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Abstract

Prediction is one of the last frontiers in ecology. Indeed, predicting fine-scale species com-
position in natural systems is a complex challenge as multiple abiotic and biotic processes
operate simultaneously to determine local species abundances. On the one hand, species
intrinsic performance and their tolerance limits to different abiotic pressures modulate spe-
cies abundances. On the other hand, there is growing recognition that species interactions
play an equally important role in limiting or promoting such abundances within ecological
communities. Here, we present a joint effort between ecologists and data scientists to use
data-driven models to predict species abundances using reasonably easy to obtain data.
We propose a sequential data-driven modeling approach that in a first step predicts the
potential species abundances based on abiotic variables, and in a second step uses these
predictions to model the realized abundances once accounting for species competition.
Using a curated data set over five years we predict fine-scale species abundances in a
highly diverse annual plant community. Our models show a remarkable spatial predictive
accuracy using only easy-to-measure variables in the field, yet such predictive power is lost
when temporal dynamics are taken into account. This result suggests that predicting future
abundances requires longer time series analysis to capture enough variability. In addition,
we show that these data-driven models can also suggest how to improve mechanistic mod-
els by adding missing variables that affect species performance such as particular soil con-
ditions (e.g. carbonate availability in our case). Robust models for predicting fine-scale
species composition informed by the mechanistic understanding of the underlying abiotic
and biotic processes can be a pivotal tool for conservation, especially given the human-
induced rapid environmental changes we are experiencing. This objective can be achieved
by promoting the knowledge gained with classic modelling approaches in ecology and
recently developed data-driven models.
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Author summary

Prediction is challenging but recently developed Machine Learning techniques allow to
dramatically improve prediction accuracy in several domains. However, these tools are
often of little application in ecology due to the hardship of gathering information on the
needed explanatory variables, which often comprise not only physical variables such as
temperature or soil nutrients, but also information about the complex network of species
interactions that modulate species abundances. Here we present a two-step sequential
modelling framework that overcomes these constraints. We first infer potential species
abundances by training models just with easily obtained abiotic variables and then use
this outcome to fine-tune the prediction of the realized species abundances when taking
into account the rest of the predicted species in the community. Overall, our results show
a promising way forward for fine scale prediction in ecology.

Introduction

In the face of human-induced rapid environmental change, the ability to predict species
responses to environmental change within a community context is more pressing than ever
[1]. However, fine scale prediction is a recognized weak spot in ecology [2-6]. Within the
realm of community ecology, most prediction efforts rely on a mechanistic understanding of
how multiple abiotic and biotic processes regulate species population dynamics [7]. In particu-
lar, theoretical frameworks centered around the study of the determinants of species coexis-
tence and the development of mechanistic models that take into account the effects of the
environment and species interactions on the maintenance of biodiversity are an active field of
research [8]. These recent developments point out ecological processes that drive the dynamics
of interacting species such as those occurring in plant competitive networks [9-11]. Moreover,
this body of theory has also shown direct applications to better predict species abundances
under controlled experimental conditions [12, 13]. Yet, current theory and associated model-
ling tools fail in most cases to accurately predict basic features of ecological communities
observed in nature such as species abundances, composition, and species turnover in space
and time [14]. In order to solve this limitation, there is a recent call to address the complexity
of multispecies processes occurring in nature [15, 16]. However, a major stumbling block to
advance in this front is parameterizing and validating those models in real communities,
which currently is prohibitive due to the complexity of estimating with confidence all parame-
ters from observational data [17]. In order to tackle the problem of the trade-off between
model complexity and data availability, we aim to develop an alternative approximation using
a mechanistically informed data-driven approach that allows us to achieve predictive power
with affordable data requirements.

In a nutshell, existing phenomenological approaches that summarize well-known mecha-
nistic processes require to feed models describing the population dynamics of interacting spe-
cies with information about 1) the intrinsic ability of species to grow in the absence of
interactions, 2) the strength of intra and inter-specific interactions, and 3) how these two sets
of parameters change in the presence of different abiotic and biotic variables such as soil con-
ditions or multitrophic species interactions (e.g. pollinators, herbivores) [18, 19]. This is in
most cases unfeasible for two reasons: 1) we need to gather detailed information under natural
conditions, which for many systems is unfeasible due to the long lifespan of species or the
inability to detect and quantify the strength of species interactions, and 2) this approach
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considers that all species within a community can potentially interact among them [17, 20]. As
the number of parameters to estimate scales exponentially with the number of species in the
community, estimating all parameters for large communities quickly becomes an intractable
problem. Moreover, because species abundances are not likely to vary independently (i.e. the
population size of species A, B, and C covary), it is often difficult to estimate with confidence
the strength and sign of many inter-specific parameters. Even if we find a suitable ecosystem
to parameterize these models, gathering all required information is labor intensive and highly
time consuming. Hence, to resolve this conundrum, we can not rely simply on gathering more
and better data. We also need simpler models and search for indirect methods to obtain
enough information to be predictive. A key challenge, for example, is that mechanistic models
do not always require empirical data that is easy to measure [21]. Hence, we need models that
move closer to what we could actually measure on the field. But how to capture complex sys-
tems with simpler models?

Fortunately, there is a possibility worth exploring. The problem of inferring key behaviours
from complex data has been solved using Machine Learning approaches. Machine learning is a
field of computer science that gives computers the ability to learn without being explicitly pro-
grammed. In the past decade, Machine Learning has given us self-driving cars, practical speech
recognition, effective web search, and a vastly improved understanding of the human genome
[22-26]. However its potential has been unleashed mostly in applied domains, as predictions
done with Machine Learning approaches often lack the interpretability needed to explain the
mechanisms behind the algorithm’s decisions. As scientists, we are often uncomfortable with
predictions that have no theoretical basis [27]. However, we can combine the power of data-
driven models with stronger theoretical foundations [28]. Here we address this issue by part-
nering together ecologists and data scientists to develop an efficient and predictive data-driven
model rooted in known ecological mechanisms that are thought to explain species occurrence
and its abundance at local scales. First, we explain the core problem, then we propose a solu-
tion, and finally, we test the predictions against a well-resolved data set consisting of five years
of observations describing the community composition of 23 species co-occurring in a Medi-
terranean annual grassland.

The problem

To predict species abundances within a community context, we know that different abiotic
factors determine species performance and their tolerance limits [29], from which one can
derive potential species abundances [30]. However, we also know that the final species fate will
be modulated by the positive and negative species interactions established among and within
species able to grow in a particular place [31, 32]. Of course, stochastic processes coming for
instance from dispersal events or random birth and death dynamics [33, 34] are also recog-
nized to have increasing importance in modulating species persistence, but for a first approxi-
mation and for the sake of simplicity they are not included in the modelling approach here
developed. This is justified as many annual study systems (including ours, see below) complete
their life-cycle within a year and “re-start” the next each year. Hence, mechanistic models to
understand species population dynamics and their ability to persist in the long-run are often
formalized as a set of coupled equations where each response variable (i.e. population size of a
given species in a given time and location) depends on and modifies the outcome of the rest of
response variables (i.e. population size of this and other species) [31, 32]. A clear example
using the standard Lotka-Volterra equations is the persistence of the populations of three plant
species following rock-scissors-paper dynamics [35, 36], in which each species have to win and
lose simultaneously against different competitors in order to avoid the collapse of the system.
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This kind of circular dependence requires measuring all parameters for all species to be able to
estimate their behaviour. Even when these parameters are correctly measured spending long
hours in the field, the predictive power of such mechanistic models is still very low (See Section
1in S1 Text).

