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a b s t r a c t 

We study the upgrading version of the maximal covering location problem with edge length modifica- 

tions on networks. This problem aims at locating p facilities on the vertices (of the network) so as to 

maximise coverage, considering that the length of the edges can be reduced at a cost, subject to a given 

budget. Hence, we have to decide on: the optimal location of p facilities and the optimal edge length 

reductions. 

This problem is NP-hard on general graphs. To solve it, we propose three different mixed-integer for- 

mulations and a preprocessing phase for fixing variables and removing some of the constraints. Moreover, 

we strengthen the proposed formulations including valid inequalities. Finally, we compare the three for- 

mulations and their corresponding improvements by testing their performance over different datasets. 

© 2022 The Author(s). Published by Elsevier B.V. 
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. Introduction 

The maximal covering location problem was first introduced by 

hurch & ReVelle (1974) . Given a set of clients, each with their 

wn demand, the aim is to locate a fixed number of facilities so 

s to maximise the amount of covered demand. A client is hereby 

onsidered to be covered if their distance to a facility is smaller 

han or equal to a given coverage radius. Since its origins, this 

odel has been widely studied in the literature under different 

erspectives. One of the most distinguishing aspects is the solu- 

ion domain of the problem: continuous ( Bansal & Kianfar, 2017; 

hurch, 1984; Plastria, 2002 ), discrete ( Avella, Boccia, & Vasilyev, 

009; Church & ReVelle, 1974; Cordeau, Furini, & Ljubi ́c, 2019; Gar- 

ía & Marín, 2019 ), or on networks ( Berman, Kalcsics, & Krass, 

016; Church & Meadows, 1979; Fröhlich, Maier, & Hamacher, 

020 ). Furthermore, the maximal covering location problem has 

een solved dealing with alternative coverage assumptions, like 

radual coverage ( Berman & Krass, 2002 ) and cooperative cover- 

ge ( Averbakh, Berman, Krass, Kalcsics, & Nickel, 2014; Karatas & 

riskin, 2021 ), and with uncertainty, for example uncertainty in the 

ustomer demand ( Baldomero-Naranjo, Kalcsics, & Rodríguez-Chía, 

021; Berman & Wang, 2011 ), in the availability of facilities to pro- 
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ide coverage ( Daskin, 1983; Marín, Martínez-Merino, Rodríguez- 

hía, & da Gama, 2018; Vatsa & Jayaswal, 2021 ), or in a combina-

ion of these and other parameters ( Arana-Jiménez, Blanco, & Fer- 

ández, 2020; Guzmán, Masegosa, Pelta, & Verdegay, 2016; Zhang, 

eng, & Li, 2017 ). 

Common to all those problems is, however, that the parameters 

f the network and the problem are not decision variables of the 

odel. In this work, we propose a different approach dealing with 

he maximal covering location problem on networks assuming that 

dges can be upgraded and the total cost of all upgrades is subject 

o a budget constraint. Upgrading an edge hereby means reducing 

ts length, usually within certain limits, at a given cost which is 

roportional to the extent of the upgrade. In what follows, we give 

n example to illustrate the proposed problem. 

xample 1. Consider the single facility upgrading version of the 

aximal covering location problem in the graph depicted in 

ig. 1 a. The numbers next to the edges are their lengths, the cover- 

ge radius is 11, all the nodes have the same demand, all the edges 

ave a reduction cost of 1 unit per unit, and the maximum reduc- 

ion is 25% of the edge length. The problem has been solved for 

ifferent values of the budget: 0 ( Fig. 1 a), 2.5 ( Fig. 1 b), 5 ( Fig. 1 c),

nd 10 ( Fig. 1 d). The facility is represented as a red diamond, the

overed nodes are colored in orange, and the upgraded edges are 

hown as thicker blue edges. 

The pictures show that the location of the facility changes when 

he budget grows, covering more demand with each increase. In 
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Fig. 1. Illustrative example. 
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act, if we fix the optimal location of the problem without upgrad- 

ng and apply the most beneficial upgrades (i.e., the location of the 

acility is given and only the upgrade of each edge should be de- 

ermined), we get that this facility would cover one node less for 

ach of the other three cases. These results illustrate the usefulness 

f the upgrading version of this problem. 

.1. Related work 

There are three main types of problems in the literature in 

hich two key parameters of the network, demand weights and 

dge lengths, can be adjusted, i.e., they are decision variables of 

he model: 

• In inverse problems , the objective is to modify one of the 

two key parameters at minimum cost such that a given fea- 

sible solution becomes optimal, see e.g. Heuberger (2004) , 

Burkard, Pleschiutschnig, & Zhang (2004b) , Bonab, Burkard, 

& Gassner (2011) , Wu, Lee, Zhang, & Wang (2013) , Alizadeh 

& Etemad (2016) , Yang & Zhang (2008) , Nguyen & Sepasian 

(2016) , Gassner (2012) . 
• In reverse problems , the goal is to maximise/minimise the ob- 

jective value of a given solution by modifying one of the key 

parameters subject to a given budget. Basically, in reverse prob- 

lems the roles of variables and input parameters are inter- 

changed, i.e., the variables are considered as parameters and 
15 
the parameters become variables, see e.g. Burkard, Gassner, & 

Hatzl (20 06, 20 08) , Wang & Bai (2010) , Zhang, Yang, & Cai

(1999) . 
• In up/downgrading problems , an actor modifies the parameters 

of the network and then a reactor takes a decision. In upgrad- 

ing problems, actor and reactor have the same goal; in down- 

grading problems, their objectives are conflicting. 

Summing up, the main difference between inverse (reverse) 

roblems and up/downgrading problems is that in the former 

here is a given solution that we want to improve, while in the 

atter there is not. In this paper, we will focus on the upgrading 

aximal covering location problem with variable edge lengths. In 

he following, we denote problems where the edge lengths (de- 

and weights) can be changed as edge upgrading ( node upgrading ) 

roblems. 

Next, we briefly review the literature of upgrading problems. 

he upgrading version of many classical problems has been stud- 

ed during the last decades, e.g. for the spanning tree problem 

 Álvarez-Miranda & Sinnl, 2017 ), for the min-max spanning tree 

roblem ( Sepasian & Monabbati, 2017 ), for bottleneck problems 

 Burkard, Lin, & Zhang, 2004a ), for minimum flow cost problems 

 Demgensky, Noltemeier, & Wirth, 2002 ), for the shortest path 

roblem ( Dilkina, Lai, & Gomes, 2011 ), for the maximal shortest 

ath interdiction problem ( Zhang, Guan, & Pardalos, 2021 ), or for 

ommunication and signal flow problems ( Paik & Sahni, 1995 ). 
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Table 1 

Summary of literature review of upgrading problems. 

Field Upgrading N C Problem and reference 

Location problems Nodes X 1-center: Gassner (2009) . 

X Hub-location: Blanco & Marín (2019) . 

X 1-median: Gassner (2007) . 

X Euclidean 1-median: Plastria (2016) . 

X p-median: Sepasian & Rahbarnia (2015) . 

Arcs/edges X 1-center: Sepasian (2018) . 

X Maximal covering: our paper. 

X Obnoxious p-median: Afrashteh et al. (2020) . 

Others Nodes X Communication and signal flow problems: Paik & Sahni (1995) . 

X Shortest path: Dilkina et al. (2011) . 

X Spanning tree: Álvarez-Miranda & Sinnl (2017) . 

Arcs/edges X Maximal shortest path interdiction problem: Zhang et al. (2021) . 

X Min-max spanning tree: Sepasian & Monabbati (2017) . 

X Minimum flow cost: Demgensky et al. (2002) . 
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In the context of node upgrading location problems (the weight 

f the vertices can be modified subject to a prespecified budget), 

he following problems have been analysed: the 1-median prob- 

em ( Gassner, 2007 ), the 1-center problem ( Gassner, 2009 ), the 

uclidean 1-median problem ( Plastria, 2016 ), the p-median prob- 

em ( Sepasian & Rahbarnia, 2015 ), and the hub-location problem 

 Blanco & Marín, 2019 ), among others. 

In the context of edge upgrading location problems, we are 

ware of only two directly related publications: upgrading the 

-center problem ( Sepasian, 2018 ) and upgrading the obnoxious 

p-median problem on trees ( Afrashteh, Alizadeh, & Baroughi, 

020 ). Somewhat related are the models in Melkote & Daskin 

2001a,b) which consider the possibility of adding new edges to 

he network. This can be interpreted as an edge upgrading prob- 

em where an edge is in one of two states: non-upgraded with a 

ength of infinity, and upgraded with a finite length. This, how- 

ver, differs from typical upgrading models where an upgrade can 

e any fraction of the edge length (or node weight). The models 

onsider the minimization of the overall cost. So far, no results are 

nown for covering problems. Therefore, the main aim of this pa- 

er is to fill this gap in the literature by studying the upgrading 

aximal covering location problem with variable edge lengths. 

For sake of clarity, we summarise the cited literature of upgrad- 

ng problems in Table 1 . We add two columns labelled N and C for

etwork and continuous problems. 

.2. Applications 

This problem has several interesting applications in real-life. 

ote that two decisions are made at the same time. On the one 

and, decide where to locate the p facilities, and on the other 

and, determine which edges to upgrade and by how much. 

One application of this problem arises when a public admin- 

stration wants to improve the accessibility of public services for 

itizens, e.g. for health centres, educational facilities or social wel- 

are facilities. As the improvement is closely linked with distances 

 Ensor & Cooper, 2004 ), one way to achieve this is to invest in

he infrastructure in order to reduce travel times to those services. 

uch an investment is often a combination of building new fa- 

ilities and improving the means to get to them, for example by 

pgrading roads (developing a road into a highway, adding new 

anes, etc.) and enhancing public transport (incorporating high- 

peed lines, adding dedicated bus lines, increasing the frequency 

f service along links, etc.). 

An interesting application in the private sector is for telecom- 

unication companies. To improve their transmission rates and 

roadband coverage, they will have to increase the bandwidth on 
16 
xisting network links as well as build new or extend existing 

witching centers. Similar problems are faced by gas and electricity 

ompanies who wish to increase their coverage. 

Finally, we would like to highlight another useful application in 

hopping centers, airports, etc. The aim is to locate services such 

s defibrillators and information posts, in combination with build- 

ng additional passenger conveyors or escalators to make sure that 

s many people as possible are within a fixed walking distance of 

hese facilities. 

.3. Overview 

In this work, we derive three mixed-integer linear program- 

ing formulations for the maximal covering location problem with 

dge upgrades. Furthermore, we develop an effective preprocess- 

ng phase that allows us to reduce the dimension of the proposed 

ormulations, allowing us to solve instances faster and also solve 

arger instances than without preprocessing. Besides, we include 

everal sets of valid inequalities in order to eliminate symmetries 

nd even further improve the solution times of the formulations. 

The rest of the paper is structured as follows. In Section 2 the 

roblem is introduced. Section 3 presents the first formulation for 

he problem based on flow variables. Moreover, a preprocessing 

hase and valid inequalities are developed. Next, in Section 4 and 

ection 5 two new formulations are proposed. In addition, several 

alid inequalities to enhance them are presented. Section 6 con- 

ains computational experiments in which we compare the three 

ormulations. We also test the efficiency of the developed valid in- 

qualities. Finally, our conclusions and some future research topics 

re included in Section 7 . 

. Definitions and problem description 

Let N = (V, E, � ) be an undirected network with node set V =
 1 , . . . , n } and edge set E , where | E | = m . Every edge e = [ k, q ] =
 q, k ] ∈ E, k, q ∈ V, has a positive length � e = � [ k,q ] and is assumed

o be rectifiable. For i, j ∈ V, d (i, j ) is the length of the shortest

ath connecting i with j. Furthermore, we are given a fixed cover- 

ge radius R > 0 . We say that a node i ∈ V is covered by a facility

t node j if d(i, j) ≤ R. Finally, for each node i ∈ V we are given a

on-negative amount w i that specifies the demand at the node. 

The length � e of each edge e ∈ E can be reduced by an amount 

ower than or equal to u e ∈ [0 , � e ) , e ∈ E. Without loss of gener-

lity, we assume that � e − u e ≤ R , for e ∈ E (if that were not the

ase, i.e., there were an edge e ∈ E such that � e − u e > R , then e can

e removed from the network without affecting the optimal solu- 

ion). Moreover, any unit of reduction of the length of the edge e 
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Table 2 

Notation used in the paper. 

A Set of all arcs in the induced directed network. 

B Budget. 

c e Unit cost of reducing the length of edge e, e ∈ E. 

d (i, j ) Distance between nodes i and j before upgrading, i, j ∈ V . 
d(i, j, δ) Distance between nodes i and j after the edge length 

reductions δe , e ∈ E. In particular, d(i, j, δi j ) represents 

the distance after the most favourable feasible edge 

length reductions in the path from i to j and d(i, j, u ) 

the distance in a network with edge lengths � e − u e , 

e ∈ E. 

�i Set of edges incident to node i for each i ∈ V. 

�+ 
i 

( �−
i 

) Set of outgoing (incoming) arcs for each i ∈ V. 

m Number of edges. 

n Number of nodes. 

N = (V, E, � ) Network with node set V , edge set E, where e ∈ E has 

length � e . 

p Number of facilities. 

R Coverage radius. 

u e Maximum amount that edge e can be reduced, e ∈ E. 
ˆ V i Set of nodes whose distance to i before upgrading is 

lower than or equal to R , i.e., { j ∈ V \ { i } : d (i, j ) ≤ R } . 
w i Demand of node i, for i ∈ V. 
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omes at a cost of c e and there is a budget constraint B on the

verall cost of reduction. Again without loss of generality, we as- 

ume that c e u e ≤ B , for e ∈ E (if that were not the case, i.e., there

ere a cost c e for e ∈ E such that c e u e > B , then u e can be substi-

uted by u e = B/c e without affecting the optimal solution). Finally, 

e assume that facilities can only be located at nodes. The upgrad- 

ng maximal covering location problem (Up-MCLP) aims to locate 

p service facilities covering the maximum demand taking into ac- 

ount that the total cost for the edge length reductions is within 

he given budget. 

