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Abstract: Aerial infrared (IR) thermography has been implemented in recent years, proving to
be a powerful and versatile technique for performing maintenance at photovoltaic (PV) plants.
Its application speed and reliability using unmanned aerial vehicles (UAVs) or drones make it
extremely interesting at large PV plants, due to the associated savings in time and costs. Ground-level
thermographic inspection is slower and more costly to apply, although it does provide higher optical
resolution, due to being conducted closer to the PV modules being inspected. Both techniques used
in combination can improve the diagnosis. An IR thermography inspection strategy is proposed for
PV plants based on two stages. The first stage of the inspection is aerial, enabling thermal faults
to be detected and located quickly and reliably. The second stage of the inspection is done on the
ground and applied only to the most relevant incidents revealed in the first stage. This inspection
strategy was applied to a 100 kW PV plant, with an improved diagnosis verified via this procedure,
as the ground-level inspection detects one-off thermal incidents from objects creating shade and from
solar reflections. For PV modules with open circuits or open substrings, the use of one technique or
another is immaterial.

Keywords: infrared thermography; aerial thermography; PV system maintenance

1. Introduction

The photovoltaic (PV) industry has experienced unprecedented growth in recent years
as a consequence of the energy policies applied by many countries to drive the change to
renewable energies and the decarbonisation of the economy. Despite the serious impact of
the COVID-19 pandemic on the entire world, global accrued solar capacity had increased
to 773.2 GW by 2020, representing a year-on-year increase of 22%, confirming the trend
of recent years [1]. This growth in the PV sector has been particularly pronounced in the
number of PV power plants and their installed capacity [2]. The PV plants constructed are
increasingly larger and have increasingly larger installed power capacities. This situation
requires specialised and efficient operation and maintenance (O&M) tasks, to ensure peak-
performance operational continuity with the maximum energy use of systems to amortise
the investments made [3,4].

Large PV power plants are normally monitored and have an alert system for contin-
uous supervision of their operations. The measurement and recording of electrical and
atmospheric variables enable the intervention of the maintenance service before incidents
and faults appear in the modules [5]. The monitoring systems can report possible failures if
the measured amount of energy differs from the expected values [6]. The monitoring sys-
tem should be adapted to the size of the PV system and user requirements. The largest and
most costly photovoltaic systems are generally equipped with more monitoring points and
sensors with greater precision than smaller and more economical photovoltaic systems [7].

Conducting infrared (IR) thermographic inspections for PV plant maintenance is
an effective and reliable maintenance technique for detecting and locating incidents that
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are thermal in nature [8,9]. IR imaging of PV modules permit the identification of early
faults by non-contact surface temperature measurements [10,11]. The procedures for IR
inspections of PV systems are well established in guides and technical specifications [12,13].
The growth in size of PV plants makes manual or ground-level thermographic inspections
complex, due to the large areas and time involved in doing them. Further, the manual
inspection can turn out to be extremely difficult in plants with trackers or modules with
very slight tilt angles due to the height required. The use of unmanned aerial vehicles
(UAVs) or drones to conduct these inspections can be done at great speed and reliability,
making them a perfect tool for large plants [14,15]. Reducing inspection times entails a
significant advantage for costs associated with PV plant operation and maintenance.

Different studies have been executed in recent years to evaluate the potential of aerial
IR thermography for inspecting photovoltaic systems. A comprehensive bibliographical
review of different issues of aerial IR imaging is done in [16], where the authors conclude
that this inspection technique for photovoltaic systems is still in its development phase. The
evolution and technological development attained in the sensors and electronic instrumen-
tation employed in aerial thermography has increased the possibilities of this technique [17].
The influence of image resolution on detecting faults in PV modules is studied in [18], with
the results for different inspection heights compared. One study [19] on PV modules with
hotspots compares thermographic results at the back and at different heights via aerial
thermography. A general trend was observed of lower temperature measurements as the
flight height increased.

