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• C. nodosa exports a significant fraction of
both labile and recalcitrant DOC.

• H. incrassata tends to release mainly labile
DOC or act as DOC consumer.

• The spread of H. incrassata into seagrass
can decrease the export of carbon as DOC.

• H. incrassata invasion causes lower or-
ganic carbon uptake, which might affect
C sinks.

• Seagrasses contribute to blue carbon se-
questration via recalcitrant DOC produc-
tion.
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 Seagrass beds act as blue carbon sinks globally as they enhance the trapping of recalcitrant (i.e., low biodegradability)
organic carbon in their sediments. Recent studies also show that the recalcitrant fraction of the dissolved organic car-
bon (DOC) pool in seawater has an important role as long-term carbon sequestration in oceans. Although seagrasses
are known for the large amount of DOC they export, little attention has been given to its biodegradability, which ulti-
mately determinates its fate in the coastal carbon cycle. In turn, invasive algae are a major global concern in seagrass
ecosystems since they can deeply modify their structure and functions, which may affect carbon metabolism and DOC
release. This work assesses how the presence of Halimeda incrassata, an invasive tropical calcareous macroalga, mod-
ifies carbon metabolism and DOC fluxes in invaded areas dominated by the seagrass Cymodocea nodosa. Our results
show that stands with the presence of this seagrass (i.e., both monospecific and mixed meadow) had the highest pro-
duction values, acting as high DOC producers in both winter (mainly of labile DOC; DOCL) and summer (mainly as re-
calcitrant DOC; DOCR). In contrast, monospecificH. incrassata beds exhibited low production values, and the presence
of this macroalga (either as monospecific beds or mixed with C. nodosa) triggered the shift from a net DOC-producing-
system in summer (mainly DOCL) to a net DOC-consuming-system in winter. This work thus suggests that C. nodosa
meadows have the potential to export a significant fraction of both labile and recalcitrant DOC, and that the spread
of this invasive alga might decrease the C export capacity of seagrass meadows. Such shift would imply the reduction
of a quick and efficient transfer of carbon and energy to higher trophic levels, andmight reduce the blue carbon poten-
tial of seagrasses as dissolved form in the water column.
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1. Introduction

Seagrasses are marine foundation species that form one of the richest
and most important coastal habitats (Short et al., 2011). They are globally
distributed and well recognized by the ecosystem services they provide, in-
cluding nutrient regeneration (Costanza et al., 1997), shoreline protection
(Christianen et al., 2013), suitable breeding habitats (Cullen-Unsworth
et al., 2014), biodiversity hotspots (Duffy, 2006; González-Ortiz et al.,
2014) and carbon sequestration (Fourqurean et al., 2012). However,
seagrasses are under threat worldwide from a growing number of anthropo-
genic stressors, in particular climate change, nutrient enrichment and inva-
sive species (Short andWyllie-Echeverria, 1996; Orth et al., 2006;Williams,
2007; Unsworth et al., 2019). Invasive species rank among one of the most
important threats to marine ecosystems and global biodiversity (Hulme,
2009; Catford et al., 2018), and invasive seaweeds, in particular, are of
major global concern, since they can deeply modify marine ecosystems
and cause significant ecological and economic damages and impacts
(Schaffelke et al., 2006; Williams and Smith, 2007; Thomsen et al., 2009;
Tomas et al., 2021). Several studies have highlighted how invasive seaweed
usually yield negative effects on native macrophytes (algae or seagrasses),
whereas their effects at higher trophic levels can be less negative or even
positive (Thomsen et al., 2014; Maggi et al., 2015). Such differences have
been mainly attributed to shifts in benthic structure and food provided by
the habitat-forming algae. Hence, invasive algae may have important ef-
fects in transforming the trophic state of the invaded system and on the ex-
change of matter and energy among components of the community.

Seagrass meadows, as vegetated benthic habitats, form complex assem-
blages that serve as habitat for a plethora of micro- and macro-organisms,
including phototrophic organisms such as microalgae and cyanobacteria,
all of which are involved in the net community production (Moncreiff
et al., 1992; Lebreton et al., 2009). Although seagrass-dominated communi-
ties are usually highly autotrophic on an annual scale (Duarte et al., 2010),
little information is available on inter–annual variability of carbon cycling
in benthic coastal communities. The few studies available indicate large
variability in benthic vegetated communities switching from autotrophic
to heterotrophic along the year (Ruiz-Halpern et al., 2014; Egea et al.,
2019a). Furthermore, climatic change or changes in local conditions due
to anthropogenic pressures such as nutrient enrichment (Gypens et al.,
2009; Egea et al., 2019b, 2020) or invasive species (Vergés et al., 2014a;
Pecl et al., 2017) may alter these balances and promote drastic changes in
the trophic state of the ecosystem and, therefore, weaken their capacity to
act as carbon sinks and as biodiversity hotspots (Duffy, 2006; Ferguson
et al., 2017; Macreadie et al., 2019). In addition to the trophic state of the
system, the community carbon balance can also be influenced by additional
carbon inputs, including allochthonous carbon trapped by the canopy
(Kennedy et al., 2010), and carbon outputs, including carbon exported as
dissolved organic carbon (DOC) (Duarte and Cebrián, 1996; Barrón and
Duarte, 2009; Duarte and Krause-Jensen, 2017). DOC is one of the largest
interchangeable organic carbon reserves in the marine environment,
being a key factor in the global carbon cycle (Hansell, 2013). These commu-
nities can release DOC via exudation of living biomass, as well as leaching
and decomposition of detritus (Barrón et al., 2014; Liu et al., 2018; Egea
et al., 2019a). It has been estimated that the global net DOC exportation
from seagrass meadows ranges from 160 to 330 Tg C yr−1, representing
46% of global seagrass net community production (Duarte et al., 2010),
being of the same order of magnitude than global river DOC inputs (250
Tg C yr−1; Barrón et al., 2014). Vegetated benthic habitats typically act
as source of DOC (i.e., positive net DOC flux) to marine environments
when they are highly productive, but can also act as DOC consumers
(i.e., negative net DOC flux), especially under low productivity conditions
(Barrón et al., 2014; Liu et al., 2018; Egea et al., 2019a). Therefore, DOC re-
lease from vegetated coastal communities is highly season-dependent since
high productive conditions, such as those commonly occurring in summer
(i.e., higher temperature and light), typically yield higher DOC release.
DOC export from both seagrass and benthic macroalgal meadows has
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recently received more attention since it is a significant fraction of the net
community production (NCP) of benthic habitats and it is a critical compo-
nent of the carbon exchange among communities (Barrón et al., 2014;
Duarte and Krause-Jensen, 2017; Mckay et al., 2017; Egea et al., 2019a).