In our particular scenario, the mechanistic hypothesis is that the abundance of any given
plant species is influenced by the environment (e.g. precipitation, soil properties) and the
abundance of competitors of that particular season. In mathematical terms, given a subplot k
(we drop this index to simplify the notation), the predicted abundance of species j in the sub-
plot k (our spatial sampling unit) at a given season f (year) is:

Xi(0) = f(A,(1), - A,(8), X, (1), X,(1), ... X,, (1)) (1)

where fis a function with n abiotic variables and m — 1 abundances of competitors, excluding
individuals of Xj(f). Alternatively, it is possible to use data-driven predictive models where the
response variable is a function of abiotic and biotic features. While this distinction among fea-
tures is ecologically important in terms of the ultimate mechanisms driving species abun-
dances, from the point of view of the data scientist that distinction is not relevant, as far as the
model behaves properly. The predictive model is just a special class of function:

Xj(t) = g(Ai(t)v "7An(t)7X1(t)7X2(t)’ "7Xm(t))‘ (2)

Here gis a supervised predictive model, trained with the values of n abiotic variables and m
— 1 abundances of competitors, excluded X, from the initial season £, to £. We call it so to
make it clear that is does not belong to the set of mechanistic models of Eq 1. Once the model
is built, one simply feeds the values of the features at subplot k during season ¢ to predict X ().
If the available data set includes all these values, the data engineer enjoys a wide range of
chances to pick out of them a subset of features to train and tune the model. For instance, if
the set includes a long enough series of data recorded during previous seasons #, to ¢, you can
train the model with that set and predict the abundances at subplot k during season ¢ + 1,
given that all the covariates are available, and that subplot k belongs to the sampled set. That is
what we call the temporal trained predictive model:

X(t+1) = gpora(A (E+ 1), A (E+ 1), X, (£ + 1), X, (£ + 1), ., X, (£ + 1)) (3)

Note that we do not try to use a time-series approach. You could also use that same model
to predict the abundance of X(t) at a non sampled subplot I. That is the spatial trained predic-
tive model:

X'i(8) = &para (A1 (1), -, AL (8), X (), X3 (£), -, X, (8)) (4)

where the predictive model is the same as in 3, but the covariates take the values at subplot I,
season t, instead.

While abiotic variables are often easy to measure, obtaining spatially explicit data on species
abundances for the whole community is prohibitive, and in fact, it would be equivalent to mea-
suring community composition to predict community composition. If you want to predict the
aforementioned abundance X' ;(t) you need the values of X (t), X;(t), .., X, ().

In any case, and for the sake of being pedagogic, we start by testing the scenario where the
full data set is available, and the field team recorded a detailed sample of species abundances
and abiotic parameters for each subplot. In this case, it is simple to build a predictive model
that works for a nearby piece of land, where all those variables are known: this is the very
essence of Machine Learning. So, abundance at ¢ of species j in a given subplot, whose field
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data are known but were not used to build the model, could be estimated by Eq 2 by feeding
the model with the measured abiotic variables and competitor abundances at that spot. Predic-
tion gets harder when trying to apply the model to a real-world scenario. For example, how do
we know in advance the abundance of competitor individuals elsewhere in the community?
Eq 4 is deceptive because while the abiotic variables are relatively simpler to measure for the
subplot we are interested in, none of the biotic covariates are known at ¢. Similarly, if we want
to apply the model to predict the abundances of the incoming season (Eq 3), abiotic features
A, (t+ 1) may be gathered without an extraordinary effort, but we would have to wait until we
record the number of individuals of each competing species X;(f + 1), X5(t + 1), . .. at subplot
k. For that task, the predictive model would be less useful.

To put it bluntly, imagine you have sampled 100 areas (i.e.subplots) out of 10000 to build a
detailed map of the density of one species that has 20 competitors. The sample is representative
of the population and there are no quality issues. Even with that optimal starting point, you
would need to count the individuals of competitors species for each of the unknown 9900
plots. The only way to avoid that time-consuming task is to predict those abundances, but as
each predictor includes the abundances of competitors the problem is recursive.

A possible strategy to overcome the deadlock is dropping off the conflicting variables. That
is, getting rid of the species abundances and relying just on abiotic data, that are easy to mea-
sure.

X,(t) = h(A,(1),.. A, (1) (5)

This model is valid to predict X ;(t) for an unknown plot at ¢ or for one of the sampled plots
at t + 1 if we know the values of the set A,,(t + 1). From an ecological perspective this model
ignores direct species interactions. For the data scientist, feature engineering is a common pro-
cedure to build and test different models. Data sets have redundant information and
dimensionality reduction is often desirable. Therefore, we can start building a model with only
abiotic predictors. Even from an extreme data-centric approach, this solution looks very weak
for this predictive challenge. But weak doesn’t mean useless. A smart mix of weak models may
produce an accurate predictor, that is the basis of ensemble methods [37]. This first model gen-
erates a set of competing species abundances driven only by abiotic factors. In a second step,
we predict again species abundances with the same abiotic data and the predicted abundance
of competitors modeled in step one. Thus, we end up with a two-step predictor that is an ad-
hoc ensemble method for this scenario. The first step, from the abiotic conditions at year ¢, that
are easy to measure for each subplot k, we predict X ;(t), the abundances of competing species j
ignoring the biotic interactions as in Eq 5. The second step, we combine those observed abiotic

features with the predicted biotic constrained abundances X 5(B):
Xi(t) = g(A (1), A, (D, X,(1), X, (1), ., X, (1)) (6)

where g represents the model of Eq 2. The main difference with the one-step model is that
competitor species abundances Xj(t) are replaced by their predicted values X ;(t). This proce-
dure is valid for spatially-trained models (abundance for a subplot [ at year f) or temporally-
trained models (for a recorded supblot k at year ¢ + 1) once the abiotic magnitudes have been
recorded and choosing the proper training sets.
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Materials and methods
Data description

We tracked during five years (2015-2019) the local abundances of individuals of 23 annual
plant species distributed along 9 plots (plot size 8.5m x 8.5 m) located along a salinity gradient
of 1km long by 800 m wide in a highly diverse Mediterranean grassland at Dofiana National
Park (SW Spain, 372 04" N, 62 18" W). The plots are placed, on average, > 100m apart from
each other. Each plot is subsequently subdivided into 36 subplots of 17 For each of these sub-
plots, we compiled across each of these five years the number of adult individuals of each plant
species at their phenological peak (i.e. when at least half of the individuals are in bloom). This
period extends on average and across species from February to June yearly. Thus, overall, we
gathered abundance data from 36 subplots in each of the 9 plots, during 5 years, for a total of
1620 plant communities. These subplots represent the basic unit of our study and their scale is
appropriate given the small size of the annual plants and the high micro-habitat heterogeneity.
For example, the plots in the upper part are rarely flooded, whereas those in the middle and
lower parts are annually flooded by vernal pools. This spatial configuration of plots allows cap-
turing small scale variation (due to the different soil conditions created by salinity, among
other variables) as well as large scale variation (induced by vernal pools) in the dynamics of
annual plant communities in our system. In addition, we empirically measured at the subplot
level an array of physical and chemical soil properties at the beginning of the survey (spring
2015) to characterize the abiotic properties of each community (one soil sample per each sub-
plot, see Table B in S1 Text for a summary). These values are kept from year to year for this
study as they are stable through time in this type of environments. Finally, we obtained annual
precipitation values for each year and the whole study area from a nearby weather station
maintained by the regional government “Junta de Andalucia” (El Rocio-Almonte, 10 km far
apart).

Soil data was only recorded during 2015 because those are soils with high content of clay in
which their properties vary little from one year to another. Therefore, although we acknowledge
that within the five years of study some soil properties might have changed, we assume this vari-
ation is of little magnitude compared to other abiotic variation such as precipitation and flood.

As initial data assessment, we performed an exploratory analysis, studying abundance dis-
tributions for each species and the relationship between their averages and variances. In total,
the data set contains abundance values for 37240 species-plot combinations. The distribution
of abundances is extremely skewed due to a 75.6% of zero values. Each of them means that the
field team has not found any individual of the particular species inside the sampled subplot
during the season. Most species are scarcely represented because they were only recorded
some years and in some particular plots of the soil salinity gradient. This is a well-known issue
in spatial distribution models [38]. Even if zero values were ignored, the uneven distribution
of abundances would remain, as generally expected from species-abundance distributions (Fig
1A). The mean value and the variance of abundances scale with each other. This phenomenon
is known as Taylor’s Law and, in our case, the scaling an exponent of 2.15 and an adjusted R*
=0.92 [39]. Taylor’s Law appears in different contexts in ecology with exponents close to 2 as
in this case [40, 41], which implies that our sampling is representative of empirical community
structures. In any case, no sample is discarded to build the predictors.

Methods

Regression models. We implemented in Python three regression models to tackle the
problem to predict species abundances (See a full list packages at the end of this document).