Automated planning of flight routes and fault detection in defective PV modules was
studied in [20], proposing an automated algorithm for drone flight routes that eliminates
the need to manually control the drones. The evaluation of faults by IR thermography-
based orthomosaics is studied in [21,22], facilitating the location of faults. However, long
flight times are required to create compound images and there is some spatial distortion.
By evaluating three 9.4 MWp PV plants, [23] studies the relationship between the power
generated and the faults found with aerial IR thermography, to perform a quantitative
estimate of the energy produced. In the reference [24] the authors provide a review
of methods reported in the literature to automate different tasks of airborne infrared
thermography for the inspection of photovoltaic systems. Studies related to digital image
processing, classification and deep learning techniques are reviewed.

However, this significant advantage of aerial IR thermography in application time
can lead to specific faults going unnoticed, being misinterpreted or not being assessed
correctly. For example, with aerial IR thermography, it is possible that the appearance of an
intermediate object—such as vegetation or a perimeter fence post—could hide the thermal
fault produced. Another situation is that a one-off thermal anomaly smaller than the PV
cell could be detected at a distance with an insufficient resolution, causing a temperature
value to be taken that is lower than the real temperature. It is also possible that sunlight
reflecting on the surface of the PV modules could be interpreted as a non-factual or unreal
thermal incident.

Two-stage thermographic inspection methods have been applied in other areas. In [25]
the authors compare aerial thermography and ground-based thermography on the envelope
of a traditional wine cellar. Working with UAVs gives great flexibility for the inspection, but
the angle of view strongly must be taken into account to avoid disturbances due to specular
reflections. In [26] a complete literature review of the use of UAVs in bridge monitoring
is carried out and compared with other inspection techniques. The use of hand-held IR
cameras allows the validation of results from aerial thermographic inspections.

Applying ground-level thermographic inspection for the PV plant as a whole can
prevent the problems set out for aerial inspection. Nonetheless, the time required for
inspection and subsequent analysis will increase considerably. The disadvantages posed
can be minimised by employing a two-stage thermographic inspection strategy. The first
stage is carried out as an aerial thermographic inspection while the second stage is carried
out as a thermographic inspection on the ground. The first stage is done quickly to locate
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relevant incidents. The second stage of the inspection is applied to detect relevant incidents
to improve the diagnosis.

2. Materials and Methods
2.1. Materials

To apply the IR inspection strategy posed in this study, two different thermographic
cameras will be used that are suitable for each of the two stages. Stage one of the inspection
with aerial IR thermography employs a Workswell WIRIS 2nd-gen 336 camera installed on
a drone [27] as shown in Figure 1. This camera with an uncooled microbolometer detector
has a spectral range of 7.5–13.5 µm, a resolution of 336 × 256 pixels and weighs less than
400 g. This inspection entails an initial sweep to detect relevant incidents quickly. The
drone used was an ATYGES FV8 octocopter. Flight plans were programmed and executed
at heights of 15 m, flight speeds from 1 to 2 m/s and a thermographic recording interval of
2, 3 and 5 s. To calculate the maximum inspection height, the thermal imaging camera was
equipped with a 45◦ FOV lens, with a 9 mm focal length and an IFOV of 1.889 mrad. The
maximum spatial resolution is 3 cm per pixel, as required in specification IEC-62446-3 [12].
Therefore, IFOV × h (m) = pixel-side size (mm), resulting in a maximum length of 15 metres
from the PV modules.
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Figure 1. Images of the drone used for the aerial IR thermographic inspection.

Stage two of the inspection is done by ground-level IR thermography, but only for the
most relevant faults. This second sweep was done with a ThermaCam S60 [28]. This camera,
equipped with an uncooled microbolometer detector, has a spectral range of 7.5–13 µm, a
resolution of 320 × 240 pixels and a weight of 2 kg. The thermographic camera is positioned
facing the PV module at an angle that prevents the influence of solar reflection during
the test.

2.2. Methods

The proposed inspection process aims to make full use of the advantages of aerial IR
thermography for speed, and ground-level IR thermography for its resolution and precision.
This strategy is based on a mixed thermographic inspection done in two stages. Aerial IR
thermographic inspection is done in the first stage, while ground-level IR thermographic
inspection is done in the second stage, only for significant incidents detected by the aerial
IR thermography. This second stage with greater detail will improve the previous diagnosis
conducted in the first aerial inspection. This two-stage thermographic inspection strategy
may be suitable for cases in which inadequate maintenance is done, either due to technical
reasons or due to excessive time delays in doing it.