DOC is a mixture of organic compounds such as sugars or amino acids,
as well as fractions that are more coarsely classified, such as humic sub-
stances (including lignins and phenols; Hansell and Carlson, 2001; Dafner
and Wangersky, 2002). The different chemical composition, structure and
molecular size affect the fate of the DOC exported from vegetated coastal
communities, which depends on its turnover times. A significant fraction
of DOC, formed by bioavailable material (i.e., labile fraction), is quickly
consumed bymicroorganisms (lifetime average ~ 0.001 years), thus acting
as a transfer of carbon in the food web and as an essential carbon exchange
pathway among communities (Navarro et al., 2004; Lønborg et al., 2010;
Romera-Castillo et al., 2011; Hansell, 2013; Egea et al., 2019a). However,
another fraction of DOC (i.e., recalcitrant fraction) is resistant to rapid mi-
crobial degradation, being accumulated and observable in the ocean. The
lifetime average of this fraction ranges from ~1.5 years (semi-labile) to
~40,000 years (ultra-refractory) and it can be sequestered in continental
shelf sediments or in the deep sea, and therefore contribute to carbon se-
questration (Hansell, 2013; Krause-Jensen and Duarte, 2016; Duarte and
Krause-Jensen, 2017). Recently, it has been demonstrated that the release
of DOC in seagrass beds varies substantially when environmental condi-
tions change, including hydrodynamic conditions, nutrient load or temper-
ature increase (Egea et al., 2018, 2019b, 2020, Liu et al., 2020).
Importantly, non-indigenous macrophytes have the potential to strongly
alter the carbon dynamics in native communities (e.g., Marx et al., 2021;
Wesselmann et al., 2021) but the effects on the abundance and composition
(labile/recalcitrant) of DOC released remain unexplored.

The Mediterranean Sea is a hotspot of biodiversity (Myers et al., 2000)
but it is also one of the areas with more introductions of non-native species
(e.g., Galil et al., 2015; Zenetos et al., 2017; Navarro-Barranco et al., 2019).
Some of them have an invasive behaviour and are affecting the integrity of
natural communities, including loss of seagrass meadows (Vitousek et al.,
1997; Williams and Smith, 2007; Thomsen et al., 2009).Halimeda incrassata
(J. Ellis) J. V. Lamouroux is one of the most common species of the genus
Halimeda growing on tropical sandy-bottom habitats (Verbruggen et al.,
2006) where it provides trophic support, benthic structure and is also a
major contributor of carbonate to sediments (Barry et al., 2013; Marx
et al., 2021). This rhizophyte is naturally distributed along the tropical west-
ern Atlantic and tropical Indo-Pacific Oceans (Guiry, 2021) but, in the last
years, it has colonized new areas. In 2005, H. incrassata was reported for
the first time on the island of Madeira (NE Atlantic) (Wirtz and Kaufmann,
2005) and recently, it has been detected in Canary Islands (Sangil et al.,
2018) and in Mallorca Island (Balearic Islands, Western Mediterranean;
Alós et al., 2016). As tropical specie, its expansion will likely be further
favoured by global warming (Vergés et al., 2014b; Samperio-Ramos et al.,
2015). Previous work shows that it can dramatically change soft bottoms
into monospecific H. incrassata beds, with important consequences for the
associated fish communities (Vivó-Pons et al., 2020), and it is also able to in-
vade seagrass meadows (Tomas et al., 2021). Given that H. incrassata is an
ecosystems engineer (i.e., species that creates, modifies or maintains a hab-
itat; Jones et al., 1994), the impacts of its invasion can be multiple and com-
plex. H. incrassata may cause changes in benthic structure on seagrass-
dominated communities and trigger important consequences both in pro-
ductivity and in community carbon balances.

This work explores how theH. incrassata invasionmay affect the carbon
metabolism and dissolved organic carbon (DOC) fluxes of the native tem-
perate seagrass Cymodocea nodosa. In addition, the labile/recalcitrant
ratio of the DOC produced was also evaluated. The experiment was repli-
cated in two seasons (summer and winter) to integrate the response of
this invasion in contrasting environmental conditions. The obtained results
will contribute to gainmore insight into the effects of seaweed invasions on
native seagrass meadow at the community level, as well as how such inva-
sions may change the role of seagrasses as blue carbon contributors.
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2. Material and methods

2.1. Study area

Cabrera Island is the largest island of the Cabrera Archipelago, located
9 km south-east of Mallorca Island (Balearic Islands, Spain) in the western
Mediterranean Sea. The Cabrera Archipelago comprises 19 islands that
were declared a Terrestrial-Maritime National Park in 1991. Climatically,
it fits into a semi-arid regime and although precipitations are scarce,
there are several small watersheds that are active only during intense pre-
cipitation periods (Alcover et al., 1993). The surrounding coastal waters
are warm with very low nutrient content compared to other coastal Medi-
terranean waters (Ballesteros and Zabala, 1993). Es Port Bay is a sheltered
bay of Cabrera Island where water residence times range among 7–15 days
(Orfila et al., 2005). This bay, where boat access is controlled, has limited
and restricted human uses. The benthic community is predominantly com-
prised by dense and monospecific stands of the seagrass Posidonia oceanica
L. (Delile) and Cymodocea nodosa Ucria (Ascherson) growing on biogenic,
carbonate-rich and iron-deficient sediments (Marbà et al., 2008). Posidonia
oceanica covers 36% of the bay, extending from about 1 m to about 37 m
depth (Marbà et al., 2002), whereas C. nodosa covers smaller stands in
the shallower areas of the bay.