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi. 1008906 December 6, 2021 6/20


https://doi.org/10.1371/journal.pcbi.1008906

PLOS COMPUTATIONAL BIOLOGY

Fine scale prediction of ecological community composition

A HoOmA
CHMI ]
POMA — T
LEMA 1T 1
CHFU I I —

Species
r
<
-
o

1 10 100
Individuals

Var(Individuals)

100000 1

10000 1

10001

1001

101

y=0.00132+2.15 x R?=0.92

\J

3 10 30 100
Mean(Individuals)

Fig 1. Species abundances. A: Boxplots of the distribution of individuals for each species, highlighting the median value. B: Scatter plot of the mean vs. variance for

individuals by species, and regression line to check how they fit Taylor’s Law.

https://doi.org/10.1371/journal.pcbi.1008906.9001

Linear Regression, Random Forest regression, and XGBoost use the equation presented in 6.
Specifically, the Linear Regression Model (LRM) is the simpliest choice to achieve a balance
between interpretability and precision. It explains the outcome as a function of the multiple
input features and has inspired many mechanistic models. This simple model provides fair

results when the underlying function is linear or there are linear combinations of features.
We also used more flexible models to improve results. Random Forest Regression (RFR) is
a tree-based ensemble method and belongs to the family of Classification and Regression
Trees (CART) [42]. It combines the predictions from multiple weak trees to make accurate
predictions [43]. A random subset of samples is drawn with replacement from the training
sample. All of them have the same distribution. These randomly selected samples grow deci-
sion trees and the average of predictions yields the model’s outcome [44]. Alternatively,
XGBoost (eXtreme Gradient Boosting) relies on the concept of gradient tree boosting [45, 46].
Boosting is a sequential algorithm that makes predictions for T rounds on the entire training
sample and iteratively improves the performance of the boosting algorithm with the informa-
tion from the prior round’s prediction accuracy. It is faster to train and less prone to overfit-
ting than a Boosted Regression Tree (BRT) [47]. XGBoost produces black box models, hard to
visualize and tune compared to RFR. Note that our aim is not to compare performance across

a wide range of modelling techniques, but to show how different modelling approaches rang-

ing from simple linear regression to to more complex XGBoost can be explored within our

framework.

One common feature of all these methods is that they are sensitive to the random splitting
of training and testing sets, which we set to an 80/20 ratio. We checked for the spatial autocor-
relation of each species abundance and found that for all species the Moran I was low (I < 0.2).
Hence, we do not further model the spatial component directly in our models, but we do take

into account the spatial distribution in our training and testing sets. For each model we per-
form a 4-fold spatial cross-validation [48] using the K-Folds cross-validator provided by the
Python package Verde [49]. In addition, we provide the results of 100 runs of such models.
Mechanistic model. Finally, we show in S1 Text the implementation of a mechanistic
model built on a population dynamics framework suited to characterize the dynamics of
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annual plant populations [17]. In our implementation, abiotic variables can potentially affect
the intrinsic growth rates of the species modelled, as well as intra- and inter-specific interac-
tion coefficients. In S1 Text we show how this model is improved when adding the effect of
abiotic variables identified as important by the data-driven model.

Feature engineering. The original data set for this regression analysis includes 40 vari-
ables. There are 13 abiotic measurements, 12 of soil conditions (pH, total salinity, carbonates,
organic matter, C/N ratio, and Cl, C, N, P, Ca, Mg, K, and Na concentrations; Table B in S1
Text) for each subplot, and the annual precipitation, common for all plots. The additional 23
numerical features are the abundances of each species in the subplot (Table C in S1 Text).
There is also a factor called species that corresponds to the identity of the plant species for
which we want to predict its abundance. Note that we build a unique model that works for any
focal species, so this factor must be kept to inform the predictor (hereafter we refer to the ABI-
OTIC and ALLFEATURES datasets in tables and plots).

Decision trees methods, in particular Random Forests, Boost Decision Trees, and Ridge
Regression, are not much affected by multi-collinearity [50]. However, since it is a good prac-
tice to remove any redundant features from any data set used for training, we used Spearman
correlation as a filter-based feature selection method. In addition, for the three models (Linear
Regression, Random Forests, and XGBoost), we run a filter feature selection procedure to
drop those variables that are less relevant for the outcome [51]. The permutation importance
technique tests the performance of a model after removing each feature and replacing it with
noise [52].

Model evaluation. To assess the performance of regression models we compute the Root
Mean Square Error (RMSE) and the coefficient of determination R* [53]. RMSE is a distance
between the vectors of recorded values (y;) and predicted values (3,)).

RMSE — \’z\iri(y" -3 (7)

The coefficient of determination R is the proportion of of variation of the response variable
explained by the regression compared to a null model.

R2:1_Z:;:1 ()ii_?i)j (8)
> =)

The second term of Eq 8 is the Relative Squared Error (RSE). It normalizes RMSE by divid-
ing it by the total squared error of the predictor.

The two-step model. As we mentioned above, the prediction of abundances in this sce-
nario poses a major challenge as the problem is recursive. To predict the abundance of species
X we need to know in advance the abundance of each of its competitors, but those abundances
are dependent on the rest of the species as well. To solve this limitation and given the fact that
soil features and annual rainfall are easier to get, a predictor that could get rid of all abun-
dances is more operative, at the price of reduced predictive power. Dropping that information
is equivalent to ignore direct interactions among species. That would be unacceptable for a
mechanistic model as a too naive simplification, but Machine Learning has developed some
strategies to deal with this kind of hindrances. Stacked models are a kind of ensemble models
that perform sequential learning [54]. Predicted values of stage # are fed as features to stage n
+ 1 mixed with original features. We have built a two-step sequential model, following this
idea. This stacked generalization predicts the abundances of competing species using the abi-
otic Random Forest (first step) model and then binds these predicted columns to the abiotic
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set to perform the full featured predictor (second step). During the first step, the model is
trained with the abiotic data and predicts the abundance of competitor individuals. These pre-
dictions may be weak, but combining them with the abiotic variables, we can use this semi-
synthetic data set to train an all-features model to perform the final prediction. This can be
applied to any modeling tools, and we exemplify it here using Linear Regression, Random For-
est, or XGBoost. Specifically, we build 100 models that only differ in the random split of train-
ing and testing sets, including all features and years.

In the final step of the analyses, we build full predictors to evaluate spatial prediction by ran-
domly splitting the data in training and testing sets using the spatial cross-validation explained
above. When using the model to predict the abundance of a sampled subplot during the
incoming season, the training set excludes the samples of the year we want to predict. Please,
notice that we may be including years ahead of that predicted (for instance, training with 2018
and 2019 to predict 2017), as our goal is just the evaluation of the goodness of the procedure.
We do not explore here other approaches such as the use of time-series data.

Results

Before building the models we selected the training features by looking at the correlation anal-
ysis and Feature Importance. The first method showed two subsets of strongly correlated fea-
tures (Figs A and B in S1 Text). We kept C and dropped Organic matter, N, and C/N ratio.
Salinity remains in the training set and Na, Cl and K are removed.

After dropping these variables we run the Feature Importance method for the Random For-
est with the abiotic set (Table 1). Results show that Annual precipitation is the most relevant
abiotic feature, after Species, that is just the focal species whose abundance we want to predict.
Carbonates, C, P, and Salinity follow in importance, while Ca, Mg and pH are less relevant
than the added random noise, so they could be ignored to build the final model.

We applied the Feature Importance method with the full set of features as well (Table D in
S1 Text). Results show that Annual precipitation is, again, the most relevant abiotic feature.
The number of individuals of abundant competitor species such as POMA, LEMA, CHFU, and
SASO (see Table C in S1 Text for species acronyms) or the concentration of carbonates showed
up to be relevant too for the Random Forest built with the full set.

As a result of both selection procedures, the models (Linear, RF and XGBoost) trained with
the abiotic set work with only 6 features: salinity, precipitation, C, Ca, P and carbonates (co3).
For the all features and two-step models, we keep Mg and pH as well, because their rank in the
importance of features tables was slightly higher for XGBoost. Thus, the training set for these

Table 1. Feature importance for the Random Forest model with the ABIOTIC set of variables.

Feature Importance
Species 0.328
Annual precipitation 0.250
Carbonates 0.098
C 0.091
p 0.067
Salinity 0.049
Random noise 0.036
Ca 0.028
pH 0.027
Mg 0.023

https://doi.org/10.1371/journal.pchi.1008906.t001
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two latter models includes 8 abiotic and 23 biotic features, one for the abundance of each
species.

