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We study the upgrading version of the maximal covering location problem with edge length modifica-
tions on networks. This problem aims at locating p facilities on the vertices (of the network) so as to
maximise coverage, considering that the length of the edges can be reduced at a cost, subject to a given
budget. Hence, we have to decide on: the optimal location of p facilities and the optimal edge length

This problem is NP-hard on general graphs. To solve it, we propose three different mixed-integer for-
mulations and a preprocessing phase for fixing variables and removing some of the constraints. Moreover,
we strengthen the proposed formulations including valid inequalities. Finally, we compare the three for-
mulations and their corresponding improvements by testing their performance over different datasets.

© 2022 The Author(s). Published by Elsevier B.V.
This is an open access article under the CC BY-NC-ND license
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1. Introduction

The maximal covering location problem was first introduced by
Church & ReVelle (1974). Given a set of clients, each with their
own demand, the aim is to locate a fixed number of facilities so
as to maximise the amount of covered demand. A client is hereby
considered to be covered if their distance to a facility is smaller
than or equal to a given coverage radius. Since its origins, this
model has been widely studied in the literature under different
perspectives. One of the most distinguishing aspects is the solu-
tion domain of the problem: continuous (Bansal & Kianfar, 2017;
Church, 1984; Plastria, 2002), discrete (Avella, Boccia, & Vasilyev,
2009; Church & ReVelle, 1974; Cordeau, Furini, & Ljubic, 2019; Gar-
cia & Marin, 2019), or on networks (Berman, Kalcsics, & Krass,
2016; Church & Meadows, 1979; Frohlich, Maier, & Hamacher,
2020). Furthermore, the maximal covering location problem has
been solved dealing with alternative coverage assumptions, like
gradual coverage (Berman & Krass, 2002) and cooperative cover-
age (Averbakh, Berman, Krass, Kalcsics, & Nickel, 2014; Karatas &
Eriskin, 2021), and with uncertainty, for example uncertainty in the
customer demand (Baldomero-Naranjo, Kalcsics, & Rodriguez-Chia,
2021; Berman & Wang, 2011), in the availability of facilities to pro-
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vide coverage (Daskin, 1983; Marin, Martinez-Merino, Rodriguez-
Chia, & da Gama, 2018; Vatsa & Jayaswal, 2021), or in a combina-
tion of these and other parameters (Arana-Jiménez, Blanco, & Fer-
nandez, 2020; Guzman, Masegosa, Pelta, & Verdegay, 2016; Zhang,
Peng, & Li, 2017).

Common to all those problems is, however, that the parameters
of the network and the problem are not decision variables of the
model. In this work, we propose a different approach dealing with
the maximal covering location problem on networks assuming that
edges can be upgraded and the total cost of all upgrades is subject
to a budget constraint. Upgrading an edge hereby means reducing
its length, usually within certain limits, at a given cost which is
proportional to the extent of the upgrade. In what follows, we give
an example to illustrate the proposed problem.

Example 1. Consider the single facility upgrading version of the
maximal covering location problem in the graph depicted in
Fig. 1a. The numbers next to the edges are their lengths, the cover-
age radius is 11, all the nodes have the same demand, all the edges
have a reduction cost of 1 unit per unit, and the maximum reduc-
tion is 25% of the edge length. The problem has been solved for
different values of the budget: 0 (Fig. 1a), 2.5 (Fig. 1b), 5 (Fig. 1c),
and 10 (Fig. 1d). The facility is represented as a red diamond, the
covered nodes are colored in orange, and the upgraded edges are
shown as thicker blue edges.

The pictures show that the location of the facility changes when
the budget grows, covering more demand with each increase. In
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(¢) Medium budget (budget=>5)
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(d) Large budget (budget=10)

Fig. 1. Illustrative example.

fact, if we fix the optimal location of the problem without upgrad-
ing and apply the most beneficial upgrades (i.e., the location of the
facility is given and only the upgrade of each edge should be de-
termined), we get that this facility would cover one node less for
each of the other three cases. These results illustrate the usefulness
of the upgrading version of this problem.

1.1. Related work

There are three main types of problems in the literature in
which two key parameters of the network, demand weights and
edge lengths, can be adjusted, i.e., they are decision variables of
the model:

e In inverse problems, the objective is to modify one of the
two key parameters at minimum cost such that a given fea-
sible solution becomes optimal, see e.g. Heuberger (2004),
Burkard, Pleschiutschnig, & Zhang (2004b), Bonab, Burkard,
& Gassner (2011), Wu, Lee, Zhang, & Wang (2013), Alizadeh
& Etemad (2016), Yang & Zhang (2008), Nguyen & Sepasian
(2016), Gassner (2012).

In reverse problems, the goal is to maximise/minimise the ob-
jective value of a given solution by modifying one of the key
parameters subject to a given budget. Basically, in reverse prob-
lems the roles of variables and input parameters are inter-
changed, i.e., the variables are considered as parameters and
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the parameters become variables, see e.g. Burkard, Gassner, &
Hatzl (2006, 2008), Wang & Bai (2010), Zhang, Yang, & Cai
(1999).

o In up/downgrading problems, an actor modifies the parameters
of the network and then a reactor takes a decision. In upgrad-
ing problems, actor and reactor have the same goal; in down-
grading problems, their objectives are conflicting.

Summing up, the main difference between inverse (reverse)
problems and up/downgrading problems is that in the former
there is a given solution that we want to improve, while in the
latter there is not. In this paper, we will focus on the upgrading
maximal covering location problem with variable edge lengths. In
the following, we denote problems where the edge lengths (de-
mand weights) can be changed as edge upgrading (node upgrading)
problems.

Next, we briefly review the literature of upgrading problems.
The upgrading version of many classical problems has been stud-
ied during the last decades, e.g. for the spanning tree problem
(Alvarez-Miranda & Sinnl, 2017), for the min-max spanning tree
problem (Sepasian & Monabbati, 2017), for bottleneck problems
(Burkard, Lin, & Zhang, 2004a), for minimum flow cost problems
(Demgensky, Noltemeier, & Wirth, 2002), for the shortest path
problem (Dilkina, Lai, & Gomes, 2011), for the maximal shortest
path interdiction problem (Zhang, Guan, & Pardalos, 2021), or for
communication and signal flow problems (Paik & Sahni, 1995).
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Table 1
Summary of literature review of upgrading problems.
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Field Upgrading

Problem and reference

Location problems Nodes

XX X |z

1-center: Gassner (2009).

Hub-location: Blanco & Marin (2019).
1-median: Gassner (2007).

Euclidean 1-median: Plastria (2016).
p-median: Sepasian & Rahbarnia (2015).

Arcs/edges

XX X | X

1-center: Sepasian (2018).
Maximal covering: our paper.
Obnoxious p-median: Afrashteh et al. (2020).

Others Nodes

Communication and signal flow problems: Paik & Sahni (1995).
Shortest path: Dilkina et al. (2011).
Spanning tree: Alvarez-Miranda & Sinnl (2017).

Arcs/edges

XX X | X X X

Maximal shortest path interdiction problem: Zhang et al. (2021).
Min-max spanning tree: Sepasian & Monabbati (2017).
Minimum flow cost: Demgensky et al. (2002).

In the context of node upgrading location problems (the weight
of the vertices can be modified subject to a prespecified budget),
the following problems have been analysed: the 1-median prob-
lem (Gassner, 2007), the 1-center problem (Gassner, 2009), the
Euclidean 1-median problem (Plastria, 2016), the p-median prob-
lem (Sepasian & Rahbarnia, 2015), and the hub-location problem
(Blanco & Marin, 2019), among others.

In the context of edge upgrading location problems, we are
aware of only two directly related publications: upgrading the
1-center problem (Sepasian, 2018) and upgrading the obnoxious
p-median problem on trees (Afrashteh, Alizadeh, & Baroughi,
2020). Somewhat related are the models in Melkote & Daskin
(2001a,b) which consider the possibility of adding new edges to
the network. This can be interpreted as an edge upgrading prob-
lem where an edge is in one of two states: non-upgraded with a
length of infinity, and upgraded with a finite length. This, how-
ever, differs from typical upgrading models where an upgrade can
be any fraction of the edge length (or node weight). The models
consider the minimization of the overall cost. So far, no results are
known for covering problems. Therefore, the main aim of this pa-
per is to fill this gap in the literature by studying the upgrading
maximal covering location problem with variable edge lengths.

For sake of clarity, we summarise the cited literature of upgrad-
ing problems in Table 1. We add two columns labelled N and C for
network and continuous problems.

1.2. Applications

This problem has several interesting applications in real-life.
Note that two decisions are made at the same time. On the one
hand, decide where to locate the p facilities, and on the other
hand, determine which edges to upgrade and by how much.

One application of this problem arises when a public admin-
istration wants to improve the accessibility of public services for
citizens, e.g. for health centres, educational facilities or social wel-
fare facilities. As the improvement is closely linked with distances
(Ensor & Cooper, 2004), one way to achieve this is to invest in
the infrastructure in order to reduce travel times to those services.
Such an investment is often a combination of building new fa-
cilities and improving the means to get to them, for example by
upgrading roads (developing a road into a highway, adding new
lanes, etc.) and enhancing public transport (incorporating high-
speed lines, adding dedicated bus lines, increasing the frequency
of service along links, etc.).

An interesting application in the private sector is for telecom-
munication companies. To improve their transmission rates and
broadband coverage, they will have to increase the bandwidth on

16

existing network links as well as build new or extend existing
switching centers. Similar problems are faced by gas and electricity
companies who wish to increase their coverage.

Finally, we would like to highlight another useful application in
shopping centers, airports, etc. The aim is to locate services such
as defibrillators and information posts, in combination with build-
ing additional passenger conveyors or escalators to make sure that
as many people as possible are within a fixed walking distance of
these facilities.

1.3. Overview

In this work, we derive three mixed-integer linear program-
ming formulations for the maximal covering location problem with
edge upgrades. Furthermore, we develop an effective preprocess-
ing phase that allows us to reduce the dimension of the proposed
formulations, allowing us to solve instances faster and also solve
larger instances than without preprocessing. Besides, we include
several sets of valid inequalities in order to eliminate symmetries
and even further improve the solution times of the formulations.

The rest of the paper is structured as follows. In Section 2 the
problem is introduced. Section 3 presents the first formulation for
the problem based on flow variables. Moreover, a preprocessing
phase and valid inequalities are developed. Next, in Section 4 and
Section 5 two new formulations are proposed. In addition, several
valid inequalities to enhance them are presented. Section 6 con-
tains computational experiments in which we compare the three
formulations. We also test the efficiency of the developed valid in-
equalities. Finally, our conclusions and some future research topics
are included in Section 7.

2. Definitions and problem description

Let N= (V,E, ¢) be an undirected network with node set V =
{1,....n} and edge set E, where |E| = m. Every edge e=[k,q] =
[q.kl € E, k,q €V, has a positive length e = €[ 4 and is assumed
to be rectifiable. For i, j €V, d(i, j) is the length of the shortest
path connecting i with j. Furthermore, we are given a fixed cover-
age radius R > 0. We say that a node i €V is covered by a facility
at node j if d(i, j) < R. Finally, for each node i ¢ V we are given a
non-negative amount w; that specifies the demand at the node.

The length ¢, of each edge e € E can be reduced by an amount
lower than or equal to u. € [0, ¢), e € E. Without loss of gener-
ality, we assume that ¢, —u, <R, for e ¢ E (if that were not the
case, i.e., there were an edge e € E such that ¢, — ue > R, then e can
be removed from the network without affecting the optimal solu-
tion). Moreover, any unit of reduction of the length of the edge e
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Table 2

Notation used in the paper.
A Set of all arcs in the induced directed network.
B Budget.

Ce Unit cost of reducing the length of edge e, e € E.

dd, j) Distance between nodes i and j before upgrading, i, j € V.

dd, j, 8) Distance between nodes i and j after the edge length
reductions &, e € E. In particular, d(i, j, §7) represents
the distance after the most favourable feasible edge
length reductions in the path from i to j and d(i, j, u)
the distance in a network with edge lengths ¢, — u,,
ecE.

I Set of edges incident to node i for each i e V.

rH(ry) Set of outgoing (incoming) arcs for each i e V.

m Number of edges.

n Number of nodes.

N=(V,E,¢) Network with node set V, edge set E, where e € E has
length ¢,.

p Number of facilities.

R Coverage radius.

Ue Maximum amount that edge e can be reduced, e € E.

V; Set of nodes whose distance to i before upgrading is
lower than or equal to R, i.e., {j eV \ {i} : d(i, j) <R}.

w; Demand of node i, for i e V.

comes at a cost of c. and there is a budget constraint B on the
overall cost of reduction. Again without loss of generality, we as-
sume that c.u. < B, for e € E (if that were not the case, i.e., there
were a cost c. for e € E such that ceu, > B, then u, can be substi-
tuted by u. = B/c. without affecting the optimal solution). Finally,
we assume that facilities can only be located at nodes. The upgrad-
ing maximal covering location problem (Up-MCLP) aims to locate
p service facilities covering the maximum demand taking into ac-
count that the total cost for the edge length reductions is within
the given budget.

