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Abstract: In this paper, we study a new negative-order KdV-CBS equation in (3 + 1) dimensions
which is a combination of the Korteweg-de Vries (KdV) equation and Calogero–Bogoyavlenskii–Schiff
(CBS) equation. Firstly, we determine the Lie point symmetries of the equation and conservation
laws by using the multiplier method. The conservation laws will be used to obtain a triple reduction
to a second order ordinary differential equation (ODE), which lead to line travelling waves and
soliton solutions. Such solitons are obtained via the modified form of simple equation method
and are displayed through three-dimensional plots at specific parameter values to lend physical
meaning to nonlinear phenomena. It illustrates that these solutions might be extremely beneficial in
understanding physical phenomena in a variety of applied mathematics areas.

Keywords: lie symmetries; exact solutions; invariant solutions

1. Introduction

The analysis of higher-dimensional nonlinear systems, particularly integrable systems,
has exploded in popularity in recent years. Solitary waves theory finds applications in a
wide range of scientific domains, including telecommunications, transport phenomena,
ocean waves, quantum mechanics, plasma physics, nonlinear fibre optics, and many more.
In latest years, research into generating higher-dimensional integrable equations has got-
ten greater attention, with various integrable models established in the setting of (2+1)
and (3+1)-dimensional equations [1,2]. The domain of integrable equations is crucial to
investigate as it clarifies the true nature of nonlinearity in science disciplines and reveals its
scientific nature.

A variety of chemical, biological and physical phenomena are modeled via nonlinear
partial differential equations (PDEs) which contribute a key role in nonlinear science [3].
It provides an abundance of physical data and a deeper understanding of the problem’s
physical characteristics, resulting in additional applications [4–7]. Many tracks have been
established for physical issues in recent years in order to come up with exact solutions
for nonlinear PDEs using modern computer technologies. There are a number of effective
approaches, for instance, the modified extended tanh-function technique [8], the extended
modified auxiliary equation mapping method [9,10], the Riccati–Bernoulli Sub-ODE tech-
nique [11], the auxiliary equation technique [12], the (G′/G)-expansion technique [13],
homotopy perturbation technique [14], the unified technique [15], the generalized uni-
fied technique [16], modified simple equation technique [17], the extended trial function
technique [18], the homogeneous balance technique [19], the extended direct algebraic
technique [20], the modified extended direct algebraic technique [21] and the collective
variable technique [22].

Among the most powerful strategies for constructing nonlinear PDEs solutions is Lie
group transformations theory. The investigation of the invariance property of a particular
differential equation under a continuous group of transformations is the core principle
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behind this theory. The application of Lie symmetry transformation technique to PDEs,
results in reductions and invariant solutions. Invariant solutions are frequently employed
to investigate analytical features. Conservation laws are well acknowledged to participate
actively in the solution of a PDE. Not all PDEs obeying conservation laws have physical
interpretations, but they are crucial in investigating the integrability of PDEs.

In a wide range of scientific and technical domains, the classical Lie symmetry the-
ory is frequently used [23,24]. This idea was originally suggested by a mathematician
named Sophus Lie in the early nineteenth century [25,26]. It has significantly increased
applications in nonlinear PDEs and has proven beneficial in various fields of differential
equations [27]. The fundamental purpose underlying Lie group theory is to use the in-
variance requirement of nonlinear PDEs to achieve the similarity variable and reduction
equation, and subsequently to derive similarity and solitary wave solutions [28]. These
solutions explain a fundamental and significant physical phenomenon. The Chen–Lee–Liu
equation, Sawada–Kotera equation, Boussinesq equation, and many more models have
recently been studied using the Lie symmetry technique [29–32]. In 2017, Wazwaz investi-
gated the (2+1)-dimensional modified KdV-Calogero–Bogoyavlenskii–Schiff equation to
discover abundant solutions with various physical features [2].