As the model is unique, there is a circular problem with the abundance of individuals of the
focal species when acting as competitors. For instance, to predict the abundance of HOMA
individuals in a particular subplot, we should know in advance the abundance of HOMA indi-
viduals as competitors. Getting rid of the HOMA column is unfeasible, because those values
are important to predict the abundance of any other species. So, before building the full set
model, this value is set to 0 where the competitor and focal species are the same. We keep the
rule for the two-step predictor.

We found that models that include the full set of abiotic and biotic features perform quite
well regarding their R* to predict species abundances within a spatial context. This is an impor-
tant result because it shows a direct application of using Machine Learning approaches to
describe relevant characteristic of ecological communities such as the spatial distribution of
species relative abundances. Specifically, we build 100 models that only differ in the random
split of training and testing sets, including all features and years. The median R” values are
0.095 for the Linear Regressor, 0.809 for XGBoost and 0.867 for Random Forest (Table 2). Pre-
diction would be a practical tool with these two former models, but results may be deceiving to
ecologists. To predict the abundance of species X we need to know beforehand the abundances
of the rest of species, so the painstaking field work is not avoided.

The weak performance of the Linear Regressor is a hint on the non-linear nature of the pre-
diction challenge. The F statistic for the abiotic data set trained LRM, is nearly null. According
to the t value, the order of significance of variables is Ca, C and salinity, with the annual precip-
itation in fourth place (Table E in S1 Text). Even though is a rough way to compare, the Fea-
ture Importance for the RFR model is quite different, with the annual precipitation as the most
important variable (Table 1).

The median R* value for the Random Forest predictor trained just with abiotic information
is very close to the predictor trained with all features: 0.852 vs. 0.867. This figure provided the
hint to try the two-step method. Results are quite encouraging as the median R” of two-step
models is 0.868 using Random Forest for the second stage and to 0.831 using XGBoost. The
median R? of the two-step is virtually identical to the value 0.867 we got with the model built
with the full data set. The same happens when we compare the median RMSE values of both
methods: 14.290 (two-step) vs. 14.361 (all features). The practical advantage of the two-step
method is that it does not require to know in advance the abundance of competitor species.

Fig 2 shows the improvement of the R* distribution with the two-step method and Random
Forest as the second stage model. XGboost results were slightly worse (Figs C and D in S1
Text).

Although R? is useful to make global comparisons among predictors (i.e. among species),
we still require an assessment of prediction accuracy by species because of their asymmetry in
observed abundances. To evaluate the three methods considering a species-specific approach,
we performed 100 runs, following the steps described in the previous section, and measured
both RMSE and RSE for each species (RSE = 1 — R, just for plotting convenience using a loga-
rithmic scale). We overall found that relative squared error is fairly small for abundant species
such as Hordeum marinum or Chamaemelum fuscatum, while it shows a wide spread for plants
that are relatively rare in the study area (Fig 3, see also Figs E and F in S1 Text).

Fig 4 shows the distribution of errors of a particular run. The two-step Random Forest
model seems to be much more accurate predicting zeros than the abiotic RF model.

The Random Forest models do not predict negative values. The Linear Regressor and
XGBoost, return between 9% and 25% of negative values that would not have biological sense.
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Table 2. Prediction errors for spatial application.

Model Median R* Median RMSE

Linear Random Forest XGBoost Linear Random Forest XGBoost
All features 0.095 0.867 0.809 37.505 14.361 17.234
Abiotic features 0.024 0.852 0.827 38.969 15.138 16.383
Two-step model 0.222 0.868 0.809 34.789 14.290 16.171

https://doi.org/10.1371/journal.pcbi.1008906.t002

We have kept them as predicted to compute the R* index, and we have kept the decimal values
as well, in order to make fair comparisons among the different models.

Similarly to predicting species abundances across space, we could predict species abun-
dance over time with the same models trained with a different data set. From a modelling per-
spective, prediction over time is a widespread application of Machine Learning. If we have got
a curated yearly series of data, it is straightforward to build a predictor for the incoming sea-
son, and in the case the quality of predictions is fine enough, then it would allow us to antici-
pate how plant will respond to changes in future environmental conditions.

Unfortunately, this expectation is not the case for the data analyzed, and it comes as no sur-
prise. This annual plant system is a highly variable system in which propagules can disperse
over a wide range of distances after individuals complete their life cycle. Such dispersal kernels
in combination with variation in flooding events make our system overall highly dynamical in
terms of space and time. We therefore do not believe that our system is stable through time as
it can be other systems with species with longer life cycles such as shrubs or trees Table 3
shows the evaluation results of temporal trained predictors, including all features of four years
and tested with the remaining one. The median R* values are very disappointing for all models.
A potential explanation is that, despite the fair size of the data set, the temporal sample is tiny.
In addition, yearly fluctuations in weather are heavily marked in this study system, ranging
from 384 mm in 2019 to 625 mm in 2016. The fact that there are only five values for time-
related variables, one per year, makes prediction to fail because the test data often falls outside
the trained data conditions. One possible workaround is dropping the annual precipitation to
reduce overfitting, but having in mind that feature analysis showed that it is the most relevant
independent feature. Results show a mild improvement but even the best R? (0.08 for 2019)
tell us that the predictive value is nearly null. Results for Linear Regression and XGBoost pre-
dictors are even worse.

A B
0.08
0.06
0.06
> Random Forest Random Forest
>
e ABIOTIC e ABIOTIC
c 0.04
S 004 ALLFEATURES ALLFEATURES
[a] - [a]
TWOSTEP TWOSTEP
0.02 0.02
0.00
0.83 0.85 0.87 0.00 14 15 16
R RMSE

Fig 2. Prediction errors with a two-step Random Forest Regressor. A: Relative Squared Error distributions for 100 random choices of training/testing sets, vertical
lines set at median values. B: Root Mean Square Error distributions for the same collection of predictors.

https://doi.org/10.1371/journal.pchi.1008906.g002
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Fig 3. Prediction errors by species using a two-step Random Forest Regressor. A: Relative Squared Error distributions for 100 random choices of training/testing
sets. B: Root Mean Square Error distributions for the same collection of predictors. See Table C in S1 Text for species acronyms.

https://doi.org/10.1371/journal.pchi.1008906.g003

Regardless of the differences in the ability of the Random Forest models to predict species
abundance over time or across space, these models have the potential to provide novel insights
into some key processes that modulate the response variable studied (species abundances in
our case). This new information can be incorporated in turn into mechanistic predictions
from population dynamics models that describe the abundance trajectories of interacting spe-
cies. These later type of models are much more familiar to ecologists. This possibility of feed-
back from the data-driven models to the mechanistic models is exemplified in our system with
the particular focus on soil carbonates. The inclusion of this abiotic variable, which was
deemed second in importance just after the annual precipitation by the Feature Importance
method (Table 1), shows an overall improvement in the predictions derived from the mecha-
nistic models (S1 Text).

Discussion

By combining ecological knowledge with data-driven models, we showed that it is possible to
develop reliable models that predict reasonably well complex systems such as the abundance of
multiple species that compose ecological communities. Plant species composition at fine-reso-
lution scales is hard to predict, because their densities and relative abundances are partly gov-
erned both by abiotic factors, which determine where species can potentially thrive, and by the
network of species interactions in which they are embedded, which modify their reproductive
success. In fact, these two axes of variation defining the species persistence probabilities have
been at the core of the species niche concept [55], and in the development of modern commu-
nity ecology theory [56], but rarely exploited for predictive purposes. Here, we show a simple
methodology to use easy to obtain abiotic information to accurately predict species abun-
dances while taking also into account their potential biotic interactions. Our models are
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Fig 4. Prediction errors by individuals. Each dot is the value of |y — 7| where y is the recorded value of abundance and y
the regression prediction. There are 37260 predictions for each run. A: Error values for a run of the two-step model with
Random Forest. B: Error values for a run of the abiotic model with Random Forest.

https://doi.org/10.1371/journal.pchi.1008906.9004

sensitive to the breadth of the training data, and as such they capture better the spatial anoma-
lies (where we have more data) than the temporal anomalies. For this last practical purpose an
alternative approach based on time-series may yield better results.

Machine learning-based methods have been extensively applied for relating species distri-
butions to environmental factors, through species distribution models. While the literature on
species distribution modelling is vast, most of it is centered on large scale distributional pat-
terns of species occurrences [57], often involving only abiotic variables [58], and in a vast
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Table 3. Prediction errors splitting by year and using Random Forest.