Let § = (8e)ecr denote a vector of edge length reductions, 0 <
8e < U, for e € E. Moreover, let d(i, j, §) be the length of a shortest
path between nodes i and j after the edge length reductions § have
been applied, i.e., a shortest path in the network (V. E, £(§)) where
Le(8) = Le — O, for e € E. Finally, for p e N let X, €V denote a set
of p nodes and let C(X,,8) ={ieV |3jeXp:d(,j,6) <R} denote
the set of all nodes covered by a facility in X, after the edge up-
grades. Then, Up-MCLP can be formulated as:

max{ > wi| Y cele<B X, SV, |Xp| =p,0<8 <uceck

ieC(Xp.8) ecE

Table 2 summarizes the notation used in this paper.

Observe that this problem is NP-hard because the maximal cov-
ering location problem (MCLP) is a particular case of Up-MCLP
(setting ue = 0 for all e € E). The NP-hardness of the maximal cov-
ering location problem is proved in Hochbaum (1997).

3. Flow coverage formulation

In this section, we propose the first of our three Mixed-Integer
Programming (MIP) formulations for Up-MCLP. Using flow vari-
ables, the idea of this formulation is to model a path between
those pairs of nodes for which the distance between them is
smaller than or equal to R after the edge length reductions have
been applied. That is, if d(i, j, §) <R, then this will be reflected in
the formulation by a unit flow between nodes i and j. If, however,
d(i, j,8) > R, then the flow between i and j will be zero. We note
that in the former case, any path of length <R will do to assert
coverage of i (j) by a service facility located at site j (i), so we do
not insist on finding the shortest path.

To facilitate the use of flow variables, we consider a directed
network Np = (V, A, ¢) with node set V ={1,...,n} and arc set A
containing arcs (i, j) and (j,i) for each edge [i, j] € E. We denote
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eq € E the undirected edge corresponding to a € A and we define

F;’ (T'{") as the set of outgoing (incoming) arcs for each i € V. The

set of variables used in the formulation is summarized below.
Decision variables

X; 1, if there is a facility at node j, and 0, otherwise, for j e V.

Yij 1, if node i is assigned to a facility at node j, and 0, otherwise, for
ijeV.isj.

Se The amount of reduction of the length of edge e, for e € E.

;j 1, if a path of length <R from i to j traverses arc a, and 0, otherwise,
) fori,jev.i<j,aeA\(l‘;ul‘j*).
aj  The length of arc a, if this arc belongs to a path of length <R from
node i to node j (ag = 0 otherwise), for i, j e V,i < j,
aeA\ (Iy UTy).

Observe that in the definition of the y-variables, we use the
term “assign to” instead of “covered by”. A node can potentially be
covered by more than one service facility and we decided to re-
solve this ambiguity by explicitly assigning a node to a facility as
this simplifies the explanations of the formulations. Taking into ac-
count the notation presented above, the flow coverage formulation
for Up-MCLP is:

(Flow-Cov) max Y " w;

< Z Yij + Xi)
Jjev\li}

ieV

st. Y xj=p. (1)

jev
Z y:’j+xi51’ ieV, (2)

jeV\{i}

Vi <. i jeVi#], (3)
Zceée <B, (4)

eeE
0<6, <, eck, (5)
S al<r i,jeVi<j, (6)

aeA\(I; ury)

ol > fiee, — e, i,jeVii<jaeA\ (7 ury}),

(7
oofi- Y fl=0. ijeVii<jkeV\{ij. (8)
ael} a¢l} ael .agl'f
S =y 4y ijeV.i<j (9
ael’;
S FU =y + Vi ijeVi<j (10)
asr;

0<al <ty —6, i,jeVi<jaeA\ (7 uly),

()
xj € {0,1}, jev, (12)
yij € {0, 1}, LjeVi#] (13)
J e{0,1}, i,jeVii<jaeA\ (7 uT}).
(14)

The objective of the problem is to maximise the amount of cov-
ered demand. Constraint (1) fixes the number of located facilities.
The family of constraints (2) guarantees that either node i is itself
a service facility or is assigned to at most one node. The family of
constraints (3) ensures that a node is assigned to an open facil-
ity. The families of constraints (4) and (5) force that the reduction
on the length of the edges in the network is feasible. The families
of constraints (6)-(10) ensure that if y;; (y;;) takes value one, there
exists a path shorter than or equal to R from i to j (from j to i). In-
deed, if y;; + yji = 1, then the flow balance constraints (8)-(10) aim
at building a path from i to j and consequently from j to i. Fur-
thermore, constraints (6)-(7) ensure that this path is shorter than
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or equal to R. Note that constraints (2) and (3) imply y;; +y;i < 1,
fori,jeV,i#].

Next, we introduce a result that proves that the integrality con-
dition of some families of variables of (Flow-Cov) can be relaxed.

Lemma 1. An equivalent formulation of (Flow-Cov) is obtained sub-
stituting the set of constraints (12) by:

0<xj<1, jeV, (15)
and the set of constraints (13) by:
O<yj<1, i jeVii#]j (16)

Proof. Concerning the first part of the lemma, the x-variables in-
herit the integrality condition from y-variables due to constraints
(2) and (3).

Let x* and y* be optimal values for the x- and y-variables,
respectively, of formulation (Flow-Cov) when constraints (12) are
substituted by (15). For any i € V such that ZjeV\{i}Y?} =1, con-
straint (2) ensures that x; = 0. On the other hand, for any i€V,
such that there exists jo eV, jg #1i, with yjfol. =1, constraints (3)
guarantee that x¥ = 1. Finally, the model will choose to locate the
remaining service facilities (up to a total of p) at the uncovered
nodes with the largest demand.

Regarding the second part of the lemma, following a similar ar-
gument than before, we conclude that the y-variables inherit the
integrality condition from the f-variables due to constraints (9)
and (10) and the condition that y;; +y;; < 1 (derived by constraints
(2)and (3)). O

Observe that even though the f-variables are the intuitive can-
didates for relaxation (since their number is much larger than the
number of x- and y-variables), there are examples where the opti-
mal value differs when the integrality condition of these variables
is relaxed.

An alternative formulation for Up-MCLP can be derived from
the formulation (Flow-Cov) by replacing constraints (6), (7), and
(11) with the following ones:

> (flte,—vd) <R ijeV.i<] (17)
aeA\ (T ur;)
va <uefi, ijeVi<jaeA\(T7ury), (18)
0<yd<d,. ijeVi<jacA\(I;ury). (19)

where yaij represents the reduction on the length of arc a if this
arc belongs to a path of length < R from node i to node j, for i, j €

Vi<j, aeA\ (Fi‘ U F;“) A preliminary computational analysis

showed that the alternative formulation (Flow-Cov) for Up-MCLP
where constraints (6), (7), and (11) are replaced with (17), (18), and
(19) is better than the original (Flow-Cov). In this analysis, which
was carried out using the data described in Section 6.1, we com-
pared the formulations based on the number of instances solved to
optimality within the time limit, the time employed to obtain the
optimal solutions, the MIP relative gaps, the best solution gaps, and
the linear relaxation gaps. More details about these performance
values can be found in Section 6.

3.1. Preprocessing phase

Next, we present two results for preprocessing the model which
reduce the number of constraints and variables of the above for-
mulation and, subsequently, shorten the computational time re-
quired to solve them to optimality. The idea of the first is that if
the distance between node i and node j is smaller than or equal
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to R even before modifying the edge lengths of the network, then
node i can always be covered by a facility located at node j (and
vice versa) regardless of the edge length reductions made in the
network.

Proposition 1. If d(i, j) <R, for i, j e V,i < j then it is not necessary
to include either the f;-variables or the oy -variables (y,’-variables)
in formulation (Flow-Cov). Moreover, we can remove the constraints
associated with these variables from the family of constraints (6)-(11)
and (14) in the original (Flow-Cov) formulation and (8)-(10), (14),
(17)-(19) in the alternative (Flow-Cov) formulation.

The second result analyses the opposite case, i.e.,
Proposition 2 considers the situation in which the distance
between node i and node j is greater than R independently of the
edge length reductions.

Proposition 2. If one of the following four conditions is fulfilled for
i,jeV, i< j, the variables y;;,y;. fi. g (vs') for ae A can be re-
moved from the (Flow-Cov) formulation. Moreover, the constraints as-
sociated with this pair of nodes can be deleted, in particular (2), (3),
(6)-(11), (13), (14) in the original (Flow-Cov) formulation and (2), (3),
(8)-(10), (13), (14), (17)-(19) in the alternative (Flow-Cov) formula-
tion.

1) d(i,j) > R+ Y ecplUe, fori, jeV,i<j.

ii) d(i, j,u) > R, fori, jeV,i< j, where d(i, j, u) is the length of the
shortest path from i to j in a graph with edge lengths £e — ue, for
eckE.

k
B- Zk:l uf-’a(k)

iii) d(, j) > R+ ZL] Ue, g + for i, jeVi<]j,
_ o (ks1)
where k is the largest index k that satisfies the following condi-
tion:
k
Z ueo(h)cen(h) = B’ (20)
h=1

and o () is a permutation of {1,..., m} that sorts the unit up-
grade costs in non-decreasing order.
iv) The optimal value of the following problem is greater than R, for

ijeV.i<j

(Pd(i.j.aif)) min Z (fale, = Va)

aecA

st.  (4),(5),
Zfa‘ZfaZglu keV, (21)
ael’y} ael’;
Ya < Ue, fa, acA, (22)
Va < 8e, acAh, (23)
fae{0,1}, ach, (24)

where the f-variables and y-variables are defined as above (we
dropped the indices i and j for the ease of exposition), and

1, if k=i,
&=4-1 ifk=]
0, otherwise.

Proof. Each of the items of the proposition is proven below.

i) The first condition considers the case where the distance from
i to j is greater than R even when reducing the length of every
edge by the maximum amount allowed. Therefore, it is straight-
forward to conclude that the distance between the two nodes
cannot be less than or equal to R.
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ii) In the previous condition, the maximum amount of reduction
in the whole network was considered without taking into ac-
count the edges for which this reduction is made. Now we
compute the shortest path between two nodes in the network
assuming an unlimited budget, i.e., the full discount is applied
to all edges. For each edge e, let ¢e, = ¢e — Ue. For i, j eV, let
d(i, j,u) be the length of the shortest path connecting i with j
where the length of the edges are ¢.,, for e € E. Hence, even if
reducing the maximum amount allowed on all edges, the dis-
tance is greater than R, clearly, node i cannot be assigned to
node j, and vice versa. Although condition i) is weaker than ii),
i) can be checked more efficiently.

iii) This condition is similar to the first one, but takes into ac-
count the budget constraint (4). In this case, we calculate the
maximum reduction in the network allowed by the budget. For
this purpose, we sort the upgrade costs c., for e € E, in non-
decreasing order. Let o be a permutation of {1,...,m} such

that Cepqry < Ceyrzy < -+ = Ceim) Then, we compute the maxi-

mum total length reduction over the network, i.e., we spend the
budget on upgrading the cheapest edges. Let k be the largest
index k that satisfies condition (20). Therefore, the right-hand
side of iii) minus R is the maximum length reduction between
any two nodes of the network. Taking into account the above

arguments, we conclude that node i cannot be assigned to a

facility located at node j, and vice versa.

Condition iii) provides the maximal reduction without taking

into account whether this reduction can be achieved in a path

form i to j. For this reason, that bound can be tightened, but
it requires to solve a separate problem for each pair of ver-
tices. Formulation (Pd(i’ j,sij)) computes the shortest path be-
tween node i and node j assuming that all the budget can be
spent just for the path between those two nodes. Therefore, the
optimal value of this problem, named d(i, j, §1/), is the minimal
distance between node i and node j after the most favourable

edges length reductions. Hence, if d(i, j, /) is greater than R,

node i can never be assigned to a facility at node j, and vice

versa. O

=
—

As stated in Demgensky et al. (2002), the shortest path prob-
lem where the length of the edges can be reduced, (Pd(i'jysij)), is
NP-hard. However, the optimal value of the LP relaxation of for-
mulation (Pd(i, jvs,‘j)) provides a valid bound that can still be used
instead, albeit yielding a weaker condition. If this value is greater
than R, then i can never cover j, and vice versa.

3.2. Valid inequalities

In the previous subsection, we have presented two results to
preprocess the model, reducing the number of constraints and
variables. In this one, we propose several families of valid inequali-
ties to strengthen the (Flow-Cov) formulation which help us to fur-
ther shorten the computational times.

Proposition 3. Let V; := {j e V \ {i} : d(i, j) < R}. The following fam-
ilies of constraints are valid inequalities for (Flow-Cov):

by T =1 IkaleEijeVi<jkq#ij (25)
Vi =y +fi -1, ijkeVi<jk#ik#jaely.  (26)
Vazyi+fi -1, ijkeVi<jk#ik#jael, (27)
Xj < Z Yik + Xi, ieV,je\7i, (28)

k:ks£i,d(i,k)<d (i, j)
Xj < Z Ve +x, eV, jeV, (29)

keks#i,d (i, k,8%)<d (i, j)
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Fig. 2. Illustration of incompatibility.

