treatment ameliorates metabolic alterations in T2D and AD-T2D mice. (A) Non-fasting plasma glucose, (B) insulin, and (C)
body weight were measured every 4 weeks in controls, APP/PS1, db/db and APP/PS1xdb/db mice treated with vehicle or LGRT 500 µg/kg for 20 weeks (from
weeks 6 to 26) (complete statistical analysis included as a Supplementary Material). (A) LRGT significantly reduced postprandial glucose levels in diabetic mice:

(##p < 0.01 Control, Control-LRGT, APP/PS1, APP/PS1-LRGT; p < 0.01 vs. Control; ††p < 0.01 Control, Control-LRGT, APP/PS1, APP/PS1-LRGT,
db/db-LRGT, and APP/PS1xdb/db-LRGT; p < 0.001 vs. Control, Control-LRGT, APP/PS1, APP/PS1-LRGT, and db/db-LRGT; p < 0.01 vs. Control-LRGT).
(B) Insulin levels were maintained by long-term LRGT treatment. At 6 weeks of age, immediately before the commencement of LRGT treatment, insulin levels were
significantly increased in APP/PS1xdb/db mice (##p < 0.01 Control, Control-LRGT, APP/PS1, APP/PS1-LRGT; p < 0.01 vs. Control, Control-LRGT, APP/PS1,
APP/PS1-LRGT, db/db, and APP/PS1xdb/db; p < 0.01 vs. Control, Control-LRGT, APP/PS1, APP/PS1-LRGT, and APP/PS1xdb/db). (C) LRGT maintained
body weight in APP/PS1-LRGT (##p < 0.01 vs. Control, Control-LRGT, APP/PS1, and APP/PS1-LRGT; ##p < 0.01 vs. Control, Control-LRGT, APP/PS1, and
APP/PS1-LRGT; p < 0.01 vs. Control, Control-LRGT, APP/PS1, APP/PS1-LRGT, and APP/PS1xdb/db). Data are representative of 5–12 animals, and differences
were detected by one-way ANOVA followed by Tukey’s b or Tamhane test.
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FIGURE 2 | LRGT treatment reduced cognitive impairment in APP/PS1xdb/db mice. Control, APP/PS1, db/db, and APP/PS1xdb/db animals were analyzed in the
new object discrimination test for “what,” “when,” and “where” paradigms (A) as well as in the (B,C) Morris water maze test. Behavioral assessment commenced on
week 24, after 18 weeks of LRGT treatment (500 µg/kg/day), and was completed on week 26 (complete statistical analysis included as a Supplementary
Material). (A) LRGT improved episodic memory in the new object discrimination test. No differences were observed for the “when” paradigm; however, significant
improvement was observed for the “what” (††p = 0.009 vs. Control, Control-LRGT, and APP/PS1-LRGT) and “where” (**p < 0.001 vs. rest of the groups) paradigms.
(B) LRGT also improved the performance along the acquisition phase in the MWM (††p < 0.01 vs. Control, Control-LRGT, APP/PS1, APP/PS1-LRGT, db/db, and
db/db-LRGT; ##p < 0.01 vs. Control, Control-LRGT, APP/PS1, and APP/PS1-LRGT; p < 0.01 vs. Control and Control-LRGT; p < 0.01 vs. Control,
Control-LRGT, APP/PS1, APP/PS1-LRGT, db/db-LRGT, and APP/PS1xdb/db-LRGT). (C) In the retention of the MWM, we observed that LRGT treatment also
improved the performance of APP/PS1xdb/db-LRGT mice (††p = 0.002 vs. Control, Control-LRGT, and db/db-LRGT) (complete statistical analysis included in
Supplementary Material). Data are representative of 5–12 animals, and differences were detected by one-way ANOVA followed by Tukey’s b or Tamhane test.

Importantly, the LRGT treatment counterbalanced this situation,
and the APP/PS1xdb/db-LRGT mice performed like the Control
mice in both paradigms.

We did not detect a significant groupXday effect by two-way
ANOVA for independent samples [F(21, 1113) = 0.985, p = 0.479]
when spatial memory was analyzed in the acquisition phase of
the MWM. However, individual day assessment revealed that
cognitive impairment in the db/db and APP/PS1xdb/db mice was
significantly ameliorated by the LRGT treatment (Figure 2B).
On day 1 of the acquisition phase, the APP/PS1xdb/db mice
were already compromised when compared with the Control,
Control-LRGT, APP/PS1, APP/PS1-LRGT, db/db, and db/db-
LRGT mice (p < 0.01). This compromise was also observed
on acquisition days 2–4 for the naïve APP/PS1xdb/db mice
and db/db animals when compared with the LRGT-treated
and untreated non-diabetic mice (Control and APP/PS1). An
improvement was observed in diabetic mice after the LRGT
treatment, although the times to locate the platform were still
longer than those observed in the Control and Control-LRGT
mice (Figure 2B). In the retention phase of the MWM, we
observed that the APP/PS1xdb/db mice were compromised and

spent significantly shorter times in the quadrant where the
platform used to be located when compared with the Control
mice (p = 0.02). However, after the LRGT treatment, differences
were no longer observed between the APP/PS1xdb/db-LRGT and
Control mice (Figure 2C).