The study was conducted in a shallow area (1–2m depth) in Sa Platgeta
d'es Pagès (39°8.66′N; 2°56.22′E), the most sheltered and away area from
the water inlet of Es Port Bay (Fig. 1). Here, the non-native alga Halimeda
incrassata was reported for the first time in 2016, being the first report for
the Cabrera Archipelago (Tomas et al., 2021). Since then, this specie has
been monitored in the area, where it has formed both monospecific beds
on sandy bottoms and has also colonized C. nodosa beds.

2.2. Experimental setup

The experiment was conducted in subtidal benthic communities in Au-
gust 2019 (summer) and January 2020 (winter), hereinafter referred to as
summer andwinter trials, respectively. To better compare these two periods,
Fig. 1. Study site at Sa Platgeta d'es Pagès in Cabrera Archipelago (left) and pictures o
meadow of C. nodosa and Halimeda incrassata and (c) H. incrassata bed.
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sampling days in each season were conducted under similar weather fore-
cast conditions (e.g., absence of clouds, no rain,wind, etc.) in order to reduce
the environmental variability. In each season, in situ incubations using ben-
thic chambers (hereinafter called incubators) were conducted during a day
in three vegetated benthic communities inhabiting the same area (Fig. 1):
one dominated by the seagrass Cymodocea nodosa; one dominated by the in-
vasive macroalga Halimeda incrassata; and a mixed community (Fig. 1).
While each community is dominated by these benthic macrophytes, they
are actually an assemblage of several biological components, including
plankton, epiphytes, other macroalgae, fauna and sediment microbes.
Therefore, results integrate the entire community as a way to undertake a
more realistic approach. In each season, three replicated incubators were
haphazardly placed within each community (i.e., C. nodosa, H. incrassata
and mixed meadow) by scuba diving.

Incubators were similar to those used in previous in situ studies
analysing carbon metabolism and DOC fluxes (e.g., Barrón and Duarte,
2009; Egea et al., 2019a), which consisted of two parts: a rigid cylinder
made of a polyvinyl chloride (diameter = 20 cm; height = 17 cm) and a
transparent polyethylene plastic bag (height≈ 37 cm; width≈ 33 cm) at-
tached to a polyvinyl chloride ring (width=4 cm). Both parts are joined by
a silicone gasket and tightly fastened by 4 elastic rubber bands (Fig. 2). The
rigid polyvinyl chloride cylinder was firmly inserted into the sediment (15
cm) through its sharpened lower end, with only 2 cm of the cylinder above
the sediment, which was the minimum necessary to fit the second part of
the incubator over the upper end of the cylinder. The cylinders were
inserted in the sediment between 1 and 2 h before allocating the second
(upper) part of the incubator to reduce the effect of sediment perturbation.
HOBOdata loggers (UA-002-64)were allocatedwithin each incubator (n=
3) to record temperature (°C) and light (lumens ft.−2) every 10 min
throughout the experimental period. Light intensity was converted from
the HOBOs values in Lux (lumens ft.−2) to μmol photons m−2 s−1 accord-
ing to a previous calibration with a LiCOR light sensor (LI-1400, LI-COR
Biosciences, United States) under laboratory conditions as photons = 0.1
Lux +2.9 (Marx et al., 2021). Then, a daily light integral (DLI) was calcu-
lated in mol photons m−2 d−1. Each bag was provided with a sampling
f the three communities studied (right): (a) Cymodocea nodosa meadow; (b) mixed



Fig. 2. Simplified diagramof the incubators (left) and picture showing one representative incubator in theHalimeda incrassatameadowduring the in situ experimental period (right).
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port located in the upper half of the bag (≈20 cm) to withdraw water sam-
ples. The walls of the bags (wall thickness≈0.07mm)were flexible enough
to allow their movement with the hydrodynamic conditions, preventing
water stagnation. Light penetration measured inside the incubators was
ca. 99.15± 0.01% of incident light outside the bag. Oxygen diffusion con-
trols were run showing no oxygen permeability of the plastic bags. To cal-
culate the water volume in each incubator, 20 ml of a 0.1 M uranine
solution (sodium fluorescein, C20H10Na2O5) was injected into each incuba-
tor bag at the end of the experiment, allowing 15 min for mixing, and shak-
ing manually the bag to favour the quick mixing of the uranine. Thereafter,
water samples were collected and kept frozen until spectrophotometric de-
termination according to Egea et al. (2019a). The mean volume of water
enclosed in the incubators was 10.4 ± 0.6 l (n=18). Incubators were ini-
tiated in the evening, a few hours before nightfall. To avoid the collection of
resuspended material resulting from physical disturbance during installa-
tion of the incubators, the first sample was taken 2 h after the initial setup.

2.3. Sample procedure

To measure the community carbon metabolism (through dissolved oxy-
gen –DO– concentration) andDOCfluxes,water enclosedwithin each incuba-
tor was collected through the sampling port using a 50 ml acid-washed
syringe (standard plastic previously subjected to blank control) at three
times during the day: i) just before sunset (S1), ii) right after sunrise (S2)
and iii) 6 h after sunrise (S3). In this way, community carbon metabolism
and net DOC flux in night and light periods were distinguished (Egea et al.,
2019a). At the end of experimental period,macrophyte biomass inside the in-
cubators was harvested, rinsed and dried at 60 °C to obtain the dry weight
(DW) of the community biomass. Close to the incubators, triplicate sediment
cores (3 cm in diameter) were also taken tomeasure sediment organicmatter
(SOM) as the weight decrease after ashing (450 °C, 5 h) (Fourqurean et al.,
2014). These small cores were transported to the laboratory in a cooling
box and frozen immediately at−20 °C until further analysis.