(1.25,0.75, 1)

Proof. The proof of valid inequalities is given below:

The first family of constraints (25) ensure that an edge is not
traversed in both directions on a path from i to j, i < j.

The second and the third families of constraints, (26) and (27),
are based on the fact that a path between two non-adjacent nodes
i and j will traverse at least one other node. Therefore, if there
exists a path whose length is less than or equal to R that connects
a facility at node j (i) with demand point i (j) and traverses node k,
then node k will also be assigned to facility j (i). More concretely,
given i, j e V,i<j, if f{/ =1 for some a € A, such that ae I';, k #
i,k#jandy;; =1 (y; = 1), then the constraints impose that y;; =
1 (i = 1)

Regarding (28), these constraints ensure that a node will be
served by the closest service facility that is within the covering
distance before upgrading the network (whenever at least one ser-
vice facility is closer than the coverage radius before upgrading the
network). Observe that these constraints eliminate symmetries and
are valid also for formulation (Flow-Cov) because nodes might not
be assigned to the closest service facility in the upgraded network.
Nevertheless, the situation would be incompatible with constraints
(26) and (27), as explained in the following remark (Remark 1).

Finally, whenever at least one service facility j is closer to a
node i than the coverage radius before upgrading the network,
constraints (29) ensure that this node will either host a facility it-
self or be assigned to this service facility or to a facility that can
be closer after upgrading the network (it considers the distances
in the range of d(i, j) and the most favourable edge length reduc-
tions, i.e., d(i, k, §%) for any k #£i.). O

Remark 1.

i) Constraints (26) and (27) might be incompatible with (28), i.e.,
constraints (26)-(28) cannot be included in the formulation si-
multaneously.

ii) The family of valid inequalities (28) is tighter than (29), but
(29) are not incompatible with (26) and (27).

In the following, we present an example illustrating the first
part of Remark 1.

Example 2. Consider the network depicted in Fig. 2. For each edge,
its length, its upper bound of reduction, and its cost per unit of
reduction, (€e, Ue, Ce), are printed next to the edge. let R=1,p=
2,B=0.75, and the demand of nodes w; =1, w; =1, wy =1, wg =
1, wy = 1000, ws = 1000. It is straightforward to conclude that the
optimal location of the services are the dark nodes, ie., xf =1 and
xy =1, and that the optimal edge length reduction is ’S[*k.q] =0.75.

In this case, from constraints (28) we obtain that x; < y; + i +
Xi. Then, y;, = 1. On the other hand, facility q is the only one that
covers node j, then y}fq = 1. Moreover, as the path from node j to

node q traverses node k, we obtain that f(jﬁ) = 1. Therefore, from
constraint (26), we obtain that yj .= 1. Thus, we have found that
these families of constraints are incompatible (y); and y,, can not

take value one simultaneously due to constraints (2)).
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Fig. 3. Illustration of z-variables.

Note that the ideas behind constraints (28) and (29) are practi-
cally identical. The reason why constraints (29) are not incompati-
ble with (26) and (27) is that the constraints (29) do not force that
the node is assigned to the closest service facility before upgrad-
ing, instead for given i, j such that i # j and d(i, j) <R, it enables
the node to be assigned to another node whose distance after the
most favourable edge length reductions is smaller than or equal
to d(i, j). In Espejo, Marin, & Rodriguez-Chia (2012) a detailed de-
scription of closest service assignment constraints is given.

Observe that the variables dropped from the formulation in the
preprocessing phase (Propositions 1 and 2), can also be removed
from the valid inequalities presented in this subsection. In the next
section, an alternative formulation for this problem is developed.

4. Path formulation

In this section we present our second formulation for Up-MCLP.
It contains fewer variables and constraints than (Flow-Cov). How-
ever, this comes at the expense of reducing the scope of prepro-
cessing the model.

This formulation again models paths of length at most R from
a customer node i to a service provider. However, in contrast to
(Flow-Cov), the path from i is not modelled as a flow but through
the immediate successor of i on a path of length <R to a facility.
For this purpose, we introduce two new binary variables z;; (z;;) for
[i, j] € E, such that z;; (z;) is equal to one if node j (i) is the next
node on a path of length at most R from i (j) to a service facility.
In Fig. 3 we illustrate this family of variables where the dark node
represents a facility. If i is covered by a facility at g, then also j
must be covered. Note that a feasible solution resembles a forest
rooted at the facilities.

For the sake of clarity, a description of the decision variables
used in the formulation is given next.

Decision variables

X; 1, if there is a facility at node j, and 0, otherwise, for j e V.

Zj 1, if node j is the next node on a path of length <R from i to a
facility, and 0, otherwise, for [i, j] € E.

d; An upper bound of the length of the built path from node i to its
assigned service facility, fori e V.

8e = i j) The amount of reduction of the length of edge e = [i, j], for e € E.

The formulation for problem Up-MCLP using these variables,
(Path), is as follows:

(Path) max > wi[x+ > z;

ieV j:li,jleE
s.t. (1), (4), (12),

Y ozi+x <1, ieV, (30)
JilijeE
> zij+xi =z, [k.i] e E, (31)
J:lijleE, j#k
0<di <R ) z ieV, (32)
Jilij]eE
di > dj+Z[;.j]Z,‘j78[;.j] 7R(‘1 7Zi]'), [l,]] cE, (33)
0 < 8¢ < ue(zi5 + zj1), e=[i,jleE,  (34)
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Fig. 4. Illustration of constraints (33).

Zjj € {0, l}, [l,]] eE. (35)

The family of constraints (30) states that each node is assigned
to at most one facility or this node is itself a service facility. The
family of constraints (31) ensures that a node k is not assigned to
its service facility through a node i, unless node i is also covered or
a facility itself. The family of constraints (32) and (33) set the value
of d;, a bound on the distance from node i to its facility, if there
exists a path of length at most R. We note that (33) are equivalent
to the well-known Miller-Tucker-Zemlin subtour elimination con-
straints, extended by our edge length reduction variables. In Fig. 4,
an illustration of constraints (33) is depicted, in which the dark
node represents a facility. Finally, the families of constraints (4)
and (34) establish the bounds on the amount of length edge re-
ductions.

Note that constraints (30) and (31) ensure that

[i,jl€E. (36)

The following result presents an improvement to the previous for-
mulation, proving that the integrality condition on the x-variables
can be relaxed, providing a new family of valid inequalities, and
strengthening a family of constraints.

zij+2z; <1,

Proposition 4. The formulation (Path) can be enhanced as follows:

i) The binary condition for the x-variables can be relaxed.
ii) The following are valid inequalities for (Path).

di= Y (b —upq)zy. ieV. (37)
Jili.jleE
iii) Constraints (33) can be reinforced as follows
di > dj + i jyzij — 8pijy — R(1 = zp) + Zi(R— ¢ ™. i j] € E,
(38)

where a* := max {a, 0}.

Proof. The proof of i) is very similar to the proof of the first part
of Lemma 1.

Regarding statement ii), the idea behind these constraints is
based on the fact that if a non-facility node is covered, the distance
from that node to its assigned facility will be at least the length of
the adjacent edge in the path to the service provider, minus the
maximally allowed edge length reduction, i.e.,

di > (Z[”] — u[i.j])zijv [l, ]] eE. (39)
Moreover, each node is linked to at most one other node in the
path to its service facility because of constraint (30).

In order to prove result iii), we analyse the possible cases.
Since the z-variables are binary and constraints (36) are satisfied,
we get the following four possibilities in the optimal solution for
[i, j1 € E: a) z;‘j :z}fi =0, b) z;‘j = 1,23*.,. =0,cl) z;‘j =0, z}i =1, with
R—¢};j <0, and c.2) zj;=0,7;=1, with R — ¢j; ; > 0. In cases a),
b), and c.1) constraints (33) are fulfilled. Hence, (38) is valid. There-
fore, we focus on case c.2). In this case, since the lower bounds of
d; is only given by (33), we can assume without loss of generality
that (33) is satisfied with equality, i.e.:

d? = dz* + ([,',j] — Sri,j]'
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Therefore,

df =dj — i jy+ 6 5 = dj — 4y — 8 jp-

Hence, since zj; = 0, zj; = 1, we have that:

=8 — R =z +Z;(R— ¢ 3p),

and consequently the family of inequalities (38) holds. Finally, this
clearly strengthens the family of constraints (33). O

di = dj + i j)j;

In what follows, we will refer to (Path) as the formulation
where the above proposition has been applied. Next, we present
some valid inequalities linking x- and z-variables. These inequali-
ties are designed to strengthen the formulation. In (Path), it is not
possible to represent which service is assigned to a given node.
Therefore, the ideas of Proposition 2 cannot be used. Although it is
possible to obtain valid inequalities for this formulation based on
constraints (28).

Proposition 5. The following families of constraints are valid inequal-
ities for (Path):

Xj < ieV,jel, (40)

Keli,K1€E, £ g~y <d (G, )

IIED

ieW jeW:[i.jleE

Zik + Xi,

zj<|W|-1, WcV,3<|W|<n-p, (41)

di= ) (dj =R —zp)+ > (Gijzs—dij)-ieV.Si.S2 <.
Jili.jlesy Jlijlesy

(42)
Proof. If a facility is open at some node j whose distance to node
i before upgrading the network was lower than or equal to the
coverage radius (hypothesis of Proposition 1), we can be sure that
node i will be covered by some facility. Therefore, in order to elim-
inate possible symmetries, we assume that either i is a facility
itself or the immediate successor of node i on its path to a ser-
vice facility is a node whose distance to i after upgrading can be
smaller than or equal to d(i, j). Using the above argument, the
family of constraints (40) is obtained.

Secondly, we can include the valid inequalities (41) to avoid
cycles. These inequalities are not required in (Path) because the
family of constraints (33) or equivalently (38) avoid cycles in any
feasible solution. However, they can improve the linear relaxation
bounds.

Finally, we prove that constraints (42) are valid inequalities. Us-
ing constraint (30), we know that in any feasible solution, for each
i eV, there is at most one jo €V, [i, jo| € E such that z; = 1.

On the one hand, if 3 ;.; jcg2j =0, we obtain that d; =0 by
(32). Furthermore, this latter set of constraints ensures that d; <
R, for jeV. Then, d; —R(1 —z;) <0, for [i, j] € E. Moreover, since
the §-variables are non-negative and z;; =0, for j eV, we obtain
that ¢f; 1zij — 8j; ) < 0, for [i, j] € E. Hence, it holds that:

0=di> Y (dj—R(-2z)))
Jilijlesy
+ Z (E[j,jlzij — S[j,j]), 51,5, c T
Jilijless
On the other hand, if exists jo €V, [i, jo| € E, such that z;;, =1,
using (33) we know that:

di = dj, — R(1 = zij,) + i jy)Zijo — Oi jo)-

Furthermore, d; — R(1 —z;) < 0, for [i, j] € E, such that j # jg, and
i jjzij — 9yij) < 0, for [i, j] € E, such that j # jo. Therefore:

di= Y (-RA-zp)+ > (Gijzi—up). Si.S2<Th
Jiges, Jig1es,
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Thus, we conclude that constraints (42) are valid inequalities. O

Observe that in preliminary computational experiments the ad-
dition of the following constraints from family (41) as cuts in the
branching tree was quite effective (more details are provided in
Section 6):

[i. j]. [ k]. [i. k] € E.

Next, we solve the separation problem in the family of con-
straints (42), i.e., given a solution of the LP-relaxation of the for-
mulation, find one or more constraints in family (42) that are not
satisfied. Hence, sets S; and S, that maximises the right-hand-side
of the inequality have to be identified. Let d, §, and Z be the opti-
mal vectors of values of the d-, §-, and z-variables, respectively, in
a node of the branching tree during the resolution of an instance
of formulation (Path). Then, it is straightforward to conclude that
one of the following constraints maximises the right-hand-side of
(42):

Zij + Zji + Zjk + Zkj + Zik +2z; <2, (43)

di >

2

jili.jleE.d;>R(1-Z;)

(dj —R(1 7Z,'j)) +

2

JeliJIeE e 2 >8i )

(€1.512i5 — 8pijy). eV,

(44)

di >

>

JiliJ1eE.dj+; ;2 >R(1-2))+8): )

(dj+@[i‘j]Z,'j—R(l _zij)_S[i,j])v ieV. (45)

In Section 6, the performance of this formulation and the effec-
tiveness of the valid inequalities will be analysed.

5. Path-coverage formulation

In this section, we introduce a third formulation, which merges
components from the first formulation with the second formula-
tion. More precisely, we add the assignment variables y of (Flow-
Cov) to (Path). For the sake of clarity, all variables of this formula-
tion are explained below.

Decision variables

X; 1, if there is a facility at node j, and 0, otherwise, for j e V.