For proper IR thermographic inspections of photovoltaic plants, specific configura-
tion and positioning issues for the thermography equipment must be kept in mind [29].
The surface emissivity of the modules and the reflected apparent temperature must be
determined experimentally. Both parameters enable the configuration of the thermography
equipment. The modules’ surface emissivity can be determined with the help of a contact
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sensor. Typical emissivity values are 0.85 for glass and 0.95 for the polymer on the back
cover [13]. The reflected apparent temperature is required to offset the radiation reflected
on the object from the sky. The reflected apparent temperature can be determined by a
Lambertian radiator in a horizontal position in the shade so that it is directly exposed to
the sky [14,30].

The positioning of the equipment for the inspection must also be borne in mind [29].
The ideal location so that the emissivity value can be considered constant is to inspect with
an angle slightly greater than 0◦ from the perpendicular with the PV module surfaces, to
prevent reflection, but without exceeding 40◦ as the upper limit for doing the inspection.
Moreover, the ideal thermographic inspection angle will be that which minimises solar
reflection and does not increase reflectivity. A suitable position may be when the thermo-
graphic camera is situated with the sun behind it at an inspection angle of less than 45◦.
Further, to minimise reflections from the sky, the inspection must be done at a specific height,
while maintaining the required optical resolution. To obtain high-quality images, taking
IR images with high solar radiation is recommended (>600 W/m2), as well as constant
environmental conditions (no clouds, low wind speed and stable ambient temperature).
Figure 2 shows the flow chart to be considered for the proposed two-step approach.
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2.3. Case Study

The proposed inspection process was applied to a real PV plant. The PV plant where
the inspection was done has a nominal power of 100 kW and is located in southern Spain.
It is south facing and its tilt angle from the horizontal is 32◦. The solar panels are p-Si type,
Scheuten model PS54, although after the initial commissioning other different PV modules
were added with different technology of m-Si by LYNX Industries model LYNX175M36.
The m-Si solar panels were installed later due to thefts at the power station. The use of PV
modules with different technologies leads to different electrical characteristics and thus a
technical decision that restricts the energy yields at the PV plant. Figure 3 shows that they
are mainly located at the ends of the strings.
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Figure 3. Aerial view of 100 kW PV plant in southern Spain. It can be seen that PV modules with
different technologies are located at the ends of the arrays.

Environmental parameters (irradiance, ambient temperature and wind speed) are
obtained from the weather station located at the test site. The thermographic inspection is
conducted with irradiance conditions over the plane of the modules greater than 700 W/m2,
low wind speeds (<1 m/s) and a lack of cloud cover (okta level 0), as specified in IEC
62446-3 [12]. With the aim of having a proper configuration to reduce measurement errors,
the surface emissivity and reflected apparent temperature were determined by experiment
as detailed in [29]. The front emissivity value determined was 0.88 and the value of the
reflected temperature from the sky before and after finishing the test was −30 ◦C. The IR
camera was also positioned at an angle slightly greater than 0◦ to prevent self-reflection and
less than 40◦ from the perpendicular so that emissivity could be considered constant. To
offset atmospheric transmission during the thermographic inspection, average atmospheric
temperature, distance and humidity values were logged. These values will be used as
configuration parameters by the software in the thermographic equipment as they are
radiometric measurements.

3. Results

IR thermographic inspection was done by centring the thermographic log on a time
interval starting at noon and ending at 1.30 p.m. In this time range, the sun’s position
expressed by solar elevation/azimuth was at the start time: 30.18◦ N/−18.81◦ W; and at
the end time: 32.42◦ N/−2.59◦ W. The results are presented by classifying them by the
type of incidents or faults detected, showing aerial IR thermography and ground-level
IR thermography. The analysis of results was done by considering this classification of
standard incidents:

1. Incidents with broken glass in PV module.
2. Incidents involving partial shading.
3. Incidents involving PV module technology.
4. Incidents with open-circuit PV modules.
5. Other incidents.