We consider a new negative-order KdV-CBS model in (3 + 1)-dimensions given by

uxt + uxxxy + 4uxuxy + 2uxxuy + λuxx + µuxy + νuxz = 0, (1)

where λ, µ and ν are unspecified coefficients. Equation (1) is the combination of the
Korteweg–De Vries (KdV) equation and Calogero–Bogoyavlenskii–Schiff (CBS) equation.
It should go without saying that for ν = 0 and µ = 0, Equation (1) will be simplified to
the negative-order KdV equation. Although, for ν = 0 and λ = 0, Equation (1) will be
simplified to the negative-order CBS equation. In addition, the investigated model passes
Painlevé test with no restrictions on the compatibility criteria or the variables used in the
equation. The considered equation has been recently modeled by Wazwaz [33].

The aim of this paper is to determine the conservation laws, symmetries, line travelling
waves and line soliton solutions admitted by the negative-order KDV-CBS equation in
(3+1) dimensions. First, in Section 2 all Lie point symmetries are derived. In Section 3
the conservation laws arising from the low order multipliers are obtained. In Section 4
travelling wave reduction and first integrals are constructed. The line travelling waves
u = U(x + by + cz − at), where a, b and c are arbitrary constants, and ξ is a travelling
wave transformation are considered for the negative-order KDV-CBS equation in (3+1)
dimensions. The resulting fourth-order nonlinear differential equation for U is directly
reduced to a first-order differential equation by using the multi-reduction method [34]
to the invariant under translation conservation laws. These differential equation is then
integrated to get the explicit form of the line travelling wave solutions. For some particular
cases of the parameters the general solution is obtained in terms of the Weierstrass P
function and the Weierstrass ζ function .

This paper then concentrates in Section 5 on the use of the extended simple equation
method (ESEM) to extract solitons from the negative-order KdV-CBS equation in three
dimensions. The ESEM method is a powerful mathematical technique for finding exact
solutions to nonlinear partial differential equations (NLPDEs). Soliton solutions in three
dimensions are established. Section 6 concludes with a few closing remarks.

2. Lie Point Symmetries

A one-parameter Lie group of transformations on (t, x, y, z, u) introduced by a vector
field leaves the invariant solution space of the equation specified by Equation (1).

Each admitted point symmetry may be exploited to minimize the number of indepen-
dent variables in Equation (1). For example, we might convert PDEs to ODEs. There may
be symmetries of these ODEs that allow us to reduce the order of the equation and whose
solutions appear to be related to invariant solutions u(t, x, y, z) of Equation (1).
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We consider a one-parameter Lie group of infinitesimals transformations acting on
independent and dependent variables of the new (3 + 1)-dimensional negative-order
KdV-CBS (nKdV-nCBS) Equation (1) given by

t̃ = t + ετ(t, x, y, z, u) +O(ε2),
x̃ = x + εξ1(t, x, y, z, u) +O(ε2),

ỹ = y + εξ2(t, x, y, z, u) +O(ε2),

z̃ = y + εξ3(t, x, y, z, u) +O(ε2),

ũ = u + εη(t, x, y, z, u) +O(ε2),

where ε is the group parameter and the accompanying vector field looks like

X = τ(t, x, y, z, u)∂t + ξ1(t, x, y, z, u)∂x + ξ2(t, x, y, z, u)∂y + ξ3(t, x, y, z, u)∂z + η(t, x, y, z, u)∂u. (2)

The resulting transformation group will be a point symmetry if and only if

pr(4)X
(
uxt + uxxxy + 4uxuxy + 2uxxuy + λuxx + µuxy + νuxz

)
|ε = 0, (3)

where pr(4)X is the fourth prolongation of the vector field Equation (2), and ε denotes
the solution space of Equation (1). This determining equation Equation (3) splits with
respect to derivatives of u, yielding an over-determined linear system of 168 equations
for the infinitesimals τ(t, x, y, u), ξ(t, x, y, u), φ(t, x, y, u) and η(t, x, y, u) called determining
system. The following are the outcomes of solving the determining system:

τ = f2(z− νt)t2 + f3(z− νt) + f4(z− νt),
ξ1 = − 1

2 f1(z− νt)x + 1
2 f2(z− νt)tx + 1

2 f4(z− νt)x + F8(t, z),
ξ2 = f1(z− νt)y + f2(z− νt)ty + f6(z− νt) + f7(z− νt)t,
ξ3 = f2(z− νt)νt2 + f4(z− νt)νt + f5(z− νt),
η = − 1

2 f2(z− νt)tu− 1
2 f4(z− νt)u + 1

2 f1(z− νt)u
+ 1

4 f2(z− νt)xy− 1
4 f2(z− νt)µxt− 1

4 f4(z− νt)µx + 1
4 f1(z− νt)µx

+ 1
4 f7(z− νt)x− 3

4 f2(z− νt)λyt + 1
2 F8ty + 1

2 F8zνy− 1
4 f4(z− νt)λy

− 1
4 f1(z− νt)λy + F11(t, z),

(4)

where fi(z− νt)(i = 1, 2, . . . , 7), F8(t, z) and F11(t, z) are arbitrary functions.

Theorem 1. (i) The point symmetries admitted by the (3 + 1)-dimensional negative-order KdV-
CBS Equation (1) [33] are generated by:

X1 =t∂t + x∂x + (2µt− x)∂y + νt∂z − u∂u,

X2 =t∂t,

X3 =∂z,

X4 =4t∂y + x∂u,

X5 =∂y,

XF =F(t, z)∂x + ( 1
2 Fty + 1

2 Fzνy)∂u,

XG =G(t, z)∂u.
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(ii) These symmetries comprise a five-dimensional algebra

X1, X2, X3, X4, X5. (5)

(iii) These symmetries comprise two infinite-dimensional generators

XF =F(t, z)∂x + ( 1
2 Fty + 1

2 Fzνy)∂u,

XG =G(t, z)∂u.

Their commutator is given by

[X1, X2] =− 2µX5 − νX3, (6)

[X1, X4] =2X4, (7)

[X1, X5] =− X5, (8)

[X2, X4] =4X5. (9)

3. Conservation Laws

A local conservation law of a scalar PDE

G(t, x, y, z, u, ut, ux, uy, uz, . . .) = 0,

for u(t, x, y, z) is the equation of continuity

DtT + DxΦx + DyΦy + DzΦz = 0, (10)

keeping on the space E of solutions of the PDE, where T is represents the conserved density
and Φ = (Φx, Φy, Φz) is the spatial flux vector, which are functions of t, x, y, z, u, and
derivatives of u. While, (T, Φ) indicates the conserved current.

Every non-trivial conservation law of the PDE G = 0 derives from a multiplier, and
there establish one-to-one correspondence between non-trivial conserved currents (T, Φ)|E
modulo trivial ones and non-zero multipliers Q|E , with QG = DtT + DxΦx + DyΦy +
+DzΦz retaining as an identity. Here, Q is a function of t, x, y, z, u, with u derivatives, such
that Q|E is non-singular. Several explicit approaches may be used to produce a conserved
current (T, Φ)|E for each solution Q.

For the negative-order KdV-CBS equation in (3+ 1)-dimensions (1), conservation laws
have the characteristic form

DtT + DxΦx + DyΦy + DzΦz = (uxt + uxxxy + 4uxuxy + 2uxxuy + λuxx + µuxy + νuxz)Q. (11)

Taking into account the following form of low-order multipliers:

Q(x, z, u, ut, ux, uy, uz, uxx, uxy, uxxx, uxxy), (12)

all the previous form low-order multipliers are found by requiring that the divergence
condition

Eu((uxt + uxxxy + 4uxuxy + 2uxxuy + λuxx + µuxy + νuxz)Q) = 0, (13)

is satisfied, where Eu represents the Euler operator with respect to u [35–37]. The divergence
condition for the multipliers (12) splits with respect to the derivatives of u(t, x, y, z) leading
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to an overdetermined system of 476 equations for Q with λ 6= 0, µ 6= 0, ν 6= 0, which can
be easily solved. This yield the following proposition

Proposition 1. The low-order multipliers admitted by the (3+ 1)-dimensional KdV-CBS Equation
(1), with λ 6= 0, µ 6= 0, ν 6= 0, are given by

Q1 = F(z), (14)

Q2 = ut,

Q3 = ux,

Q4 = uy,

Q5 = uz,

Q6 = x− 4zuy
ν ,

Q7 = 3u2
x + uxxx.