Yij 1, if node i is assigned to a facility at node j, and 0, otherwise, for
i,jeV,i#].

Zij 1, if node j is the next node on a path of length < R from i to its
service facility, and 0, otherwise, for [i, j] € E.

d; An upper bound of the length of the built path from node i to its
service facility, for i e V.

8¢ =4jij)  The amount of reduction of the length of edge e = [i, j], for e € E.

Next, we present the formulation of problem Up-MCLP using
the variables described above:

(Path — Cov) max ZW,‘ Xi + Z Zij

iev JligleE
st (1),3),(4). (12) — (13), (30) - (32), (34), (35). (38),
> vk= Y zp i€V, (46)
keV\{i} Jili.jleE
Yik = Zij +Zji +Yj — 1, keV\{ij}.li.jleE, (47)
Yij = zij+zji+x -1, [i, j] € E. (48)

The family of constraints (46) establishes that if a node is as-
signed to a service facility, then there is a path from this node
to its facility and vice versa. Constraints (47) ensure that if two
nodes are on the same path, i.e,, z;; = 1, they must be assigned to
the same facility k. Constraints (48) represent the particular case
where node j hosts a service provider. Observe that the objective
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function can also be expressed as follows:

ZWi Xi + Z Yij
ieV jev\{i}
But in preliminary computational experiments, we have found that
the objective function with the z-variables outperforms the one
with the y-variables. This analysis was again carried out using the
data described in Section 6.1 and the comparison was based on the
number of instances solved to optimality within the time limit, the
time employed to obtain the optimal solutions, the MIP relative
gaps, the best solution gaps, and the linear relaxation gaps. More
details about these performance values can be found in Section 6.
Below, we present a result that proves that the integrality con-
dition of some families of variables can be relaxed.

Lemma 2. The binary condition on the x-variables and the y-
variables can be relaxed.

Proof. The proof of the first part of this lemma is very similar to
the proof of the first part of Lemma 1. Regarding the integral-
ity condition on the y-variables, since their values are given by
the values of the z-variables, it is straightforward to conclude that
given an optimal solution it is possible to find another optimal so-
lution in which the y-variables are integer. O

In contrast to (Path), this formulation controls the service fa-
cilities to which the nodes are assigned with the y-variables. This
information allows us to use a more sophisticated preprocessing
phase. For doing so, one of the results presented in Section 3.1 is
used. Under the hypothesis of Proposition 2, i.e., a facility at node
i will never be assigned to a facility located at node j, for i, j eV,
and vice versa, variables y;; and y;; are removed from all the con-
straints in which they are included (fixed to zero and not included
in the formulation to save memory). Furthermore, using the infor-
mation obtained in the preprocessing phase we can develop new
valid inequalities, which are discussed in the next subsection.

5.1. Valid inequalities

This subsection is devoted to presenting valid inequalities for
formulation (Path-Cov). We start by remarking that the valid in-
equalities (29) obtained for formulation (Flow-Cov) can also be im-
plemented in (Path-Cov). Similarly, all the valid inequalities ob-
tained for formulation (Path) are still valid for (Path-Cov), namely,
the families of constraints (37) and (39)-(45). However, the ad-
ditional information provided by the y-variables in formulation
(Path — Cov) can be used to strengthen some of them. The ones
that can be enhanced using the covering variables are described
below.

First, the lower bound for the d-variables can be improved, i.e.,
constraint (37) can be enhanced as:

di> Y d(, j 8"y, ieV.
Jjev\{i}

(49)

Recall that d(i, j, §4/) represents the distance between nodes i and
j using the most favourable edge length reductions satisfying the
budget constraint (4). In what follows, we will refer to (Path-Cov)
as the formulation (Path-Cov) in which constraints (49) are in-
cluded.

Finally, we present a new family of valid inequalities that re-
inforces constraints (47). The objective of this reinforcement is to
improve the resolution of the formulation. It is based on the fact
that if two nodes are linked (the sum of their z-variables is one),
then both nodes will be assigned to the same service facility.
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Lemma 3. The following are valid inequalities for (Path-Cov):

Zij+2ji < Y Y+ XZw(i)
keW ki

+ Y vi+x(—=Tw()). [ jle EW SV, (50)
kgW k]

where Iy, (i) is the indicator function, ie., Ty (i) =1 ifie W and 0
otherwise.

Note that, for the case W ={k}, for keV, we obtain
Zij +2ji < Yik + Drev,enkexjYje +Xj, using constraints (30) and
(36), it holds that Zij +Zj < Yik + Ztev_t;é,(‘t#jyjt +Xj <Y + 1-
¥ji- Hence, some constraints of family (50) are tighter than (47).

As the cardinality of (50) is exponential, we solve the separa-
tion problem in this family of constraints. Therefore, the set W
that minimises the right-hand-side of constraints (50) has to be
identified. Let y (x) be the optimal vector values of y-variables (x-
variables) in a node of the branching tree during the resolution of
an instance of formulation (Path-Cov). Then, it is straightforward to
conclude that the following constraints minimise the right-hand-
side of (50).
Zij+2zji <

2

keV:yix <y . Vi <X;

X

keV:yj<yix-Yjk<Xi

Yik + XiZ{k:x, <5, (D

Vik + XLz <y (D). i j] € E. (51)

Note that if a pair of nodes satisfies at least one of the con-
ditions of Proposition 2, their corresponding y-variables can be re-
moved from all the constraints including the valid inequalities pre-
sented in this subsection.

In the following section, the performance of the three proposed
formulations for Up-MCLP are compared.

6. Computational results

In this section, we present the results of several computational
experiments which compare the performance of the three pro-
posed formulations and show the improvements achieved thanks
to the preprocessing phase and the inclusion of the valid inequal-
ities developed throughout the paper. The experiments were con-
ducted on an Intel(R) Xeon(R) W-2135 CPU 3.70GHz 32 GB RAM,
using CPLEX 20.1.0 in Concert Technology C++ with a time limit of
1800 s. We used the default parameter settings for CPLEX.

Regarding the preprocessing phase for formulations (Flow-Cov)
and (Path-Cov), aiming to find a balance between preprocessing
time and the quality of the d(i, j, §4/) bounds for each pair i, j € V,
the following strategy has been implemented. First, we computed
the matrix of pairwise shortest distances without upgrading and
the matrix of pairwise shortest distances after upgrading all edges
to their full maximum (d(i, j,u)) using the Floyd-Warshall algo-
rithm. Then, we checked if the hypothesis of Proposition 1 or
if the hypotheses i)-iii) of Proposition 2 are fulfilled. If either of
these conditions is satisfied for a pair i, j €V, we removed the
corresponding variables and constraints and we used d(i, j,u) as
d(i, j,87) in the valid inequalities that are required (as e.g. con-
straints (29)). This could be done because d(i, j,u) is a lower
bound of d(i, j, §). If neither of these conditions were fulfilled for
a given pair i, j € V, we solved the linear relaxation of (P, ; si)-
The minimum between its optimal objective value and d(i, j, u) is
the value that we used as d(i, j,8Y) in the corresponding valid
inequalities. As before, this can be done because both values are
lower bounds of d(i, j, §). For sake of clarity, we summarise the
process in Algorithm 1 .

In preliminary computational experiments, we checked the per-
formance of the alternative formulation (Flow-Cov) for Up-MCLP
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Algorithm 1: Preprocessing phase

Input: Formulation.
Output: Preprocessed formulation.
1 foreachi,jeV,i< jdo
2 | Compute d(i, j, u).
3 | if the hypothesis of Proposition 1 or the hypotheses
i)-iii) of Proposition 2 are fulfilled. then
1. Apply the proposition removing the corresponding
variables and constraints.
2. Set d(i, j, 8U) = d(i, j,u) if it is required in any
constraint.
4 | else
Solve the linear relaxation of (Pd(i, jv(gij)) with
objective value LRFy ; 5ij)-Set d(i, j, 8y =
max{d(i, j, u), LRPy ; sii}
if it is required in any constraint.
end
5 end

6 return Preprocessed formulation.

and the valid inequalities to identify which ones performed best in
each formulation. After this preliminary choice, we conclude that
the best formulations are:

a) Formulation (Flow-Cov) where constraints (6), (7), and (11)
have been replaced with (17), (18), and (19) and the family of
constraints (25) is included, named (Flow-Cov) for short.

b) Formulation (Path) where constraints (37) are included and
constraints (33) have been reinforced by constraints (38). In
what follows, we call it formulation (Path).

c) Formulation (Path) with constraints (40) as valid inequalities
and (43) as particular case of (41) in a pool of user cuts, named
(Path) + VI for short.

d) Formulation (Path-Cov) where constraints (49) are included, we
call it formulation (Path-Cov).

e) Formulation (Path-Cov) including constraints (29) and (43) as
particular case of (41) in a pool of user cuts, named (Path-
Cov) + VI for short.

Regarding the families of valid inequalities that we have used,
in preliminary investigation, we observe that the family of con-
straints (40) had a better performance than the family of con-
straints (43) for formulation (Path) in the majority of the tested
cases. Similarly, in the case of (Path-Cov), the family of constraints
(29) tended to provide a greater improvement in performance than
the family of constraints (43). Concerning the families of valid in-
equalities that we have not included in the reported numerical ex-
periments, we would like to remark that including the constraints
(44), (45), and (51) in the branching tree was effective, as the
number of nodes in which the instances were solved decreased.
However, this procedure is time-consuming, so that even though
the instances were solved on fewer nodes the overall computation
time increased.

The rest of the section is structured as follows. First, the data
used in the computational experiments are described. Second, the
advantages of the preprocessing phase are shown. Then, the fol-
lowing subsections compare the different formulations with and
without valid inequalities in complete graphs and in sparse graphs,
respectively. These subsections illustrate the great value of the pre-
processing phase and the addition of valid inequalities.
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6.1. Data

The computational experiments were carried out on two differ-
ent types of networks.

First, we generated instances adapting the procedure used in
ReVelle, Scholssberg, & Williams (2008), Cordeau et al. (2019),
among others. Nodes were given by points whose coordinates fol-
lowed a uniform distribution over [0,30]. Then, we computed the
complete graph where the length of the edges is the Euclidean dis-
tance between the nodes. We named these instances as “graph”
followed by the number of vertices, e.g., “graph30” is a complete
graph with 30 nodes and 435 edges.

Secondly, we used the uncapacitated p-median datasets from
the OR-Library, called pmed, see Beasley (1990). As said in the
documentation of these datasets, Floyd’s algorithm was applied to
obtain a symmetric allocation cost matrix that satisfied the trian-
gle inequality. The main difference with respect to the previous
datasets is that the p-median instances are sparser graphs (the
number of edges is n2/50).

The parameters have been chosen as described below. The
number of facilities, p, was proportional to the number of ver-
tices, i.e., p € {1,n/10, n/20}. The node weights or demands, w; for
i eV, were integers uniform randomly generated between 1 and
100. We tested three different coverage radii, R, such that we could
cover approximately 50%, 60%, and 70% of the total demand when
solving the maximal covering location problem without upgrad-
ing (DTMCLP)v i.e,Re {R(so%DTMCLP)v R(GO%DTMCLP), R(7O%DTMCLP)}-
Upgrading costs, ce, for e € E, were uniform randomly generated
between 1 and 3. The upper bounds ue, for e € E, were uniform
randomly generated from (0, 30%¢.), for e € E. Then, the length
of the edges was modified as ¢, + ue, for e € E. This implies that
the instances satisfy the triangle inequality when the full dis-
count is applied in all edges. Finally, the budget B was computed
as follows. First, we sorted the upgrade costs ceu,, for e € E, in
non-increasing order. Let p be a permutation of set E such that
Ce 1y Ue,q) = CepyUeyy = - = Cepn e Then, since we are con-
structing a forest with p components (as seen in Section 4), we can
assume that at most n — p edges will be upgraded. Therefore, we
computed the maximum required budget for upgrading the most
expensive edges,

n—-p

Binax = E Ue, ;) Cep s
t=1

and selected B € {0.5%Bmax, 1%Bmax, 5%Bmax}-

6.2. Preprocessing phase

In this subsection, we show the enhancements provided by the
preprocessing, i.e.,, Propositions 1 and 2. For doing so, we solve
(Flow-Cov) and (Path-Cov) with and without preprocessing.