Bear in mind that the previous classification is not strict with regard to the incident
type, given that in some thermographic IR images several types of incidents can be seen.
The purpose of classification is to organise the information according to the most prominent
incidents observed. Then, the results obtained are analysed and presented, considering
an identification matrix for the PV modules at the plant where the incident occurred and
the individual identification of each cell in each PV module as shown in Figure 4. The
identification of the array number is shown in Figure 14.
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1. Incidents with broken glass in PV module

Figure 5a depicts the aerial thermographic analysis of the PV module with a broken
front cover (array 5, position E10), which reaches a temperature of 57.0 ◦C. The temperature
difference with respect to the adjacent PV module is around 19 ◦C. Figure 5b shows the
ground-level thermographic analysis for the same module. In this case, the maximum
temperature of the PV module at position E10 is 86.6 ◦C. This abnormality is one-time
and is obtained in the cell indicated in the analysis chart. The average temperature of this
cell is 63.7 ◦C. The difference in the results obtained for maximum values is nearly 30 ◦C
between both thermographs. This difference is due to the fact that the abnormality is a
one-off with a size smaller than the cell, and thus, the aerial inspection distance provides a
spatial resolution that is insufficient for this type of fault.
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Figure 5. Thermographic analysis for an incident of broken glass: (a) aerial IR inspection, and
(b) ground-level IR inspection. The red circle in (a) identifies the affected PV module.

Figure 6a depicts another PV module with a broken front cover (array 6, position
AK11), which reaches a temperature of 66.0 ◦C. Figure 6b shows the ground-level thermo-
graphic analysis for the same PV module. The top temperature in the PV module with
position AK11 is 89.6 ◦C and is reached in the indicated cell via an analysis chart as a
one-off abnormality. The difference in the results obtained for maximum values is nearly
33 ◦C between both thermographs. Like in the previous case, this difference is due to the
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fact that the abnormality is a one-off with a size smaller than the cell, and thus, the aerial
inspection distance provides a spatial resolution that is insufficient for this type of fault.
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behind the vegetation, so that no overtemperature of these PV modules is observed due 
to obstruction by the object. Figure 8 depicts the visual image and ground-level thermo-
graphic analysis with incidents in PV modules at positions AQ4 and AR4 (in array 2). The 
highest temperature in these modules at AQ4 and AR4, which are shaded by vegetation, 
is 49.6 °C. The top area with the diode case was not considered. The temperature differ-
ence compared to the previous case (module AV6) may be due to the separation from the 
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Figure 6. Thermographic analysis for an incident of broken glass: (a) aerial IR inspection, and
(b) ground-level IR inspection. The red circle in (a) identifies the affected PV module.

2. Incidents involving partial shading

Figure 7a shows the thermographic analysis with incidents due to partial shading in
cell AV6 in array 3. A maximum temperature of 68.6 ◦C was reached in this PV module.
Figure 7b shows the ground-level thermographic analysis for the same PV module. The
temperature in this PV module (location AV6) for the cell to the right attained values up
to 111.8 ◦C and an average temperature of 88.6 ◦C. The cell on the left reached values of
108.4 ◦C and an average temperature of 85.9 ◦C. The temperature was not homogenous in
either shaded cell. The high temperature value may be due to the fact that the vegetation
has no appreciable separation over the module, so that the shading effect on the cells is
fixed, without influence from the sun’s position.
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Figure 7. Thermographic analysis for an incident of partial shading: (a) aerial IR inspection, and
(b) ground-level IR inspection. The red circles in (a) identify the affected PV modules.

The PV modules at cell positions AQ4 and AR4 (in array 2) in Figure 7a are hidden
behind the vegetation, so that no overtemperature of these PV modules is observed due to
obstruction by the object. Figure 8 depicts the visual image and ground-level thermographic
analysis with incidents in PV modules at positions AQ4 and AR4 (in array 2). The highest
temperature in these modules at AQ4 and AR4, which are shaded by vegetation, is 49.6 ◦C.
The top area with the diode case was not considered. The temperature difference compared
to the previous case (module AV6) may be due to the separation from the vegetation that
caused a moving shadow depending on the sun’s position.
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circuit according to IEC-62446-3. Remember that for the m-Si type module its Isc = 5.22 A is 
less than Imp = 7.57 A for the p-Si type module, so the series connection of both modules 
causes this situation. The heat pattern observed is characterised by a short circuit. The max-
imum temperature reached is 63.5 °C according to Figure 10b. In this case, the ground-level 
thermograph lets us see the irregular temperature pattern with higher resolution. 