These multipliers generate non-trivial low-order conservation laws, which are listed
below:

Theorem 2. The conservation laws for the (3 + 1)-dimensional KdV-CBS Equation (1), with
λ 6= 0, µ 6= 0, ν 6= 0 are given by:

T1 = F(z)ux,

X1 = − νF′(z)u + F(z)(λ + 2uy)ux,

Y1 = F(z)(µux + u2
x + uxxx),

Z1 = νF(z)ux.

(15)

T2 = − 1
2 (λ + 2uy)u2

x − 1
2 (µuy + νuz)ux +

1
2 (uxyuxx),

X2 =
u2

t
2 + ut

2 ((2λ + 4uy)ux + νuy + µuz + 2uxxy)ut − 1
2 (uxyutx),

Y2 = 1
2 utux(µ + 2ux)− 1

2 (utxuxx),

Z2 = 1
2 νutux.

(16)

T3 = 1
2 u2

x,

X3 = 1
2 ux(λ + 2uy)ux + 2uxxy,

Y3 = − 1
2 u2

xx +
1
2 µu2

x + u3
x,

Z3 = 1
2 νu2

x.

(17)

T4 = 1
2 uxuy,

X4 = 1
2 (µ + 4ux)u2

y +
1
2 (2λux + νuz + ut + 2uxxy)− 1

2 u2
xy,

Y4 = − 1
2 (λux + νuz + ut)ux,

Z4 = 1
2 νuxuy.

(18)
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T5 = 1
2 uxuz,

X5 = 1
2 νu2

z +
1
2 ((2λ + 4uy)ux + µuy + 2uxxy + ut)uz − 1

2 uxzuxy,

Y5 = 1
2 (µ + 2ux)uxuz − 1

2 uxxuxz,

Z5 = − 1
2 (λ + 2uy)u2

x − 1
2 (ut + µuy)ux +

1
2 uxxuxy.

(19)

T6 = 1
ν (νx− 2zuy)ux,

X6 = νxuz + (2xux − 2zuz)uy + xλux + xuxxy − λu− uxy

+ 2z
ν ((−µ− 4ux)u2

y + (−2λux − ut − 2uxxyuy + u2
xy),

Y6 = (µx + xux + 2zuz) +
2z
ν (ut + λux)ux,

Z6 = − 2zuxuy − νu.

(20)

T7 = − 1
2 u2

xx + u3
x,

X7 = 1
2 (λ + 2uy)u2

xx +
1
2 (2µuxy + 2νuxz − 4uxuxy + 2utx)uxx + (λ + 2uy)u3

x,

Y7 = 3u2
xuxxx +

1
2 u2

xxx − 1
2 µu2

xx + uxu2
xx + µu3

x +
5
2 u4

x,

Z7 = − 1
2 νu2

xx + νu3
x.

(21)

4. Travelling Wave Reduction and First Integrals

It is well-known that the most popular application of symmetry reduction is the
reduction to ODE.

A line travelling wave takes the following form:

u(t, x, y, z) = U(ξ), ξ = x + by + cz− at, (22)

where a, b and c are arbitrary constants, and ξ is a travelling wave transformation [38].
By plugging (22) into Equation (1) gives a nonlinear fourth-order ODE

bU′′′′ + (6bU′ + λ + bµ + cν− a)U′′ = 0. (23)

Since this ODE arises from a symmetry reduction under translations of equation (1),
the corresponding conservations laws of the equation invariant under translations will
similarly reduce to a first integral of the ODE [39–41]. Furthermore, all first integrals
that arise from symmetry invariant conservation laws can be found directly, by using the
symmetry, through the general multi-reduction method introduced in [34]. This reduction
yields two first integrals. The resulting first integrals of ODE (25) are derived from the
corresponding symmetry invariant multipliers