2.4. Assay to estimate the DOC bioavailability exported by vegetated communities

Here we use the term bioavailable fraction of DOC (i.e., accessible to mi-
crobial degradation) as the DOC which is used by heterotrophic microorgan-
ism within days, according to previous studies on degradation rates of DOC
(e.g., Romera-Castillo et al., 2018; Chen et al., 2020). To assess the bioavail-
ability of DOC exported by the vegetated communities studied,we performed
an assay at the end of the in situ experiment. Hence, once all samples for the
4

in situ experiment were taken, and before removing the experimental set-up,
300ml of seawater from each in situ incubators were taken through the sam-
pling port using 50 ml acid-washed syringes. The seawater collected was fil-
tered and added to hermetic closure glass bottle incubations at a ratio of 9:1
(0.2:0.8 μm filtered). Next, the cultures were inoculated with the natural mi-
croorganism communitywithin each in situ incubator through a 0.8 μmpoly-
carbonate filter to eliminate predators of bacteria, such as small flagellates.
Incubation bottles (n=30) were stored in darkness at ambient temperature
until laboratory arrival. Once in the laboratory, DOC bioavailability assays
were run until mixed microbial communities reached stationary phase (<15
days) in a temperature-controlled room set at 18 °C and darkness conditions
(Romera-Castillo et al., 2018). Ammonium (NH4Cl) and phosphate
(NaH2PO4) were supplied at the beginning up to a final concentration of 10
and 2 μM, respectively, to avoid growth limitation by either nitrogen or phos-
phorus availability. At time zero and every 24–48 h, samples were collected
from each incubation bottle to measure DOC and bacterial abundance. For
each bacterial sample, triplicate samples of 1.5 ml of water were collected
and fixed immediately with cold 10% glutaraldehyde (final concentration,
1%), left in the dark for 10 min at room temperature and then, stored at
−80 °C. Bacterial abundance was counted with a FacsAriaII (Cell Sorter)
flow cytometer as described previously in Gasol and Del Giorgio (2000).

Taking advantage of in situwater collection, approximately 20ml of water
were collected (per triplicate) and filtered into pre-combusted (450 °C for 4
h)WhatmanGF/Ffilters (0.7 μm) for DOCanalyses. H3PO4was added to acid-
ify and fix the samples, which were stored in the dark at 4 °C until analyses.

2.5. Laboratory analyses

Water samples (15 ml) for dissolved oxygen (DO) concentration from
the in situ incubators were fixed immediately after collection in the
supporting vessel, kept in darkness and refrigerated, and determined
using a spectrophotometric modification of the Winkler titration method
(Pai et al., 1993; Roland et al., 1999). Hourly rates of community respira-
tion (CRh) were estimated as the difference in DO concentrations between
S2 and S1 samples divided by the time elapsed between both samplings
using the following formula:

CRh mmolO2

m2 d

� �
¼ DOS2

mgO2
l

� � � DOS1
mgO2

l

� �
ΔTTS1 � TS2 hð Þ ∗

Vol lð Þ
Area m2ð Þ ∗

1
32

mmolO2

mgO2
(1)

where DOS2 and DOS1 are the DO concentrations at sampling times S2 and
S1, ΔT is the elapsed time between sampling events, and “Vol” and “Area”
are the volume and area of the benthic chambers, respectively.
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Hourly rates of net community production (NCPh) were estimated from
the difference in DO concentrations between S3 and S2 samples divided by
the time elapsed between both samplings using the following formula:

NCPh mmolO2

m2 d

� �
¼ DOS3

mgO2
l

� � � DOS2
mgO2

l

� �
ΔTS2 � S3 hð Þ ∗

Vol lð Þ
Area m2ð Þ ∗

1
32

mmolO2

mgO2
(2)

where DOS3 and DOS2 are the DO concentrations at sampling times S3 and
S2, ΔT is the elapsed time between sampling events, and “Vol” and “Area”
are the volume and area of the benthic chambers, respectively.

Hourly rates of community gross primary production (GPPh) were com-
puted as the sum of the hourly rates of CR and NCP (GPPh=CRh+NCPh).
Finally, daily rates of community gross primary production (GPPd), com-
munity respiration (CRd) and net community production (NCPd) were esti-
mated following the calculations:

GPPd ¼ GPPh∗ Photoperiod hð Þ;CRd ¼ CRh∗ 24 h;NCPd ¼ GPPd–CRd (3)

where photoperiod corresponds to the number of sunlight hours measured
at each sampling day.

Formulas and calculations are widely used in published studies on car-
bon metabolism (e.g., Barrón et al., 2004; Egea et al., 2019a).

Metabolic rates in DO units were converted to carbon units assuming
photosynthetic (PQ = moles O2: moles CO2) and respiratory quotients
(RQ) of 1, values used widely in seagrasses studies (e.g. Barrón et al.,
2004; Duarte et al., 2010; Tuya et al., 2014; Ferguson et al., 2017).

Water samples (20ml) for DOC analysis from both the in situ incubators
and the bioavailability of DOC exported assay were filtered through pre–
combusted (450 °C for 4 h) Whatman GF/F filters (0.7 μm) and kept with
0.08 ml of H3PO4 (diluted 30%) at 4 °C in acid–washed material (glass
vials encapsulated with silicone-PTFE caps) until further analyses. Concen-
trations of DOC were derived by catalytic oxidation at high temperature
(720 °C) and chemiluminescence by using a Multi N/C 2100S, Analytic
Jena. DOC-certified reference material (Low and Deep), provided by D. A.
Hansell and W. Chen (DSR: 44–45 of μM for DOC, University of Miami),
were used to assess the accuracy of the estimations. The results were in
good agreement with certified DSR values (deviation: <5%).

Hourly rates of DOC during the night and light periods in the in situ in-
cubators were calculated using the following formulas:

DOC fluxnight period
mmolC
m2h

� �
¼

DOCS2
mgC
l

� �
� DOCS1

mgC
l

� �

TTS1 � TS2 hð Þ ∗
Vol lð Þ

Area m2ð Þ ∗
1 mmolC
12 mgC

DOC fluxLight period
mmolC
m2h

� �
¼

DOCS3
mgC
l

� �
� DOCS2

mgC
l

� �

TTS2 � TS3 hð Þ ∗
Vol lð Þ

Area m2ð Þ ∗
1 mmolC
12 mgC

(4)

where DOCS1, DOCS2 and DOCS3 are the DOC concentrations at sampling
times S1, S2 and S3, ΔT is the elapsed time between sampling events, and
“Vol” and “Area” are the volume and area of the incubator, respectively.

Daily rates of DOC flux were calculated by the sum of the hourly DOC
flux in light multiplied by photoperiod and the hourly DOC flux at night
multiplied by night hours. Thus, when net DOC flux was positive, the com-
munity was considered to act as a net DOC producer (i.e., source) and when
net flux was negative, the community was considered to act as a net DOC
consumer.