We also analyzed motor activity by assessing different
paradigms. When we analyzed the distance traveled in the
open field, we observed that the diabetic mice (db/db and
APP/PS1xdb/db) traveled shorter distances than the non-diabetic
animals, although no statistical differences were observed among
the groups under study (Table 1). Swimming speed in the MWM
was also used to characterize motor alterations in all the groups
under study (Table 1). As observed previously, in the diabetic
mice (db/db and APP/PS1xd/db mice), swimming speeds were
lower than those detected in the Control and APP/PS1 animals
(p < 0.01). Similar differences between diabetic and non-diabetic
mice were observed when motor activity was analyzed by time
(p < 0.01) or maximum speed (p < 0.01) in the rotarod test
(Table 1). However, no differences were observed in any of
the paradigms (distance traveled in the open field, swimming
speed in the MWR, and rotarod) when the db/db-LRGT or the
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TABLE 1 | Motor activity assessment on liraglutide (LRGT)-treated mice.

Distance traveled spontaneous motor activity (cm) Swimming speed (cm/s) Time in rotarod (s) Rotarod speed (rpm)

Control 11921.50 ± 378.18 22.09 ± 1.04 15.55 ± 2.42 16.36 ± 2.18

Control-LRGT 11815.75 ± 658.06 19.33 ± 1.27 11.92 ± 2.11 13.25 ± 1.31

APP/PS1 12715.31 ± 707.07 21.28 ± 1.39 18.00 ± 2.74 15.80 ± 1.79

APP/PS1-LRGT 11456.10 ± 548.60 19.83 ± 0.71 14.30 ± 2.03 13.80 ± 1.31

db/db 9446.47 ± 1105.73 14.56 ± 0.88‡‡ 2.33 ± 0.88‡‡ 6.11 ± 0.80‡‡

db/db-LRGT 9343.74 ± 789.27 13.23 ± 0.59‡‡ 2.44 ± 0.84‡‡ 5.88 ± 0.63‡‡

APP/PS1xdb/db 9814.83 ± 2189.93 14.07 ± 1.48‡‡ 2.67 ± 1.31‡‡ 5.50 ± 0.92‡‡

APP/PS1xdb/db-LRGT 9626.63 ± 1344.51 14.48 ± 1.36‡‡ 2.00 ± 0.38‡‡ 5.75 ± 0.31‡‡

No differences were observed when the distance traveled by all the groups under study in the spontaneous motor activity test was compared [F(6, 67) = 2.1, p = 0.046,
no further differences detected]. Swimming speed in the MWM was significantly reduced in diabetic mice, and no differences were observed after LRGT treatment
[F(6, 61) = 9.2, ‡‡p < 0.01 vs. Control, Control-LRGT, APP/PS1, and APP/PS1-LRGT]. A similar profile was observed in the rotarod test when we analyzed time [F(6,

68) = 11.73, ‡‡p < 0.01 vs. Control, Control-LRGT, APP/PS1, and APP/PS1-LRGT] and maximum speed [F(6, 67) = 11.31, ‡‡p < 0.01 vs. Control, Control-LRGT,
APP/PS1 and APP/PS1-LRGT]. Data are representative of 5–14 animals, and differences were detected by one-way ANOVA followed by Tukey’s b test or Tamhane as
required.

APP/PS1xdb/db-LRGT mice were compared with the untreated
db/db or the APP/PS1xdb/db animals, suggesting that the
observed improvement in learning and memory is not due to
changes in motor activity.