Let δ = (δe ) e ∈ E denote a vector of edge length reductions, 0 ≤
e ≤ u e , for e ∈ E. Moreover, let d(i, j, δ) be the length of a shortest

ath between nodes i and j after the edge length reductions δ have 

een applied, i.e., a shortest path in the network (V, E, � (δ)) where

 e (δ) = � e − δe , for e ∈ E. Finally, for p ∈ N let X p ⊆ V denote a set

f p nodes and let C(X p , δ) = { i ∈ V | ∃ j ∈ X p : d(i, j, δ) ≤ R } denote

he set of all nodes covered by a facility in X p after the edge up-

rades. Then, Up-MCLP can be formulated as: 

ax 

{ ∑ 

i ∈ C(X p ,δ) 

w i 

∣∣∣ ∑ 

e ∈ E 
c e δe ≤ B, X p ⊆ V, | X p | = p, 0 ≤ δe ≤ u e , e ∈ E 

} 

. 

able 2 summarizes the notation used in this paper. 

Observe that this problem is NP-hard because the maximal cov- 

ring location problem (MCLP) is a particular case of Up-MCLP 

setting u e = 0 for all e ∈ E). The NP-hardness of the maximal cov-

ring location problem is proved in Hochbaum (1997) . 

. Flow coverage formulation 

In this section, we propose the first of our three Mixed-Integer 

rogramming (MIP) formulations for Up-MCLP. Using flow vari- 

bles, the idea of this formulation is to model a path between 

hose pairs of nodes for which the distance between them is 

maller than or equal to R after the edge length reductions have 

een applied. That is, if d(i, j, δ) ≤ R , then this will be reflected in

he formulation by a unit flow between nodes i and j. If, however, 

(i, j, δ) > R , then the flow between i and j will be zero. We note

hat in the former case, any path of length ≤ R will do to assert 

overage of i ( j) by a service facility located at site j ( i ), so we do

ot insist on finding the shortest path. 

To facilitate the use of flow variables, we consider a directed 

etwork N D = (V, A, � ) with node set V = { 1 , . . . , n } and arc set A

ontaining arcs (i, j) and ( j, i ) for each edge [ i, j] ∈ E. We denote
17 
 a ∈ E the undirected edge corresponding to a ∈ A and we define 
+ 
i 

( �−
i 

) as the set of outgoing (incoming) arcs for each i ∈ V. The

et of variables used in the formulation is summarized below. 

Decision variables 

x j 1, if there is a facility at node j, and 0, otherwise, for j ∈ V . 
y i j 1, if node i is assigned to a facility at node j, and 0, otherwise, for 

i, j ∈ V, i � = j. 

δe The amount of reduction of the length of edge e , for e ∈ E. 

f i j 
a 1, if a path of length ≤ R from i to j traverses arc a , and 0, otherwise, 

for i, j ∈ V, i < j, a ∈ A \ (�−
i 

∪ �+ 
j 

)
. 

αi j 
a The length of arc a, if this arc belongs to a path of length ≤ R from 

node i to node j ( αi j 
a = 0 otherwise), for i, j ∈ V, i < j, 

a ∈ A \ (�−
i 

∪ �+ 
j 

)
. 

Observe that in the definition of the y -variables, we use the 

erm “assign to” instead of “covered by”. A node can potentially be 

overed by more than one service facility and we decided to re- 

olve this ambiguity by explicitly assigning a node to a facility as 

his simplifies the explanations of the formulations. Taking into ac- 

ount the notation presented above, the flow coverage formulation 

or Up-MCLP is: 

low-Cov) max 
∑ 

i ∈ V 
w i 

( ∑ 

j∈ V\{ i } 
y i j + x i 

) 

s.t. 
∑ 

j∈ V 
x j = p, (1) 

∑ 

j∈ V\{ i } 
y i j + x i ≤ 1 , i ∈ V, (2) 

y i j ≤ x j , i, j ∈ V, i � = j, (3) ∑ 

e ∈ E 
c e δe ≤ B, (4) 

0 ≤ δe ≤ u e , e ∈ E, (5) ∑ 

a ∈ A \ (�−
i 

∪ �+ 
j 

)αi j 
a ≤ R, i, j ∈ V, i < j, (6) 

αi j 
a ≥ f i j 

a � e a − δe a , i, j ∈ V, i < j, a ∈ A \ (�−
i 

∪ �+ 
j 

)
, 

(7) ∑ 

a ∈ �+ 
k 

,a / ∈ �−
i 

f i j 
a −

∑ 

a ∈ �−
k 

,a / ∈ �+ 
j 

f i j 
a = 0 , i, j ∈ V, i < j, k ∈ V \ { i, j} , (8) 

∑ 

a ∈ �+ 
i 

f i j 
a = y i j + y ji , i, j ∈ V, i < j, (9) 

∑ 

a ∈ �−
j 

f i j 
a = y i j + y ji , i, j ∈ V, i < j, (10) 

0 ≤ αi j 
a ≤ � e a − δe a , i, j ∈ V, i < j, a ∈ A \ (�−

i 
∪ �+ 

j 

)
, 

(11) 

x j ∈ { 0 , 1 } , j ∈ V, (12) 

y i j ∈ { 0 , 1 } , i, j ∈ V, i � = j, (13) 

f i j 
a ∈ { 0 , 1 } , i, j ∈ V, i < j, a ∈ A \ (�−

i 
∪ �+ 

j 

)
. 

(14) 

The objective of the problem is to maximise the amount of cov- 

red demand. Constraint (1) fixes the number of located facilities. 

he family of constraints (2) guarantees that either node i is itself 

 service facility or is assigned to at most one node. The family of 

onstraints (3) ensures that a node is assigned to an open facil- 

ty. The families of constraints (4) and (5) force that the reduction 

n the length of the edges in the network is feasible. The families 

f constraints (6)–(10) ensure that if y i j (y ji ) takes value one, there 

xists a path shorter than or equal to R from i to j (from j to i ). In-

eed, if y i j + y ji = 1 , then the flow balance constraints (8)–(10) aim

t building a path from i to j and consequently from j to i . Fur- 

hermore, constraints (6)-(7) ensure that this path is shorter than 



M. Baldomero-Naranjo, J. Kalcsics, A. Marín et al. European Journal of Operational Research 303 (2022) 14–36 

o  

f

d

L

s

0

a

0

P

h

(

 

r

s  

s  

s  

g  

r

n

g

i

a

(

d

n

m

i

t

(

γ

0

w

a  

V

s

w

(

w

p

o

o

t

v

3

r

m

q

t

t

n

v

n

P  

t

i

a

a

(

P

b

e

P

i  

m

s

(

(

t

 

 

i  

 

i

P

r equal to R . Note that constraints (2) and (3) imply y i j + y ji ≤ 1 ,

or i, j ∈ V, i � = j. 

Next, we introduce a result that proves that the integrality con- 

ition of some families of variables of (Flow-Cov) can be relaxed. 

emma 1. An equivalent formulation of (Flow-Cov) is obtained sub- 

tituting the set of constraints (12) by: 

 ≤ x j ≤ 1 , j ∈ V, (15) 

nd the set of constraints (13) by: 

 ≤ y i j ≤ 1 , i, j ∈ V, i � = j. (16) 

roof. Concerning the first part of the lemma, the x -variables in- 

erit the integrality condition from y -variables due to constraints 

2) and (3). 

Let x ∗ and y ∗ be optimal values for the x - and y -variables,

espectively, of formulation (Flow-Cov) when constraints (12) are 

ubstituted by (15) . For any i ∈ V such that 
∑ 

j∈ V \{ i } y ∗i j 
= 1 , con-

traint (2) ensures that x ∗
i 

= 0 . On the other hand, for any i ∈ V,

uch that there exists j 0 ∈ V, j 0 � = i, with y ∗
j 0 i 

= 1 , constraints (3)

uarantee that x ∗
i 

= 1 . Finally, the model will choose to locate the

emaining service facilities (up to a total of p) at the uncovered 

odes with the largest demand. 

Regarding the second part of the lemma, following a similar ar- 

ument than before, we conclude that the y -variables inherit the 

ntegrality condition from the f -variables due to constraints (9) 

nd (10) and the condition that y i j + y ji ≤ 1 (derived by constraints 

2) and (3)). �

Observe that even though the f -variables are the intuitive can- 

idates for relaxation (since their number is much larger than the 

umber of x - and y -variables), there are examples where the opti- 

al value differs when the integrality condition of these variables 

s relaxed. 

An alternative formulation for Up-MCLP can be derived from 

he formulation (Flow-Cov) by replacing constraints (6), (7), and 

11) with the following ones: ∑ 

a ∈ A \ (�−
i 

∪ �+ 
j 

)
(

f i j 
a � e a − γ i j 

a 

)
≤ R, i, j ∈ V, i < j, (17) 

i j 
a ≤ u e a f 

i j 
a , i, j ∈ V, i < j, a ∈ A \ (�−

i 
∪ �+ 

j 

)
, (18) 

 ≤ γ i j 
a ≤ δe a , i, j ∈ V, i < j, a ∈ A \ (�−

i 
∪ �+ 

j 

)
, (19) 

here γ i j 
a represents the reduction on the length of arc a if this 

rc belongs to a path of length ≤ R from node i to node j, for i, j ∈
, i < j, a ∈ A \ 

(
�−

i 
∪ �+ 

j 

)
. A preliminary computational analysis 

howed that the alternative formulation (Flow-Cov) for Up-MCLP 

here constraints (6), (7), and (11) are replaced with (17), (18) , and 

19) is better than the original (Flow-Cov). In this analysis, which 

as carried out using the data described in Section 6.1 , we com- 

ared the formulations based on the number of instances solved to 

ptimality within the time limit, the time employed to obtain the 

ptimal solutions, the MIP relative gaps, the best solution gaps, and 

he linear relaxation gaps. More details about these performance 

alues can be found in Section 6 . 

.1. Preprocessing phase 

Next, we present two results for preprocessing the model which 

educe the number of constraints and variables of the above for- 

ulation and, subsequently, shorten the computational time re- 

uired to solve them to optimality. The idea of the first is that if 

he distance between node i and node j is smaller than or equal 
18 
o R even before modifying the edge lengths of the network, then 

ode i can always be covered by a facility located at node j (and 

ice versa) regardless of the edge length reductions made in the 

etwork. 

roposition 1. If d (i, j ) ≤ R, for i, j ∈ V, i < j then it is not necessary

o include either the f 
i j 
a -variables or the αi j 

a -variables ( γ i j 
a -variables) 

n formulation (Flow-Cov). Moreover, we can remove the constraints 

ssociated with these variables from the family of constraints (6)–(11) 

nd (14) in the original (Flow-Cov) formulation and (8)–(10) , (14), 

17)–(19) in the alternative (Flow-Cov) formulation. 

The second result analyses the opposite case, i.e., 

roposition 2 considers the situation in which the distance 

etween node i and node j is greater than R independently of the 

dge length reductions. 

roposition 2. If one of the following four conditions is fulfilled for 

, j ∈ V, i < j, the variables y i j , y ji , f 
i j 
a , α

i j 
a (γ

i j 
a ) for a ∈ A can be re-

oved from the (Flow-Cov) formulation. Moreover, the constraints as- 

ociated with this pair of nodes can be deleted, in particular (2), (3), 

6)-(11), (13), (14) in the original (Flow-Cov) formulation and (2), (3), 

8)–(10) , (13), (14), (17)–(19) in the alternative (Flow-Cov) formula- 

ion. 

i) d (i, j ) > R + 

∑ 

e ∈ E u e , for i, j ∈ V, i < j. 

ii) d(i, j, u ) > R, for i, j ∈ V, i < j, where d(i, j, u ) is the length of the

shortest path from i to j in a graph with edge lengths � e − u e , for

e ∈ E. 

ii) d (i, j ) > R + 

∑ k̄ 
k =1 u e σ (k ) 

+ 

B − ∑ k̄ 
k =1 u e σ (k ) 

c e 
σ ( ̄k +1) 

for i, j ∈ V, i < j,

where k̄ is the largest index k that satisfies the following condi- 

tion: 

k ∑ 

h =1 

u e σ (h ) 
c e σ (h ) 

≤ B, (20) 

and σ (·) is a permutation of { 1 , . . . , m } that sorts the unit up-

grade costs in non-decreasing order. 

v) The optimal value of the following problem is greater than R, for 

i, j ∈ V, i < j, 

(
P d(i, j,δi j ) 

)
min 

∑ 

a ∈ A 
( f a � e a − γa ) 

s.t. (4) , (5) , ∑ 

a ∈ �+ 
k 

f a −
∑ 

a ∈ �−
k 

f a = g k , k ∈ V, (21) 

γa ≤ u e a f a , a ∈ A, (22) 

γa ≤ δe a , a ∈ A, (23) 

f a ∈ { 0 , 1 } , a ∈ A, (24) 

where the f -variables and γ -variables are defined as above (we 

dropped the indices i and j for the ease of exposition), and 

g k = 

{ 

1 , if k = i, 
−1 , if k = j, 
0 , otherwise . 

roof. Each of the items of the proposition is proven below. 

i) The first condition considers the case where the distance from 

i to j is greater than R even when reducing the length of every 

edge by the maximum amount allowed. Therefore, it is straight- 

forward to conclude that the distance between the two nodes 

cannot be less than or equal to R . 
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ii) In the previous condition, the maximum amount of reduction 

in the whole network was considered without taking into ac- 

count the edges for which this reduction is made. Now we 

compute the shortest path between two nodes in the network 

assuming an unlimited budget, i.e., the full discount is applied 

to all edges. For each edge e , let � e u = � e − u e . For i, j ∈ V, let

d(i, j, u ) be the length of the shortest path connecting i with j

where the length of the edges are � e u , for e ∈ E. Hence, even if

reducing the maximum amount allowed on all edges, the dis- 

tance is greater than R , clearly, node i cannot be assigned to 

node j, and vice versa. Although condition i) is weaker than ii) , 

i) can be checked more efficiently. 

ii) This condition is similar to the first one, but takes into ac- 

count the budget constraint (4). In this case, we calculate the 

maximum reduction in the network allowed by the budget. For 

this purpose, we sort the upgrade costs c e , for e ∈ E, in non-

decreasing order. Let σ be a permutation of { 1 , . . . , m } such 

that c e σ (1) 
≤ c e σ (2) 

≤ . . . ≤ c e σ (m ) 
. Then, we compute the maxi- 

mum total length reduction over the network, i.e., we spend the 

budget on upgrading the cheapest edges. Let k̄ be the largest 

index k that satisfies condition (20) . Therefore, the right-hand 

side of iii) minus R is the maximum length reduction between 

any two nodes of the network. Taking into account the above 

arguments, we conclude that node i cannot be assigned to a 

facility located at node j, and vice versa. 

v) Condition iii) provides the maximal reduction without taking 

into account whether this reduction can be achieved in a path 

form i to j. For this reason, that bound can be tightened, but 

it requires to solve a separate problem for each pair of ver- 

tices. Formulation 

(
P d(i, j,δi j ) 

)
computes the shortest path be- 

tween node i and node j assuming that all the budget can be 

spent just for the path between those two nodes. Therefore, the 

optimal value of this problem, named d(i, j, δi j ) , is the minimal 

distance between node i and node j after the most favourable 

edges length reductions. Hence, if d(i, j, δi j ) is greater than R , 

node i can never be assigned to a facility at node j, and vice 

versa. �

As stated in Demgensky et al. (2002) , the shortest path prob- 

em where the length of the edges can be reduced, 
(
P d(i, j,δi j ) 

)
, is 

P-hard. However, the optimal value of the LP relaxation of for- 

ulation 

(
P d(i, j,δi j ) 

)
provides a valid bound that can still be used 

nstead, albeit yielding a weaker condition. If this value is greater 

han R , then i can never cover j, and vice versa. 