Q1 = uξ , Q2 = 1,

and are given by

Ψ1 = −2bU′U′′′ + bU′′2 − 4bU′3 + (a− bµ− cν− λ)U′2 = C1,

Ψ2 = bU′′′ + 3bU′2 + (λ + bµ + cν− a)U′ = C2.
(24)

Eliminating U′′′ yields a second-order ODE

(U′′)2 + 2(U′)3 + (µ +
cν− a− λ

b
)(U′)2 − 2C2

b
U′ +

2C1

b
= 0. (25)
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Consequently we have a direct triple reduction from the fourth-order PDE (1) to a
second-order ODE (25).

Setting U′ = V yields a first-order ODE

(V′)2 + 2V3 + (µ +
cν− a− λ

b
)V2 − 2C2

b
V +

2C1

b
= 0. (26)

For a = bµ + cν + λ, the general solution can be given in terms of the Weierstrass P
function, i.e.the general solution is

V(ξ) = P(
√
−1

2
ξ, g2, g3),

with g2 = 4C2
b and g3 = − 4C1

b . Consequently, integrating once with respect to ξ yields

U(ξ) = I
√

2ζ(
I
√

2
2

ξ,
4C2

b
,−4C1

b
).

where P(ξ; g2, g3) is the Weierstrass elliptic function, general solution of

P ′2 = 4P3 − g2P − g3

with g2, g3 arbitrary constants (cf. ref. [42] ), and ζ(ξ; g2, g3) is the Wierstrass zeta function
defined by ζ(ξ) = −

∫ ξ P(s)ds, (cf. ref. [43], p. 641).
Setting C1 = C2 = 0, α = 2β and β = 1

4b (−bµ− cν + a− λ) in (26) an exact solution is

V(ξ) = α sech(
√
(β)ξ)2.

Consequently an exact solution for (25) is

U(ξ) = 2
√

β tanh(
√
(β)ξ),

yielding the line-kink solution

u(t, x, y, z) = 2
√

β tanh(
√
(β)(x + by + cz− at)),

where a, b and c are arbitrary constants, for the (3 + 1)-dimensional negative-order KdV-
CBS Equation (1).

5. Extraction of Solitons from a Negative-Order KdV-CBS Equation

In this section, we find the optical solitary wave solutions for Equation (26) using the
extended simple equation method (ESEM). Using this method, the initial solution takes the
following form [44]:

U(ξ) =
N

∑
i=−N

Bi ϕ
i(ξ), (27)

where Bi(i = −N,−N + 1, . . . ,−1, 0, 1, . . . , N − 1, N) are the unknown coefficients to be
found and N is the positive integer which can be calculated using balance principle on
Equation (26). By applying balance principle, we get N = 1 and therefore, Equation (27)
takes the form

U(ξ) =
B−1

ϕ(ξ)
+ B0 + B1 ϕ(ξ), (28)

which satisfies the ansatz equation given by

ϕ′(ξ) = b0 + b1 ϕ(ξ) + b2 ϕ2(ξ), (29)
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where b0, b1 and b2 are arbitrary constants.
If we take b1 = 0 in Equation (29), then the ansatz Equation (29) converts to Riccati

equation, and we have

ϕ(ξ) =

√
b0b2

b2
tan
(√

b0b2(ξ + ξ0)
)
, b0b2 > 0, (30)

ϕ(ξ) = −
√
−b0b2

b2
tanh

(√
−b0b2ξ − m ln(ξ0)

2

)
, ξ0 > 0, b0b2 < 0, m = ±1. (31)

If we take b0 = 0 in Equation (29), then the ansatz Equation (29) becomes Bernoulli
equation, and we have

ϕ(ξ) =
b1eb1ξ

b1ξ0 − b2eb1ξ
, b1 > 0, (32)

ϕ(ξ) = − b1eb1ξ

b1ξ0 + b2eb1ξ
, b1 < 0. (33)