Liraglutide Limits Brain Atrophy and
Neuronal Loss
Severe brain atrophy was detected in the db/db and
APP/PS1xdb/db mice as described previously (Ramos-Rodriguez
et al., 2015; Infante-Garcia et al., 2016) when all the groups
under study were compared (Figure 3A). Brain weight was
comparable between controls and APP/PS1 mice receiving
vehicle, whereas the brain weight of vehicle-treated db/db and
APP/PS1xdb/db mice was significantly reduced. On the other
hand, LGRT-treated db/db and APP/PS1xdb/db brain weight was
comparable with that of the vehicle and LGRT-treated controls
and APP/PS1 mice (Figure 3A). Further assessment of brain
structures revealed that cortical size was significantly reduced
in the db/db and APP/PSxdb/db mice when compared with
the untreated Control and APP/PS1xdb/db animals (p < 0.01).
Nevertheless, the LRGT treatment significantly improved this
situation in the diabetic animals, and cortical size in db/db-
LRGT and APP/PS1xd/db-LRGT was comparable with that
of the vehicle- and LRGT-treated controls and APP/PS1 mice
(Figures 3A,B). Differences did not reach statistical significance
in the hippocampus (Figure 3A).

We observed that neuronal density in the cortex was
significantly reduced in the proximity of amyloid plaques when
the APP/PS1xdb/db mice were compared with the APP/PS1
and APP/PS1-LRGT treated animals, while the LRGT-treated
APP/PS1xdb/db mice presented values similar to those detected
in the APP/PS1 and APP/PS1-LRGT mice (Figures 3C,D).
In cortical areas far from amyloid plaques, we detected a
significant compromise in the untreated APP/PS1 and db/db
mice when compared with the Control and Control-LRGT
mice (p < 0.01). This effect was more severe in the untreated
APP/PS1xdb/db mice, and the LRGT treatment contributed to
improve NeuN/DAPI ratio in this group, reaching statistical
significance when the APP/PS1xdb/db and APP/PS1xdb/db-
LRGT mice were compared (Figures 3C,D). The number of

plaques in the hippocampus was low at 6 months of age,
and in areas far from amyloid plaques, we observed that
LRGT also helped in maintaining neuronal density (Figure 3C).
In the untreated db/db mice, we observed that NeuN/DAPI
ratios were significantly lower than those measured in the
LRGT-treated and untreated Control and APP/PS1 animals
(p < 0.01). The APP/PS1xdb/db mice showed a more severe
reduction in NeuN/DAPI ratio that was statistically significant
when compared with the LRGT-treated and untreated Control,
APP/PS1, and db/db animals. The LRGT treatment improved
NeuN/DAPI ratios in the hippocampus of the APP/PS1xdb/db
mice, although they did not reach Control or APP/PS1
values (Figure 3C).

Neuronal Curvature Is Reduced After
Liraglutide Treatment
Curvature ratio was increased in the proximity of amyloid
plaques when the untreated APP/PS1xdb/db animals were
compared with the APP/PS1 and APP/PS1-LRGT mice (p = 0.04).
On the other hand, the LRGT treatment significantly improved
neuronal curvature ratio in the APP/PS1xdb/db mice when
compared with the untreated APP/PS1xdb/db mice (p = 0.004)
(Figures 3E,F). A similar profile was observed in areas free from
amyloid plaques when all the groups under study were compared
(Figures 3E,F), and a significant compromise was observed in
the untreated APP/PS1xdb/db animals when compared with the
rest of the groups (p < 0.01). The LRGT treatment helped
in limiting this situation, and while neuronal curvature in the
APP/PS1xdb/db-LRGT mice did not reach Control values, a
significant straightening effect was observed when the treated
APP/PS1xdb/db mice where compared with the naïve animals
(p < 0.01) (Figure 3E).

Liraglutide Reduces Aβ Pathology
As described previously, amyloid plaque burden is lower in
the cortex from the APP/PS1xdb/db mice when compared with
the APP/PS1 animals (Infante-Garcia et al., 2016). TS staining
showed that amyloid plaque burden was significantly higher
in the APP/PS1 mice than in the APP/PS1xdb/db animals
(p < 0.001). The LRGT treatment contributed in reducing
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FIGURE 3 | Brain atrophy, neuronal density, and curvature are reduced by LRGT treatment. (A,B) Brain weight, cortex and hippocampal size, (C,D) NeuN/DAPI
ratio, and (E,F) axonal curvature ratio were analyzed in all four genotypes (Control, APP/PS1, db/db, and APP/PS1xdb/db) under study and compared with animals
by week 26, after 20 weeks on LRGT treatment (500 µg/kg/day) (complete statistical analysis included as a Supplementary Material). (A) Long-term LRGT limited
brain weight loss ( p < 0.01 vs. Control, Control-LRGT, APP/PS1, APP/PS1-LRGT, db/db, and APP/PS1xdb/db). Cortical size was significantly improved by the
LRGT treatment ( p < 0.01 vs. Control, Control-LRGT, APP/PS1, APP/PS1-LRGT, db/db-LRGT, and APP/PS1xdb/db-LRGT; ††p < 0.01 vs. Control, Control-LRGT,
APP/PS1, and APP/PS1-LRGT). No differences were observed in the hippocampus. Data are representative of 4–5 animals. (B) Illustrative example of cresyl violet
staining showing reduced cortical size in db/db and APP/PS1xdb/db mice. Scale bar = 200 um. (C) Neuronal density was reduced in the proximity of amyloid
plaques in APP/PS1xdb/db mice, and LRGT ameliorated this situation (††p = 0.008 vs. APP/PS1 and APP/PS1-LRGT). A similar profile is observed in cortical and
hippocampal areas with no amyloid plaques ( p < 0.001 vs. Control, Control-LRGT, APP/PS1, APP/PS1-LRGT, db/db-LRGT, and APP/PS1xdb/db-LRGT;
##p < 0.01 vs. Control and Control-LRGT; + + p < 0.01 vs. Control, Control-LRGT, APP/PS1, APP/PS1-LRGT, db/db, and db/db-LRGT). Data are representative of
five animals. (D) Illustrative example of NeuN (red) and DAPI (blue) staining in areas located in the proximity of amyloid plaques (TS staining, green) and in areas
without amyloid plaques. Zoom-in images of representative regions are marked by white squares and presented next to the original image, including areas with and
without amyloid plaques. Scale bar = 50 µm, insets scale bar = 25 µm. (E) LRGT reduced curvature ratio in the proximity of amyloid plaques (**p = 0.004 vs. rest of