Figure 8. Ground-level thermographic analysis with an incident involving partial shading: (a) visual
image, and (b) ground-level IR inspection.

Figure 9a depicts the aerial thermographic analysis of the PV module at position AC12
(array 6), which reached a temperature of 63.7 ◦C. This overtemperature, or hotspot, was
caused by the partial shading from metal fence posts on the perimeter and occurred in
other PV modules in the bottom row of array 6 for the same reason. Figure 9b depicts the
ground-level thermographic analysis with incidents in the PV module at position AC12
(array 6) that reaches a maximum temperature of 77.5 ◦C, where the average temperature
of the hot cell is 56.2 ◦C. The difference in the maximum values obtained of nearly 15 ◦C
between both thermographs may be due to the effect of concealment by the post. It could
also be due to the fact that the shade moves with the movement of the sun so that the value
changes over time.
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3. Incidents involving PV module technology

PV modules of type m-Si in array 1 reveal an irregular temperature pattern, reaching
values of 53.5 ◦C, as shown in Figure 10a. This pattern is characteristic of a module in
a short circuit according to IEC-62446-3. Remember that for the m-Si type module its
Isc = 5.22 A is less than Imp = 7.57 A for the p-Si type module, so the series connection
of both modules causes this situation. The heat pattern observed is characterised by a
short circuit. The maximum temperature reached is 63.5 ◦C according to Figure 10b. In
this case, the ground-level thermograph lets us see the irregular temperature pattern with
higher resolution.
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Figure 10. Thermographic analysis for an incident involving PV module technology: (a) aerial IR
inspection, and (b) ground-level IR inspection.

4. Incidents with open-circuit PV modules

The modules with open circuits do not produce energy. All PV modules in the string
that are observed in array 1 are in an open circuit with an overtemperature of some 5 ◦C
with regard to operational PV modules, as depicted in the analysis lines in Figure 11a. All
PV modules in the string that are observed in array 4 (bottom part) are also in an open
circuit with an overtemperature of some 5 ◦C with regard to operational PV modules, as
depicted in the analysis lines in Figure 10b. In this case, the ground-level thermograph is
not necessary, as it does not provide any additional information.
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Figure 11. Aerial IR thermographic analysis with an incident of open-circuit PV modules: (a) in
array 1, and (b) in array 4.

5. Other incidents

The modules can present open substrings, which limits their power generation.
Figure 11a shows the aerial thermographic analysis in which some PV modules have
substrings with temperature gradients of up to 5 ◦C with respect to adjacent substrings
in the same module. This is seen in arrays 2, 3 and 4, as indicated by the analysis lines.
Figure 12b shows the temperature gradient corresponding to open-circuit substrings from
testing with ground-level thermography.

Sunlight reflections due to an improper inspection angle can cause significant reflected
glare on the inspection equipment. In Figure 13a, the maximum temperature values
reached in the PV modules located at AK11, AR12 and AU12 (array 6) are influenced
by solar reflection, as verified in Figure 13b, meaning that they are not real values. The
existence of solar reflections is more likely with aerial thermography, as the flight path may
lead to some areas being inspected at an unsuitable angle with regard to the sun’s position.
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Figure 13. Thermographic analysis (a) and image (b) with an incident of PV modules with
solar reflection.

4. Discussion

IR thermographic inspection was conducted with clear skies (okta level 0) and the
absence of wind (<1 m/s), which are highly favourable weather conditions for inspection.
In general, the PV installation has maintenance deficiencies that affect its performance. The
comments below merit mention with regard to two-stage thermographic inspection:

• For one-off incidents due to hotspots, spatial resolution may be insufficient with
aerial IR thermography. Ground-level IR thermography enables greater precision for
determining thermal behaviour.

• Heat incidents from shading may be totally or partially concealed by the item caus-
ing the shadow (vegetation or post) with aerial IR thermography. Ground-level IR
thermography prevents any possible blocking.

• PV modules with technology different from m-Si reveal an irregular temperature
pattern. This pattern is characteristic of a module in a short circuit. For this reason, all
m-Si type PV modules are operating in a state close to a short circuit as a consequence
of the intensity values produced by the p-Si type PV modules, which are series
connected within each string. This incident is seen indistinctly by both thermography
types, although at ground level the behaviour is viewed with greater sharpness
and definition.