.2. Valid inequalities 

In the previous subsection, we have presented two results to 

reprocess the model, reducing the number of constraints and 

ariables. In this one, we propose several families of valid inequali- 

ies to strengthen the (Flow-Cov) formulation which help us to fur- 

her shorten the computational times. 

roposition 3. Let ˆ V i := { j ∈ V \ { i } : d (i, j ) ≤ R } . The following fam-

lies of constraints are valid inequalities for (Flow-Cov): 

f i j 

(k,q ) 
+ f i j 

(q,k ) 
≤ 1 , [ k, q ] ∈ E, i, j ∈ V, i < j, k, q � = i, j, (25) 

 k j ≥ y i j + f i j 
a − 1 , i, j, k ∈ V, i < j, k � = i, k � = j, a ∈ �−

k 
, (26) 

 ki ≥ y ji + f i j 
a − 1 , i, j, k ∈ V, i < j, k � = i, k � = j, a ∈ �−

k 
, (27) 

 j ≤
∑ 

k : k � = i,d (i,k ) ≤d (i, j ) 

y ik + x i , i ∈ V, j ∈ 

ˆ V i , (28) 

 j ≤
∑ 

k : k � = i,d (i,k,δik ) ≤d (i, j ) 

y ik + x i , i ∈ V, j ∈ 

ˆ V i , (29) 
t

19 
roof. The proof of valid inequalities is given below: 

The first family of constraints (25) ensure that an edge is not 

raversed in both directions on a path from i to j, i < j. 

The second and the third families of constraints, (26) and (27) , 

re based on the fact that a path between two non-adjacent nodes 

 and j will traverse at least one other node. Therefore, if there 

xists a path whose length is less than or equal to R that connects 

 facility at node j ( i ) with demand point i ( j) and traverses node k ,

hen node k will also be assigned to facility j ( i ). More concretely, 

iven i, j ∈ V, i < j, if f 
i j 
a = 1 for some a ∈ A, such that a ∈ �−

k 
, k � =

, k � = j and y i j = 1 (y ji = 1) , then the constraints impose that y k j =
 (y ki = 1) . 

Regarding (28) , these constraints ensure that a node will be 

erved by the closest service facility that is within the covering 

istance before upgrading the network (whenever at least one ser- 

ice facility is closer than the coverage radius before upgrading the 

etwork). Observe that these constraints eliminate symmetries and 

re valid also for formulation (Flow-Cov) because nodes might not 

e assigned to the closest service facility in the upgraded network. 

evertheless, the situation would be incompatible with constraints 

26) and (27) , as explained in the following remark ( Remark 1 ). 

Finally, whenever at least one service facility j is closer to a 

ode i than the coverage radius before upgrading the network, 

onstraints (29) ensure that this node will either host a facility it- 

elf or be assigned to this service facility or to a facility that can 

e closer after upgrading the network (it considers the distances 

n the range of d (i, j ) and the most favourable edge length reduc-

ions, i.e., d(i, k, δik ) for any k � = i .). �

emark 1. 

i) Constraints (26) and (27) might be incompatible with (28) , i.e., 

constraints (26) –(28) cannot be included in the formulation si- 

multaneously. 

ii) The family of valid inequalities (28) is tighter than (29) , but 

(29) are not incompatible with (26) and (27) . 

In the following, we present an example illustrating the first 

art of Remark 1 . 

xample 2. Consider the network depicted in Fig. 2 . For each edge, 

ts length, its upper bound of reduction, and its cost per unit of 

eduction, (� e , u e , c e ) , are printed next to the edge. Let R = 1 , p =
 , B = 0 . 75 , and the demand of nodes w i = 1 , w j = 1 , w k = 1 , w q =
 , w r = 10 0 0 , w s = 10 0 0 . It is straightforward to conclude that the

ptimal location of the services are the dark nodes, i.e., x ∗
i 

= 1 and

 

∗
q = 1 , and that the optimal edge length reduction is δ∗

[ k,q ] 
= 0 . 75 . 

In this case, from constraints (28) we obtain that x i ≤ y ki + y k j +
 k . Then, y ∗

ki 
= 1 . On the other hand, facility q is the only one that

overs node j, then y ∗
jq 

= 1 . Moreover, as the path from node j to

ode q traverses node k , we obtain that f 
jq ∗
( j,k ) 

= 1 . Therefore, from

onstraint (26) , we obtain that y ∗
kq 

= 1 . Thus, we have found that

hese families of constraints are incompatible ( y ki and y kq can not 

ake value one simultaneously due to constraints (2)). 
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Fig. 3. Illustration of z-variables. 
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Fig. 4. Illustration of constraints (33). 
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Note that the ideas behind constraints (28) and (29) are practi- 

ally identical. The reason why constraints (29) are not incompati- 

le with (26) and (27) is that the constraints (29) do not force that

he node is assigned to the closest service facility before upgrad- 

ng, instead for given i, j such that i � = j and d(i, j) ≤ R, it enables

he node to be assigned to another node whose distance after the 

ost favourable edge length reductions is smaller than or equal 

o d (i, j ) . In Espejo, Marín, & Rodríguez-Chía (2012) a detailed de-

cription of closest service assignment constraints is given. 

Observe that the variables dropped from the formulation in the 

reprocessing phase ( Propositions 1 and 2 ), can also be removed 

rom the valid inequalities presented in this subsection. In the next 

ection, an alternative formulation for this problem is developed. 

. Path formulation 

In this section we present our second formulation for Up-MCLP. 

t contains fewer variables and constraints than (Flow-Cov). How- 

ver, this comes at the expense of reducing the scope of prepro- 

essing the model. 

This formulation again models paths of length at most R from 

 customer node i to a service provider. However, in contrast to 

Flow-Cov), the path from i is not modelled as a flow but through 

he immediate successor of i on a path of length ≤ R to a facility.

or this purpose, we introduce two new binary variables z i j ( z ji ) for

 i, j] ∈ E, such that z i j ( z ji ) is equal to one if node j ( i ) is the next

ode on a path of length at most R from i ( j) to a service facility.

n Fig. 3 we illustrate this family of variables where the dark node 

epresents a facility. If i is covered by a facility at q , then also j

ust be covered. Note that a feasible solution resembles a forest 

ooted at the facilities. 

For the sake of clarity, a description of the decision variables 

sed in the formulation is given next. 

ecision variables 

 j 1, if there is a facility at node j, and 0, otherwise, for j ∈ V . 
 i j 1, if node j is the next node on a path of length ≤ R from i to a 

facility, and 0, otherwise, for [ i, j] ∈ E. 

 i An upper bound of the length of the built path from node i to its 

assigned service facility, for i ∈ V . 
e = δ[ i, j] The amount of reduction of the length of edge e = [ i, j] , for e ∈ E. 

The formulation for problem Up-MCLP using these variables, 

Path), is as follows: 

P ath ) max 
∑ 

i ∈ V 
w i 

( 

x i + 

∑ 

j :[ i, j ] ∈ E 
z i j 

) 

s.t. (1) , (4) , (12) , ∑ 

j :[ i, j ] ∈ E 
z i j + x i ≤ 1 , i ∈ V, (30) 

∑ 

j :[ i, j ] ∈ E, j � = k 
z i j + x i ≥ z ki , [ k, i ] ∈ E, (31) 

0 ≤ d i ≤ R 

∑ 

j :[ i, j ] ∈ E 
z i j i ∈ V, (32) 

d i ≥ d j + � [ i, j] z i j − δ[ i, j] − R (1 − z i j ) , [ i, j] ∈ E, (33) 

0 ≤ δe ≤ u e (z i j + z ji ) , e = [ i, j] ∈ E, (34) 
20 
z i j ∈ { 0 , 1 } , [ i, j] ∈ E. (35) 

The family of constraints (30) states that each node is assigned 

o at most one facility or this node is itself a service facility. The 

amily of constraints (31) ensures that a node k is not assigned to 

ts service facility through a node i , unless node i is also covered or

 facility itself. The family of constraints (32) and (33) set the value 

f d i , a bound on the distance from node i to its facility, if there

xists a path of length at most R . We note that (33) are equivalent

o the well-known Miller-Tucker-Zemlin subtour elimination con- 

traints, extended by our edge length reduction variables. In Fig. 4 , 

n illustration of constraints (33) is depicted, in which the dark 

ode represents a facility. Finally, the families of constraints (4) 

nd (34) establish the bounds on the amount of length edge re- 

uctions. 

Note that constraints (30) and (31) ensure that 

 i j + z ji ≤ 1 , [ i, j] ∈ E. (36) 

he following result presents an improvement to the previous for- 

ulation, proving that the integrality condition on the x -variables 

an be relaxed, providing a new family of valid inequalities, and 

trengthening a family of constraints. 

roposition 4. The formulation (Path) can be enhanced as follows: 

i) The binary condition for the x -variables can be relaxed. 

ii) The following are valid inequalities for (Path). 

d i ≥
∑ 

j :[ i, j ] ∈ E 

(
� [ i, j] − u [ i, j] 

)
z i j , i ∈ V. (37) 

ii) Constraints (33) can be reinforced as follows 

d i ≥ d j + � [ i, j] z i j − δ[ i, j] − R (1 − z i j ) + z ji (R − � [ i, j] ) 
+ , [ i, j] ∈ E,

(38) 

where a + := max { a, 0 } . 
roof. The proof of i) is very similar to the proof of the first part

f Lemma 1 . 

Regarding statement ii) , the idea behind these constraints is 

ased on the fact that if a non-facility node is covered, the distance 

rom that node to its assigned facility will be at least the length of 

he adjacent edge in the path to the service provider, minus the 

aximally allowed edge length reduction, i.e., 

 i ≥
(
� [ i, j] − u [ i, j] 

)
z i j , [ i, j] ∈ E. (39) 

oreover, each node is linked to at most one other node in the 

ath to its service facility because of constraint (30). 

In order to prove result iii) , we analyse the possible cases. 

ince the z-variables are binary and constraints (36) are satisfied, 

e get the following four possibilities in the optimal solution for 

 i, j] ∈ E: a) z ∗
i j 

= z ∗
ji 

= 0 , b) z ∗
i j 

= 1 , z ∗
ji 

= 0 , c.1) z ∗
i j 

= 0 , z ∗
ji 

= 1 , with

 − � [ i, j] ≤ 0 , and c.2) z ∗
i j 

= 0 , z ∗
ji 

= 1 , with R − � [ i, j] > 0 . In cases a),

), and c.1) constraints (33) are fulfilled. Hence, (38) is valid. There- 

ore, we focus on case c.2). In this case, since the lower bounds of 

 i is only given by (33), we can assume without loss of generality 

hat (33) is satisfied with equality, i.e.: 

 

∗
j = d ∗i + � [ i, j] − δ∗

[ i, j] . 
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herefore, 

 

∗
i = d ∗j − � [ i, j] + δ∗

[ i, j] ≥ d ∗j − � [ i, j] − δ∗
[ i, j] . 

ence, since z ∗
i j 

= 0 , z ∗
ji 

= 1 , we have that: 

 

∗
i ≥ d ∗j + � [ i, j] z 

∗
i j − δ∗

[ i, j] − R (1 − z ∗i j ) + z ∗ji (R − � [ i, j] ) , 

nd consequently the family of inequalities (38) holds. Finally, this 

learly strengthens the family of constraints (33). �

In what follows, we will refer to (Path) as the formulation 

here the above proposition has been applied. Next, we present 

ome valid inequalities linking x - and z-variables. These inequali- 

ies are designed to strengthen the formulation. In (Path), it is not 

ossible to represent which service is assigned to a given node. 

herefore, the ideas of Proposition 2 cannot be used. Although it is 

ossible to obtain valid inequalities for this formulation based on 

onstraints (28) . 

roposition 5. The following families of constraints are valid inequal- 

ties for (Path): 

 j ≤
∑ 

k :[ i,k ] ∈ E,� [ i,k ] −u [ i,k ] ≤d (i, j ) 

z ik + x i , i ∈ V, j ∈ 

ˆ V i , (40) 

∑ 

i ∈ W 

∑ 

j ∈ W :[ i, j ] ∈ E 
z i j ≤ | W | − 1 , W ⊂ V, 3 ≤ | W | ≤ n − p, (41) 

 i ≥
∑ 

j :[ i, j ] ∈ S 1 

(
d j − R (1 − z i j ) 

)
+ 

∑ 

j :[ i, j ] ∈ S 2 

(
� [ i, j] z i j − δ[ i, j] 

)
, i ∈ V, S 1 , S 2 ⊆ �i

(42) 

roof. If a facility is open at some node j whose distance to node 

 before upgrading the network was lower than or equal to the 

overage radius (hypothesis of Proposition 1 ), we can be sure that 

ode i will be covered by some facility. Therefore, in order to elim- 

nate possible symmetries, we assume that either i is a facility 

tself or the immediate successor of node i on its path to a ser- 

ice facility is a node whose distance to i after upgrading can be 

maller than or equal to d (i, j ) . Using the above argument, the

amily of constraints (40) is obtained. 