As an illustrative example, we include the results for graph40
in Table 3. The performance was similar in the rest of the datasets.
The results are the average over five instances generated with the
same procedure, varying only the random seed for the generator.
The first column indicates the name of the dataset, the number of
nodes and the number of edges. Next, the percentage of the maxi-
mal budget (B%), and the number of located facilities are depicted
(p), followed by the approximate percentage of covered demand
in the MCLP without upgrading using this radius (R%). The follow-
ing four columns describe information about (Flow-Cov) without
preprocessing. The first one shows the average time (in seconds)
of solving the corresponding five instances. Observe that if any of
these instances is not solved to optimality, 1800 s is considered as
its solution time to compute this average. Then, the following col-
umn of this group depicts the MIP relative gap reported by CPLEX
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Table 3
Performance of formulations (Flow-Cov) and (Path-Cov) with and without preprocessing.
Data B% p R% (Flow-Cov) (Path-Cov)
Without preprocessing With preprocessing Without preprocessing With preprocessing
trotal G% Gh%  Gio% ty tga G% Ghek%  Gip% R%  Ry%  Ry%  toal G% Ghek  Gip%k  ty o G% Ghe%  Gip% R% Ry%  Ry%
graph40 |[V|= 05 1 50 10425 0.0(5) 0.0 932 0.1 0.7 0.0(5) 0.0 23 97.0 97.0 969 18079 99.9(0) 57 932 0.1 23 0.0(5) 0.0 24 699 462 525
40, |[E| = 780 60 1490.0 15.4(3) 00 523 0.1 3.8 0.0(5) 0.0 0.7 958 957 957 18042 74.8(0) 124 523 0.2 8.8 0.0(5) 0.0 0.7 63.1 37.6 435
70 1556.8 7.3(4) 00 354 02 2.0 0.0(5) 0.0 1.0 960 96.0 959 1807.5 59.6(0) 134 354 02 7242 1.0(3) 0.0 1.0 583 320 375
2 50 1578.7 74.4(1) 39 870 0.1 04 0.0(5) 0.0 1.2 984 984 984 61.3 0.0(5) 0.0 88.7 0.1 04 0.0(5) 0.0 33 808 68.7 743
60 1801.2 64.1(0) 42 570 0.1 0.4 0.0(5) 0.0 09 978 97.8 97.7 1093.2 4.3(3) 00 570 0.1 0.4 0.0(5) 0.0 09 775 60.0 662
70 1801.7 40.5(0) 44 341 0.1 0.7 0.0(5) 0.0 1.8 979 978 978 17693 17.5(1) 1.2 341 0.1 24 0.0(5) 0.0 1.8 743 53.1 595
4 50 2.9 0.0(5) 0.0 394 0.1 0.1 0.0(5) 0.0 1.0 991 99.1 99.0 0.3 0.0(5) 00 672 0.1 0.1 0.0(5) 0.0 28 867 834 873
60 27.5 0.0(5) 0.0 486 0.1 0.2 0.0(5) 0.0 0.8 99.0 989 989 8.4 0.0(5) 00 568 0.1 0.2 0.0(5) 0.0 1.7 849 785 83.1
70 1546.9 25.6(1) 06 343 0.1 1.0 0.0(5) 0.0 39 983 982 982 305.4 0.0(5) 00 343 0.1 0.6 0.0(5) 0.0 44 819 708 763
1 1 50 13849 18.2(4) 0.1 86.0 0.1 1.1 0.0(5) 0.0 04 96.0 96.0 96.0 1807.3 98.4(0) 6.6 86.0 0.1 3.6 0.0(5) 0.0 0.5 688 455 517
60 1611.6 17.1(3) 0.0 518 0.1 1.5 0.0(5) 0.0 04 952 952 951 1809.0 71.3(0) 107 518 0.1 54 0.0(5) 0.0 04 625 372 431
70 1801.9 27.9(0) 0.0 340 02 26 0.0(5) 0.0 1.5 947 947 947 1816.8 58.6(0) 13.8 34.0 0.2 1353 0.0(5) 0.0 1.5 569 313 36.7
2 50 15793 69.8(1) 1.9 849 0.1 04 0.0(5) 0.0 09 981 98.1 98.0 95.8 0.0(5) 00 865 0.1 0.3 0.0(5) 0.0 14 804 684 741
60 18014 63.8(0) 6.1 532 0.1 0.8 0.0(5) 0.0 28 96.8 96.8 96.8 1609.6 12.4(1) 00 532 0.1 1.7 0.0(5) 0.0 28 765 593 654
70 1801.6  43.3(0) 7.6 316 0.1 1.9 0.0(5) 0.0 3.0 96.7 96.7 96.6 18045 23.9(0) 1.2 316 0.1 419 0.0(5) 0.0 3.1 731 523 586
4 50 2.9 0.0(5) 0.0 394 0.1 0.1 0.0(5) 0.0 1.0 991 99.1 99.0 0.3 0.0(5) 00 672 0.1 0.1 0.0(5) 0.0 28 867 834 873
60 27.6 0.0(5) 0.0 486 0.1 0.2 0.0(5) 0.0 0.8 99.0 989 989 8.4 0.0(5) 00 568 0.1 0.2 0.0(5) 0.0 1.7 849 785 83.1
70 15473 25.7(1) 06 343 0.1 1.0 0.0(5) 0.0 39 983 982 982 301.5 0.0(5) 00 343 0.1 0.6 0.0(5) 0.0 44 819 708 763
5 1 50 1805.7 88.6(0) 33 821 0.1 1.7 0.0(5) 0.0 03 950 950 950 1807.6 87.3(0) 33 821 0.1 0.6 0.0(5) 0.0 03 67.7 449 51.0
60 1805.2 46.(0) 04 454 02 21 0.0(5) 0.0 05 943 943 943 1807.6 683(0) 128 454 0.1 16.3  0.0(5) 0.0 0.5 61.6 36.7 425
70 1802.5 43.1(0) 74 310 02 19 0.0(5) 0.0 00 942 942 941 1811.1 44.1(0) 79 310 0.2 3.6 0.005) 0.0 00 563 31.0 363
2 50 1800.6 106.7(0) 128 79.8 0.1 04 0.0(5) 0.0 1.1 974 974 973 211.0 0.0(5) 00 816 0.1 04 0.0(5) 0.0 1.1 797 679 735
60 1801.3 61.7(0) 86 476 0.1 1.1 0.0(5) 0.0 03 96.1 96.0 96.0 1804.8 14.4(0) 00 476 0.1 0.7 0.0(5) 0.0 03 757 58.7 648
70 1802.0  41.7(0) 99 276 0.1 1.5 0.0(5) 0.0 00 955 954 954 18043 21.3(0) 1.5 276 0.1 2.0 0.0(5) 0.0 00 718 514 576
4 50 3.1 0.0(5) 0.0 36.1 0.1 0.1 0.0(5) 0.0 12 989 988 9838 0.3 0.0(5) 00 634 0.1 0.1 0.0(5) 0.0 13 864 831 87.1
60 512.0 0.0(5) 00 459 0.1 0.2 0.0(5) 0.0 0.0 985 984 984 6.4 0.0(5) 0.0 541 0.1 0.2 0.0(5) 0.0 0.0 844 781 827
70 1801.1 35.4(0) 6.0 271 0.1 1.0 0.0(5) 0.0 1.5 974 973 973 463.7 1.4(4) 00 271 0.1 0.8 0.0(5) 0.0 1.5 808 701 755
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(G%) and in brackets the number of instances solved to optimality
within the time limit. Next, it is provided the best solution gap,
(Gis%), computed as follows:

BS' —BS
BS'
where BS is the best MIP objective value found within the time
limit by the formulation and BS' is the best MIP solution value
found within the time limit across all formulations. Finally, it is

shown the linear relaxation gap, (GEP%). computed as follows:

LP — BS'
BS'
where LP is the optimal solution value of the linear relaxation of
the formulation. Note that G,% enables us to compare the linear
relaxation of the formulations with each other (it could be possi-
ble that G% is greater than Gip%). The following blocks of columns
depict information about the rest of formulations, (Flow-Cov) with
preprocessing and (Path-Cov) with and without preprocessing. Ob-
serve that the blocks corresponding to formulations with prepro-
cessing include eight columns. The first column of these blocks
reports the average time of the preprocessing phase in seconds,
the next one shows the average total time (in seconds) of solving
the corresponding five instances including the preprocessing time.
The third, the fourth, and the fifth columns report the average G%,
G, and Gf, respectively. Then, the average percentage of reduc-
tion in the number of constraints (R.%), variables (R,%), and binary
variables (Rp,%) are depicted. The percentage of reduction in the
number of constrains is computed for formulation (Flow-Cov) as

follows:

Ghe% = 100,

Gip% = 100,

R %7#constraint of (Flow-Cov) without prep. — #constraint of (Flow-Cov) with prep. 100
o= #constraint of (Flow-Cov) without prep. .

The others are calculated analogously. For interested readers, a
similar table that compares the performance of the different
phases of the preprocessing can be found in supplementary ma-
terial.

As can be appreciated in Table 3, the preprocessing phase yields
a huge reduction in computation time. For example, using for-
mulation (Flow-Cov) without preprocessing, only 53 instances are
solved to optimality within the time limit, while using formula-
tion (Flow-Cov) with preprocessing, all instances are solved (135)
and the average time of solving each instance (including the time
of preprocessing) is 1.1 s. Furthermore, the reduction in the num-
ber of constraints, variables and binary variables is also very large,
approximately 97% on average. In formulation (Path-Cov), the re-
duction of time in the resolution process and the reduction of the
size of the problem are also very substantial.

Based on the above results, we conclude that the preprocess-
ing phase presented in the paper is extremely useful and effective.
Therefore, in the subsequent computational experiments, the pre-
processing phase is included.

6.3. Results for complete graphs

In this subsection, we compare the proposed formulations for
complete graphs highlighting the effectiveness of the valid inequal-
ities developed. For interested readers, non-parametric tests (Fried-
man test and Post-Hoc Holland adjust) to assess the statistical sig-
nificance of the comparison among the different formulations can
be found in supplementary material. We used the shiny application
shinytest!, see Carrasco, Garcia, Rueda, Das, & Herrera (2020) for
further details. The non-parametric tests show that there are sig-
nificant differences between the formulations presented.

1 https://github.com/JacintoCC/shinytests
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The results of the smaller datasets (graph30 and graph40) are
depicted in Table 4. As before, the provided results are the aver-
age over five instances generated with the same procedure, varying
only the random seed for the generator. The table describes infor-
mation about (Flow-Cov), (Path), (Path) + VI and (Path-Cov), and its
structure is similar to that of Table 3. Observe that the blocks cor-
responding to the (Path) and (Path) + VI formulations have no pre-
processing time, since we did not provide a preprocessing for these
formulations. Note also that the results of (Path-Cov)+ VI are not
included because they are really similar to (Path-Cov). The differ-
ences between these formulations will be shown in instances with
a larger number of nodes and edges. Moreover, since several of the
valid inequalities are included as cuts in the branching tree, the
linear relaxation gap Gi,)% of the formulation with valid inequal-
ities is practically the same as the one for the formulation with-
out valid inequalities. Therefore, they do not appear again in the
table.

Finally, the formulation that provided the smallest average total
time is highlighted. If any of the five instances were not solved to
optimality, the formulation that solved more instances is shown in
bold.

The results in Table 4 show that formulations (Flow-Cov) and
(Path-Cov) outperform (Path) and (Path) + VI (the resolution times,
the number of instances solved, the MIP relative gap, the best
solution gap, and the linear relaxation gap of these formula-
tions are worse). Moreover, it is clear from these results that the
valid inequalities improve the performance of formulation (Path)
as shown in the number of instances solved to optimality (208
instances with respect to 217 instances) and the average total
time (489 s with respect to 416 s). However, this improvement
is not large enough to make this formulation competitive with
respect to formulations (Flow-Cov) and (Path-Cov) on complete
graphs. Nevertheless, it can be seen that formulations (Path) and
(Path) + VI in graph40 solve many more instances than formula-
tions (Flow-Cov) and (Path-Cov) without preprocessing (85 and 91
instances with respect to 53 and 64 instances), as can be seen in
Table 3.

In Table 5, the average of the number of constraints (c), the
number of variables (v), the number of binary variables (bv), and
the number of nodes visited in the branching tree (nodes) for each
dataset (graph30 and graph40) and each formulation is reported. A
detailed table can be found in the supplementary material. It can
be seen that the dimension of (Flow-Cov) is much larger than the
others. Note also that the inclusion of valid inequalities in formula-
tion (Path) decreases considerably the number of nodes used. Ob-
serve that (Path-Cov) is the one with intermediate size and num-
ber of nodes.

In Table 6, a second set of computational experiments is re-
ported. Here, datasets of larger size (graph100 and graph120)
are solved so that formulations (Flow-Cov), (Path-Cov) and (Path-
Cov) + VI can be compared. Table 6 has the same structure as
Table 4, but now (Path-Cov) + VI is included whereas (Path) and
(Path) + VI are not. Moreover, a similar analysis to the one in
Table 5 is reported in Table 7 for graph100 and graph120. A de-
tailed table can be found in the supplementary material. For the
purpose of a clearer comparison of these formulations, the perfor-
mance profile graph of the number of solved instances is depicted
in Fig. 5.