the groups) and in areas free of amyloid plaques (**p < 0.01 vs. rest of the groups, ##p < 0.01 vs. Control and Control-LRGT, p < 0.01. vs. Control) (complete
statistical analysis included in Supplementary Material). Data are representative of five animals per group (308–920 neurons/group). (F) Illustrative examples of
SMI-312 (red) and TS (green) staining in the proximity of and far from amyloid plaques (yellow lines mark representative neurites). Scale bar = 10 µm.

Frontiers in Aging Neuroscience | www.frontiersin.org 9 December 2021 | Volume 13 | Article 741923

https://www.frontiersin.org/journals/aging-neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/aging-neuroscience#articles


fnagi-13-741923 December 10, 2021 Time: 14:23 # 10

Carranza-Naval et al. Liraglutide in AD and T2D

amyloid plaque burden in the APP/PS1 animals (p < 0.001),
whereas differences did not reach statistical significance when
the untreated APP/PS1xdb/db mice were compared with the
APP/PS1xdb/db-LRGT mice (Figures 4A,B). A similar profile
was observed after 4G8 immunostaining, and differences reached
statistical significance when the APP/PS1 mice were compared
with the APP/PS1xdb/db and APP/PS1xdb/db-LRGT mice. No
differences were observed among the groups when we assessed
amyloid plaque burden in the hippocampus (Figure 3A). TS
staining also revealed that the LRGT treatment reduced amyloid
plaque size in the cortex from the APP/PS1 and APP/S1xdb/db
mice when compared with the untreated animals (p < 0.01)
(Figure 4A). We also observed that the LRGT treatment reduced
4G8-labeled plaques in the APP/PS1 and APP/PSxdb/db mice
(Figure 4A). Amyloid plaque size was not significantly affected
in the hippocampus when the treated and untreated APP/PS1 and
APP/PS1xdb/db mice were compared (Figure 4A).

Soluble Aβ is slightly favored in the APP/PS1xdb/db mice
when compared with the APP/PS1 mice (Ramos-Rodriguez
et al., 2015). While we observed this profile, differences did
not reach statistical significance when the LRGT-treated and
untreated APP/PS1 and APP/PS1xdb/db mice were compared.
Similar outcomes were detected when soluble Aβ42 levels were
analyzed (Figure 4C). The LRGT treatment significantly reduced
Aβ aggregates in the APP/PS1xdb/db mice when compared
with the untreated animals (p = 0.046) (Figure 4C). Soluble
Aβ42 levels were not affected in the hippocampus when all
the four groups (APP/PS1, APP/PS-LRGT, APP/PS1xdb/db,
and APP/PS1xdb/db-LRGT) were compared (Figure 4C).
Insoluble Aβ40 (p = 0.026) and Aβ42 (p = 0.011) levels were
reduced in untreated APP/PS1xdb/db when compared with the
untreated APP/PS1 animals. Differences did not reach statistical
significance when the APP/PS1xdb/db mice were compared with
the APP/PS1xdb/db-LRGT animals (Figure 4C). Differences did
not reach statistical significance when insoluble Aβ40 or Aβ42
levels were compared in the hippocampus (Figure 4C).