Secondly, we can include the valid inequalities (41) to avoid 

ycles. These inequalities are not required in (Path) because the 

amily of constraints (33) or equivalently (38) avoid cycles in any 

easible solution. However, they can improve the linear relaxation 

ounds. 

Finally, we prove that constraints (42) are valid inequalities. Us- 

ng constraint (30), we know that in any feasible solution, for each 

 ∈ V, there is at most one j 0 ∈ V, [ i, j 0 ] ∈ E such that z i j 0 
= 1 . 

On the one hand, if 
∑ 

j :[ i, j ] ∈ E z i j = 0 , we obtain that d i = 0 by

32). Furthermore, this latter set of constraints ensures that d j ≤
, for j ∈ V. Then, d j − R (1 − z i j ) ≤ 0 , for [ i, j] ∈ E. Moreover, since

he δ-variables are non-negative and z i j = 0 , for j ∈ V , we obtain

hat � [ i, j] z i j − δ[ i, j] ≤ 0 , for [ i, j] ∈ E. Hence, it holds that: 

 = d i ≥
∑ 

j :[ i, j ] ∈ S 1 

(
d j − R (1 − z i j ) 

)
+ 

∑ 

j :[ i, j ] ∈ S 2 

(
� [ i, j] z i j − δ[ i, j] 

)
, S 1 , S 2 ⊆ �i . 

On the other hand, if exists j 0 ∈ V, [ i, j 0 ] ∈ E, such that z i j 0 
= 1 ,

sing (33) we know that: 

 i ≥ d j 0 − R (1 − z i j 0 ) + � [ i, j 0 ] z i j 0 − δ[ i, j 0 ] . 

urthermore, d j − R (1 − z i j ) ≤ 0 , for [ i, j] ∈ E, such that j � = j 0 , and

 [ i, j] z i j − δ[ i, j] ≤ 0 , for [ i, j] ∈ E, such that j � = j 0 . Therefore: 

 i ≥
∑ 

j :[ i, j ] ∈ S 1 

(
d j − R (1 − z i j ) 

)
+ 

∑ 

j :[ i, j ] ∈ S 2 

(
� [ i, j] z i j − δ[ i, j] 

)
, S 1 , S 2 ⊆ �i . 
21 
hus, we conclude that constraints (42) are valid inequalities. �

Observe that in preliminary computational experiments the ad- 

ition of the following constraints from family (41) as cuts in the 

ranching tree was quite effective (more details are provided in 

ection 6 ): 

 i j + z ji + z jk + z k j + z ik + z ki ≤ 2 , [ i, j] , [ j, k ] , [ i, k ] ∈ E. (43)

Next, we solve the separation problem in the family of con- 

traints (42) , i.e., given a solution of the LP-relaxation of the for- 

ulation, find one or more constraints in family (42) that are not 

atisfied. Hence, sets S 1 and S 2 that maximises the right-hand-side 

f the inequality have to be identified. Let d̄ , δ̄, and z̄ be the opti-

al vectors of values of the d-, δ-, and z-variables, respectively, in 

 node of the branching tree during the resolution of an instance 

f formulation (Path). Then, it is straightforward to conclude that 

ne of the following constraints maximises the right-hand-side of 

42) : 

 i ≥
∑ 

j :[ i, j ] ∈ E, ̄d j >R (1 −z̄ i j ) 

(
d j − R (1 − z i j ) 

)
+ 

∑ 

j :[ i, j ] ∈ E,� [ i, j] ̄z i j > ̄δ[ i, j] 

(
� [ i, j] z i j − δ[ i, j] 

)
, i ∈ V,

(44) 

 i ≥
∑ 

j :[ i, j ] ∈ E, ̄d j + � [ i, j] ̄z i j >R (1 −z̄ i j )+ ̄δ[ i, j] 

(
d j + � [ i, j] z i j − R (1 − z i j ) − δ[ i, j] 

)
, i ∈ V. (45) 

In Section 6 , the performance of this formulation and the effec- 

iveness of the valid inequalities will be analysed. 

. Path-coverage formulation 

In this section, we introduce a third formulation, which merges 

omponents from the first formulation with the second formula- 

ion. More precisely, we add the assignment variables y of (Flow- 

ov) to (Path). For the sake of clarity, all variables of this formula- 

ion are explained below. 

ecision variables 

 j 1, if there is a facility at node j, and 0, otherwise, for j ∈ V . 
 i j 1, if node i is assigned to a facility at node j, and 0, otherwise, for 

i, j ∈ V, i � = j. 

 i j 1, if node j is the next node on a path of length ≤ R from i to its 

service facility, and 0, otherwise, for [ i, j] ∈ E. 

 i An upper bound of the length of the built path from node i to its 

service facility, for i ∈ V . 
e = δ[ i, j] The amount of reduction of the length of edge e = [ i, j] , for e ∈ E. 

Next, we present the formulation of problem Up-MCLP using 

he variables described above: 

 ath − Cov ) max 
∑ 

i ∈ V 
w i 

( 

x i + 

∑ 

j :[ i, j ] ∈ E 
z i j 

) 

s.t. (1) , (3) , (4) , (12) − (13) , (30) − (32) , (34) , (35) , (38) , ∑ 

k ∈ V \{ i } 
y ik = 

∑ 

j :[ i, j ] ∈ E 
z i j , i ∈ V, (46) 

y ik ≥ z i j + z ji + y jk − 1 , k ∈ V \ { i, j} , [ i, j] ∈ E, (47) 

y i j ≥ z i j + z ji + x j − 1 , [ i, j] ∈ E. (48) 

The family of constraints (46) establishes that if a node is as- 

igned to a service facility, then there is a path from this node 

o its facility and vice versa. Constraints (47) ensure that if two 

odes are on the same path, i.e., z i j = 1 , they must be assigned to

he same facility k . Constraints (48) represent the particular case 

here node j hosts a service provider. Observe that the objective 
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unction can also be expressed as follows: 

 

i ∈ V 
w i 

( 

x i + 

∑ 

j∈ V \{ i } 
y i j 

) 

. 

ut in preliminary computational experiments, we have found that 

he objective function with the z-variables outperforms the one 

ith the y -variables. This analysis was again carried out using the 

ata described in Section 6.1 and the comparison was based on the 

umber of instances solved to optimality within the time limit, the 

ime employed to obtain the optimal solutions, the MIP relative 

aps, the best solution gaps, and the linear relaxation gaps. More 

etails about these performance values can be found in Section 6 . 

Below, we present a result that proves that the integrality con- 

ition of some families of variables can be relaxed. 

emma 2. The binary condition on the x -variables and the y - 

ariables can be relaxed. 

roof. The proof of the first part of this lemma is very similar to 

he proof of the first part of Lemma 1 . Regarding the integral- 

ty condition on the y -variables, since their values are given by 

he values of the z-variables, it is straightforward to conclude that 

iven an optimal solution it is possible to find another optimal so- 

ution in which the y -variables are integer. �

In contrast to (Path), this formulation controls the service fa- 

ilities to which the nodes are assigned with the y -variables. This 

nformation allows us to use a more sophisticated preprocessing 

hase. For doing so, one of the results presented in Section 3.1 is 

sed. Under the hypothesis of Proposition 2 , i.e., a facility at node 

 will never be assigned to a facility located at node j, for i, j ∈ V,

nd vice versa, variables y i j and y ji are removed from all the con- 

traints in which they are included (fixed to zero and not included 

n the formulation to save memory). Furthermore, using the infor- 

ation obtained in the preprocessing phase we can develop new 

alid inequalities, which are discussed in the next subsection. 

.1. Valid inequalities 

This subsection is devoted to presenting valid inequalities for 

ormulation (Path-Cov). We start by remarking that the valid in- 

qualities (29) obtained for formulation (Flow-Cov) can also be im- 

lemented in (Path-Cov). Similarly, all the valid inequalities ob- 

ained for formulation (Path) are still valid for (Path-Cov), namely, 

he families of constraints (37) and (39) –(45) . However, the ad- 

itional information provided by the y -variables in formulation 

Path − Cov ) can be used to strengthen some of them. The ones 

hat can be enhanced using the covering variables are described 

elow. 

First, the lower bound for the d-variables can be improved, i.e., 

onstraint (37) can be enhanced as: 

 i ≥
∑ 

j∈ V \{ i } 
d(i, j, δi j ) y i j , i ∈ V. (49) 

ecall that d(i, j, δi j ) represents the distance between nodes i and 

j using the most favourable edge length reductions satisfying the 

udget constraint (4). In what follows, we will refer to (Path-Cov) 

s the formulation (Path-Cov) in which constraints (49) are in- 

luded. 

Finally, we present a new family of valid inequalities that re- 

nforces constraints (47). The objective of this reinforcement is to 

mprove the resolution of the formulation. It is based on the fact 

hat if two nodes are linked (the sum of their z-variables is one), 

hen both nodes will be assigned to the same service facility. 
22 
emma 3. The following are valid inequalities for (Path-Cov): 

 i j + z ji ≤
∑ 

k ∈ W,k � = i 
y ik + x i I W 

(i ) 

+ 

∑ 

k / ∈ W,k � = j 
y jk + x j ( 1 − I W 

( j) ) , [ i, j] ∈ E, W ⊆ V, (50) 

here I W 

(i ) is the indicator function, i.e., I W 

(i ) = 1 if i ∈ W and 0

therwise. 

Note that, for the case W = { k } , for k ∈ V, we obtain

 i j + z ji ≤ y ik + 

∑ 

t ∈ V,t � = k,t � = j y jt + x j , using constraints (30) and 

36), it holds that z i j + z ji ≤ y ik + 

∑ 

t ∈ V,t � = k,t � = j y jt + x j ≤ y ik + 1 −
 jk . Hence, some constraints of family (50) are tighter than (47). 

As the cardinality of (50) is exponential, we solve the separa- 

ion problem in this family of constraints. Therefore, the set W 

hat minimises the right-hand-side of constraints (50) has to be 

dentified. Let ȳ ( ̄x ) be the optimal vector values of y -variables ( x -

ariables) in a node of the branching tree during the resolution of 

n instance of formulation (Path-Cov). Then, it is straightforward to 

onclude that the following constraints minimise the right-hand- 

ide of (50) . 

 i j + z ji ≤
∑ 

k ∈ V : ̄y ik ≤ȳ jk , ̄y ik ≤x̄ j 

y ik + x i I { k : ̄x k ≤ȳ jk } (i ) 

+ 

∑ 

k ∈ V : ̄y jk < ̄y ik , ̄y jk < ̄x i 

y jk + x j I { k : ̄x k < ̄y ik } ( j ) , [ i, j ] ∈ E. (51) 

Note that if a pair of nodes satisfies at least one of the con- 

itions of Proposition 2 , their corresponding y -variables can be re- 

oved from all the constraints including the valid inequalities pre- 

ented in this subsection. 

In the following section, the performance of the three proposed 

ormulations for Up-MCLP are compared. 

. Computational results 

In this section, we present the results of several computational 

xperiments which compare the performance of the three pro- 

osed formulations and show the improvements achieved thanks 

o the preprocessing phase and the inclusion of the valid inequal- 

ties developed throughout the paper. The experiments were con- 

ucted on an Intel(R) Xeon(R) W-2135 CPU 3.70 GHz 32 GB RAM, 

sing CPLEX 20.1.0 in Concert Technology C++ with a time limit of 

800 s. We used the default parameter settings for CPLEX. 

Regarding the preprocessing phase for formulations (Flow-Cov) 

nd (Path-Cov), aiming to find a balance between preprocessing 

ime and the quality of the d(i, j, δi j ) bounds for each pair i, j ∈ V ,

he following strategy has been implemented. First, we computed 

he matrix of pairwise shortest distances without upgrading and 

he matrix of pairwise shortest distances after upgrading all edges 

o their full maximum ( d(i, j, u ) ) using the Floyd-Warshall algo- 

ithm. Then, we checked if the hypothesis of Proposition 1 or 

f the hypotheses i)-iii) of Proposition 2 are fulfilled. If either of 

hese conditions is satisfied for a pair i, j ∈ V , we removed the

orresponding variables and constraints and we used d(i, j, u ) as 

(i, j, δi j ) in the valid inequalities that are required (as e.g. con- 

traints (29) ). This could be done because d(i, j, u ) is a lower

ound of d(i, j, δi j ) . If neither of these conditions were fulfilled for 

 given pair i, j ∈ V , we solved the linear relaxation of 
(
P d(i, j,δi j ) 

)
.

he minimum between its optimal objective value and d(i, j, u ) is 

he value that we used as d(i, j, δi j ) in the corresponding valid 

nequalities. As before, this can be done because both values are 

ower bounds of d(i, j, δi j ) . For sake of clarity, we summarise the 

rocess in Algorithm 1 . 

In preliminary computational experiments, we checked the per- 

ormance of the alternative formulation (Flow-Cov) for Up-MCLP 
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Algorithm 1: Preprocessing phase 

Input : Formulation. 
Output : Preprocessed formulation. 

1 foreach i, j ∈ V, i < j do 

2 Compute d(i, j, u ) . 
3 if the hypothesis of Proposition 1 or the hypotheses 

i)-iii) of Proposition 2 are fulfilled. then 

1. Apply the proposition removing the corresponding 
variables and constraints. 

2. Set d(i, j, δi j ) = d(i, j, u ) if it is required in any 
constraint. 

4 else 

Solve the linear relaxation of 
(
P d(i, j,δi j ) 

)
with 

objective value LRP d(i, j,δi j ) .Set d(i, j, δi j ) = 

max { d(i, j, u ) , LRP d(i, j,δi j ) } 
if it is required in any constraint. 

end 

5 end 

6 return Preprocessed formulation. 
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nd the valid inequalities to identify which ones performed best in 

ach formulation. After this preliminary choice, we conclude that 

he best formulations are: 

a) Formulation (Flow-Cov) where constraints (6), (7), and (11) 

have been replaced with (17), (18) , and (19) and the family of 

constraints (25) is included, named (Flow-Cov) for short. 

b) Formulation (Path) where constraints (37) are included and 

constraints (33) have been reinforced by constraints (38) . In 

what follows, we call it formulation (Path). 

c) Formulation (Path) with constraints (40) as valid inequalities 

and (43) as particular case of (41) in a pool of user cuts, named

(Path) + VI for short. 

d) Formulation (Path-Cov) where constraints (49) are included, we 

call it formulation (Path-Cov). 

e) Formulation (Path-Cov) including constraints (29) and (43) as 

particular case of (41) in a pool of user cuts, named (Path- 

Cov) + VI for short. 