Analysing the results shown in Table 6, we can conclude that
the difficulty of solving the instances is highly dependent on the
parameters (B, R and p). It can be observed that the instances be-
come more difficult as B and p decrease and R increases. As shown
in Table 6 and Fig. 5, the performance of these formulations is
quite similar. An interesting observation is that they complement
each other. In other words, there are instances in which formula-
tion (Flow-Cov) did not find the optimal solution within the time
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E:Ir)fl:r:mnce of formulations (Flow-Cov), (Path), (Path) + VI, (Path-Cov) on graph30 and graph40.
Data B% p R% (Flow-Cov) (Path) (Path) + VI (Path-Cov)
tst trotal G% Gho% Gip% trotal G% Ghe% Gip% trotal G% Ghe% [ trotal G% Ghe% Gip%
graph30, |V| = 30, |[E| =435 0.5 1 50 0.1 0.5 0.0(5) 0.0 2.2 54.6 0.0(5) 0.0 84.8 13.2 0.0(5) 0.0 0.1 0.7 0.0(5) 0.0 2.2

60 0.1 04  0.0(5) 0.0 0.9 5332 6.1(4) 00 509 144.1 0.0(
70 0.1 05  0.0(5) 0.0 07 11629  14.4(2) 02 347 865.0 8.2(3) 00 0.1 08  0.0(5) 0.0 0.7

) 00 01 14 0.0(5) 0.0 0.9

5
5
3

2 50 00 01  0.0(5) 0.0 0.6 03 0.0(5) 00 834 03 0.0(5) 00 00 01  0.0(5) 0.0 0.6

60 0.0 01  0.0(5) 0.0 0.0 0.7 0.0(5) 00 543 0.5 0.0(5) 00 00 01  0.0(5) 0.0 0.0

70 0.1 03 0.0(5) 0.0 1.0 5.0 0.0(5) 00 360 2.9 0.0(5) 00 0.0 03 0.0(5) 0.0 1.1

3 50 00 01  0.0(5) 0.0 04 0.1 0.0(5) 00 792 0.1 0.0(5) 00 0.0 01  0.0(5) 0.0 3.0

60 0.0 01  0.0(5) 0.0 2.6 0.3 0.0(5) 00 538 0.3 0.0(5) 00 0.0 01  0.0(5) 0.0 2.7

70 0.0 01  0.0(5) 0.0 0.7 0.8 0.0(5) 00 320 0.7 0.0(5) 00 00 01  0.0(5) 0.0 0.7

1 1 5 01 08  0.0(5) 0.0 41 102.7 0.0(5) 00 772 49.7 0.0(5) 00 0.1 1.9  0.0(5) 0.0 42
60 0.1 06  0.0(5) 0.0 0.7 620.2 2.9(4) 00 453 4794 1.3(4) 00 0.1 22 0.0(5) 0.0 0.7

70 0.1 08  0.0(5) 0.0 20 13700  10.0(3) 00 324 967.0  11.9(3) 00 0.1 41 0.0(5) 0.0 2.1

2 50 00 01  0.0(5) 0.0 0.6 0.3 0.0(5) 00 834 0.3 0.0(5) 00 00 01  0.0(5) 0.0 0.6

60 0.0 01  0.0(5) 0.0 0.3 0.7 0.0(5) 00 528 0.5 0.0(5) 00 00 01  0.0(5) 0.0 0.3

70 0.1 0.6  0.0(5) 0.0 15 11.7 0.0(5) 00 325 6.1 0.0(5) 00 00 09  0.0(5) 0.0 15

3 5 00 01  0.0(5) 0.0 04 0.1 0.0(5) 00 792 0.1 0.0(5) 00 0.0 01  0.0(5) 0.0 3.0

60 0.0 01  0.0(5) 0.0 2.6 0.3 0.0(5) 00 538 0.3 0.0(5) 00 0.0 01  0.0(5) 0.0 2.7

70 0.1 01  0.0(5) 0.0 0.7 0.8 0.0(5) 00 320 0.7 0.0(5) 00 0.0 01  0.0(5) 0.0 0.7

5 1 50 01 0.6  0.0(5) 0.0 0.0 2546 0.0(5) 00 662 98.3 0.0(5) 00 0.1 02  0.0(5) 0.0 0.0
60 0.1 0.7  0.0(5) 0.0 00  1097.0 5.5(3) 00 429 653.4 3.7(4) 00 0.1 02  0.0(5) 0.0 0.0

70 0.1 08  0.0(5) 0.0 00 13846  133(2) 00 288 13297 14.2) 00 0.1 15 0.0(5) 0.0 0.0

2 50 00 02  00(5) 0.0 2.2 0.4 0.0(5) 00 706 0.4 0.0(5) 00 0.0 01  0.0(5) 0.0 3.6

60 0.0 02  0.0(5) 0.0 14 1.0 0.0(5) 00 494 0.8 0.0(5) 00 00 02  0.0(5) 0.0 14

70 0.1 05  0.0(5) 0.0 12 20.4 0.0(5) 00 307 11.1 0.0(5) 00 0.1 04  0.0(5) 0.0 1.2

3 5 00 01  0.0(5) 0.0 1.1 0.1 0.0(5) 00 721 0.1 0.0(5) 00 0.0 01  0.0(5) 0.0 1.8

60 0.1 02  0.0(5) 0.0 3.2 0.5 0.0(5) 00 474 0.5 0.0(5) 00 0.0 02 0.0(5) 0.0 46

70 0.1 03  0.0(5) 0.0 4.0 13 0.0(5) 00 262 0.9 0.0(5) 00 0.0 02  0.0(5) 00 42

(continued on next page)
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Table 4 (continued)
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Data B% p R% (Flow-Cov) (Path) (Path) + VI (Path-Cov)
t ot G% Gi%  Go%  tiga G% Gi%  Gp%  tga G% Gi%  ty trotal G%
graph40, |V| = 40, |E| = 780 0.5 1 50 0.1 0.7 0.0(5) 0.0 23 1395.1 31.1(2) 0.0 93.2 1089.2 39.(3) 6.1 0.1 2.3 0.0(5)
60 01 38  0.0(5) 0.0 0.7 1801.0  48.3(0) 5.1 523  1802.6  45.9(0) 58 02 88  0.0(5)
70 0.2 2.0 0.0(5) 0.0 1.0 1801.6 43.6(0) 8.2 35.4 1803.7 62.1(0) 16.9 0.2 7242 1.0(3)
2 50 o1 04  0.0(5) 0.0 1.2 6.2 0.0(5) 00 886 45 0.0(5) 00 01 04  0.0(5)
60 0.1 0.4 0.0(5) 0.0 0.9 143.6 0.0(5) 0.0 57.0 53.9 0.0(5) 0.0 0.1 0.4 0.0(5)
70 01 0.7  0.0(5) 0.0 1.8 878.8 2.3(3) 00 341 549.8 1.1(4) 00 0.1 24 0.0(5)
4 50 0.1 0.1 0.0(5) 0.0 1.0 0.2 0.0(5) 0.0 67.2 0.2 0.0(5) 0.0 0.1 0.1 0.0(5)
60 01 02  0.0(5) 0.0 0.8 0.8 0.0(5) 00 568 0.6 0.0(5) 00 01 02  0.0(5)
70 0.1 1.0 0.0(5) 0.0 3.9 6.9 0.0(5) 00 343 44 0.0(5) 00 01 06  0.0(5)
1 1 50 01 11 0.0(5) 0.0 04 16362  36.3(1) 30 860 13676  32.2(3) 32 0.1 36  0.0(5)
60 01 1.5  0.0(5) 0.0 04 18005  48.2(0) 7.1 51.8  1801.1 55.8(0) 97 0.1 54  0.0(5)
70 0.2 2.6 0.0(5) 0.0 1.5 1801.0 42.2(0) 8.1 34.0 1802.9 48.6(0) 11.9 0.2 1353 0.0(5)
2 50 01 04  0.0(5) 0.0 0.9 10.1 0.0(5) 00 865 5.9 0.0(5) 00 01 03  0.0(5)
60 0.1 08  0.0(5) 0.0 2.8 255.7 0.0(5) 00 532 168.2 0.0(5) 00 0.1 1.7 0.0(5)
70 01 1.9  0.0(5) 0.0 30 10585 3.1(3) 00 316 817.9 1.8(3) 00 0.1 419  0.0(5)
4 50 0.1 0.1  0.0(5) 0.0 1.0 0.2 0.0(5) 00 672 0.2 0.0(5) 00 0.1 0.1  0.0(5)
60 0.1 02  0.0(5) 0.0 0.8 0.8 0.0(5) 00 568 0.6 0.0(5) 00 0.1 02  0.0(5)
70 0.1 1.0 0.0(5) 0.0 3.9 6.9 0.0(5) 00 343 44 0.0(5) 00 01 06  0.0(5)
5 1 50 0.1 1.7 0.0(5) 0.0 03  1549.1  37.7(1) 00 821 14882  36.2(1) 00 0.1 06  0.0(5)
60 02 21 0.0(5) 0.0 05  1800.6  50.4(0) 88 454 18065  44.6(0) 73 01 163 0.0(5)
70 02 1.9  0.0(5) 0.0 00 18029  38.6(0) 72 310 18034  41.2(0) 86 02 36  0.0(5)
2 50 01 04  0.0(5) 0.0 1.1 15.7 0.0(5) 00 815 10.5 0.0(5) 00 01 04  0.0(5)
60 0.1 1.1 0.0(5) 0.0 03 499.0 0.2(4) 00 476 2343 0.0(5) 00 0.1 07  0.0(5)
70 0.1 15 0.0(5) 0.0 0.0 1468.1 4.6(1) 0.1 27.6 1202.5 2.9(2) 0.1 0.1 2.0 0.0(5)
4 50 01 0.1  0.0(5) 0.0 1.2 0.2 0.0(5) 00 634 0.2 0.0(5) 00 0.1 01  0.0(5)
60 0.1 0.2 0.0(5) 0.0 0.0 0.8 0.0(5) 0.0 54.1 0.7 0.0(5) 0.0 0.1 0.2 0.0(5)
70 0.1 1.0 0.0(5) 0.0 1.5 39.4 0.0(5) 00 271 13.5 0.0(5) 00 01 08  0.0(5)
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;a:llﬂlebgr of constraints, variables, and nodes visited in the branching tree of formulations (Flow-Cov), (Path), (Path) + VI, (Path-Cov) on graph30 and graph40.
(Flow-Cov) (Path) (Path) + VI (Path-Cov)
c v bv nodes c v bv nodes c v bv nodes c v bv nodes
graph30 8551.5 6754.0 3441.2 0.6 716.1 382.3 245.2 1124757.3 918.3 382.3 245.2 607817.9 2632.1 588.2 451.1 2357.8
graph40 25549.9 20155.2 10180.8 9.5 1152.4 611.7 395.1 2661373.2 1497.2 611.7 395.1 1724565.8 5163.7 955.7 739.2 107560.3
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Table 6

Performance of formulations (Flow-Cov), (Path-Cov), and (Path-Cov) + VI on graph100 and graph120.

Data B% p R% (Flow-Cov) (Path-Cov) (Path-Cov) + VI
tot trotal G% Ghe% Gip% tot trotal G% Ghe% Gip% tot trotal G% Ghe%
graph100, |[V| = 0.5 1 50 6.8 1512.9 5.7(1) 0.0 6.9 6.8 1807.1 10.6(0) 3.2 7.0 6.8 1564.4 7.9(1) 0.8
100, |E| = 4950 60 71 1716.5 1.9(1) 0.0 24 7.3 1807.5 3.3(0) 0.8 24 7.2 1807.5 2.6(0) 0.2
70 8.1 1770.6 1649.1(1) 14.7 3.2 7.9 1808.3 4.4(0) 1.1 33 7.9 1808.4 4.8(0) 1.4
5 50 1.2 12.0 0.0(5) 0.0 1.6 1.2 7.5 0.0(5) 0.0 1.7 1.2 5.7 0.0(5) 0.0
60 13 455.3 0.3(4) 0.0 4.8 1.3 710.2 0.0(4) 0.0 5.1 1.3 654.6 0.0(4) 0.0
70 1.6 624.0 0.0(4) 0.0 25 1.6 1101.1 1.5(2) 0.3 2.5 1.6 1096.8 1.5(2) 0.5
10 50 1.1 2.0 0.0(5) 0.0 2.8 11 14 0.0(5) 0.0 3.8 1.1 14 0.0(5) 0.0
60 1.2 8.4 0.0(5) 0.0 35 1.2 3.0 0.0(5) 0.0 4.0 1.2 21 0.0(5) 0.0
70 1.2 19.7 0.0(5) 0.0 33 1.2 6.5 0.0(5) 0.0 3.6 1.2 6.2 0.0(5) 0.0
1 1 50 7.2 1285.7 3.3(2) 0.0 3.6 7.0 1262.4 4.1(2) 04 37 6.9 1265.4 3.7(2) 0.0
60 71 1383.9 0.6(3) 0.0 0.6 7.4 1557.2 1.5(2) 0.8 0.6 7.3 1378.9 0.9(2) 0.3
70 8.1 1643.4 16.3(2) 11.1 0.9 8.1 1692.6 1.6(1) 0.7 0.9 8.1 17109 2.0(1) 1.1
5 50 1.2 16.0 0.0(5) 0.0 13 1.2 6.7 0.0(5) 0.0 1.3 1.2 6.9 0.0(5) 0.0
60 13 413.9 0.3(4) 0.0 39 1.3 473.8 0.3(4) 0.0 4.1 1.3 448.4 0.3(4) 0.0
70 1.6 244.2 0.0(5) 0.0 1.8 1.7 1091.4 0.8(2) 0.1 1.9 1.6 1087.7 1.5(2) 0.4
10 50 1.1 1.9 0.0(5) 0.0 2.8 1.1 14 0.0(5) 0.0 3.8 11 14 0.0(5) 0.0
60 1.2 8.7 0.0(5) 0.0 35 1.2 2.8 0.0(5) 0.0 3.7 1.2 22 0.0(5) 0.0
70 1.2 22.1 0.0(5) 0.0 2.7 1.2 14.8 0.0(5) 0.0 2.8 1.2 14.1 0.0(5) 0.0
5 1 50 6.9 747.2 0.0(5) 0.0 0.0 7.1 284.7 0.0(5) 0.0 0.0 7.0 2783 0.0(5) 0.0
60 7.3 1064.1 0.0(5) 0.0 0.0 7.3 432.2 0.0(5) 0.0 0.0 7.2 368.9 0.0(5) 0.0
70 7.9 1148.0 0.0(5) 0.0 0.0 8.1 5134 0.0(5) 0.0 0.0 8.1 632.4 0.0(5) 0.0
5 50 1.2 4.0 0.0(5) 0.0 0.0 1.2 1.7 0.0(5) 0.0 0.0 1.2 1.7 0.0(5) 0.0
60 1.3 8.6 0.0(5) 0.0 0.0 13 4.9 0.0(5) 0.0 0.0 1.2 53 0.0(5) 0.0
70 1.7 211 0.0(5) 0.0 0.1 1.7 403.0 0.0(4) 0.0 0.1 1.6 229 0.0(5) 0.0
10 50 1.1 1.7 0.0(5) 0.0 0.9 1.2 1.4 0.0(5) 0.0 1.0 11 1.3 0.0(5) 0.0
60 1.2 33 0.0(5) 0.0 0.3 1.2 1.5 0.0(5) 0.0 03 1.1 1.5 0.0(5) 0.0
70 1.2 7.6 0.0(5) 0.0 0.5 1.2 4.7 0.0(5) 0.0 0.5 1.2 52 0.0(5) 0.0