Predicted Year

2015
2016
2017
2018
2019

https://doi.org/10.1371/journal.pchi.1008906.t003

With Precipitation Without Precipitation
Median RMSE Median R* Median RMSE Median R*
33.39 -3.95 27.77 -2.42
21.58 -1.34 21.77 -1.38
49.54 -0.01 47.26 0.08
42.74 -0.16 41.47 -0.09
54.81 0.07 54.85 0.07

majority of cases, prediction is limited to species presence or absence. However, most ecosys-
tem functioning processes happens at the community scale. At this scale, species interactions
are thought to determine species performance, quantified in their probability of persistence
[31] and in their relative abundance [59]. We show that a data-driven sequential model that
firstly predicts the potential species abundances for a given set of abiotic variables, and sec-
ondly uses this predictions to refine the realized species abundances predicted, performs fairly
well when comparing them with more data-hungry models. However, note than when the spe-
cies abundance is low (median value under 3 individuals), the uncertainty of the abiotic predic-
tion increases. To avoid this issue, the model could be refined in a future development through
careful resampling of low abundance species before performing the first step. We discarded
this procedure because to raise the overall R* with simple SMOTE-based resampling required
too high resampling percentages for this particular application [60]. In any case, a remarkable
fact is that the two-step model is much better predicting at absences than the abiotic one. The
existence of competing species seems to play an important role as an inhibitor of the growth of
a particular species. This information is lost when the model only works with abiotic features.
The fact that this two-step process matches the predictions of a one-step model with all data
available is remarkable. One possible explanation is that observed plant abundances empiri-
cally measured in the field only capture fully developed individuals, missing early stages of
competition among seedlings that despite dying soon, affect final species abundances.

In our case, the best performing data-driven model is the Random Forest, closely followed
by XGboost. It was expected that the assumptions of linear models are too simple when there
are complex interactions among features, as the exploratory analysis suggested. Which model
is more appropriate may depend on the data set at hand. Interestingly, this data-driven exer-
cise can also help us enhance mechanistic models. We already used mechanistic models to
understand the species dynamics in our ecological system. Aware of the importance of the abi-
otic environment, we modelled species reproductive success as a function not only of competi-
tors, but also of other environmental variables such as soil salinity content [18]. To our
surprise, the feature importance selection procedure highlights CaCO3 as a key determinant of
species abundances and not salinity, which was the most obvious variable initially selected in
the field. Despite initially counter-intuitive, this result is congruent with the fact that we sam-
pled in a hypersaline environment in which phosphorous (a key element for plant growth) is
not available for plant absorption. Rather, it is retained in carbonate minerals such as calcite
and dolomite, and plants can mostly obtain phosphorous thanks to the enzymes from mycor-
rhizal fungi. With this new knowledge, we re-parameterized the mechanistic annual plant
model by adding CaCO3 as a covariable affecting both the intrinsic fecundity rates and the
pairwise interactions among species. With this update we obtained significantly better predic-
tive error than with the biotic-only parameterization (Table A in S1 Text). Hence, we show
that ecological process can shed light on data driven models, but those can in turn refine
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which ecological process are important to include in the mechanistic models. In our relatively
simple proof of concept, the mechanistic formulation of the parametric model was not influ-
enced by the data-driven model, but more complex feedbacks are of course conceivable, for
example more appropriate functional responses (e.g. non-linearities) of some variables, or the
interaction among variables. In any case, data-driven methodologies are specially suitable
when one has data on many different environmental variables, which would be unfeasible to
include in a parametric model one by one.

This exercise is tailored to the problem at hand. For example, an implicit assumption of this
modelling framework is that plant species can reach all quadrants in the grassland, and are not
limited by dispersal. This assumption is reasonable on a study system in which seeds are small,
they can be dispersed by wind and small animals such as ants, and additionally the system also
gets flooded in extremely wet years. Similarly, we focused our modelling on the plant-plant
competitive interactions, which are the main interactions structuring this grassland communi-
ties [61], and ignore other interactions such as pollination or herbivory. However, the same
approach can be used to model other interaction types in other systems, as far as you have ini-
tial data to train the models. However, when modelling species with lower detectability than
plants or hyper-diverse communities, further enhancements may be needed to obtain sensitive
results. In our case, we obtain a good spatial predictive ability, but we fail to predict temporally.
Given the strong across-year variations in precipitation, we believe this is due to the limited
number of years to train the data, and not an inherent limitation of the framework. It might
also be possible that stochastic events, which create variation from unknown sources (e.g. ran-
dom birth-death, perturbations in population sizes, dispersal events in no particular direction)
are more prevalent in the temporal dimension than deterministic processes such as species
interactions [62]. In any case, given the expected ongoing environmental change in many abi-
otic variables such as precipitation regimes and temperatures, we envision this kind of predic-
tive models to be specially suitable in combination with semi-automated species monitoring
schemes (e.g. NEON, [63]) to anticipate to global change effects on delicate and highly-diverse
ecosystems such as Mediterranean grasslands. We want to highlight that the proposed
approach complements current approaches to understand fine scale community composition,
such as multivariate methods (e.g. CCA [64]) or time series analysis [65], which may be more
suitable depending on the question to be answered, or the data available. Including the tempo-
ral resolution of soil properties may enhance model performance.

Conclusion

The rate of ecological data generated is increasing substantially [63]. Open and reliable data
sets hold the potential to facilitate the application of near-term forecasting protocols [6]. How-
ever, for those efforts to thrive, we need simple models that can work with the sparse data typi-
cal of ecological surveys. A more predictive ecology likely serves to anticipate how several
ongoing critical environmental changes such as climate change affect multiple properties of
ecosystems, and at the same time it also provides information about which management
actions are required to maintain healthy ecosystems. Taken together, our results show that
two-step ensemble models are a promising tool to reach efficient management without the
costs of prohibiting data collection.

List of packages

Python:python 3.8.8 [66],matplotlib 3.3.4 [67],numpy 1.20.1 [68], pan-
das 1.2.4[69],seaborn 1.11.1[70],scikit-learn 0.24.1[71],verde
1.6.1[49],x1sxwriter 1.3.8[72],xgboost 1.4.2 [73].

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi. 1008906 December 6, 2021 15/20


https://doi.org/10.1371/journal.pcbi.1008906

PLOS COMPUTATIONAL BIOLOGY Fine scale prediction of ecological community composition

R:r-base 4.1.0[74], cowplot 1.1.1,[75],ggplot2 3.3.3[76],gridExtra
2.3.0[77],patchwork 1.1.1[78],scales 1.1.1[78],tidyverse 1.3.1[79].

Supporting information

S1 Text. Abundance prediction with population dynamics models and supplementary fig-
ures and tables.
(PDF)

Acknowledgments

We thank Dofana National Park staff for granting access to Caracoles real estate.

Author Contributions
Conceptualization: Javier Garcia-Algarra, Oscar Godoy, Ignasi Bartomeus.
Data curation: David Garcia-Callejas, Oscar Godoy, Ignasi Bartomeus.

Formal analysis: Iciar Civantos-Gomez, David Garcia-Callejas, Oscar Godoy, Ignasi
Bartomeus.

Funding acquisition: Javier Galeano, Oscar Godoy, Ignasi Bartomeus.

Investigation: Iciar Civantos-Gomez, Javier Garcia-Algarra, Javier Galeano, Oscar Godoy,
Ignasi Bartomeus.

Methodology: Iciar Civantos-Gomez, Javier Garcia-Algarra, Oscar Godoy.

Software: Iciar Civantos-Gomez, Javier Garcia-Algarra.

Visualization: Javier Garcia-Algarra.

Writing - original draft: Iciar Civantos-Gomez, Javier Garcia-Algarra, Ignasi Bartomeus.

Writing - review & editing: Iciar Civantos-Gomez, Javier Garcia-Algarra, David Garcia-Call-
ejas, Javier Galeano, Oscar Godoy, Ignasi Bartomeus.