Regarding the families of valid inequalities that we have used, 

n preliminary investigation, we observe that the family of con- 

traints (40) had a better performance than the family of con- 

traints (43) for formulation (Path) in the majority of the tested 

ases. Similarly, in the case of (Path-Cov), the family of constraints 

29) tended to provide a greater improvement in performance than 

he family of constraints (43) . Concerning the families of valid in- 

qualities that we have not included in the reported numerical ex- 

eriments, we would like to remark that including the constraints 

44), (45) , and (51) in the branching tree was effective, as the 

umber of nodes in which the instances were solved decreased. 

owever, this procedure is time-consuming, so that even though 

he instances were solved on fewer nodes the overall computation 

ime increased. 

The rest of the section is structured as follows. First, the data 

sed in the computational experiments are described. Second, the 

dvantages of the preprocessing phase are shown. Then, the fol- 

owing subsections compare the different formulations with and 

ithout valid inequalities in complete graphs and in sparse graphs, 

espectively. These subsections illustrate the great value of the pre- 

rocessing phase and the addition of valid inequalities. 
23 
.1. Data 

The computational experiments were carried out on two differ- 

nt types of networks. 

First, we generated instances adapting the procedure used in 

eVelle, Scholssberg, & Williams (2008) , Cordeau et al. (2019) , 

mong others. Nodes were given by points whose coordinates fol- 

owed a uniform distribution over [0,30]. Then, we computed the 

omplete graph where the length of the edges is the Euclidean dis- 

ance between the nodes. We named these instances as “graph”

ollowed by the number of vertices, e.g., “graph30” is a complete 

raph with 30 nodes and 435 edges. 

Secondly, we used the uncapacitated p-median datasets from 

he OR-Library, called pmed, see Beasley (1990) . As said in the 

ocumentation of these datasets, Floyd’s algorithm was applied to 

btain a symmetric allocation cost matrix that satisfied the trian- 

le inequality. The main difference with respect to the previous 

atasets is that the p-median instances are sparser graphs (the 

umber of edges is n 2 / 50 ). 

The parameters have been chosen as described below. The 

umber of facilities, p, was proportional to the number of ver- 

ices, i.e., p ∈ { 1 , n/ 10 , n/ 20 } . The node weights or demands, w i for

 ∈ V , were integers uniform randomly generated between 1 and 

00. We tested three different coverage radii, R , such that we could 

over approximately 50% , 60% , and 70% of the total demand when 

olving the maximal covering location problem without upgrad- 

ng (DT MCLP ) , i.e., R ∈ { R (50% DT MCLP ) , R (60% DT MCLP ) , R (70% DT MCLP ) } .
pgrading costs, c e , for e ∈ E, were uniform randomly generated 

etween 1 and 3. The upper bounds u e , for e ∈ E, were uniform

andomly generated from (0 , 30% � e ) , for e ∈ E. Then, the length

f the edges was modified as � e + u e , for e ∈ E. This implies that

he instances satisfy the triangle inequality when the full dis- 

ount is applied in all edges. Finally, the budget B was computed 

s follows. First, we sorted the upgrade costs c e u e , for e ∈ E, in

on-increasing order. Let ρ be a permutation of set E such that 

 e ρ(1) 
u e ρ(1) 

≥ c e ρ(2) 
u e ρ(2) 

≥ . . . ≥ c e ρ(m ) 
u e ρ(m ) 

. Then, since we are con- 

tructing a forest with p components (as seen in Section 4 ), we can 

ssume that at most n − p edges will be upgraded. Therefore, we 

omputed the maximum required budget for upgrading the most 

xpensive edges, 

 max = 

n −p ∑ 

t=1 

u e σ (t) 
c e σ (t) 

, 

nd selected B ∈ { 0 . 5% B max , 1% B max , 5% B max } . 

.2. Preprocessing phase 

In this subsection, we show the enhancements provided by the 

reprocessing, i.e., Propositions 1 and 2 . For doing so, we solve 

Flow-Cov) and (Path-Cov) with and without preprocessing. 

As an illustrative example, we include the results for graph40 

n Table 3 . The performance was similar in the rest of the datasets. 

he results are the average over five instances generated with the 

ame procedure, varying only the random seed for the generator. 

he first column indicates the name of the dataset, the number of 

odes and the number of edges. Next, the percentage of the maxi- 

al budget ( B % ), and the number of located facilities are depicted 

 p), followed by the approximate percentage of covered demand 

n the MCLP without upgrading using this radius ( R % ). The follow- 

ng four columns describe information about (Flow-Cov) without 

reprocessing. The first one shows the average time (in seconds) 

f solving the corresponding five instances. Observe that if any of 

hese instances is not solved to optimality, 1800 s is considered as 

ts solution time to compute this average. Then, the following col- 

mn of this group depicts the MIP relative gap reported by CPLEX 
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Table 3 

Performance of formulations (Flow-Cov) and (Path-Cov) with and without preprocessing. 

Data B % p R % (Flow-Cov) (Path-Cov) 

Without preprocessing With preprocessing Without preprocessing With preprocessing 

t total G % G t BS % G t LP % t st t total G % G t BS % G t LP % R c % R v % R bv % t total G % G t BS % G t LP % t st t total G % G t BS % G t LP % R c % R v % R bv % 

graph40 | V | = 

40 , | E| = 780 

0.5 1 50 1042.5 0.0(5) 0.0 93.2 0.1 0.7 0.0(5) 0.0 2.3 97.0 97.0 96.9 1807.9 99.9(0) 5.7 93.2 0.1 2.3 0.0(5) 0.0 2.4 69.9 46.2 52.5 

60 1490.0 15.4(3) 0.0 52.3 0.1 3.8 0.0(5) 0.0 0.7 95.8 95.7 95.7 1804.2 74.8(0) 12.4 52.3 0.2 8.8 0.0(5) 0.0 0.7 63.1 37.6 43.5 

70 1556.8 7.3(4) 0.0 35.4 0.2 2.0 0.0(5) 0.0 1.0 96.0 96.0 95.9 1807.5 59.6(0) 13.4 35.4 0.2 724.2 1.0(3) 0.0 1.0 58.3 32.0 37.5 

2 50 1578.7 74.4(1) 3.9 87.0 0.1 0.4 0.0(5) 0.0 1.2 98.4 98.4 98.4 61.3 0.0(5) 0.0 88.7 0.1 0.4 0.0(5) 0.0 3.3 80.8 68.7 74.3 

60 1801.2 64.1(0) 4.2 57.0 0.1 0.4 0.0(5) 0.0 0.9 97.8 97.8 97.7 1093.2 4.3(3) 0.0 57.0 0.1 0.4 0.0(5) 0.0 0.9 77.5 60.0 66.2 

70 1801.7 40.5(0) 4.4 34.1 0.1 0.7 0.0(5) 0.0 1.8 97.9 97.8 97.8 1769.3 17.5(1) 1.2 34.1 0.1 2.4 0.0(5) 0.0 1.8 74.3 53.1 59.5 

4 50 2.9 0.0(5) 0.0 39.4 0.1 0.1 0.0(5) 0.0 1.0 99.1 99.1 99.0 0.3 0.0(5) 0.0 67.2 0.1 0.1 0.0(5) 0.0 2.8 86.7 83.4 87.3 

60 27.5 0.0(5) 0.0 48.6 0.1 0.2 0.0(5) 0.0 0.8 99.0 98.9 98.9 8.4 0.0(5) 0.0 56.8 0.1 0.2 0.0(5) 0.0 1.7 84.9 78.5 83.1 

70 1546.9 25.6(1) 0.6 34.3 0.1 1.0 0.0(5) 0.0 3.9 98.3 98.2 98.2 305.4 0.0(5) 0.0 34.3 0.1 0.6 0.0(5) 0.0 4.4 81.9 70.8 76.3 

1 1 50 1384.9 18.2(4) 0.1 86.0 0.1 1.1 0.0(5) 0.0 0.4 96.0 96.0 96.0 1807.3 98.4(0) 6.6 86.0 0.1 3.6 0.0(5) 0.0 0.5 68.8 45.5 51.7 

60 1611.6 17.1(3) 0.0 51.8 0.1 1.5 0.0(5) 0.0 0.4 95.2 95.2 95.1 1809.0 71.3(0) 10.7 51.8 0.1 5.4 0.0(5) 0.0 0.4 62.5 37.2 43.1 

70 1801.9 27.9(0) 0.0 34.0 0.2 2.6 0.0(5) 0.0 1.5 94.7 94.7 94.7 1816.8 58.6(0) 13.8 34.0 0.2 135.3 0.0(5) 0.0 1.5 56.9 31.3 36.7 

2 50 1579.3 69.8(1) 1.9 84.9 0.1 0.4 0.0(5) 0.0 0.9 98.1 98.1 98.0 95.8 0.0(5) 0.0 86.5 0.1 0.3 0.0(5) 0.0 1.4 80.4 68.4 74.1 

60 1801.4 63.8(0) 6.1 53.2 0.1 0.8 0.0(5) 0.0 2.8 96.8 96.8 96.8 1609.6 12.4(1) 0.0 53.2 0.1 1.7 0.0(5) 0.0 2.8 76.5 59.3 65.4 

70 1801.6 43.3(0) 7.6 31.6 0.1 1.9 0.0(5) 0.0 3.0 96.7 96.7 96.6 1804.5 23.9(0) 1.2 31.6 0.1 41.9 0.0(5) 0.0 3.1 73.1 52.3 58.6 

4 50 2.9 0.0(5) 0.0 39.4 0.1 0.1 0.0(5) 0.0 1.0 99.1 99.1 99.0 0.3 0.0(5) 0.0 67.2 0.1 0.1 0.0(5) 0.0 2.8 86.7 83.4 87.3 

60 27.6 0.0(5) 0.0 48.6 0.1 0.2 0.0(5) 0.0 0.8 99.0 98.9 98.9 8.4 0.0(5) 0.0 56.8 0.1 0.2 0.0(5) 0.0 1.7 84.9 78.5 83.1 

70 1547.3 25.7(1) 0.6 34.3 0.1 1.0 0.0(5) 0.0 3.9 98.3 98.2 98.2 301.5 0.0(5) 0.0 34.3 0.1 0.6 0.0(5) 0.0 4.4 81.9 70.8 76.3 

5 1 50 1805.7 88.6(0) 3.3 82.1 0.1 1.7 0.0(5) 0.0 0.3 95.0 95.0 95.0 1807.6 87.3(0) 3.3 82.1 0.1 0.6 0.0(5) 0.0 0.3 67.7 44.9 51.0 

60 1805.2 46.(0) 0.4 45.4 0.2 2.1 0.0(5) 0.0 0.5 94.3 94.3 94.3 1807.6 68.3(0) 12.8 45.4 0.1 16.3 0.0(5) 0.0 0.5 61.6 36.7 42.5 

70 1802.5 43.1(0) 7.4 31.0 0.2 1.9 0.0(5) 0.0 0.0 94.2 94.2 94.1 1811.1 44.1(0) 7.9 31.0 0.2 3.6 0.0(5) 0.0 0.0 56.3 31.0 36.3 

2 50 1800.6 106.7(0) 12.8 79.8 0.1 0.4 0.0(5) 0.0 1.1 97.4 97.4 97.3 211.0 0.0(5) 0.0 81.6 0.1 0.4 0.0(5) 0.0 1.1 79.7 67.9 73.5 

60 1801.3 61.7(0) 8.6 47.6 0.1 1.1 0.0(5) 0.0 0.3 96.1 96.0 96.0 1804.8 14.4(0) 0.0 47.6 0.1 0.7 0.0(5) 0.0 0.3 75.7 58.7 64.8 

70 1802.0 41.7(0) 9.9 27.6 0.1 1.5 0.0(5) 0.0 0.0 95.5 95.4 95.4 1804.3 21.3(0) 1.5 27.6 0.1 2.0 0.0(5) 0.0 0.0 71.8 51.4 57.6 

4 50 3.1 0.0(5) 0.0 36.1 0.1 0.1 0.0(5) 0.0 1.2 98.9 98.8 98.8 0.3 0.0(5) 0.0 63.4 0.1 0.1 0.0(5) 0.0 1.3 86.4 83.1 87.1 

60 512.0 0.0(5) 0.0 45.9 0.1 0.2 0.0(5) 0.0 0.0 98.5 98.4 98.4 6.4 0.0(5) 0.0 54.1 0.1 0.2 0.0(5) 0.0 0.0 84.4 78.1 82.7 

70 1801.1 35.4(0) 6.0 27.1 0.1 1.0 0.0(5) 0.0 1.5 97.4 97.3 97.3 463.7 1.4(4) 0.0 27.1 0.1 0.8 0.0(5) 0.0 1.5 80.8 70.1 75.5 

2
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 G % ) and in brackets the number of instances solved to optimality

ithin the time limit. Next, it is provided the best solution gap, 

 G 

t 
BS 

%), computed as follows: 

 

t 
BS % = 

BS t − BS 

BS t 
· 100 , 

here BS is the best MIP objective value found within the time 

imit by the formulation and BS t is the best MIP solution value 

ound within the time limit across all formulations. Finally, it is 

hown the linear relaxation gap, ( G 

t 
LP %), computed as follows: 

 

t 
LP % = 

LP − BS t 

BS t 
· 100 , 

here LP is the optimal solution value of the linear relaxation of 

he formulation. Note that G 

t 
LP % enables us to compare the linear 

elaxation of the formulations with each other (it could be possi- 

le that G % is greater than G 

t 
LP % ). The following blocks of columns

epict information about the rest of formulations, (Flow-Cov) with 

reprocessing and (Path-Cov) with and without preprocessing. Ob- 

erve that the blocks corresponding to formulations with prepro- 

essing include eight columns. The first column of these blocks 

eports the average time of the preprocessing phase in seconds, 

he next one shows the average total time (in seconds) of solving 

he corresponding five instances including the preprocessing time. 

he third, the fourth, and the fifth columns report the average G % , 

 

t 
BS 

, and G 

t 
LP 

respectively. Then, the average percentage of reduc- 

ion in the number of constraints ( R c % ), variables ( R v % ), and binary

ariables ( R bv % ) are depicted. The percentage of reduction in the 

umber of constrains is computed for formulation (Flow-Cov) as 

ollows: 

 c %= # constraint of (Flow-Cov) without prep. − # constraint of (Flow-Cov) with prep. 