(continued on next page)
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Table 6 (continued)

Data B% p R% (Flow-Cov) (Path-Cov) (Path-Cov) + VI
tr trotal G% Gie% GLo% t trotal G% Gi% Gip% te Crotal G% Gi%
graph120, |V| = 0.5 1 50 10.6 1718.2 6503.6(1) 16.9 33 10.8 1820.2 3.6(0) 0.3 33 10.9 1811.3 4.2(0) 0.8
120, |E| = 7140 60 12.2 1814.7 9004.2(0) 24.8 33 121 1812.6 4.0(0) 0.6 33 12.2 1812.5 7.5(0) 33
70 13.3 1815.4 10993.9(0) 28.8 3.4 134 1814.1 3.6(0) 0.1 34 13.1 1814.0 4.7(0) 1.2
6 50 21 462.0 0.7(4) 0.0 4.5 21 396.3 0.5(4) 0.0 4.7 21 405.6 1.1(4) 0.1
60 2.2 1353.5 0.1(3) 0.0 3.5 2.2 12471 0.8(2) 0.1 3.6 2.2 1309.7 0.8(2) 0.1
70 3.9 1248.9 0.9(2) 0.0 3.7 3.9 1592.4 5.(1) 1.7 3.8 3.9 1744.7 4.9(1) 1.7
12 50 2.0 4.2 0.0(5) 0.0 1.7 2.0 2.3 0.0(5) 0.0 2.2 2.0 2.3 0.0(5) 0.0
60 2.0 76.1 0.0(5) 0.0 5.1 2.0 6.1 0.0(5) 0.0 5.7 2.0 6.0 0.0(5) 0.0
70 2.0 355.5 0.0(5) 0.0 34 2.1 215.1 0.0(5) 0.0 3.8 2.0 65.4 0.0(5) 0.0
1 1 50 10.7 1798.6 2019.5(1) 18.4 0.5 11.0 1796.0 1.0(1) 0.4 0.5 109 1768.8 0.8(1) 0.3
60 123 1815.1 9023.2(0) 303 1.7 12.3 1719.2 2.2(1) 0.5 1.7 12.3 1728.1 2.2(2) 0.4
70 13.2 18154 11005.2(0) 30.0 1.8 13.7 1803.5 1.9(1) 0.1 1.8 13.7 1734.1 2.3(2) 0.6
6 50 2.1 456.6 0.5(4) 0.0 3.9 2.1 529.4 0.5(4) 0.0 4.1 2.1 412.0 0.8(4) 0.2
60 2.2 1076.9 0.1(3) 0.0 3.0 2.2 1274.0 0.9(2) 0.1 3.1 2.2 1323.6 0.8(2) 0.1
70 4.1 1480.6 1.4(2) 0.0 3.8 41 1806.9 5.3(0) 1.9 3.9 4.1 1655.6 5.5(1) 1.9
12 50 2.0 4.2 0.0(5) 0.0 1.7 2.0 23 0.0(5) 0.0 2.2 1.9 2.2 0.0(5) 0.0
60 2.0 263.1 0.0(5) 0.0 53 2.0 7.0 0.0(5) 0.0 5.6 2.0 6.2 0.0(5) 0.0
70 2.1 780.9 0.2(4) 0.0 3.2 2.0 380.8 0.2(4) 0.0 3.6 2.0 3359 0.0(5) 0.0
5 1 50 10.8 1530.5 2019.3(2) 18.5 0.0 10.9 367.1 0.0(5) 0.0 0.0 111 506.9 0.0(5) 0.0
60 124 1816.0 7167.1(0) 313 0.0 125 971.9 5.8(4) 4.5 0.0 12.2 776.0 0.0(5) 0.0
70 13.2 1817.0 6993.(0) 314 0.0 13.6 985.4 0.0(5) 0.0 0.0 13.6 1057.8 0.0(5) 0.0
6 50 2.1 30.9 0.0(5) 0.0 0.2 2.1 53 0.0(5) 0.0 0.2 2.1 7.7 0.0(5) 0.0
60 23 102.7 0.0(5) 0.0 0.4 2.2 44.7 0.0(5) 0.0 0.4 2.2 48.6 0.0(5) 0.0
70 4.0 281.8 0.0(5) 0.0 04 41 14841 0.4(1) 0.1 0.4 4.1 14511 0.2(1) 0.0
12 50 2.0 3.6 0.0(5) 0.0 0.6 2.0 2.2 0.0(5) 0.0 0.7 2.0 2.2 0.0(5) 0.0
60 2.0 243 0.0(5) 0.0 1.5 2.0 4.4 0.0(5) 0.0 1.6 2.0 4.3 0.0(5) 0.0
70 2.0 52.5 0.0(5) 0.0 0.7 2.0 10.3 0.0(5) 0.0 0.7 2.0 10.0 0.0(5) 0.0
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Table 7
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Number of constraints, variables, and nodes visited in the branching tree of formulations (Flow-Cov), (Path-Cov), and (Path-Cov) + VI on graph100 and graph120.

(Flow-Cov) (Path-Cov) (Path-Cov) + VI
c v bv nodes c v bv nodes c v bv nodes
graph100 796249.9 632308.2 316639.7 575.3 55293.7 4581.3 3605.5 95947.3 55310.7 4581.3 3605.5 71610.8
graph120 1556268.4 1236714.5 619029.0 1776.1 88816.1 6384.0 5035.1 166633.4 88847.8 6384.0 5035.1 154253.2
2 _,_./‘-/"'/-”. (Flow-Cov)
g 104+ 7 e (Path-Cov)
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Fig. 5. Performance profile graph of #solved instances using (Flow-Cov), (Path-Cov), and (Path-Cov) + VI formulations on graph100 and graph120.
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Fig. 6. Performance profile graph of #solved instances using (Flow-Cov), (Path-Cov), and (Path-Cov) + VI formulations on pmedb dataset.

limit but (Path-Cov) + VI did and vice versa. Nevertheless, (Path-
Cov) + VI found the optimal solution in more instances than (Path-
Cov) and all the instances solved to optimality by (Path-Cov) were
also solved to optimality by (Path-Cov) + VL. It can be appreciated
that the average preprocessing time is lower than fourteen seconds
in all cases. Furthermore, the linear relaxation of the formulations
(GEP%) is quite good, being on average 2.1% for (Flow-Cov) and 2.3%
for (Path-Cov) and (Path-Cov) + VI.

In view of the results reported in this subsection, we con-
clude that the best formulations for solving Up-MCLP on complete
graphs are (Flow-Cov) and (Path-Cov) + VL. In the next subsection,
sparser graphs will be analysed.

6.4. Results on sparse graphs

The aim of this subsection is to compare the proposed formu-
lations on sparse graphs. In particular, we used the uncapacited p-
median datasets from the OR-Library. For interested readers, non-
parametric tests (Friedman test and Post-Hoc Holland adjust) to
assess the statistical significance of the comparison among the dif-

31

ferent formulations can be found in supplementary material. They
show that there are significant differences between the formula-
tions presented.

Table 8 has the same structure as Table 4. In this table, we
reported the results of formulations (Flow-Cov), (Path), (Path) +
VI, (Path-Cov), and (Path-Cov) + VI on the smallest pmed datasets
(pmed1-pmed5), named pmeds. These networks contain 100 nodes
and 195.2 edges on average (the smallest have 190 and the largest
198). The provided results are the average over the five datasets
where the other parameters were randomly generated following
the procedure described in Section 6.1. Moreover, a similar analy-
sis to Table 7 is reported in Table 9 for pmeds instances. A detailed
table can be found in the supplementary material.