If we take b0 = b1 = 0 in Equation (29), then the ansatz Equation (29) converts to
sparable equation, and in this case we have

ϕ(ξ) =
1

−b2ξ + ξ0
, b2 6= 0. (34)

Thus, following is the general solution to ansatz Equation (29):

ϕ(ξ) = −
b1 −

√
4b0b2 − b2

1tan
(√

4b0b2−b2
1

2 (ξ + ξ0)
)

2b2
, 4b0b2 > b2

1, b2 > 0, (35)

ϕ(ξ) =
b1 +

√
4b0b2 − b2

1tan
(√

4b0b2−b2
1

2 (ξ + ξ0)
)

2b2
, 4b0b2 > b2

1, b2 < 0, (36)

where τ0 represents the constant of integration. Now, after putting Equation (28) along
with Equation (29) into Equation (26) generates a system of algebraic equations and further
doing some algebra calculations, we get the following cases:

Case 1. When b1 = 0,

A−1 = ∓ a− λ− cv− bµ

8bb2
, A1 = ∓2b2, b0 =

λ + cv + bµ− a
16b2b

. (37)

By using parameters defined in Equation (37) along with the corresponding ansatz
equation yields the following solution

U1(ξ) = ∓
−a + λ + cv + bµ + 8A0 tan

(√
b0b2(ξ + ξ0)

)√
b0b2b− 16b2 tan

(√
b0b2(ξ + ξ0)

)2
b0b

8b tan
(√

b0b2(ξ + ξ0)
)√

b0b2

, (38)

U2(ξ) = ∓
2b0b2 + A0

√
−b0b2 tanh

(
m ln(ξ0)

2 −
√
−b0b2ξ

)
+ 2b2b0 tanh

(
m ln(ξ0)

2 −
√
−b0b2ξ

)2

√
−b0b2 tanh

(
−
√
−b0b2ξ + m ln(ξ0)

2

) , (39)

where b0 = λ+cv+bµ−a
16b2b , ξ = x + by + cz− at and m = ±1 (Figure 1).
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(a)

(b)

Figure 1. Graphical representation of Equations (38) and (39) with suitable parameters b = 0.2,
c = 0.1, v = 0.4, λ = 0.1, µ = 1, A0 = 0.1, ξ0 = 1, m = −1, y = 0, z = 0: (a) a = −0.5, b2 = 0.2
(b) a = 0.5, b2 = −0.2.

Case 2. When b0 = 0,

A−1 = 0, A1 = ∓2b2, b1 =

√
a− bµ− λ− cv

b
. (40)

By using paramors defined in Equation (40) along with the corresponding ansatz
equation yields the following solution

U3(ξ) =
A0

√
a−bµ−λ−cv

b ξ0 −
(

A0b2 − A1

√
a−bµ−λ−cv

b

)
e
√

a−bµ−λ−cv
b ξ√

a−bµ−λ−cv
b ξ0 − b2e

√
a−bµ−λ−cv

b ξ
, b 6= 0; (41)

where A1 = ∓2b2 and ξ = x + by + cz− at (Figure 2).
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Figure 2. Graphical representation of Equation (41) with suitable parameters b = −0.1, c = 0.3, v =

1.2, λ = 0.1, µ = 1, A0 = 0.1, ξ0 = 1, m = −1, y = 0, z = 0, a = −0.4, b2 = 0.2.

Case 3. When b0 = b1 = 0,

A−1 = ∓ a− λ− cv− bµ

6b2b
, A1 = ∓2b2. (42)

By using paramors defined in Equation (42) along with the corresponding ansatz
equation yields the following solution

U4(ξ) =
A−1b2

2ξ2 − 2A−1b2ξξ0 + A−1ξ2
0 − A0b2ξ + A0ξ0 + A1

ξ0 − b2ξ
, (43)

where A−1 = ∓ a−λ−cv−bµ
6b2b , A1 = ∓2b2 and ξ = x + by + cz− at (Figure 3).