• For PV modules in open circuit, the thermal behaviour is some 5 to 7 ◦C higher than
temperatures in operational modules. These modules do not produce power. This
incident does not depend on the thermography type.
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• For PV modules with open-circuit substrings, thermal behaviour is some 5 to 7 ◦C higher
than operational substrings. These PV modules’ power production at the PV plant is
very limited. This incident is observed interchangeably in both thermography types.

• In the stage one of the thermographic inspection, it is necessary to determine the
specific location of the PV modules with faults and to identify them correctly. This is
essential for the success of the stage two and for the documentation of the final report.

• The stage two of thermographic inspection can also be performed aerially, but at a
reduced distance to allow for the necessary thermal resolution. This may require the
scheduling of two flight plans. The second flight plan would be conditioned by the
results of the first flight plan. This will simplify the thermographic equipment to be
used and the subsequent analysis. This may be the subject of future research.

Figure 14 summarises the incidents detected after a two-stage thermographic inspec-
tion and their locations for the PV plant inspected, considering the identification matrix
by module.
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Polycrystalline PV module Broken PV module Shaded PV module

Monocrystalline PV module Open-circuit PV module PV module with open-circuit substring

Figure 14. Location and types of incidents in the PV plant after thermographic inspection, considering
the identification matrix of Figure 4a.

The Table 1 summarises the incidents detected during inspection, where the temper-
ature value is extrapolated at STC (1000 W/m2) conditions and calculated according to
IEC-62446-3, with a comment on each incident.
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Table 1. Summary of incidents detected during inspection.

Incident Type Affected
PV Modules

Temperature Value
(◦C)

Irradiance Value
(W/m2)

Temperature Value
Extrapolated at

1000 W/m2
Comment

Broken cover
AF6 55.6 890 61.2 Required

replacement of
PV modules

E10 86.6 922 94.6
AK11 89.6 940 97.9

Partial shade

AL12 60.2 921 66.2 Post
AV6 111.8 941 118.5 Vegetation
AQ4 49.6 941 54.6 Vegetation
AR4 49.6 941 54.6 Vegetation

AC12 77.5 945 85.3 Post
Several array 6 - - - Post

PV module
technology

All m-Si type
PV modules 63.5 944 69.9 Measurement of

max. temperature

Open circuit String in
arrays 1, 4 and 5

2 to 7 ◦C for
operational
PV modules

2 to 7 ◦C for
operational
PV modules

Electrical
verification required

Open-circuit
substrings

Many p-Si type
PV modules

2 to 7 ◦C for
adjacent substring - 2 to 7 ◦C for

adjacent substring
Electrical

verification required

5. Conclusions

Aerial IR thermographic inspection of operational PV plants is a powerful and versatile
tool for detecting abnormalities that affects its operation. Its application to large PV plants
entails a significant saving of time and cost compared to ground-level IR thermographic
inspection. However, some incidents may not be observed or may be misinterpreted when
the inspection is done in the air. One-off thermal abnormalities of sizes smaller than the cell
are determined with greater resolution and precision when the thermographic inspection
is at ground level. Further, the problem of obstacles such as vegetation or a perimeter fence
can be avoided with ground-level inspections. The existence of solar heat reflections can
also be captured more easily from the air.

Applying a two-stage thermographic inspection improves maintenance if the advan-
tages of both techniques are employed. Stage one with aerial IR thermographic inspection
will detect incidents and faults, as well as their locations, quickly and reliably. Additionally,
stage two with ground-level IR thermographic inspection, applied only to relevant inci-
dents from the previous stage, assures greater precision and resolution in the results. This
two-stage thermographic inspection strategy will improve the diagnosis conducted.

The integration of the proposed approach in the flight planning of automatic detection
systems can have a significant advantage in the maintenance of large PV plants and in
the reduction of the corresponding execution time. This innovative approach may be the
subject of future research.
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Abbreviations
The following abbreviations are used in this manuscript:

IFOV Instantaneous Field of View
IR Infrared
PV Photovoltaic
STC Standard Test Conditions
UAVs Unmanned Aerial Vehicles
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