Liraglutide Limits Tau Pathology
We observed an increase in cortical tau phosphorylation
in the db/db animals, although differences only reached
statistical significance when the untreated APP/PS1xdb/db mice
were compared with the Control animals (p = 0.009). LRGT
reduced phospho-tau/total tau ratio in the APP/PS1xdb/db
mice, and differences were no longer observed when the
APP/PS1xdb/db-LRGT mice were compared with the Control
animals (Figures 4D,E). Likewise, we also detected an increase
in hippocampal tau phosphorylation in the db/db and
APP/PS1xdb/db mice. While the LRGT treatment seemed
to counterbalance this situation, no statistical differences were
detected among any of the groups under study (Figure 4D).

Liraglutide Reduces Spontaneous
Bleeding in APP/PS1xdb/db Mice
As described previously, hemorrhage burden in the cortex
was significantly increased in the db/db and APP/PS1xdb/db
mice when compared with the naïve Control and APP/PS1

animals (p = 0.012). Interestingly, the LRGT treatment reduced
hemorrhage burden in the cortex from the db/db and
APP/PS1xdb/db mice when compared with untreated animals
of these genotypes. Cortical hemorrhage density was also
significantly higher in the db/db and APP/PS1xdb/db mice than
in the Control and APP/SP1 animals, and LRGT successfully
limited hemorrhage density in the diabetic animals (p < 0.001)
(Figures 5A,B). We did not observe significant differences
among the groups when hemorrhage burden and density were
analyzed in the hippocampus (Figure 5A).

Liraglutide Limits Microglia Activation in
APP/PS1xdb/db Mice
Cortical microglia burden was significantly lower in the close
proximity of amyloid plaques in APP/PS1xdb/db mice when
compared with the APP/PS1 mice (p < 0.001), and the LRGT
treatment reduced microglia burden both in the APP/PS1
and APP/PS1xdb/db mice when compared with the untreated
APP/PS1 and APP/PS1xdb/db groups (Figures 5C,D). On
the other hand, microglia burden was significantly higher in
the untreated APP/PS1xdb/db mice than in the untreated
Control, APP/PS1, and db/db mice in areas with no amyloid
plaques (p < 0.001). The LRGT treatment reduced microglia
burden in the db/db mice, and more robust differences were
observed in the APP/PS1xdb/db mice after the LRGT treatment
(p < 0.001). Differences did not reach statistical significance in
the hippocampus when microglia burden in the proximity or far
from the amyloid plaques (Figure 5C) was analyzed.

Liraglutide Has No Effect on mRNA
Expression of IR-A, IR-B, or IGF-1R
When we analyzed IR-A mRNA expression, we did not observe
any differences in the cortex from any of the groups under study
(Figure 5E). Similar outcomes were observed for IR-B or IGF-
1R (Figure 5E).

DISCUSSION

Patients with AD are in tremendous need of new therapeutic
opportunities (Arvanitakis et al., 2019). The close relationship
between T2D and AD (Ryu et al., 2019) supports the study
on antidiabetic agents slowing down or counterbalancing AD
brain pathology and cognitive impairment in animal models
(Infante-Garcia et al., 2018; Hierro-Bujalance et al., 2020) and
patients (Cao et al., 2018). GLP-1 analogs reduce amyloid
and tau pathologies, inflammation, and cognitive impairment
in different models (McClean et al., 2011; Chen et al., 2017;
Batista et al., 2018; Duarte et al., 2020; Jantrapirom et al., 2020).
Also, preliminary studies on humans show that LRGT might be
neuroprotective in individuals at risk of AD, improving intrinsic
connectivity within default mode network in the brain (Watson
et al., 2019). Moreover, the ELAD trial is currently assessing
the effect of LRGT on patients with AD (Femminella et al.,
2019). However, as far as we know, no studies have analyzed
the role of LRGT in complex models that harbor both AD
and T2D, as regularly seen in the clinical arena. Therefore,
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FIGURE 4 | LRGT affects amyloid and tau pathologies in APP/PS1xdb/db mice. (A,B) Amyloid plaque burden and size are quantified by thioflavin S and 4G8
staining. (C) Aβ40, Aβ42, and Aβ aggregates are also determined in APP/PS1 and APP/PS1xdb/db mice after liraglutide treatment (500 µg/kg/day) for 22 weeks.
(D,E) Phospho-tau/total tau ratios are also measured in all the genotypes (Control, APP/PS1, db/db, and APP/PS1xdb/db) under study untreated or after LRGT
treatment (complete statistical analysis included as a Supplementary Material). (A) LRGT treatment reduced amyloid plaque burden in the cortex from APP/PS1
mice (**p < 0.01 vs. rest of the groups; ††p < 0.001 vs. APP/PS1xdb/db, and APP/PS1xdb/db-LRGT). No differences were observed in the hippocampus. LRGT
treatment also reduced amyloid plaque size in the cortex from APP/PS1xdb/db mice ( p < 0.01 vs. APP/PS1-LRGT and APP/PS1xdb/db-LRGT, p < 0.001 vs.
APP/PS1-LRGT; **p < 0.01 vs. rest of the groups, ##p < 0.001 APP/PS1xdb/db-LRGT). No differences were observed in the hippocampus. Data are representative
of five animals. (B) Illustrative image of TS (green) and 4G8 (red) staining of amyloid plaques in the cortex from all the groups studied. Scale bar = 50 µm. (C) No