Figure 3. Graphical representation of Equation (43) with suitable parameters a = 0.5, b = 0.1, c =

0.1, v = 0.2, λ = 0.4, µ = 1, A0 = 0.6, ξ0 = 1, b2 = 1, m = −1, y = 0, z = 0.

Case 4.
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(i) : A−1 =
bb2

1 + λ + cv + bµ− a
2b2b

, A1 = 0, b0 =
bb2

1 + λ + cv + bµ− a
4b2b

;

(ii) : A−1 = 0, A1 = −2b2, b0 =
bb2

1 + λ + cv + bµ− a
4b2b

, b, b2 6= 0.

(44)

By using paramors defined in Equation (44) along with the corresponding anstaz
equation yields the following solution

U5(ξ) =
2A−1b2 − A0b1 + A0 tan

(
1
2

√
λ+cv+bµ−a

b (ξ + ξ0)
)√

λ+cv+bµ−a
b

−b1 + tan
(

1
2

√
λ+cv+bµ−a

b (ξ + ξ0)
)√

λ+cv+bµ−a
b

, 4b0b2 > b2
1, b2 > 0, (45)

U6(ξ) =
2A−1b2 + A0b1 + A0 tan

(
1
2

√
λ+cv+bµ−a

b (ξ + ξ0)
)√

λ+cv+bµ−a
b

b1 + tan
(

1
2

√
λ+cv+bµ−a

b (ξ + ξ0)
)√

λ+cv+bµ−a
b

, 4b0b2 > b2
1, b2 < 0, (46)

and

U7(ξ) =
2A0b2 − A1b1 + A1 tan

(
1
2

√
λ+cv+bµ−a

b (ξ + ξ0)
)√

λ+cv+bµ−a
b

2b2
, b2 > 0, (47)

U8(ξ) =
2A0b2 + A1b1 + A1 tan

(
1
2

√
λ+cv+bµ−a

b (ξ + ξ0)
)√

λ+cv+bµ−a
b

2b2
, b2 < 0, (48)

where A−1 = ∓ a−bb2
1−λ−cv−bµ

2b2b , A1 = ∓2b2 and ξ = x + by + cz− at (Figures 4 and 5).

(a) (b)

Figure 4. Graphical representation of Equations (45) and (46) with suitable parameters a = 1.5, b =

0.2, c = 0.2, v = 0.3, λ = 0.4, µ = 1, A0 = 0.1, ξ0 = 1, b1 = 0.2, m = −1, y = 0, z = 0: (a) b2 = 0.2
(b) b2 = −0.2.
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(a) (b)

Figure 5. Graphical representation of Equations (47) and (48) with suitable parameters a = 1.5, b =

0.2, c = 0.2, v = 0.3, λ = 0.4, µ = 1, A0 = 0.1, ξ0 = 1, b1 = 0.2, m = −1, y = 0, z = 0: (a) b2 = 0.2
(b) b2 = −0.2.

6. Concluding Remarks

The present work has obtained several new results for the (3 + 1) negative-order
KdV-CBS equation. Firstly, Lie point symmetries and low-order conservation laws have
been derived. From the translation symmetries, travelling wave reductions are obtained.
Moreover, from the invariant conservation laws under translations two first integrals
are obtained for the travelling wave ODE. It happens that these two first integrals are
functionally independent and a triple reduction has been derived, yielding a first-order
ODE. For some particular cases of the parameters, the general solution is obtained in terms
of the Weierstrass function and a line-kink solution is obtained for the (3+ 1) negative-order
KdV-CBS Equation (1). These explicit invariant solutions can be expected to be important
in understanding the asymptotics of more general solutions of (1).

Secondly, the extended simple equation approach has been used to obtain the exact
solutions for the negative-order KdV-CBS equation, which is a powerful method to solve
nonlinear PDEs. These solutions include solitary wave solutions, specifically singular and
dark solitons. In addition, numerical solutions are represented in 3D plots as shown in
Figures 1-5 to provide physical meaning of nonlinear phenomena. These solutions could
be highly useful in comprehending physical phenomena in several disciplines of applied
mathematics.
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