References

1. Sala OE, Chapin FS, Armesto JJ, Berlow E, Bloomfield J, Dirzo R, et al. Global biodiversity scenarios
for the year 2100. science. 2000; 287(5459):1770-1774. https://doi.org/10.1126/science.287.5459.
1770 PMID: 10710299

2. Mitchell PJ, Monk J, Laurenson L. Sensitivity of fine-scale species distribution models to locational
uncertainty in occurrence data across multiple sample sizes. Methods in Ecology and Evolution. 2017;
8(1):12-21. https://doi.org/10.1111/2041-210X.12645

3. Houlahan JE, McKinney ST, Anderson TM, McGill BJ. The priority of prediction in ecological under-
standing. Oikos. 2017; 126(1):1-7. https://doi.org/10.1111/0ik.03726

4. Maris V, Huneman P, Coreau A, Kéfi S, Pradel R, Devictor V. Prediction in ecology: promises, obstacles
and clarifications. Oikos. 2018; 127(2):171-183. https://doi.org/10.1111/0ik.04655

5. Staver AC. Prediction and scale in savanna ecosystems. New Phytologist. 2018; 219(1):52-57. https://
doi.org/10.1111/nph.14829 PMID: 29027662

6. Dietze MC, Fox A, Beck-Johnson LM, Betancourt JL, Hooten MB, Jarnevich CS, et al. lterative near-
term ecological forecasting: Needs, opportunities, and challenges. Proceedings of the National Acad-
emy of Sciences. 2018; 115(7):1424-1432. https://doi.org/10.1073/pnas.1710231115 PMID:
29382745

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi. 1008906 December 6, 2021 16/20


http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1008906.s001
https://doi.org/10.1126/science.287.5459.1770
https://doi.org/10.1126/science.287.5459.1770
http://www.ncbi.nlm.nih.gov/pubmed/10710299
https://doi.org/10.1111/2041-210X.12645
https://doi.org/10.1111/oik.03726
https://doi.org/10.1111/oik.04655
https://doi.org/10.1111/nph.14829
https://doi.org/10.1111/nph.14829
http://www.ncbi.nlm.nih.gov/pubmed/29027662
https://doi.org/10.1073/pnas.1710231115
http://www.ncbi.nlm.nih.gov/pubmed/29382745
https://doi.org/10.1371/journal.pcbi.1008906

PLOS COMPUTATIONAL BIOLOGY Fine scale prediction of ecological community composition

7. Anderegg LD, HilleRisLambers J. Local range boundaries vs. large-scale trade-offs: Climatic and com-
petitive constraints on tree growth. Ecology Letters. 2019; 22(5):787-796. https://doi.org/10.1111/ele.
13236 PMID: 30793454

8. Godoy O, Bartomeus I, Rohr RP, Saavedra S. Towards the integration of niche and network theories.
Trends in Ecology & Evolution. 2018; 33(4):287-300. https://doi.org/10.1016/j.tree.2018.01.007 PMID:
29471971

9. Levine JM, HilleRisLambers J. The importance of niches for the maintenance of species diversity.
Nature. 2009; 461(7261):254—257. https://doi.org/10.1038/nature08251 PMID: 19675568

10. Kaisermann A, de Vries FT, Griffiths RI, Bardgett RD. Legacy effects of drought on plant—soil feedbacks
and plant—plant interactions. New Phytologist. 2017; 215(4):1413—-1424. https://doi.org/10.1111/nph.
14661 PMID: 28621813

11. Saavedra S, Rohr RP, Bascompte J, Godoy O, Kraft NJ, Levine JM. A structural approach for under-
standing multispecies coexistence. Ecological Monographs. 2017; 87(3):470—-486. https://doi.org/10.
1002/ecm.1263

12. Maynard DS, Miller ZR, Allesina S. Predicting coexistence in experimental ecological communities.
Nature ecology & evolution. 2020; 4(1):91-100. https://doi.org/10.1038/s41559-019-1059-z

13. Bartomeus |, Saavedra S, Rohr RP, Godoy O. Experimental evidence of the importance of multitrophic
structure for species persistence. Proceedings of the National Academy of Sciences. 2021; 118(12).
https://doi.org/10.1073/pnas.2023872118 PMID: 33727421

14. Clark AT, Ann Turnbull L, Tredennick A, Allan E, Harpole WS, Mayfield MM, et al. Predicting species
abundances in a grassland biodiversity experiment: Trade-offs between model complexity and general-
ity. Journal of ecology. 2020; 108(2):774—787. https://doi.org/10.1111/1365-2745.13316

15. Levine JM, Bascompte J, Adler PB, Allesina S. Beyond pairwise mechanisms of species coexistence in
complex communities. Nature. 2017; 546(7656):56—64. https://doi.org/10.1038/nature22898

16. Mayfield MM, Stouffer DB. Higher-order interactions capture unexplained complexity in diverse commu-
nities. Nature ecology & evolution. 2017; 1(3):1-7. PMID: 28812740

17. Garcia-Callejas D, Godoy O, Bartomeus . cxr: A toolbox for modelling species coexistence in R. Meth-
ods in Ecology and Evolution. 2020; 11(10):1221-1226. https://doi.org/10.1111/2041-210X.13443

18. Lanuza JB, Bartomeus I, Godoy O. Opposing effects of floral visitors and soil conditions on the determi-
nants of competitive outcomes maintain species diversity in heterogeneous landscapes. Ecology Let-
ters. 2018; 21(6):865—874. https://doi.org/10.1111/ele.12954 PMID: 29607600

19. Bimler MD, Stouffer DB, Lai HR, Mayfield MM. Accurate predictions of coexistence in natural systems
require the inclusion of facilitative interactions and environmental dependency. Journal of Ecology.
2018; 106(5):1839—-1852. hitps://doi.org/10.1111/1365-2745.13030

20. Allesina S, Levine JM. A competitive network theory of species diversity. Proceedings of the National
Academy of Sciences. 2011; 108(14):5638-5642. https://doi.org/10.1073/pnas.1014428108 PMID:
21415368

21. Berlow EL, Neutel AM, Cohen JE, De Ruiter PC, Ebenman B, Emmerson M, et al. Interaction strengths
in food webs: issues and opportunities. Journal of animal ecology. 2004; 73(3):585-598. https://doi.org/
10.1111/1.0021-8790.2004.00833.x

22. Abou Elassad ZE, Mousannif H, Al Moatassime H, Karkouch A. The application of machine learning
techniques for driving behavior analysis: A conceptual framework and a systematic literature review.
Engineering Applications of Atrtificial Intelligence. 2020; 87:103312. https://doi.org/10.1016/j.engappai.
2019.103312

23. Nassif AB, Shahin |, Attili |, Azzeh M, Shaalan K. Speech recognition using deep neural networks: A
systematic review. IEEE access. 2019; 7:19143—-19165. https://doi.org/10.1109/ACCESS.2019.
2896880

24. Makridakis S, Spiliotis E, Assimakopoulos V. Statistical and Machine Learning forecasting methods:
Concerns and ways forward. PloS one. 2018; 13(3):e0194889. https://doi.org/10.1371/journal.pone.
0194889 PMID: 29584784

25. Zampieri G, Vijayakumar S, Yaneske E, Angione C. Machine and deep learning meet genome-scale
metabolic modeling. PLoS computational biology. 2019; 15(7):e1007084. https://doi.org/10.1371/
journal.pcbi.1007084 PMID: 31295267

26. DeanJ, Corrado GS, Monga R, Chen K, Devin M, Le QV, et al. Large scale distributed deep networks.
In: Proceedings of the 25th International Conference on Neural Information Processing Systems-Vol-
ume 1; 2012. p. 1223—-1231.