(Continued)
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FIGURE 4 | differences were observed when soluble Aβ40 or Aβ42 levels were analyzed in the cortex. However, Aβ aggregates were significantly reduced in
APP/PS1xdb/db mice on LRGT treatment (†p = 0.046 vs. APP/PS1xdb/db). No statistical differences were observed in the hippocampus for soluble Aβ40 or Aβ42
levels. Insoluble Aβ40 (‡p = 0.026 vs. APP/PS1) and Aβ42 (‡p = 0.011 vs. APP/PS1) levels are reduced in APP/PS1xdb/db when compared with APP/PS1 animals,
and LRGT treatment contributes to further reductions in the cortex. No differences were observed in the hippocampus for insoluble Aβ40 or Aβ42. Data are
representative of 6–9 animals. (D) Tau phosphorylation was reduced in the cortex after LRGT treatment (††p = 0.009 vs. Control). Differences did not reach statistical
significance in the hippocampus. Data are representative of 3–11 mice. (E) Illustrative example of Western blot for phospho-tau, total tau, and β-actin in the cortex
from all the groups studied.

we have analyzed the effects of long-term LRGT treatment in
APP/PS1xdb/db mice, a mixed murine model that reproduces
severe brain complications associated with T2D and AD (Infante-
Garcia et al., 2016; Ramos-Rodriguez et al., 2017).

In our opinion, LRGT helps in maintaining body weight, in
line with previous studies showing that antidiabetic treatments
may limit body weight loss in cachectic diabetic mice (Sugizaki
et al., 2017; Infante-Garcia et al., 2018; Hierro-Bujalance et al.,
2020). The LRGT treatment could also help in lowering glucose
levels by increasing insulin secretion in diabetic mice (db/db
and APP/PS1xdb/db) in the long term, as described previously
(Qin et al., 2018), suggesting that LRGT also contributes in
maintaining pancreatic activity in diabetic animals, in line with
previous studies (Fan et al., 2018; Li et al., 2018).

We also observed that brain atrophy in diabetic animals
was significantly reduced by long-term LRGT treatment. We
specifically assessed the cortex, as this region is preferentially
affected in APP/PS1xdb/db mice (Ramos-Rodriguez et al., 2015;
Infante-Garcia et al., 2016). The LRGT treatment maintained
cortical size and thickness in the APP/PS1xdb/db mice. On
the other hand, we did not detect significant differences in the
hippocampus, in line with previous studies showing that this
region is affected later in the APP/PS1xdb/db mice (Ramos-
Rodriguez et al., 2015; Infante-Garcia et al., 2016). Further
assessment of NeuN/DAPI ratio also revealed that LRGT helps
in maintaining neuron population in the long term. We also
observed that LRGT reduced neuronal curvature, indicating
an overall improvement in neuronal wellness, as reported
previously, postmortem (Jackson et al., 2016; Infante-Garcia
et al., 2017; Ramos-Rodriguez et al., 2017) and in vivo (Garcia-
Alloza et al., 2007a; Meyer-Luehmann et al., 2008), reinforcing a
neuroprotective role for LRGT in AD and T2D.

Glucagon-like peptide 1 receptors are mainly expressed in
β-pancreatic cells and the gastrointestinal system, although they
are also found in the brain (Hamilton and Hölscher, 2009;
Farr et al., 2016). GLP-1, as a growth factor, increases cell
growth and proliferation, and it also reduces neuronal injury
and hippocampal apoptosis (During et al., 2003). Moreover,
GLP-1 analogs induce cell proliferation and differentiation, and
stimulate neurite growth (Salcedo et al., 2012). Similarly, the
neuroprotective role of LRGT has been largely assessed in models
has been shown to have a capacity to prevent synapse loss
and deterioration of synaptic plasticity in AD (McClean et al.,
2011; Batista et al., 2018), supporting further assessment of
LRGT treatment in patients with mild Alzheimer’s dementia
(Femminella and Edison, 2014). Other studies have also shown
that LRGT enhances insulin sensitivity and improves insulin
resistance (Kalra et al., 2010; Yamazaki et al., 2014; Tamura