# constraint of (Flow-Cov) without prep. 
· 100 . 

he others are calculated analogously. For interested readers, a 

imilar table that compares the performance of the different 

hases of the preprocessing can be found in supplementary ma- 

erial. 

As can be appreciated in Table 3 , the preprocessing phase yields 

 huge reduction in computation time. For example, using for- 

ulation (Flow-Cov) without preprocessing, only 53 instances are 

olved to optimality within the time limit, while using formula- 

ion (Flow-Cov) with preprocessing, all instances are solved (135) 

nd the average time of solving each instance (including the time 

f preprocessing) is 1.1 s. Furthermore, the reduction in the num- 

er of constraints, variables and binary variables is also very large, 

pproximately 97% on average. In formulation (Path-Cov), the re- 

uction of time in the resolution process and the reduction of the 

ize of the problem are also very substantial. 

Based on the above results, we conclude that the preprocess- 

ng phase presented in the paper is extremely useful and effective. 

herefore, in the subsequent computational experiments, the pre- 

rocessing phase is included. 

.3. Results for complete graphs 

In this subsection, we compare the proposed formulations for 

omplete graphs highlighting the effectiveness of the valid inequal- 

ties developed. For interested readers, non-parametric tests (Fried- 

an test and Post-Hoc Holland adjust) to assess the statistical sig- 

ificance of the comparison among the different formulations can 

e found in supplementary material. We used the shiny application 

hinytest 1 , see Carrasco, García, Rueda, Das, & Herrera (2020) for 

urther details. The non-parametric tests show that there are sig- 

ificant differences between the formulations presented. 
1 https://github.com/JacintoCC/shinytests 

q

e

t

25 
The results of the smaller datasets (graph30 and graph40) are 

epicted in Table 4 . As before, the provided results are the aver- 

ge over five instances generated with the same procedure, varying 

nly the random seed for the generator. The table describes infor- 

ation about (Flow-Cov), (Path), (Path) + VI and (Path-Cov), and its 

tructure is similar to that of Table 3 . Observe that the blocks cor- 

esponding to the (Path) and (Path) + VI formulations have no pre- 

rocessing time, since we did not provide a preprocessing for these 

ormulations. Note also that the results of (Path-Cov)+ VI are not 

ncluded because they are really similar to (Path-Cov). The differ- 

nces between these formulations will be shown in instances with 

 larger number of nodes and edges. Moreover, since several of the 

alid inequalities are included as cuts in the branching tree, the 

inear relaxation gap G 

t 
LP % of the formulation with valid inequal- 

ties is practically the same as the one for the formulation with- 

ut valid inequalities. Therefore, they do not appear again in the 

able. 

Finally, the formulation that provided the smallest average total 

ime is highlighted. If any of the five instances were not solved to 

ptimality, the formulation that solved more instances is shown in 

old. 

The results in Table 4 show that formulations (Flow-Cov) and 

Path-Cov) outperform (Path) and (Path) + VI (the resolution times, 

he number of instances solved, the MIP relative gap, the best 

olution gap, and the linear relaxation gap of these formula- 

ions are worse). Moreover, it is clear from these results that the 

alid inequalities improve the performance of formulation (Path) 

s shown in the number of instances solved to optimality (208 

nstances with respect to 217 instances) and the average total 

ime (489 s with respect to 416 s). However, this improvement 

s not large enough to make this formulation competitive with 

espect to formulations (Flow-Cov) and (Path-Cov) on complete 

raphs. Nevertheless, it can be seen that formulations (Path) and 

Path) + VI in graph40 solve many more instances than formula- 

ions (Flow-Cov) and (Path-Cov) without preprocessing (85 and 91 

nstances with respect to 53 and 64 instances), as can be seen in 

able 3 . 

In Table 5 , the average of the number of constraints ( c), the 

umber of variables ( v ), the number of binary variables ( bv ), and

he number of nodes visited in the branching tree (nodes) for each 

ataset (graph30 and graph40) and each formulation is reported. A 

etailed table can be found in the supplementary material. It can 

e seen that the dimension of (Flow-Cov) is much larger than the 

thers. Note also that the inclusion of valid inequalities in formula- 

ion (Path) decreases considerably the number of nodes used. Ob- 

erve that (Path-Cov) is the one with intermediate size and num- 

er of nodes. 

In Table 6 , a second set of computational experiments is re- 

orted. Here, datasets of larger size (graph100 and graph120) 

re solved so that formulations (Flow-Cov), (Path-Cov) and (Path- 

ov) + VI can be compared. Table 6 has the same structure as 

able 4 , but now (Path-Cov) + VI is included whereas (Path) and 

Path) + VI are not. Moreover, a similar analysis to the one in 

able 5 is reported in Table 7 for graph100 and graph120. A de- 

ailed table can be found in the supplementary material. For the 

urpose of a clearer comparison of these formulations, the perfor- 

ance profile graph of the number of solved instances is depicted 

n Fig. 5 . 

Analysing the results shown in Table 6 , we can conclude that 

he difficulty of solving the instances is highly dependent on the 

arameters ( B, R and p). It can be observed that the instances be- 

ome more difficult as B and p decrease and R increases. As shown 

n Table 6 and Fig. 5 , the performance of these formulations is 

uite similar. An interesting observation is that they complement 

ach other. In other words, there are instances in which formula- 

ion (Flow-Cov) did not find the optimal solution within the time 

https://github.com/JacintoCC/shinytests
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Table 4 

Performance of formulations (Flow-Cov), (Path), (Path) + VI, (Path-Cov) on graph30 and graph40. 

Data B % p R % (Flow-Cov) (Path) (Path) + VI (Path-Cov) 

t st t total G % G t BS % G t LP % t total G % G t BS % G t LP % t total G % G t BS % t st t total G % G t BS % G t LP % 

graph30, | V | = 30 , | E| = 435 0.5 1 50 0.1 0.5 0.0(5) 0.0 2.2 54.6 0.0(5) 0.0 84.8 13.2 0.0(5) 0.0 0.1 0.7 0.0(5) 0.0 2.2 

60 0.1 0.4 0.0(5) 0.0 0.9 533.2 6.1(4) 0.0 50.9 144.1 0.0(5) 0.0 0.1 1.4 0.0(5) 0.0 0.9 

70 0.1 0.5 0.0(5) 0.0 0.7 1162.9 14.4(2) 0.2 34.7 865.0 8.2(3) 0.0 0.1 0.8 0.0(5) 0.0 0.7 

2 50 0.0 0.1 0.0(5) 0.0 0.6 0.3 0.0(5) 0.0 83.4 0.3 0.0(5) 0.0 0.0 0.1 0.0(5) 0.0 0.6 

60 0.0 0.1 0.0(5) 0.0 0.0 0.7 0.0(5) 0.0 54.3 0.5 0.0(5) 0.0 0.0 0.1 0.0(5) 0.0 0.0 

70 0.1 0.3 0.0(5) 0.0 1.0 5.0 0.0(5) 0.0 36.0 2.9 0.0(5) 0.0 0.0 0.3 0.0(5) 0.0 1.1 

3 50 0.0 0.1 0.0(5) 0.0 0.4 0.1 0.0(5) 0.0 79.2 0.1 0.0(5) 0.0 0.0 0.1 0.0(5) 0.0 3.0 

60 0.0 0.1 0.0(5) 0.0 2.6 0.3 0.0(5) 0.0 53.8 0.3 0.0(5) 0.0 0.0 0.1 0.0(5) 0.0 2.7 

70 0.0 0.1 0.0(5) 0.0 0.7 0.8 0.0(5) 0.0 32.0 0.7 0.0(5) 0.0 0.0 0.1 0.0(5) 0.0 0.7 

1 1 50 0.1 0.8 0.0(5) 0.0 4.1 102.7 0.0(5) 0.0 77.2 49.7 0.0(5) 0.0 0.1 1.9 0.0(5) 0.0 4.2 

60 0.1 0.6 0.0(5) 0.0 0.7 620.2 2.9(4) 0.0 45.3 479.4 1.3(4) 0.0 0.1 2.2 0.0(5) 0.0 0.7 

70 0.1 0.8 0.0(5) 0.0 2.0 1370.0 10.0(3) 0.0 32.4 967.0 11.9(3) 0.0 0.1 4.1 0.0(5) 0.0 2.1 

2 50 0.0 0.1 0.0(5) 0.0 0.6 0.3 0.0(5) 0.0 83.4 0.3 0.0(5) 0.0 0.0 0.1 0.0(5) 0.0 0.6 

60 0.0 0.1 0.0(5) 0.0 0.3 0.7 0.0(5) 0.0 52.8 0.5 0.0(5) 0.0 0.0 0.1 0.0(5) 0.0 0.3 

70 0.1 0.6 0.0(5) 0.0 1.5 11.7 0.0(5) 0.0 32.5 6.1 0.0(5) 0.0 0.0 0.9 0.0(5) 0.0 1.5 

3 50 0.0 0.1 0.0(5) 0.0 0.4 0.1 0.0(5) 0.0 79.2 0.1 0.0(5) 0.0 0.0 0.1 0.0(5) 0.0 3.0 

60 0.0 0.1 0.0(5) 0.0 2.6 0.3 0.0(5) 0.0 53.8 0.3 0.0(5) 0.0 0.0 0.1 0.0(5) 0.0 2.7 

70 0.1 0.1 0.0(5) 0.0 0.7 0.8 0.0(5) 0.0 32.0 0.7 0.0(5) 0.0 0.0 0.1 0.0(5) 0.0 0.7 

5 1 50 0.1 0.6 0.0(5) 0.0 0.0 254.6 0.0(5) 0.0 66.2 98.3 0.0(5) 0.0 0.1 0.2 0.0(5) 0.0 0.0 

60 0.1 0.7 0.0(5) 0.0 0.0 1097.0 5.5(3) 0.0 42.9 653.4 3.7(4) 0.0 0.1 0.2 0.0(5) 0.0 0.0 

70 0.1 0.8 0.0(5) 0.0 0.0 1384.6 13.3(2) 0.0 28.8 1329.7 14.(2) 0.0 0.1 1.5 0.0(5) 0.0 0.0 

2 50 0.0 0.2 0.0(5) 0.0 2.2 0.4 0.0(5) 0.0 70.6 0.4 0.0(5) 0.0 0.0 0.1 0.0(5) 0.0 3.6 

60 0.0 0.2 0.0(5) 0.0 1.4 1.0 0.0(5) 0.0 49.4 0.8 0.0(5) 0.0 0.0 0.2 0.0(5) 0.0 1.4 

70 0.1 0.5 0.0(5) 0.0 1.2 20.4 0.0(5) 0.0 30.7 11.1 0.0(5) 0.0 0.1 0.4 0.0(5) 0.0 1.2 

3 50 0.0 0.1 0.0(5) 0.0 1.1 0.1 0.0(5) 0.0 72.1 0.1 0.0(5) 0.0 0.0 0.1 0.0(5) 0.0 1.8 

60 0.1 0.2 0.0(5) 0.0 3.2 0.5 0.0(5) 0.0 47.4 0.5 0.0(5) 0.0 0.0 0.2 0.0(5) 0.0 4.6 

70 0.1 0.3 0.0(5) 0.0 4.0 1.3 0.0(5) 0.0 26.2 0.9 0.0(5) 0.0 0.0 0.2 0.0(5) 0.0 4.2 

( continued on next page ) 
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Table 4 ( continued ) 

Data B % p R % (Flow-Cov) (Path) (Path) + VI (Path-Cov) 

t st t total G % G t BS % G t LP % t total G % G t BS % G t LP % t total G % G t BS % t st t total G % G t BS % G t LP % 

graph40, | V | = 40 , | E| = 780 0.5 1 50 0.1 0.7 0.0(5) 0.0 2.3 1395.1 31.1(2) 0.0 93.2 1089.2 39.(3) 6.1 0.1 2.3 0.0(5) 0.0 2.4 

60 0.1 3.8 0.0(5) 0.0 0.7 1801.0 48.3(0) 5.1 52.3 1802.6 45.9(0) 5.8 0.2 8.8 0.0(5) 0.0 0.7 

70 0.2 2.0 0.0(5) 0.0 1.0 1801.6 43.6(0) 8.2 35.4 1803.7 62.1(0) 16.9 0.2 724.2 1.0(3) 0.0 1.0 

2 50 0.1 0.4 0.0(5) 0.0 1.2 6.2 0.0(5) 0.0 88.6 4.5 0.0(5) 0.0 0.1 0.4 0.0(5) 0.0 3.3 

60 0.1 0.4 0.0(5) 0.0 0.9 143.6 0.0(5) 0.0 57.0 53.9 0.0(5) 0.0 0.1 0.4 0.0(5) 0.0 0.9 

70 0.1 0.7 0.0(5) 0.0 1.8 878.8 2.3(3) 0.0 34.1 549.8 1.1(4) 0.0 0.1 2.4 0.0(5) 0.0 1.8 

4 50 0.1 0.1 0.0(5) 0.0 1.0 0.2 0.0(5) 0.0 67.2 0.2 0.0(5) 0.0 0.1 0.1 0.0(5) 0.0 2.8 

60 0.1 0.2 0.0(5) 0.0 0.8 0.8 0.0(5) 0.0 56.8 0.6 0.0(5) 0.0 0.1 0.2 0.0(5) 0.0 1.7 

70 0.1 1.0 0.0(5) 0.0 3.9 6.9 0.0(5) 0.0 34.3 4.4 0.0(5) 0.0 0.1 0.6 0.0(5) 0.0 4.4 

1 1 50 0.1 1.1 0.0(5) 0.0 0.4 1636.2 36.3(1) 3.0 86.0 1367.6 32.2(3) 3.2 0.1 3.6 0.0(5) 0.0 0.5 