In the bioavailability of DOC exported assay, the labile (DOCL) and
recalcitrant (DOCR) fractions of DOC fluxes were calculated using the
following formulas:

DOCL ¼ DOCinitial mg l � 1� � � DOCfinal mg l � 1� �
DOCinitial mg l � 1� � ;

DOCR ¼ DOCfinal mg l � 1� �
DOCinitial mg l � 1� � (5)
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where DOCinitial and DOCfinal are the DOC concentrations at the initial and
final of the bacterial incubations period.

Finally, the ratio of recalcitrant versus labile DOC concentrations
(DOCR: DOCL) in each sampling event was calculated as the concentration
of DOC recalcitrant (i.e., the concentration of DOC at the end of the bacte-
rial incubation) divided by the concentration of DOC labile (i.e., the differ-
ence between the initial and final DOC concentrations during bacterial
incubations) using the following formula:

DOCR : DOCL ¼ DOCfinal mg l � 1� �
DOCinitial mg l � 1� � � DOCfinal mg l � 1� � (6)

2.6. Data and statistical analyses

Data are presented as mean ± SE. To compare communities
(Cymodocea nodosa, Halimeda incrassata and mixed meadow) and season
(summer and winter) on each response variable, we used linear models
(2-way ANOVA), followed by Tukey's post-hoc test to test both the levels
and interaction factors. When assumptions of normality and
homocedasticity were not fulfilled, the effects of single and combined fac-
tors were tested using generalized linear models (GLMs) (Crawley, 2005).
For each response variable, we selected a particular family error structure
and link function to reach the assumptions of linearity, homogeneity of var-
iances and no overdispersion, which were checked through visual inspec-
tion of residuals and Q-Q plots (Harrison et al., 2018) after modelization.
Differences in DOC fluxes (hourly and daily rates) were analyzed using
2-way ANOVA, whereas differences in community biomass, carbon metab-
olism (i.e., GPP, CR and NCP) and in the labile and recalcitrant fractions of
DOC were analyzed using generalized linear models (GLMs) with Gamma
distribution and inverse link. Pairwise comparisons were run using esti-
mated marginal means with a Bonferroni correction (“emmeans” R pack-
age, Lenth et al., 2019). Three technical replicates were used in each
statistical analysis (n = 3). Statistical analyses were run using R statistical
software 4.0.2 (R Development Core Team 2020).

3. Results

3.1. Description of the benthic communities and surrounding environment

Seawater temperature ranged between 25.6 and 29.2 °C in summer and
14.9–16.4 °C in winter, and the daily light integral (DLI) was 12.57 mol
photons m−2 d−1 in summer and 5.49 mol photons m−2 d−1 in winter.
The average benthic biomass was different between communities and sea-
sons (Table 1). The Cymodocea nodosa meadow exhibited lower biomass
than the other two communities in both seasons, being higher (×1.6
fold) in summer than in winter. The mixed meadow showed highest bio-
mass in both seasons, where Halimeda incrassata was clearly the dominant
macrophyte, being 83.2 ± 4.7% (summer) and 95 ± 0.5% (winter) of
the whole community biomass.

3.2. Community carbon metabolism

The three communities exhibited seasonal differences regarding daily
rates of community gross primary production (GPPd), community respira-
tion (CRd) and net community production (NCPd), reaching higher values
in summer, with GPPd and CRd summer rates statistically higher than
those in winter. GPPd was higher in the Cymodocea nodosa bed than in
the community dominated by Halimeda incrassata regardless of the season
(ca. ×2 and×2.8 in summer and winter respectively; p < 0.05). Similarly,
CRd tended to be higher in seagrass than in H. incrassata in both seasons
(ca. ×1.6 and×3.5 in summer and winter respectively), although that dif-
ference was not statistically significant in summer (p = 0.058). Overall,
NCPd tended to be higher in the communities dominated by C. nodosa
(monospecific andmixed seagrass beds) than in the community dominated



Table 1
Benthic biomass and sediment organic matter (SOM) (g dry weight m−2) in the dif-
ferent communities and seasons. Different letters indicate significant differences be-
tween vegetated communities and seasons (p < 0.05).

Season Community Community biomass
(gDW m−2)

SOM
(gDW m−2)

Summer C. nodosa 60.6 ± 7.2a 0.168 ± 0.023a

Mixed meadow
[%DW H. incrassata]

386.6 ± 72.6b

[83.2 ± 4.7]
0.133 ± 0.005ab

H. incrassata 398.5 ± 12.4b 0.126 ± 0.004b

Winter C. nodosa 36.7 ± 2.7c 0.125 ± 0.004b

Mixed meadow
[%DW H. incrassata]

831.3 ± 59.2d

[95 ± 0.5]
0.142 ± 0.006ab

H. incrassata 469.8 ± 1.2b 0.128 ± 0.008ab

Fig. 3. Daily rates of (a) community Gross Primary Production (GPPd),
(b) Community Respiration (CRd) and (c) Net Community Production (NCPd) in
benthic communities dominated by Cymodocea nodosa (white columns), mixed
meadow (grey columns) and Halimeda incrassata beds (black columns) in summer
(left) and winter (right). Different letters indicate significant differences between
communities and seasons. Data are expressed as mean ± SE (n = 3).
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byH. incrassata in both seasons (ca.×10.7 and×2.4 in summer andwinter
respectively), although that difference was only statistically significant in
summer. Regarding the mixed meadow, this community generally showed
similar values in GPPd, CRd and NCPd to those of monospecific C. nodosa,
with values tending to be higher than those of monospecific H. incrassata
beds (Fig. 3, table S1).