27. Betts MG, Hadley AS, Frey DW, Frey SJ, Gannon D, Harris SH, et al. When are hypotheses useful in
ecology and evolution? Ecology and evolution. 2021;. https://doi.org/10.1002/ece3.7365 PMID:
34141181

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi. 1008906 December 6, 2021 17/20


https://doi.org/10.1111/ele.13236
https://doi.org/10.1111/ele.13236
http://www.ncbi.nlm.nih.gov/pubmed/30793454
https://doi.org/10.1016/j.tree.2018.01.007
http://www.ncbi.nlm.nih.gov/pubmed/29471971
https://doi.org/10.1038/nature08251
http://www.ncbi.nlm.nih.gov/pubmed/19675568
https://doi.org/10.1111/nph.14661
https://doi.org/10.1111/nph.14661
http://www.ncbi.nlm.nih.gov/pubmed/28621813
https://doi.org/10.1002/ecm.1263
https://doi.org/10.1002/ecm.1263
https://doi.org/10.1038/s41559-019-1059-z
https://doi.org/10.1073/pnas.2023872118
http://www.ncbi.nlm.nih.gov/pubmed/33727421
https://doi.org/10.1111/1365-2745.13316
https://doi.org/10.1038/nature22898
http://www.ncbi.nlm.nih.gov/pubmed/28812740
https://doi.org/10.1111/2041-210X.13443
https://doi.org/10.1111/ele.12954
http://www.ncbi.nlm.nih.gov/pubmed/29607600
https://doi.org/10.1111/1365-2745.13030
https://doi.org/10.1073/pnas.1014428108
http://www.ncbi.nlm.nih.gov/pubmed/21415368
https://doi.org/10.1111/j.0021-8790.2004.00833.x
https://doi.org/10.1111/j.0021-8790.2004.00833.x
https://doi.org/10.1016/j.engappai.2019.103312
https://doi.org/10.1016/j.engappai.2019.103312
https://doi.org/10.1109/ACCESS.2019.2896880
https://doi.org/10.1109/ACCESS.2019.2896880
https://doi.org/10.1371/journal.pone.0194889
https://doi.org/10.1371/journal.pone.0194889
http://www.ncbi.nlm.nih.gov/pubmed/29584784
https://doi.org/10.1371/journal.pcbi.1007084
https://doi.org/10.1371/journal.pcbi.1007084
http://www.ncbi.nlm.nih.gov/pubmed/31295267
https://doi.org/10.1002/ece3.7365
http://www.ncbi.nlm.nih.gov/pubmed/34141181
https://doi.org/10.1371/journal.pcbi.1008906

PLOS COMPUTATIONAL BIOLOGY Fine scale prediction of ecological community composition

28. Rudin C. Stop explaining black box machine learning models for high stakes decisions and use inter-
pretable models instead. Nature Machine Intelligence. 2019; 1(5):206—215. https://doi.org/10.1038/
542256-019-0048-x

29. Kraft NJ, Adler PB, Godoy O, James EC, Fuller S, Levine JM. Community assembly, coexistence and
the environmental filtering metaphor. Functional ecology. 2015; 29(5):592-599. https://doi.org/10.1111/
1365-2435.12345

30. Ehrlén J, Morris WF. Predicting changes in the distribution and abundance of species under environ-
mental change. Ecology letters. 2015; 18(3):303-314. https://doi.org/10.1111/ele.12410 PMID:
25611188

31. Chesson P. Mechanisms of maintenance of species diversity. Annual review of Ecology and Systemat-
ics. 2000; 31(1):343-366. https://doi.org/10.1146/annurev.ecolsys.31.1.343

32. Garcia-Callejas D, Molowny-Horas R, Aradjo MB. The effect of multiple biotic interaction types on spe-
cies persistence. Ecology. 2018; 99(10):2327-2337. https://doi.org/10.1002/ecy.2465 PMID: 30030927

33. Shoemaker LG, Sullivan LL, Donohue I, Cabral JS, Williams RJ, Mayfield MM, et al. Integrating the
underlying structure of stochasticity into community ecology. Ecology. 2020; 101(2):€02922. https://doi.
org/10.1002/ecy.2922 PMID: 31652337

34. Pande J, Fung T, Chisholm R, Shnerb NM. Mean growth rate when rare is not a reliable metric for per-
sistence of species. Ecology letters. 2020; 23(2):274-282. https://doi.org/10.1111/ele.13430 PMID:
31755216

35. Soliveres S, Maestre FT, Ulrich W, Manning P, Boch S, Bowker MA, et al. Intransitive competition is
widespread in plant communities and maintains their species richness. Ecology letters. 2015; 18
(8):790-798. https://doi.org/10.1111/ele.12456 PMID: 26032242

36. Godoy O, Stouffer DB, Kraft NJ, Levine JM. Intransitivity is infrequent and fails to promote annual plant
coexistence without pairwise niche differences; 2017.

37. Sagi O, Rokach L. Ensemble learning: A survey. Wiley Interdisciplinary Reviews: Data Mining and
Knowledge Discovery. 2018; 8(4):e1249.

38. Hernandez PA, Graham CH, Master LL, Albert DL. The effect of sample size and species characteris-
tics on performance of different species distribution modeling methods. Ecography. 2006; 29(5):773—
785. https://doi.org/10.1111/j.0906-7590.2006.04700.x

39. Taylor LR. Aggregation, variance and the mean. Nature. 1961; 189(4766):732—735. https://doi.org/10.
1038/189732a0

40. Giometto A, Formentin M, Rinaldo A, Cohen JE, Maritan A. Sample and population exponents of gener-
alized Taylor’s law. Proceedings of the National Academy of Sciences. 2015; 112(25):7755-7760.
https://doi.org/10.1073/pnas.1505882112

41. Grilli J. Macroecological laws describe variation and diversity in microbial communities. Nature commu-
nications. 2020; 11(1):1-11. https://doi.org/10.1038/s41467-020-18529-y PMID: 32958773

42. BreimanL, Friedman J, Stone CJ, Olshen RA. Classification and regression trees. CRC press; 1984.

43. Breiman L. Random forests. Machine learning. 2001; 45(1):5-32. https://doi.org/10.1023/
A:1010933404324

44. Svetnik V, Liaw A, Tong C, Culberson JC, Sheridan RP, Feuston BP. Random forest: a classification
and regression tool for compound classification and QSAR modeling. Journal of chemical information
and computer sciences. 2003; 43(6):1947-1958. https://doi.org/10.1021/ci034160g PMID: 14632445

45. Friedman JH. Greedy function approximation: a gradient boosting machine. Annals of statistics. 2001;
p. 1189-1232.

46. ChenT, Guestrin C. Xgboost: A scalable tree boosting system. In: Proceedings of the 22nd acm sigkdd
international conference on knowledge discovery and data mining; 2016. p. 785-794.

47. Elith J, Leathwick JR, Hastie T. A working guide to boosted regression trees. Journal of Animal Ecology.
2008; 77(4):802-813. https://doi.org/10.1111/.1365-2656.2008.01390.x PMID: 18397250

48. Roberts DR, Bahn V, Ciuti S, Boyce MS, Elith J, Guillera-Arroita G, et al. Cross-validation strategies for
data with temporal, spatial, hierarchical, or phylogenetic structure. Ecography. 2017; 40(8):913-929.
https://doi.org/10.1111/ecog.02881

49. Uieda L. Verde: Processing and gridding spatial data using Green’s functions. Journal of Open Source
Software. 2018; 3(30):957. https://doi.org/10.21105/joss.00957

50. Dormann CF, Elith J, Bacher S, Buchmann C, Carl G, Carré G, et al. Collinearity: a review of methods
to deal with it and a simulation study evaluating their performance. Ecography. 2013; 36(1):27—46.
https://doi.org/10.1111/.1600-0587.2012.07348.x

51. Sebban M, Nock R. A hybrid filter/wrapper approach of feature selection using information theory. Pat-
tern recognition. 2002; 35(4):835-846. https://doi.org/10.1016/S0031-3203(01)00084-X

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi. 1008906 December 6, 2021 18/20


https://doi.org/10.1038/s42256-019-0048-x
https://doi.org/10.1038/s42256-019-0048-x
https://doi.org/10.1111/1365-2435.12345
https://doi.org/10.1111/1365-2435.12345
https://doi.org/10.1111/ele.12410
http://www.ncbi.nlm.nih.gov/pubmed/25611188
https://doi.org/10.1146/annurev.ecolsys.31.1.343
https://doi.org/10.1002/ecy.2465
http://www.ncbi.nlm.nih.gov/pubmed/30030927
https://doi.org/10.1002/ecy.2922
https://doi.org/10.1002/ecy.2922
http://www.ncbi.nlm.nih.gov/pubmed/31652337
https://doi.org/10.1111/ele.13430
http://www.ncbi.nlm.nih.gov/pubmed/31755216
https://doi.org/10.1111/ele.12456
http://www.ncbi.nlm.nih.gov/pubmed/26032242
https://doi.org/10.1111/j.0906-7590.2006.04700.x
https://doi.org/10.1038/189732a0
https://doi.org/10.1038/189732a0
https://doi.org/10.1073/pnas.1505882112
https://doi.org/10.1038/s41467-020-18529-y
http://www.ncbi.nlm.nih.gov/pubmed/32958773
https://doi.org/10.1023/A:1010933404324
https://doi.org/10.1023/A:1010933404324
https://doi.org/10.1021/ci034160g
http://www.ncbi.nlm.nih.gov/pubmed/14632445
https://doi.org/10.1111/j.1365-2656.2008.01390.x
http://www.ncbi.nlm.nih.gov/pubmed/18397250
https://doi.org/10.1111/ecog.02881
https://doi.org/10.21105/joss.00957
https://doi.org/10.1111/j.1600-0587.2012.07348.x
https://doi.org/10.1016/S0031-3203(01)00084-X
https://doi.org/10.1371/journal.pcbi.1008906

PLOS COMPUTATIONAL BIOLOGY Fine scale prediction of ecological community composition

52. Altmann A, Tolosi L, Sander O, Lengauer T. Permutation importance: a corrected feature importance
measure. Bioinformatics. 2010; 26(10):1340-1347. https://doi.org/10.1093/bioinformatics/btq134
PMID: 20385727

53. Kassambara A. Machine learning essentials: Practical guide in R. Sthda; 2018.

54. Dietterich TG. Machine learning for sequential data: A review. In: Joint IAPR international workshops on
statistical techniques in pattern recognition (SPR) and structural and syntactic pattern recognition
(SSPR). Springer; 2002. p. 15-30.