Similarly to complete graphs, it can be seen in Table 8 that
the difficulty of the instances is highly parameter-dependent. In
addition, it is shown that the preprocessing time is small (less
than two seconds in all instances). Furthermore, the number of in-
stances solved to optimality by (Flow-Cov), (Path-Cov), and (Path-
Cov) + VI is considerably higher than the ones solved by (Path) and
(Path) + VI. Observe that the average of the linear relaxation gaps
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Table 8
Performance of formulations (Flow-Cov), (Path), (Path) + VI, (Path-Cov), and (Path-Cov) + VI on pmeds.
Data B% p R%  (Flow-Cov) (Path) (Path) + VI (Path-Cov) (Path-Cov) + VI
tst teotal G% Gi% Gk tioal G% Gis%  Gip%  troal G% Ghe% s trotal G% Ghe%  Gip% g teotal G% Gie%
pmeds, |V| = 05 1 50 14 26.1  0.0(5) 0.0 43 918.8 17.5(4) 23 875 474.8 23.1(4) 45 1.4 20.5 0.0(5) 0.0 43 14 242 0.0(5) 0.0
100, |E| = 195.2 60 1.5 155 0.0(5) 0.0 21 17647 39.5(1) 8.7 553 1168.2 31.9(3) 7.8 1.5 38.7  0.0(5) 0.0 21 15 25.7  0.0(5) 0.0
70 1.5 32.6 0.0(5) 0.0 4.0 18019 44.0(0) 89 358 1580.2 75.0(1) 169 15 991.7 1.5(3) 0.0 41 15 5729 0.3(4) 0.0
5 50 1.2 1.4 0.0(5) 0.0 1.1 14.5 0.0(5) 00 75.8 135 0.0(5) 0.0 1.2 14 0.0(5) 0.0 27 12 1.4 0.0(5) 0.0
60 1.2 1.8 0.0(5) 0.0 1.3 575.0 0.0(5) 00 579 589.1 0.0(5) 00 1.2 21 0.0(5) 0.0 34 12 23 0.0(5) 0.0
70 1.2 3.9 0.0(5) 0.0 1.7 803.4 3.2(3) 00 388 979.5 2.5(3) 00 1.2 3.9 0.0(5) 0.0 26 1.2 3.7 0.0(5) 0.0
10 50 1.2 1.2 0.0(5) 0.0 0.1 0.8 0.0(5) 00 4238 0.7 0.0(5) 00 1.1 1.2 0.0(5) 0.0 3.7 1.1 1.2 0.0(5) 0.0
60 1.2 1.2 0.0(5) 0.0 0.7 1.6 0.0(5) 00 469 1.8 0.0(5) 00 1.1 1.3 0.0(5) 0.0 29 11 1.3 0.0(5) 0.0
70 1.2 1.4 0.0(5) 0.0 1.6 9.2 0.0(5) 00 354 28.2 0.0(5) 0.0 1.2 1.5 0.0(5) 0.0 30 1.2 1.6 0.0(5) 0.0
1 1 50 1.7 570.6  0.0(5) 0.0 7.2 14965 31.6(1) 27 771 113741 83.1(3) 131 1.7 202.6  0.0(5) 0.0 73 1.6 68.7 0.0(5) 0.0
60 1.7 1460.1 2.4(2) 0.0 7.7 1800.6 40.7(0) 49 49.6 14885 38.2(1) 6.7 1.7 960.6  3.1(4) 13 78 1.8 850.1 3.1(4) 1.3
70 1.8 4251 0.0(5) 0.0 4.8 18012 29.3(0) 57 30.1 1800.7 349.5(0) 51.1 1.8 14253 2.7(2) 0.0 49 1.8 1513.8 3.8(1) 0.0
5 50 1.2 1.8 0.0(5) 0.0 2.8 84.1 0.0(5) 00 75.7 77.7 0.0(5) 0.0 1.2 1.8  0.0(5) 0.0 49 1.2 1.7 0.0(5) 0.0
60 1.2 34 0.0(5) 0.0 5.0 918.9 0.7(4) 0.1 558 1116.2 3.9(2) 00 1.2 22.7  0.0(5) 0.0 66 1.3 182  0.0(5) 0.0
70 1.3 62.1  0.0(5) 0.0 52 17183 8.3(1) 02 363 1602.7 9.6(1) 03 1.3 76.6  0.0(5) 0.0 53 13 39.9 0.0(5) 0.0
10 50 1.1 1.2 0.0(5) 0.0 1.5 0.8 0.0(5) 00 431 0.7 0.0(5) 00 1.1 1.2 0.0(5) 0.0 44 1.1 1.2 0.0(5) 0.0
60 1.2 1.3  0.0(5) 0.0 1.7 2.6 0.0(5) 00 463 2.4 0.0(5) 00 1.2 1.9 0.0(5) 0.0 42 1.2 1.7 0.0(5) 0.0
70 1.2 1.7 0.0(5) 0.0 32 18.0 0.0(5) 00 34.6 25.3 0.0(5) 00 1.2 2.6 0.0(5) 0.0 56 1.2 2.5 0.0(5) 0.0
5 1 50 1.5 10156 0.0(5) 0.0 3.0 12884 24.(2) 2.7 551 11556 25.7(2) 32 15 64.8 0.0(5) 0.0 30 15 85.5 0.0(5) 0.0
60 1.6 1407.8 3.4(2) 0.5 4.5 1800.6 25.1(0) 48 337 16905 27.4(1) 62 1.6 869.4 2.5(3) 0.1 46 1.6 11409 2.5(2) 0.1
70 1.6 12050 1.8(2) 0.0 2.7 1801.7  22.6(0) 57 193 17585 268.6(1) 352 1.6 10774 1.8(3) 0.0 28 1.7 9469 1.9(3) 0.0
5 50 1.2 23 0.0(5) 0.0 41 102.8 0.0(5) 00 66.8 132.1 0.0(5) 0.0 1.2 3.0 0.0(5) 0.0 42 1.2 29 0.0(5) 0.0
60 1.2 52 0.0(5) 0.0 27 686.2 0.3(4) 0.0 46.2 738.7 0.0(5) 00 1.2 21.0 0.0(5) 0.0 27 1.2 17.6  0.0(5) 0.0
70 13 207.3  0.0(5) 0.0 3.0 14184 2.83(3) 0.1 288 14589 4.2(2) 00 13 48.5 0.0(5) 0.0 30 13 48.1 0.0(5) 0.0
10 50 1.2 1.2 0.0(5) 0.0 0.8 1.0 0.0(5) 00 384 0.8 0.0(5) 00 1.1 1.3  0.0(5) 0.0 1.1 1.2 1.3 0.0(5) 0.0
60 1.2 1.5 0.0(5) 0.0 31 43 0.0(5) 0.0 40.7 4.6 0.0(5) 00 1.2 1.9 0.0(5) 0.0 40 1.2 1.8 0.0(5) 0.0
70 1.2 22 0.0(5) 0.0 29 61.8 0.0(5) 00 294 38.3 0.0(5) 00 1.2 4.1 0.0(5) 0.0 30 1.2 39 0.0(5) 0.0
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Table 9
Number of constraints, variables, and nodes visited in the branching tree of formulations (Flow-Cov), (Path), (Path) + VI, (Path-Cov), and (Path-Cov) + VI on pmeds.

(Flow-Cov) (Path) (Path) + VI (Path-Cov) (Path-Cov) + VI
Data c v bv nodes ¢ v bv nodes c v bv nodes c v bv nodes c v bv nodes
pmeds 166204.5 120362.9 60983.3 4124 1023.2 6064 376.0 1296509.9 2333.6 6064 376.0 786929.8 7368.9 2248.1 2017.7 29238.2 7396.4 2248.1 2017.7 25113.6
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Table 10
Performance of formulations (Flow-Cov), (Path-Cov), and (Path-Cov) + VI on pmedb.
Data B% p R% (Flow-Cov) (Path-Cov) (Path-Cov) + VI
tse trotal G% Gie% Gip% tse trotal G% Ghe% Gipd% tse trotal G%
pmedb, 0.5 1 50 12.5 1815.3 5881.2(0) 18.7 9.1 124 1812.9 9.3(0) 0.1 9.9 12.3 1812.7 8.9(0)
V] = 60 183 1821.2 6383.5(0) 331 7.4 18.5 1819.1 7.5(0) 0.0 8.0 18.4 1818.7 7.7(0)
200, [E| = 70 36.3 1839.9 13701.3(0) 24.8 5.8 37.6 1848.8 5.8(0) 0.0 6.4 371 18375 6.1(0)
777.8
10 50 9.3 224 0.0(5) 0.0 2.1 9.2 14.8 0.0(5) 0.0 4.3 9.1 153 0.0(5)
60 9.5 1451.5 1.2(2) 0.0 4.4 9.3 1150.8 1.1(2) 0.2 6.5 9.3 975.3 1.3(3)
70 10.0 1811.3 2.8(0) 0.6 3.9 9.8 1815.2 2.7(0) 1.0 44 9.8 1811.3 2.6(0)
20 50 8.9 9.1 0.0(5) 0.0 1.8 8.9 9.2 0.0(5) 0.0 3.6 8.8 9.1 0.0(5)
60 9.0 45.4 0.0(5) 0.0 25 9.0 13.3 0.0(5) 0.0 3.8 8.9 14.4 0.0(5)
70 9.4 785.8 0.1(4) 0.1 2.7 9.2 617.7 0.4(4) 0.0 5.2 9.2 771.0 0.3(3)
1 1 50 11.2 1814.1 6101.7(0) 233 8.2 11.2 1811.5 8.4(0) 0.0 8.4 111 18115 8.4(0)
60 16.2 1819.9 13905.8(0) 25.2 7.4 16.3 1819.4 7.5(0) 0.0 7.6 16.1 1816.8 7.5(0)
70 33.7 1836.7 17155.8(0) 26.3 5.1 337 1834.1 5.4(0) 0.2 5.3 335 1834.1 5.5(0)
10 50 9.3 299.3 0.0(5) 0.0 3.7 9.0 57.5 0.0(5) 0.0 4.7 9.0 53.7 0.0(5)
60 9.4 1810.0 3.2(0) 0.1 5.5 9.5 1566.1 2.2(1) 0.5 5.8 9.3 1526.1 1.7(1)
70 9.5 1811.1 3.9(0) 0.7 3.8 9.6 1811.5 2.7(0) 0.4 3.8 9.5 1810.6 4.1(0)
20 50 9.2 9.5 0.0(5) 0.0 3.2 9.1 9.4 0.0(5) 0.0 4.2 8.9 9.3 0.0(5)
60 9.0 141.0 0.0(5) 0.0 3.6 9.3 232 0.0(5) 0.0 4.5 9.0 20.7 0.0(5)
70 9.3 1613.6 1.0(1) 0.1 3.2 9.2 1158.1 0.5(3) 0.0 4.1 9.1 959.8 0.3(4)
5 1 50 11.2 1546.2 6102.5(2) 253 0.0 11.2 181.1 0.0(5) 0.0 0.0 11.0 185.9 0.0(5)
60 16.6 1742.8 6551.2(1) 24.6 0.1 16.0 917.2 0.1(3) 0.0 0.1 16.0 803.1 0.1(4)
70 33.2 1837.5 11417.1(0) 29.4 0.2 32.6 853.6 0.2(4) 0.0 0.2 32.6 769.9 0.2(4)
10 50 9.1 342.8 0.0(5) 0.0 1.7 9.2 34.8 0.0(5) 0.0 1.7 9.0 30.0 0.0(5)
60 9.6 1527.2 1.1(1) 0.2 1.7 9.2 696.4 0.0(5) 0.0 1.7 9.2 434.5 0.0(5)
70 9.5 1811.4 1.2(0) 0.8 0.5 9.5 733.6 0.2(4) 0.0 0.5 9.4 687.4 0.5(4)
20 50 9.0 9.4 0.0(5) 0.0 1.2 8.9 9.6 0.0(5) 0.0 13 8.8 9.5 0.0(5)
60 9.2 44.5 0.0(5) 0.0 13 9.0 171 0.0(5) 0.0 1.4 8.9 15.5 0.0(5)
70 9.3 1324.6 0.4(2) 0.0 0.8 9.1 730.6 0.0(4) 0.0 0.8 9.3 493.2 0.1(4)
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Table 11
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Number of constraints, variables, and nodes visited in the branching tree of formulations (Flow-Cov), (Path-Cov), and (Path-Cov) + VI on pmedb.

(Flow-Cov) (Path-Cov) (Path-Cov) + VI
Data c v bv nodes c v bv nodes c v bv nodes
pmedb 2147283.6 1599445.8 802394.7 1809.3 35199.8 6849.2 6350.2 97218.6 35336.9 6849.2 6350.2 80667.2

of (Flow-Cov) (3.1%), (Path-Cov) and (Path-Cov) + VI (4.0%) are bet-
ter than the linear relaxation gap of (Path) and (Path) + VI (47.5%).
In Table 9 the different sizes of the problem for each formulation
can be appreciated.

In Table 10, we report the result obtained on datasets of larger
size, named pmedb. More concretely, the table shows the results
of formulations (Flow-Cov), (Path-Cov), and (Path-Cov) + VI on
larger pmed datasets (pmed6-pmed10). These networks contain
200 nodes and 777.8 edges on average (the smallest have 774 and
the largest 785). Note that the results of (Path), (Path) + VI are
not reported because very few instances were solved to optimal-
ity. In Table 11, a similar analysis to Table 9 is depicted. A detailed
table can be found in the supplementary material. In Fig. 6, the
performance profile of the number of solved instances using these
formulations is depicted.

As can be appreciated in Table 10 and Fig. 6, (Path-Cov) + VI
outperforms (Flow-Cov) and (Path-Cov). Observe that although the
gap of the linear relaxation of (Flow-Cov) (3.4%) is smaller than the
gap of (Path-Cov) and (Path-Cov) + VI (4%), the latter is the one
that solves to optimality within the time limit the largest number
of instances.

Based on the results presented in this subsection, we conclude
that the best formulation for solving Up-MCLP on pmedian graphs
was (Path-Cov) + VI. Furthermore, the results included in this sub-
section show the usefulness of including the valid inequalities dis-
cussed in the paper.

7. Conclusions and outlook

In this paper, we have tackled an interesting problem: the up-
grading maximal covering location problem with edge length mod-
ifications, Up-MCLP. As far as we know, it is the first time that this
problem is discussed in the literature.

Since we were dealing with a new problem, we proposed three
different mixed-integer formulations to model the situation from
various perspectives. Moreover, we developed an effective prepro-
cessing phase, which fixed many variables and reduced the size of
the problem considerably. Then, for each formulation, we provided
several sets of valid inequalities. These constraints allowed us to
strengthen the formulations and to reduce the symmetries con-
tained in the problem, shortening the time to solve the formula-
tions. The performance of the three formulations and the improve-
ment provided by the preprocessing phase and the valid inequal-
ities can be appreciated in the computational results included in
the paper. In these experiments, it can be seen that the most effi-
cient formulations for solving Up-MCLP are (Flow-Cov) and (Path-
Cov). In complete graphs, there is little difference in performance
between these two formulations, while in sparse graphs (Path-Cov)
performs better than (Flow-Cov). In both types of graphs, the addi-
tion of valid inequalities allows us to optimally solve a larger num-
ber of instances within the time limit.

We believe that this paper is an encouraging starting point that
opens up many opportunities for further research. While our pre-
processing techniques and valid inequalities allow us to solve sig-
nificantly larger instances, and in shorter time, the size of the solv-
able instances still falls short of what you would encounter in
practice. This leads to the necessity of developing heuristics that
can obtain good solutions (even if they are not optimal) in shorter
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time than the exact algorithms. An additional line of future work
is to further study and develop formulations for other upgrading
versions of location problems. For example, interesting and simi-
lar problems could be obtained by modifying the covering crite-
rion (e.g. gradual coverage, cooperative coverage, etc.), the location
criterion (e.g. center problems, set covering problems, etc.), and
the upgrading assumptions (e.g. non-linear upgrading cost or ad-
ditional requirements on the sets of edges to be reduced, e.g., they
have to form a connected set).
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