60 0.1 1.5 0.0(5) 0.0 0.4 1800.5 48.2(0) 7.1 51.8 1801.1 55.8(0) 9.7 0.1 5.4 0.0(5) 0.0 0.4 

70 0.2 2.6 0.0(5) 0.0 1.5 1801.0 42.2(0) 8.1 34.0 1802.9 48.6(0) 11.9 0.2 135.3 0.0(5) 0.0 1.5 

2 50 0.1 0.4 0.0(5) 0.0 0.9 10.1 0.0(5) 0.0 86.5 5.9 0.0(5) 0.0 0.1 0.3 0.0(5) 0.0 1.4 

60 0.1 0.8 0.0(5) 0.0 2.8 255.7 0.0(5) 0.0 53.2 168.2 0.0(5) 0.0 0.1 1.7 0.0(5) 0.0 2.8 

70 0.1 1.9 0.0(5) 0.0 3.0 1058.5 3.1(3) 0.0 31.6 817.9 1.8(3) 0.0 0.1 41.9 0.0(5) 0.0 3.1 

4 50 0.1 0.1 0.0(5) 0.0 1.0 0.2 0.0(5) 0.0 67.2 0.2 0.0(5) 0.0 0.1 0.1 0.0(5) 0.0 2.8 

60 0.1 0.2 0.0(5) 0.0 0.8 0.8 0.0(5) 0.0 56.8 0.6 0.0(5) 0.0 0.1 0.2 0.0(5) 0.0 1.7 

70 0.1 1.0 0.0(5) 0.0 3.9 6.9 0.0(5) 0.0 34.3 4.4 0.0(5) 0.0 0.1 0.6 0.0(5) 0.0 4.4 

5 1 50 0.1 1.7 0.0(5) 0.0 0.3 1549.1 37.7(1) 0.0 82.1 1488.2 36.2(1) 0.0 0.1 0.6 0.0(5) 0.0 0.3 

60 0.2 2.1 0.0(5) 0.0 0.5 1800.6 50.4(0) 8.8 45.4 1806.5 44.6(0) 7.3 0.1 16.3 0.0(5) 0.0 0.5 

70 0.2 1.9 0.0(5) 0.0 0.0 1802.9 38.6(0) 7.2 31.0 1803.4 41.2(0) 8.6 0.2 3.6 0.0(5) 0.0 0.0 

2 50 0.1 0.4 0.0(5) 0.0 1.1 15.7 0.0(5) 0.0 81.5 10.5 0.0(5) 0.0 0.1 0.4 0.0(5) 0.0 1.1 

60 0.1 1.1 0.0(5) 0.0 0.3 499.0 0.2(4) 0.0 47.6 234.3 0.0(5) 0.0 0.1 0.7 0.0(5) 0.0 0.3 

70 0.1 1.5 0.0(5) 0.0 0.0 1468.1 4.6(1) 0.1 27.6 1202.5 2.9(2) 0.1 0.1 2.0 0.0(5) 0.0 0.0 

4 50 0.1 0.1 0.0(5) 0.0 1.2 0.2 0.0(5) 0.0 63.4 0.2 0.0(5) 0.0 0.1 0.1 0.0(5) 0.0 1.3 

60 0.1 0.2 0.0(5) 0.0 0.0 0.8 0.0(5) 0.0 54.1 0.7 0.0(5) 0.0 0.1 0.2 0.0(5) 0.0 0.0 

70 0.1 1.0 0.0(5) 0.0 1.5 39.4 0.0(5) 0.0 27.1 13.5 0.0(5) 0.0 0.1 0.8 0.0(5) 0.0 1.5 
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Table 5 

Number of constraints, variables, and nodes visited in the branching tree of formulations (Flow-Cov), (Path), (Path) + VI, (Path-Cov) on graph30 and graph40. 

(Flow-Cov) (Path) (Path) + VI (Path-Cov) 

c v bv nodes c v bv nodes c v bv nodes c v bv nodes 

graph30 8551.5 6754.0 3441.2 0.6 716.1 382.3 245.2 1124757.3 918.3 382.3 245.2 607817.9 2632.1 588.2 451.1 2357.8 

graph40 25549.9 20155.2 10180.8 9.5 1152.4 611.7 395.1 2661373.2 1497.2 611.7 395.1 1724565.8 5163.7 955.7 739.2 107560.3 
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Table 6 

Performance of formulations (Flow-Cov), (Path-Cov), and (Path-Cov) + VI on graph100 and graph120. 

Data B % p R % (Flow-Cov) (Path-Cov) (Path-Cov) + VI 

t st t total G % G t BS % G t LP % t st t total G % G t BS % G t LP % t st t total G % G t BS % 

graph100, | V | = 

100 , | E| = 4950 

0.5 1 50 6.8 1512.9 5.7(1) 0.0 6.9 6.8 1807.1 10.6(0) 3.2 7.0 6.8 1564.4 7.9(1) 0.8 

60 7.1 1716.5 1.9(1) 0.0 2.4 7.3 1807.5 3.3(0) 0.8 2.4 7.2 1807.5 2.6(0) 0.2 

70 8.1 1770.6 1649.1(1) 14.7 3.2 7.9 1808.3 4.4(0) 1.1 3.3 7.9 1808.4 4.8(0) 1.4 

5 50 1.2 12.0 0.0(5) 0.0 1.6 1.2 7.5 0.0(5) 0.0 1.7 1.2 5.7 0.0(5) 0.0 

60 1.3 455.3 0.3(4) 0.0 4.8 1.3 710.2 0.0(4) 0.0 5.1 1.3 654.6 0.0(4) 0.0 

70 1.6 624.0 0.0(4) 0.0 2.5 1.6 1101.1 1.5(2) 0.3 2.5 1.6 1096.8 1.5(2) 0.5 

10 50 1.1 2.0 0.0(5) 0.0 2.8 1.1 1.4 0.0(5) 0.0 3.8 1.1 1.4 0.0(5) 0.0 

60 1.2 8.4 0.0(5) 0.0 3.5 1.2 3.0 0.0(5) 0.0 4.0 1.2 2.1 0.0(5) 0.0 

70 1.2 19.7 0.0(5) 0.0 3.3 1.2 6.5 0.0(5) 0.0 3.6 1.2 6.2 0.0(5) 0.0 

1 1 50 7.2 1285.7 3.3(2) 0.0 3.6 7.0 1262.4 4.1(2) 0.4 3.7 6.9 1265.4 3.7(2) 0.0 

60 7.1 1383.9 0.6(3) 0.0 0.6 7.4 1557.2 1.5(2) 0.8 0.6 7.3 1378.9 0.9(2) 0.3 

70 8.1 1643.4 16.3(2) 11.1 0.9 8.1 1692.6 1.6(1) 0.7 0.9 8.1 1710.9 2.0(1) 1.1 

5 50 1.2 16.0 0.0(5) 0.0 1.3 1.2 6.7 0.0(5) 0.0 1.3 1.2 6.9 0.0(5) 0.0 

60 1.3 413.9 0.3(4) 0.0 3.9 1.3 473.8 0.3(4) 0.0 4.1 1.3 448.4 0.3(4) 0.0 

70 1.6 244.2 0.0(5) 0.0 1.8 1.7 1091.4 0.8(2) 0.1 1.9 1.6 1087.7 1.5(2) 0.4 

10 50 1.1 1.9 0.0(5) 0.0 2.8 1.1 1.4 0.0(5) 0.0 3.8 1.1 1.4 0.0(5) 0.0 

60 1.2 8.7 0.0(5) 0.0 3.5 1.2 2.8 0.0(5) 0.0 3.7 1.2 2.2 0.0(5) 0.0 

70 1.2 22.1 0.0(5) 0.0 2.7 1.2 14.8 0.0(5) 0.0 2.8 1.2 14.1 0.0(5) 0.0 

5 1 50 6.9 747.2 0.0(5) 0.0 0.0 7.1 284.7 0.0(5) 0.0 0.0 7.0 278.3 0.0(5) 0.0 

60 7.3 1064.1 0.0(5) 0.0 0.0 7.3 432.2 0.0(5) 0.0 0.0 7.2 368.9 0.0(5) 0.0 

70 7.9 1148.0 0.0(5) 0.0 0.0 8.1 513.4 0.0(5) 0.0 0.0 8.1 632.4 0.0(5) 0.0 

5 50 1.2 4.0 0.0(5) 0.0 0.0 1.2 1.7 0.0(5) 0.0 0.0 1.2 1.7 0.0(5) 0.0 

60 1.3 8.6 0.0(5) 0.0 0.0 1.3 4.9 0.0(5) 0.0 0.0 1.2 5.3 0.0(5) 0.0 

70 1.7 21.1 0.0(5) 0.0 0.1 1.7 403.0 0.0(4) 0.0 0.1 1.6 22.9 0.0(5) 0.0 

10 50 1.1 1.7 0.0(5) 0.0 0.9 1.2 1.4 0.0(5) 0.0 1.0 1.1 1.3 0.0(5) 0.0 

60 1.2 3.3 0.0(5) 0.0 0.3 1.2 1.5 0.0(5) 0.0 0.3 1.1 1.5 0.0(5) 0.0 

70 1.2 7.6 0.0(5) 0.0 0.5 1.2 4.7 0.0(5) 0.0 0.5 1.2 5.2 0.0(5) 0.0 

( continued on next page ) 
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Table 6 ( continued ) 

Data B % p R % (Flow-Cov) (Path-Cov) (Path-Cov) + VI 

t st t total G % G t BS % G t LP % t st t total G % G t BS % G t LP % t st t total G % G t BS % 

graph120, | V | = 

120 , | E| = 7140 

0.5 1 50 10.6 1718.2 6503.6(1) 16.9 3.3 10.8 1820.2 3.6(0) 0.3 3.3 10.9 1811.3 4.2(0) 0.8 

60 12.2 1814.7 9004.2(0) 24.8 3.3 12.1 1812.6 4.0(0) 0.6 3.3 12.2 1812.5 7.5(0) 3.3 

70 13.3 1815.4 10993.9(0) 28.8 3.4 13.4 1814.1 3.6(0) 0.1 3.4 13.1 1814.0 4.7(0) 1.2 

6 50 2.1 462.0 0.7(4) 0.0 4.5 2.1 396.3 0.5(4) 0.0 4.7 2.1 405.6 1.1(4) 0.1 

60 2.2 1353.5 0.1(3) 0.0 3.5 2.2 1247.1 0.8(2) 0.1 3.6 2.2 1309.7 0.8(2) 0.1 

70 3.9 1248.9 0.9(2) 0.0 3.7 3.9 1592.4 5.(1) 1.7 3.8 3.9 1744.7 4.9(1) 1.7 

12 50 2.0 4.2 0.0(5) 0.0 1.7 2.0 2.3 0.0(5) 0.0 2.2 2.0 2.3 0.0(5) 0.0 

60 2.0 76.1 0.0(5) 0.0 5.1 2.0 6.1 0.0(5) 0.0 5.7 2.0 6.0 0.0(5) 0.0 

70 2.0 355.5 0.0(5) 0.0 3.4 2.1 215.1 0.0(5) 0.0 3.8 2.0 65.4 0.0(5) 0.0 

1 1 50 10.7 1798.6 2019.5(1) 18.4 0.5 11.0 1796.0 1.0(1) 0.4 0.5 10.9 1768.8 0.8(1) 0.3 

60 12.3 1815.1 9023.2(0) 30.3 1.7 12.3 1719.2 2.2(1) 0.5 1.7 12.3 1728.1 2.2(2) 0.4 

70 13.2 1815.4 11005.2(0) 30.0 1.8 13.7 1803.5 1.9(1) 0.1 1.8 13.7 1734.1 2.3(2) 0.6 

6 50 2.1 456.6 0.5(4) 0.0 3.9 2.1 529.4 0.5(4) 0.0 4.1 2.1 412.0 0.8(4) 0.2 

60 2.2 1076.9 0.1(3) 0.0 3.0 2.2 1274.0 0.9(2) 0.1 3.1 2.2 1323.6 0.8(2) 0.1 

70 4.1 1480.6 1.4(2) 0.0 3.8 4.1 1806.9 5.3(0) 1.9 3.9 4.1 1655.6 5.5(1) 1.9 

12 50 2.0 4.2 0.0(5) 0.0 1.7 2.0 2.3 0.0(5) 0.0 2.2 1.9 2.2 0.0(5) 0.0 

60 2.0 263.1 0.0(5) 0.0 5.3 2.0 7.0 0.0(5) 0.0 5.6 2.0 6.2 0.0(5) 0.0 

70 2.1 780.9 0.2(4) 0.0 3.2 2.0 380.8 0.2(4) 0.0 3.6 2.0 335.9 0.0(5) 0.0 

5 1 50 10.8 1530.5 2019.3(2) 18.5 0.0 10.9 367.1 0.0(5) 0.0 0.0 11.1 506.9 0.0(5) 0.0 

60 12.4 1816.0 7167.1(0) 31.3 0.0 12.5 971.9 5.8(4) 4.5 0.0 12.2 776.0 0.0(5) 0.0 

70 13.2 1817.0 6993.(0) 31.4 0.0 13.6 985.4 0.0(5) 0.0 0.0 13.6 1057.8 0.0(5) 0.0 

6 50 2.1 30.9 0.0(5) 0.0 0.2 2.1 5.3 0.0(5) 0.0 0.2 2.1 7.7 0.0(5) 0.0 

60 2.3 102.7 0.0(5) 0.0 0.4 2.2 44.7 0.0(5) 0.0 0.4 2.2 48.6 0.0(5) 0.0 

70 4.0 281.8 0.0(5) 0.0 0.4 4.1 1484.1 0.4(1) 0.1 0.4 4.1 1451.1 0.2(1) 0.0 

12 50 2.0 3.6 0.0(5) 0.0 0.6 2.0 2.2 0.0(5) 0.0 0.7 2.0 2.2 0.0(5) 0.0 

60 2.0 24.3 0.0(5) 0.0 1.5 2.0 4.4 0.0(5) 0.0 1.6 2.0 4.3 0.0(5) 0.0 

70 2.0 52.5 0.0(5) 0.0 0.7 2.0 10.3 0.0(5) 0.0 0.7 2.0 10.0 0.0(5) 0.0 

3
0
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Table 7 

Number of constraints, variables, and nodes visited in the branching tree of formulations (Flow-Cov), (Path-Cov), and (Path-Cov) + VI on graph100 and graph120. 