55. Soberdn J. Grinnellian and Eltonian niches and geographic distributions of species. Ecology letters.
2007; 10(12):1115-1123. https://doi.org/10.1111/].1461-0248.2007.01107.x PMID: 17850335

56. Saavedra S, Medeiros LP, AlAdwani M. Structural forecasting of species persistence under changing
environments. Ecology Letters. 2020; 23(10):1511-1521. https://doi.org/10.1111/ele.13582 PMID:
32776667

57. Graham CH, Hijmans RJ. A comparison of methods for mapping species ranges and species richness.
Global Ecology and biogeography. 2006; 15(6):578-587. https://doi.org/10.1111/j.1466-8238.2006.
00257.x

58. Elith J, Leathwick JR. Species distribution models: ecological explanation and prediction across space
and time. Annual review of ecology, evolution, and systematics. 2009; 40:677-697. https://doi.org/10.
1146/annurev.ecolsys.110308.120159

59. Wisz MS, Pottier J, Kissling WD, Pellissier L, Lenoir J, Damgaard CF, et al. The role of biotic interac-
tions in shaping distributions and realised assemblages of species: implications for species distribution
modelling. Biological reviews. 2013; 88(1):15-30. https://doi.org/10.1111/j.1469-185X.2012.00235.x
PMID: 22686347

60. TorgoL, Ribeiro RP, Pfahringer B, Branco P. Smote for regression. In: Portuguese conference on artifi-
cial intelligence. Springer; 2013. p. 378-389.

61. Garcia-Callejas D, Bartomeus |, Godoy O. Species-area relationships emerge from multiple coexis-
tence mechanisms. Submitted. 2021.

62. Youngflesh C, Jenouvrier S, Hinke JT, DuBois L, St Leger J, Trivelpiece WZ, et al. Rethinking “normal”:
The role of stochasticity in the phenology of a synchronously breeding seabird. Journal of Animal Ecol-
ogy. 2018; 87(3):682-690. https://doi.org/10.1111/1365-2656.12790 PMID: 29277890

63. Kao RH, Gibson CM, Gallery RE, Meier CL, Barnett DT, Docherty KM, et al. NEON terrestrial field
observations: designing continental-scale, standardized sampling. Ecosphere. 2012; 3(12):1-17.
https://doi.org/10.1890/ES12-00196.1

64. Ohmann JL, Gregory MJ, Henderson EB, Roberts HM. Mapping gradients of community composition
with nearest-neighbour imputation: extending plot data for landscape analysis. Journal of Vegetation
Science. 2011; 22(4):660-676. https://doi.org/10.1111/j.1654-1103.2010.01244.x

65. Hostert P, Roder A, Hill J. Coupling spectral unmixing and trend analysis for monitoring of long-term
vegetation dynamics in Mediterranean rangelands. Remote sensing of environment. 2003; 87(2-
3):183—197. https://doi.org/10.1016/S0034-4257(03)00145-7

66. Van Rossum G, Drake Jr FL. Python reference manual. Centrum voor Wiskunde en Informatica
Amsterdam; 1995.

67. Hunter JD. Matplotlib: A 2D graphics environment. Computing in science & engineering. 2007; 9
(03):90-95. https://doi.org/10.1109/MCSE.2007.55

68. Harris CR, Millman KJ, van der Walt SJ, Gommers R, Virtanen P, Cournapeau D, et al. Array program-
ming with NumPy. Nature. 2020; 585(7825):357—-362. https://doi.org/10.1038/s41586-020-2649-2
PMID: 32939066

69. Wes McKinney. Data Structures for Statistical Computing in Python. In: Stéfan van der Walt, Jarrod Mill-
man, editors. Proceedings of the 9th Python in Science Conference; 2010. p. 56—61.

70. Waskom ML. seaborn: statistical data visualization. Journal of Open Source Software. 2021; 6
(60):3021. https://doi.org/10.21105/joss.03021

71. PedregosaF, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al. Scikit-learn: Machine learn-
ing in Python. Journal of machine learning research. 2011; 12(Oct):2825-2830.

72. McNamara J. Package ‘xIsxwriter’; 2020. Available from: https://xIsxwriter.readthedocs.io/.

73. ChenT, Guestrin C. XGBoost: A Scalable Tree Boosting System. In: Proceedings of the 22nd ACM
SIGKDD International Conference on Knowledge Discovery and Data Mining. KDD’16. New York, NY,
USA: ACM; 2016. p. 785—794. Available from: http://doi.acm.org/10.1145/2939672.2939785.

74. R Core Team. R: A Language and Environment for Statistical Computing; 2020. https://www.R-project.
org/.

75. Wilke C. Package ‘cowplot’; 2020. Available from: https://cran.r-project.org/package=cowplot.

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi. 1008906 December 6, 2021 19/20


https://doi.org/10.1093/bioinformatics/btq134
http://www.ncbi.nlm.nih.gov/pubmed/20385727
https://doi.org/10.1111/j.1461-0248.2007.01107.x
http://www.ncbi.nlm.nih.gov/pubmed/17850335
https://doi.org/10.1111/ele.13582
http://www.ncbi.nlm.nih.gov/pubmed/32776667
https://doi.org/10.1111/j.1466-8238.2006.00257.x
https://doi.org/10.1111/j.1466-8238.2006.00257.x
https://doi.org/10.1146/annurev.ecolsys.110308.120159
https://doi.org/10.1146/annurev.ecolsys.110308.120159
https://doi.org/10.1111/j.1469-185X.2012.00235.x
http://www.ncbi.nlm.nih.gov/pubmed/22686347
https://doi.org/10.1111/1365-2656.12790
http://www.ncbi.nlm.nih.gov/pubmed/29277890
https://doi.org/10.1890/ES12-00196.1
https://doi.org/10.1111/j.1654-1103.2010.01244.x
https://doi.org/10.1016/S0034-4257(03)00145-7
https://doi.org/10.1109/MCSE.2007.55
https://doi.org/10.1038/s41586-020-2649-2
http://www.ncbi.nlm.nih.gov/pubmed/32939066
https://doi.org/10.21105/joss.03021
https://xlsxwriter.readthedocs.io/
http://doi.acm.org/10.1145/2939672.2939785
https://www.R-project.org/
https://www.R-project.org/
https://cran.r-project.org/package=cowplot
https://doi.org/10.1371/journal.pcbi.1008906

PLOS COMPUTATIONAL BIOLOGY Fine scale prediction of ecological community composition

76. Wickham H. ggplot2: Elegant Graphics for Data Analysis. Springer-Verlag New York; 2016. https://
ggplot2.tidyverse.org.

77. Auguie B. Package ‘gridExtra’; 2017. Available from: https://cran.r-project.org/package=gridExtra.
78. Wickham H, Wickham MH. Package ‘scales’; 2016.

79. Wickham H, Averick M, Bryan J, Chang W, McGowan LD, Francois R, et al. Welcome to the Tidyverse.
Journal of open source software. 2019; 4(43):1686. https://doi.org/10.21105/joss.01686

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi. 1008906 December 6, 2021 20/20


https://ggplot2.tidyverse.org
https://ggplot2.tidyverse.org
https://cran.r-project.org/package=gridExtra
https://doi.org/10.21105/joss.01686
https://doi.org/10.1371/journal.pcbi.1008906