et al., 2015). Insulin resistance is not only a feature of diabetes
pathology, but it is also an early alteration in AD, associated
with basal elevations of insulin receptor substrate 1 (IRS1)
phosphorylated in serine 616 (Talbot et al., 2012). Besides, serine
phosphorylation of IRS1 is common in both AD and diabetes
(Bomfim et al., 2012), and antidiabetic agents restore normal
hippocampal formation responses to insulin in the IR–IRS-
1–PI3K–Akt pathway (Bomfim et al., 2012). Similarly, LRGT
significantly decreases IR aberrations in the APP/PS1 mice
(Long-Smith et al., 2013). In our experiments, IR-A, IR-B, and
IGF-1R mRNA expression levels were not significantly affected
in APP/PS1xdb/db mice. While alterations at this level have been
reported as a feasible link between AD and T2D (Holscher, 2021;
Zheng and Wang, 2021), our studies did not include functional
analysis, limiting the scope of our observations.

Liraglutide reduces tau hyperphosphorylation in both AD
(Yang et al., 2013; Chen et al., 2017) and T2D models (Yang et al.,
2013; Ma et al., 2015), indicating another feasible underlying
mechanism for its neuroprotective role. While tau pathology
is limited in the APP/PS1 mice, we observed a slight increase
in tau phosphorylation both in the APP/PS1 and in db/db
mice. Tau phosphorylation is significantly increased in the
APP/PS1xdb/db animals, showing a synergistic effect when AD
and T2D are set together (Ramos-Rodriguez et al., 2015; Infante-
Garcia et al., 2016). Interestingly, early tau alterations, and not
necessarily neurofibrillary tangles, might be critical for cognitive
malfunctions (Hochgrafe et al., 2013), supporting the relevance
of the AD-T2D crosstalk in tau pathology. We observed that
the LRGT treatment reduces tau phosphorylation, as reported
previously in AD models (Batista et al., 2018; Holubova et al.,
2019; Jantrapirom et al., 2020), although to our knowledge
the effects of LRGT on tau phosphorylation have not been
assessed when AD-T2D coexist. On the other hand, the role
of LRGT on amyloid pathology remains controversial, and
previous studies have reported that LRGT has no effect on
amyloid plaque burden in AD animals (Hansen et al., 2016).
Our results are in line with observations reporting a reduction
in amyloid pathology after LRGT treatment, such as significant
reduction in the number of amyloid plaques (Holubova et al.,
2019). LRGT also reverses amyloid plaque deposition (McClean
et al., 2011; McClean and Hölscher, 2014), limits amyloid-related
pathology (Batista et al., 2018; Jantrapirom et al., 2020), and even
prevents amyloid deposition when administered prophylactically
(McClean et al., 2015). While the burden of amyloid plaques in
the APP/PS1xdb/db mice is lower than in the APP/PS1 animals
(Ramos-Rodriguez et al., 2015; Infante-Garcia et al., 2016), an
overall reduction of dense core plaque burden and plaque size
is observed in the LRGT-treated mice. This is accompanied by a
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FIGURE 5 | Spontaneous bleeding and inflammation are reduced after LRGT treatment while IR-A, IR-B, and IGF-1R mRNA expression is not affected. Prussian
blue staining is used to quantify hemorrhage burden and density in the cortex from untreated and treated mice (LRGT, 500 µg/kg/day) (A,B). Microglia burden was
quantified by Iba1 immunostaining in the proximity of (<50 µm) and far (>50 µm) from amyloid plaques in untreated and LRGT-treated animals (C,D). IR-A, IR-B,
and IGF-1R mRNA expression is also determined in the cortex from untreated and LRGT-treated mice (E) (complete statistical analysis included as a
Supplementary Material). (A) LRGT treatment reduces hemorrhage burden in the cortex (†p = 0.012 vs. Control, Control-LRGT, APP/PS1, APP/PS1-LRGT,
db/db-LRGT, and APP/PS1xdb/db-LRGT). A similar profile was observed when we analyzed cortical hemorrhage density (††p < 0.001 vs. Control, Control-LRGT,
APP/PS1, db/db-LRGT, and APP/PS1xdb/db-LRGT). No differences were detected in the hippocampus when hemorrhage burden or density was analyzed. Data
are representative of 3–5 mice (489–1,012 hemorrhages/group). (B) Illustrative example of cortical hemorrhages stained with Prussian blue. Green arrows point at
individual hemorrhages. Scale bar = 100 µm. (C) LRGT treatment reduced cortical microglia burden in APP/PS1 and APP/PS1xdb/db mice, in the proximity of
amyloid plaques (**p < 0.01 vs. rest of the groups, p < 0.01 vs. APP/PS1). LRGT also reduced microglia burden in cortical amyloid plaque-free areas in diabetic
mice (**p < 0.01 vs. rest of the groups, ††p < 0.01 vs. Control, Control-LRGT, APP/PS1, APP/PS1-LRGT, db/db, and db/db-LRGT, p < 0.01 vs. Control,
Control-LRGT, APP/PS1, APP/PS1-LRGT, and db/db, p < 0.01 vs. Control and Control-LRGT). No statistical differences were observed in the hippocampus close