3.3. Dissolved organic carbon (DOC) fluxes

The three communities exhibited positive DOC fluxes during light
hours, evidenced as net DOC production, whereas they showed a negative
rate of DOC fluxes during night hours, evidencing net DOC consumption.
The net DOC production during light hours was higher in Cymodocea
nodosa than in the mixed meadow and in the monospecific Halimeda
incrassata bed both in summer (ca. ×1.7 and ×3.1 higher, respectively)
and in winter (×1.5 and ×4.6 higher, respectively). The net DOC con-
sumption during night hours was similar in the three communities for
each season, although C. nodosa showed a slightly higher net DOC con-
sumption (ca. ×1.6 and ×1.1 than the mean of those of both the mixed
meadow and H. incrassata in summer and winter, respectively) (Table 2).
Thus, the daily rate of DOC fluxes showed stark differences among commu-
nities and seasons. The three communities showed higher daily net DOC
production in summer than in winter (Fig. S1, table S2), with the mixed
meadow and the H. incrassata monospecific bed shifting to daily net
DOC consumption in winter. Overall, the daily net DOC production was
higher in C. nodosamonospecific meadow than those in the other two com-
munities in both seasons, although these differences only reached statistical
significances between the monospecific C. nodosa meadow vs. the mono-
specific H. incrassata bed (Fig. S1, Table S2).

The relation between net DOC flux and GPPd differed depending on the
community. The net DOC flux in the monospecific Cymodocea nodosa bed
represented 65% and 21% of its GPPd in summer and winter, respectively,
whereas the net DOC flux in both the mixed meadow and Halimeda
incrassata beds were 38% and 16% of its GPPd respectively in summer,
and were negative in winter. A significant and positive linear correlation
(p< 0.05) was found between net DOC fluxes and GPPd in all communities,
with C. nodosa showing the strongest correlation (Fig. S2).

3.4. Assay to estimate the DOC bioavailability exported by vegetated communi-
ties

Bacterial abundance increased similarly in the three cultures through-
out the initial 3 days of exponential growth (Fig. S3), reaching the highest
concentration for mixed meadows (20 ± 2.4 ∗ 104 cell ml−1 and 17.4 ±
1.2 ∗ 104 cell ml−1 in summer and winter, respectively).

A sharp decrease of the DOC concentration occurred during the initial
7 and 10 days in bacterial incubations with seawater from in situ incubators
of Cymodocea nodosa in summer and winter, respectively. That decrease
was also observed in Halimeda incrassata but during the first 10 and 13
days in summer and winter, respectively. Meanwhile, the mixed meadow
showed a similar decrease of DOC concentration than C. nodosa in both
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seasons. After the decrease, DOC reached a plateau in all the treatments
of the three communities (Fig. 4). The highest DOC consumption was ob-
served in water from the monospecific H. incrassata bed, exhibiting a con-
sumption of 71% and 78% of labile DOC in summer and winter,
respectively. In the mixed meadow, the DOC consumption was moderate
and only 53% and 69%disappeared in summer andwinter, respectively. Fi-
nally, the C. nodosa was the community with less labile DOC, where 41%
and 65% of DOC was consumed in summer and winter, respectively.

A higher fraction of labile DOC (DOCL) was found in both the mixed
meadow andHalimeda incrassata than in theCymodocea nodosa community.
In contrast, the recalcitrant fraction of DOC (DOCR)was significantly higher
in C. nodosa in summer. The three communities showed higher DOCR in
summer than in winter but significant differences were only found in



Table 2
Summary of the hourly rate of dissolved organic carbon (DOC) fluxes during light hours, hourly rate of DOC fluxes during night hours, and daily rate of DOC fluxes in benthic
communities dominated by Cymodocea nodosa, Halimeda incrassata and mixed meadow of both macrophytes in summer and winter. Different letters indicate significant dif-
ferences between communities and seasons. Data are expressed as mean ± SE (n = 3).

Season Summer Winter

Community C. nodosa Mixed meadow H. incrassata C. nodosa Mixed meadow H. incrassata

DOC light hours (mmolC m−2 h−1) 10.91 ±
0.33a

6.44 ±
1.31b

3.48 ±
0.31b

9.09 ±
0.8ab

6.13 ±
1.13b

1.97 ±
0.62c

DOC night hours (mmolC m−2 h−1) −4.13 ±
0.95ab

−2.08 ±
0.44a

−2.97 ±
0.68ab

−6.28 ±
0.83b

−5.8 ±
0.75ab

−5.26 ±
1.21ab

Daily rate of DOC (mmolC m−2 d−1) 100.71 ±
6.79a

63.33 ±
13.48a

14.45 ±
9.16b

5.34 ±
5.59b

−18.11 ±
8.61bc

−52.86 ±
11.88c
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monospecificC. nodosa. All communities exhibitedDOCR:DOCL ratios<1 in
both seasons, except for C. nodosa in summer (Table 3 and S3).

4. Discussion

The three communities studied were autotrophic in both seasons since
all of them showed a positive daily rate of net community production
(NCPd). However, significant differences in both production values
(i.e., GPPd and NCPd) and community respiration (CRd) were found
Fig. 4. Bioavailability assays in summer (a) and winter (b) using DOC pool coming from
meadow of both macrophytes. Data are expressed as percentages of their respective init
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among them.Our results show thatCymodocea nodosameadows play an im-
portant role on the overall carbon metabolism of the studied area, since
stands where the seagrass occurs (i.e., both monospecific and mixed
meadow) reached the highest production values regardless of the season.
The higher summer productivity likely arises from the combination of
(1) the increased underwater photon flux and temperature, which foster
photosynthesis and primary production (Olivé et al., 2013) and (2) both
the higher values of seagrass aboveground biomass (Peralta et al., 2021)
and leaf area (Máñez-Crespo et al., 2020) resulting in more photosynthetic
in situ incubators dominated by Cymodocea nodosa, Halimeda incrassata and mixed
ial concentrations ± SE (n = 3).



Table 3
Labile and recalcitrant fractions (%) of community DOC fluxes in the different communities and seasons. DOCL: labile fraction of community DOC fluxes. DOCR: recalcitrant
fraction of community DOC fluxes. Different letters indicate significant differences between communities and seasons. Data are expressed as mean ± SE (n = 3).

Season Summer Winter

Community C. nodosa Mixed meadow H. incrassata C. nodosa Mixed meadow H. incrassata

DOCL 0.41 ± 0.03a 0.58 ± 0.06ab 0.71 ± 0.02b 0.65 ± 0.08b 0.73 ± 0.06b 0.77 ± 0.01b

DOCR 0.59 ± 0.03a 0.42 ± 0.06ab 0.29 ± 0.02b 0.35 ± 0.08b 0.27 ± 0.06b 0.23 ± 0.01b

DOCR:DOCL 1.48 ± 0.17a 0.75 ± 0.19b 0.41 ± 0.04b 0.58 ± 0.16b 040 ± 0.11b 0.30 ± 0.01b
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tissue to balance the O2 demand of the community. The H. incrassata
meadow exhibited significant lowerNCPd values than theC. nodosa one, es-
pecially in summer. Previous studies on carbon metabolism in this
macroalga both in its native range (Payri, 1988; van Tussenbroek and van
Dijk, 2007) and in invaded areas (Marx et al., 2021) also reported lower
production values than in adjacent seagrass meadows, further highlighting
the relatively small contribution of H. incrassata to the net community pro-
duction of the beds it creates. In agreement with such results, we observed
similar production values between the invaded seagrass meadow and the
monospecific C. nodosa stand. These values were statistically higher than
those for H. incrassata meadow in both seasons, likely because of the
small contribution of H. incrassata to the overall community production of
the mixed meadow (even if it represents an important part of the overall
benthic biomass).

Net DOC flux values ranged from ca. -52.8 to 100.7 mmol C m−2 d−1

and were similar to others reported for seagrasses and macroalgae (see re-
view by Barrón et al., 2014), and the seasonal trend we observed, with
higher summer values, was also in agreement with previous studies
(e.g., Ziegler and Benner, 1999; Barrón et al., 2004; Egea et al., 2019a).
There was net DOC production during sunlight hours and net DOC con-
sumption during night hours in the three communities we studied. In accor-
dance with other seagrass studies (Maher and Eyre, 2010; Apostolaki et al.,
2011; Barrón et al., 2014; Egea et al., 2019a), it suggests that an important
fraction of DOC release comes from photosynthetic activity. Importantly,
our results show that there is a large variability in DOC fluxes among the
communities studied. Themonospecific Cymodocea nodosameadow tended
to act as a high DOC producer both in winter and, especially, in summer,
when a marked increase was observed. Meanwhile, theHalimeda incrassata
bed and themixedmeadow switched fromnetDOCproducers in summer to
net DOC consumers inwinter. These changes in netDOCfluxes among com-
munities seem to be linked to the variation in net community production,
since a strong relationship between net DOC flux and daily rate of commu-
nity gross primary production (GPPd) was observed for each community.
These results agree with previousworks which emphasized the relationship
between high productivity in benthic communities (including vegetated
coastal communities and algal biofilms; Ziegler and Benner, 1999; Ziegler
et al., 2009; Maher and Eyre, 2011; Egea et al., 2019a) and larger net
DOC fluxes to the water column. Thus, our results indicate that the seagrass
C. nodosawould act as an important source of DOC for the entire ecosystem,
whereas H. incrassata would act more as a DOC consumer. As far as we are
aware, the only study examining DOC fluxes in H. incrassata (which was
performed in its native range) pointed out that its photosynthesis and calci-
fication rates can be negatively affected by DOC enrichment as a conse-
quence of bacterial growth and other processes that lead to local oxygen
depletion and the accumulation of toxic substances (Meyer et al., 2016),
which could explain, to some extent, the low productivity we observed
for the H. incrassata stands.

The three communities studied tended to release a higher proportion of
labile than recalcitrant fraction of DOC inwinter (ratio DOCR:DOCL< 1). In
contrast, during the summer, stands with the presence of the seagrass
Cymodocea nodosa (i.e., both in monospecific and mixed meadow) seem
to release a higher proportion of recalcitrant DOC, especially for monospe-
cific C. nodosa meadows (ratio DOCR:DOCL > 1). Therefore, C. nodosa
seems to shift its ratio DOCR:DOCL depending on the season, whereas
Halimeda incrassata communities tend to release mainly labile DOC
throughout the year. This matches studies on other macroalgal species
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(such asUlva sp.) which reported a highly labile and biodegradable DOC re-
lease (Zhang and Wang, 2017; Zheng et al., 2019; Chen et al., 2020). For
C. nodosa, when the GPP is lower and the net DOC release is nearly
balanced (i.e., winter), this community releases DOC mainly as labile
DOC. However, when both the GPP and net DOC release increase
(i.e., summer), the community releases DOC in both labile (41%) and recal-
citrant (59%) fractions. In seagrass-dominated communities, epiphytes and
bacteria contribute significantly to C cycling and DOC exchange (Egea
et al., 2020; Liu et al., 2020), especially in summer when the growth of
these organisms is higher. Since the leached DOC frommicroalgae and epi-
phytes are rapidly utilized by bacteria within several days (Middelburg
et al., 2000; Zhang and Wang, 2017), a higher proportion of labile DOC
would be expected in summer. This result suggests a possible link between
recalcitrant DOC and seagrass secondary metabolites, since it is in summer
when seagrass show increased secondary metabolism (Rotini et al., 2013;
Zidorn, 2016). Most of these compounds exhibit cytotoxic, antimicrobial,
or antimacrofouling activity, and in turn, as phenolic compounds, they
may be characterized as humic compounds as well. This is still a gap in
the research of seagrass secondary metabolism that needs to be tackled in
future studies. Hence, our results evidence that seagrasses export a signifi-
cant fraction of both labile and recalcitrant DOC, agreeing with the tight
coupling between DOC production and bacterioplankton productivity re-
corded in some seagrass communities (Ziegler and Benner, 1999; Ziegler
et al., 2004) and with the high concentrations of easily degradable protein-
aceous components found recently in a seagrass system (Akhand et al.,
2021). In addition, it also supports the findings of the recalcitrant character
of the DOC released in other seagrass communities (Watanabe and Kuwae,
2015; Liu et al., 2020). Importantly, our results on recalcitrant DOC fraction
in Cymodocea nodosa have significant conservation andmanagement impli-
cations, since they support the notion that seagrass communities can not
only contribute to ocean carbon sequestration as recalcitrant carbon buried
in their sediments (Nellemann et al., 2009; Duarte et al., 2013) but also as
recalcitrant carbon sequestered in dissolved form in the water column, sim-
ilarly to the recalcitrant fraction of DOC from plankton in the open ocean
(Nagata, 2008; Jiao et al., 2010, 2014; Ridgwell and Arndt, 2015).