(Continued)
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FIGURE 5 | or far from amyloid plaques. Data are representative of five mice (cortex 572–748 ROIs/group; hippocampus 108–230, ROIs/group). (D) Illustrative
example of cortical immunostaining for Iba1 (microglia, green) and 4G8 (amyloid plaques, red). Scale = 100 µm. Zoom-in images of representative regions are
marked by white squares and presented next to the original image. Scale bar = 50 µm, inset scale bar = 10 µm. (E) No differences were observed in the cortex
when we analyzed IR-A, IR-B, or IGF-1R mRNA expression. Data are representative of 6–9 mice.

slight reduction in Aβ levels, which is in line with prior studies
on 3×Tg AD mice (Duarte et al., 2020). We also detected a
significant reduction in Aβ aggregates in the APP/PS1xdb/db
animals, as reported previously, in the APP/PS1 mice (McClean
et al., 2011). Given the relevance Aβ pathology in AD, further
studies would be required to fully characterize Aβ structures and
to provide a full picture of changes observed when AD and T2D
coexist, as well as after LRGT treatment.

The anti-inflammatory properties of LRGT may also
contribute to its neuroprotective effects (McClean et al., 2015;
Hernández et al., 2016; Barreto-Vianna et al., 2017; Duarte et al.,
2020). LRGT successfully reduced microglia activation in the
proximity of amyloid plaques and in amyloid-free areas, showing
a beneficial effect in both AD and T2D mice. The AD-T2D
animals show an increase in microglia burden, mostly in areas
free of amyloid plaques (Infante-Garcia et al., 2016), and LRGT
significantly counterbalances this effect. The inflammatory
response seems to be significantly disrupted when AD and T2D
coexist, and metabolic disease cooperates to enhance the profiles
of cytokines involved in neuronal injury, amyloid and tau
pathologies, or blood-brain barrier damage (Sankar et al., 2020).
In this sense, the db/db and, more severely, the APP/PS1xdb/db
mice present small vessel disease that significantly improved after
LRGT treatment. LRGT has positive effects on the peripheral
vasculature (de Mesquita et al., 2017; Breton-Romero et al.,
2018), and while studies on brain vasculature are more scarce,
LRGT preserves blood-brain barrier integrity in a model of
traumatic brain injury (Hakon et al., 2015). It also increases
microvessel density and endothelial cell proliferation, reducing
infarct brain volume after focal cortical ischemia (Chen et al.,
2018), ultimately supporting a beneficial role of LRGT at
the vascular level.

Spatial learning and memory improved after LRTG treatment
in the MWM. Episodic memory was also enhanced in the new
object discrimination test. Studies on patients show that episodic
memory is affected early in AD (Ferguson and Alzheimer’s
Disease Neuroimaging Initiative, 2021). Likewise, in patients with
T2D-mild cognitive impairment, episodic memory correlated
with glycated hemoglobin levels (Valenza et al., 2020). Our
observations are in line with previous studies on AD models
(McClean et al., 2011; McClean and Hölscher, 2014; Kamble
et al., 2016; Chen et al., 2017) and diabetic mice (Yan et al.,
2019). Clinical studies on the effects of LRGT on cognition are
limited and controversial in some cases (for review Yaribeygi
et al., 2021). Nevertheless, positive effects of LRTG and other
GLP-1 analogs have been reported in prediabetic and diabetic
patients (Vadini et al., 2020). Similarly, positive effects have
been reported on patients with early AD and amnesic mild
cognitive impairment (Watson et al., 2005), setting the basis
for the ongoing assessment of LRGT in the ELAD trial
(Femminella et al., 2019).

Our results support a positive role for LRGT at central level
when AD and T2D coexist, as usually observed in the clinic
(Janson et al., 2004). Brain atrophy, vascular damage, amyloid
pathology, brain inflammation, and cognitive impairment are
significantly ameliorated, supporting the beneficial role of LRGT
in the brain and clinical studies on patients with AD.
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