Overall, our results indicate that the invasion of Halimeda incrassata on
Cymodocea nodosa beds (i.e., mixed meadows) seems to produce a net neu-
tral effect on community carbonmetabolism rather than leading to an over-
all negative balance. However, it must be considered that our results were
obtained from a healthy community of C. nodosa, in an area where environ-
mental range is optimal for its growth (Ballesteros et al., 1993), whereas in
highly stressed communities (e.g., damage from anchoring, eutrophication,
etc.) we cannot rule out that the invasion may result in negative interspe-
cific interactions that could trigger shifts in its community carbon metabo-
lism. Furthermore, our results were obtained from a shallow sheltered bay
of Cabrera Island, representative of the Cabrera Terrestrial-Maritime Na-
tional Park, but that does not include all the spatial variability in the area
(e.g., different depths and/or macrophyte densities). As depth increases,
seagrass shoot density, growth and productivity usually decrease as a con-
sequence of light attenuation (Alcoverro et al., 2001; Collier et al., 2007).
However, sometimes no differences are found in production with depth
(Terrados et al., 2006) because of the high morphometric and shoot dy-
namic plasticity of some species, like C. nodosa, which results in enhanced
light absorption efficiency (Peralta et al., 2021). Likewise,H. incrassata bio-
mass is expected to decrease with depth as it has been observed in other
Halimeda species (Smith et al., 2004; Teichberg et al., 2013). Therefore, it
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would be expected that the role of H. incrassata as primary producer in
deeper meadows may be even less important than that found in this exper-
iment in shallow areas, but this is a gap in the research ofH. incrassata inva-
sion that should be further explored. On the other hand, although the
methodology used to discern between labile and recalcitrant DOC has
been widely utilized in previous studies (e.g., Wada et al., 2008; Lønborg
et al., 2010; Romera-Castillo et al., 2011; Sitterley et al., 2021), it also in-
volved some limitations. First, the scale-up of our DOC bioavailability
assay results should be viewed with caution due to potential artifacts aris-
ing from the 300ml subsampling of the in situ incubators (~10 l). Although
the walls of the incubators were flexible enough to allow movement with
hydrodynamics, preventing water stagnation, which likely provides equal
distribution of DOC concentration, we cannot rule out some level of size ef-
fect. Second, the growth and structure of the bacterial community may be
altered during a confined incubation (Massana et al., 2001), which could
lead to a “bottle effect” in our incubations. However, previous works
found non-significant volume effects as used in the present experiment
(Hammes et al., 2010) and the volume of bottle incubations used here
was similar to previous studies on DOC degradation (e.g., Navarro et al.,
2004; Romera-Castillo et al., 2018; Birnstiel et al., 2022; Kragh et al.,
2022). For these reasons, the possible artifacts introduced by our experi-
mental setup are considered negligible as it would hardly modify the trends
found in the experiment.

The high productivity of shallow coastal areas dominated by seagrass
meadows suggests that these ecosystems contribute to the net storage of
carbon (i.e., blue carbon), which may help to offset the rise of carbon diox-
ide levels and, thus, acting as natural hotspots in counterbalancing climate
change as noted previously (Nellemann et al., 2009; Duarte et al., 2013).
However, our results indicate that macroalgal invasion can alter the pro-
ductivity of these communities switching to more heterotrophy, dwindling
their potential as carbon sinks, as it has been noted in other seagrass
meadows (Marbà et al., 2014; Egea et al., 2019a). In the case of Cabrera Ar-
chipelago National Park, changes in environment conditions driven by
growing human activities (e.g., warming, eutrophication) may alter the in-
terspecific equilibrium in favour of the invasive H. incrassata (Williams,
2007; Ceccherelli et al., 2014). Then, if C. nodosa suffered degradation
and this tropical alga was able to extend across the soft sediments, origi-
nally colonized by seagrass, it could result into a dramatic decrease in the
organic carbon uptake and DOC release, which ultimately may weaken
the carbon sequestration capacity of this marine protected area and its
role as a blue carbon sink. However, the C sink capacity of these ecosystems
depends ultimately on the amount of carbon accumulated in the long term
in the sediment as organic matter (Kennedy et al., 2010; Macreadie et al.,
2014). Hence, future studies should estimate the decrease in carbon sinks
when seagrass meadows switch to Halimeda incrassata beds. On the other
hand, given that this invader tends to produce more labile DOC than
seagrass, these shifts in macrophyte abundance would have further ecolog-
ical implications, since it would not only cause a drop in DOC release, but
also a shift in its bioavailability, triggering important changes in the trans-
fer of carbon and energy to higher trophic levels (Navarro et al., 2004; Egea
et al., 2019a) as well as in the contribution to blue carbon sink (Duarte and
Krause-Jensen, 2017). Until now, the role of DOC from coastal vegetated
communities in the fight against climate change has been limited to focus-
ing on the fraction exported to deep-sea waters, where it remains “trapped”
long enough to qualify as sequestration even if it is fully respired to CO2

(Duarte and Krause-Jensen, 2017). Our work shows how seagrasses release
a significant fraction of recalcitrant DOC directly, which reveals another
way of blue carbon sequestration in seagrass that should be further ex-
plored in order to understand the definitive contribution of these ecosys-
tems in climate change mitigation.

5. Conclusions

Our results suggest that the seagrass Cymodocea nodosa could play an
important role on the overall carbon metabolism of coastal habitats, acting
as an important source of DOC for the entire ecosystem. The invasive
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Halimeda incrassata shows lower production values than the adjacent
seagrass meadows, and tends to act as DOC consumer, releasing mainly la-
bile DOC. The spread of this invasive species into C. nodosameadows in the
Mediterranean Sea could decrease the export of carbon, as DOC, from these
seagrass communities. Furthermore, our results indicate that, if the balance
between these species were altered in favour of monospecific H. incrassata
meadows, it would lead to a significant reduction in organic carbon uptake
(which might affect the carbon sink capacity) and DOC release, and then,
the structure and functioning of the ecosystem could be strongly altered.
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