(Flow-Cov) (Path-Cov) (Path-Cov) + VI 

c v bv nodes c v bv nodes c v bv nodes 

graph100 796249.9 632308.2 316639.7 575.3 55293.7 4581.3 3605.5 95947.3 55310.7 4581.3 3605.5 71610.8 

graph120 1556268.4 1236714.5 619029.0 1776.1 88816.1 6384.0 5035.1 166633.4 88847.8 6384.0 5035.1 154253.2 

Fig. 5. Performance profile graph of #solved instances using (Flow-Cov), (Path-Cov), and (Path-Cov) + VI formulations on graph100 and graph120. 

Fig. 6. Performance profile graph of #solved instances using (Flow-Cov), (Path-Cov), and (Path-Cov) + VI formulations on pmedb dataset. 
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imit but (Path-Cov) + VI did and vice versa. Nevertheless, (Path- 

ov) + VI found the optimal solution in more instances than (Path- 

ov) and all the instances solved to optimality by (Path-Cov) were 

lso solved to optimality by (Path-Cov) + VI. It can be appreciated 

hat the average preprocessing time is lower than fourteen seconds 

n all cases. Furthermore, the linear relaxation of the formulations 

 G 

t 
LP 

%) is quite good, being on average 2.1% for (Flow-Cov) and 2.3%

or (Path-Cov) and (Path-Cov) + VI. 

In view of the results reported in this subsection, we con- 

lude that the best formulations for solving Up-MCLP on complete 

raphs are (Flow-Cov) and (Path-Cov) + VI. In the next subsection, 

parser graphs will be analysed. 

.4. Results on sparse graphs 

The aim of this subsection is to compare the proposed formu- 

ations on sparse graphs. In particular, we used the uncapacited p- 

edian datasets from the OR-Library. For interested readers, non- 

arametric tests (Friedman test and Post-Hoc Holland adjust) to 

ssess the statistical significance of the comparison among the dif- 
31 
erent formulations can be found in supplementary material. They 

how that there are significant differences between the formula- 

ions presented. 

Table 8 has the same structure as Table 4 . In this table, we 

eported the results of formulations (Flow-Cov), (Path), (Path) + 

I, (Path-Cov), and (Path-Cov) + VI on the smallest pmed datasets 

pmed1-pmed5), named pmeds. These networks contain 100 nodes 

nd 195.2 edges on average (the smallest have 190 and the largest 

98). The provided results are the average over the five datasets 

here the other parameters were randomly generated following 

he procedure described in Section 6.1 . Moreover, a similar analy- 

is to Table 7 is reported in Table 9 for pmeds instances. A detailed

able can be found in the supplementary material. 

Similarly to complete graphs, it can be seen in Table 8 that 

he difficulty of the instances is highly parameter-dependent. In 

ddition, it is shown that the preprocessing time is small (less 

han two seconds in all instances). Furthermore, the number of in- 

tances solved to optimality by (Flow-Cov), (Path-Cov), and (Path- 

ov) + VI is considerably higher than the ones solved by (Path) and 

Path) + VI. Observe that the average of the linear relaxation gaps 
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Table 8 

Performance of formulations (Flow-Cov), (Path), (Path) + VI, (Path-Cov), and (Path-Cov) + VI on pmeds. 

Data B % p R % (Flow-Cov) (Path) (Path) + VI (Path-Cov) (Path-Cov) + VI 

t st t total G % G t BS % G t LP % t total G % G t BS % G t LP % t total G % G t BS % t st t total G % G t BS % G t LP % t st t total G % G t BS % 

pmeds, | V | = 

100 , | E| = 195 . 2 

0.5 1 50 1.4 26.1 0.0(5) 0.0 4.3 918.8 17.5(4) 2.3 87.5 474.8 23.1(4) 4.5 1.4 20.5 0.0(5) 0.0 4.3 1.4 24.2 0.0(5) 0.0 

60 1.5 15.5 0.0(5) 0.0 2.1 1764.7 39.5(1) 8.7 55.3 1168.2 31.9(3) 7.8 1.5 38.7 0.0(5) 0.0 2.1 1.5 25.7 0.0(5) 0.0 

70 1.5 32.6 0.0(5) 0.0 4.0 1801.9 44.0(0) 8.9 35.8 1580.2 75.0(1) 16.9 1.5 991.7 1.5(3) 0.0 4.1 1.5 572.9 0.3(4) 0.0 

5 50 1.2 1.4 0.0(5) 0.0 1.1 14.5 0.0(5) 0.0 75.8 13.5 0.0(5) 0.0 1.2 1.4 0.0(5) 0.0 2.7 1.2 1.4 0.0(5) 0.0 

60 1.2 1.8 0.0(5) 0.0 1.3 575.0 0.0(5) 0.0 57.9 589.1 0.0(5) 0.0 1.2 2.1 0.0(5) 0.0 3.4 1.2 2.3 0.0(5) 0.0 

70 1.2 3.9 0.0(5) 0.0 1.7 803.4 3.2(3) 0.0 38.8 979.5 2.5(3) 0.0 1.2 3.9 0.0(5) 0.0 2.6 1.2 3.7 0.0(5) 0.0 

10 50 1.2 1.2 0.0(5) 0.0 0.1 0.8 0.0(5) 0.0 42.8 0.7 0.0(5) 0.0 1.1 1.2 0.0(5) 0.0 3.7 1.1 1.2 0.0(5) 0.0 

60 1.2 1.2 0.0(5) 0.0 0.7 1.6 0.0(5) 0.0 46.9 1.8 0.0(5) 0.0 1.1 1.3 0.0(5) 0.0 2.9 1.1 1.3 0.0(5) 0.0 

70 1.2 1.4 0.0(5) 0.0 1.6 9.2 0.0(5) 0.0 35.4 28.2 0.0(5) 0.0 1.2 1.5 0.0(5) 0.0 3.0 1.2 1.6 0.0(5) 0.0 

1 1 50 1.7 570.6 0.0(5) 0.0 7.2 1496.5 31.6(1) 2.7 77.1 1137.1 83.1(3) 13.1 1.7 202.6 0.0(5) 0.0 7.3 1.6 68.7 0.0(5) 0.0 

60 1.7 1460.1 2.4(2) 0.0 7.7 1800.6 40.7(0) 4.9 49.6 1488.5 38.2(1) 6.7 1.7 960.6 3.1(4) 1.3 7.8 1.8 850.1 3.1(4) 1.3 

70 1.8 425.1 0.0(5) 0.0 4.8 1801.2 29.3(0) 5.7 30.1 1800.7 349.5(0) 51.1 1.8 1425.3 2.7(2) 0.0 4.9 1.8 1513.8 3.8(1) 0.0 

5 50 1.2 1.8 0.0(5) 0.0 2.8 84.1 0.0(5) 0.0 75.7 77.7 0.0(5) 0.0 1.2 1.8 0.0(5) 0.0 4.9 1.2 1.7 0.0(5) 0.0 

60 1.2 3.4 0.0(5) 0.0 5.0 918.9 0.7(4) 0.1 55.8 1116.2 3.9(2) 0.0 1.2 22.7 0.0(5) 0.0 6.6 1.3 18.2 0.0(5) 0.0 

70 1.3 62.1 0.0(5) 0.0 5.2 1718.3 8.3(1) 0.2 36.3 1602.7 9.6(1) 0.3 1.3 76.6 0.0(5) 0.0 5.3 1.3 39.9 0.0(5) 0.0 

10 50 1.1 1.2 0.0(5) 0.0 1.5 0.8 0.0(5) 0.0 43.1 0.7 0.0(5) 0.0 1.1 1.2 0.0(5) 0.0 4.4 1.1 1.2 0.0(5) 0.0 

60 1.2 1.3 0.0(5) 0.0 1.7 2.6 0.0(5) 0.0 46.3 2.4 0.0(5) 0.0 1.2 1.9 0.0(5) 0.0 4.2 1.2 1.7 0.0(5) 0.0 

70 1.2 1.7 0.0(5) 0.0 3.2 18.0 0.0(5) 0.0 34.6 25.3 0.0(5) 0.0 1.2 2.6 0.0(5) 0.0 5.6 1.2 2.5 0.0(5) 0.0 

5 1 50 1.5 1015.6 0.0(5) 0.0 3.0 1288.4 24.(2) 2.7 55.1 1155.6 25.7(2) 3.2 1.5 64.8 0.0(5) 0.0 3.0 1.5 85.5 0.0(5) 0.0 

60 1.6 1407.8 3.4(2) 0.5 4.5 1800.6 25.1(0) 4.8 33.7 1690.5 27.4(1) 6.2 1.6 869.4 2.5(3) 0.1 4.6 1.6 1140.9 2.5(2) 0.1 

70 1.6 1205.0 1.8(2) 0.0 2.7 1801.7 22.6(0) 5.7 19.3 1758.5 268.6(1) 35.2 1.6 1077.4 1.8(3) 0.0 2.8 1.7 946.9 1.9(3) 0.0 

5 50 1.2 2.3 0.0(5) 0.0 4.1 102.8 0.0(5) 0.0 66.8 132.1 0.0(5) 0.0 1.2 3.0 0.0(5) 0.0 4.2 1.2 2.9 0.0(5) 0.0 

60 1.2 5.2 0.0(5) 0.0 2.7 686.2 0.3(4) 0.0 46.2 738.7 0.0(5) 0.0 1.2 21.0 0.0(5) 0.0 2.7 1.2 17.6 0.0(5) 0.0 

70 1.3 207.3 0.0(5) 0.0 3.0 1418.4 2.8(3) 0.1 28.8 1458.9 4.2(2) 0.0 1.3 48.5 0.0(5) 0.0 3.0 1.3 48.1 0.0(5) 0.0 

10 50 1.2 1.2 0.0(5) 0.0 0.8 1.0 0.0(5) 0.0 38.4 0.8 0.0(5) 0.0 1.1 1.3 0.0(5) 0.0 1.1 1.2 1.3 0.0(5) 0.0 

60 1.2 1.5 0.0(5) 0.0 3.1 4.3 0.0(5) 0.0 40.7 4.6 0.0(5) 0.0 1.2 1.9 0.0(5) 0.0 4.0 1.2 1.8 0.0(5) 0.0 

70 1.2 2.2 0.0(5) 0.0 2.9 61.8 0.0(5) 0.0 29.4 38.3 0.0(5) 0.0 1.2 4.1 0.0(5) 0.0 3.0 1.2 3.9 0.0(5) 0.0 
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Table 9 

Number of constraints, variables, and nodes visited in the branching tree of formulations (Flow-Cov), (Path), (Path) + VI, (Path-Cov), and (Path-Cov) + VI on pmeds. 

(Flow-Cov) (Path) (Path) + VI (Path-Cov) (Path-Cov) + VI 

Data c v bv nodes c v bv nodes c v bv nodes c v bv nodes c v bv nodes 

pmeds 166204.5 120362.9 60983.3 412.4 1023.2 606.4 376.0 1296509.9 2333.6 606.4 376.0 786929.8 7368.9 2248.1 2017.7 29238.2 7396.4 2248.1 2017.7 25113.6 

3
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Table 10 

Performance of formulations (Flow-Cov), (Path-Cov), and (Path-Cov) + VI on pmedb. 

Data B % p R % (Flow-Cov) (Path-Cov) (Path-Cov) + VI 

t st t total G % G t BS % G t LP % t st t total G % G t BS % G t LP % t st t total G % G t BS % 

pmedb, 

| V | = 

200 , | E| = 

777 . 8 

0.5 1 50 12.5 1815.3 5881.2(0) 18.7 9.1 12.4 1812.9 9.3(0) 0.1 9.9 12.3 1812.7 8.9(0) 0.0 

60 18.3 1821.2 6383.5(0) 33.1 7.4 18.5 1819.1 7.5(0) 0.0 8.0 18.4 1818.7 7.7(0) 0.1 

70 36.3 1839.9 13701.3(0) 24.8 5.8 37.6 1848.8 5.8(0) 0.0 6.4 37.1 1837.5 6.1(0) 0.3 

10 50 9.3 22.4 0.0(5) 0.0 2.1 9.2 14.8 0.0(5) 0.0 4.3 9.1 15.3 0.0(5) 0.0 

60 9.5 1451.5 1.2(2) 0.0 4.4 9.3 1150.8 1.1(2) 0.2 6.5 9.3 975.3 1.3(3) 0.3 

70 10.0 1811.3 2.8(0) 0.6 3.9 9.8 1815.2 2.7(0) 1.0 4.4 9.8 1811.3 2.6(0) 1.0 

20 50 8.9 9.1 0.0(5) 0.0 1.8 8.9 9.2 0.0(5) 0.0 3.6 8.8 9.1 0.0(5) 0.0 

60 9.0 45.4 0.0(5) 0.0 2.5 9.0 13.3 0.0(5) 0.0 3.8 8.9 14.4 0.0(5) 0.0 

70 9.4 785.8 0.1(4) 0.1 2.7 9.2 617.7 0.4(4) 0.0 5.2 9.2 771.0 0.3(3) 0.0 

1 1 50 11.2 1814.1 6101.7(0) 23.3 8.2 11.2 1811.5 8.4(0) 0.0 8.4 11.1 1811.5 8.4(0) 0.0 

60 16.2 1819.9 13905.8(0) 25.2 7.4 16.3 1819.4 7.5(0) 0.0 7.6 16.1 1816.8 7.5(0) 0.0 

70 33.7 1836.7 17155.8(0) 26.3 5.1 33.7 1834.1 5.4(0) 0.2 5.3 33.5 1834.1 5.5(0) 0.4 

10 50 9.3 299.3 0.0(5) 0.0 3.7 9.0 57.5 0.0(5) 0.0 4.7 9.0 53.7 0.0(5) 0.0 

60 9.4 1810.0 3.2(0) 0.1 5.5 9.5 1566.1 2.2(1) 0.5 5.8 9.3 1526.1 1.7(1) 0.2 

70 9.5 1811.1 3.9(0) 0.7 3.8 9.6 1811.5 2.7(0) 0.4 3.8 9.5 1810.6 4.1(0) 1.9 

20 50 9.2 9.5 0.0(5) 0.0 3.2 9.1 9.4 0.0(5) 0.0 4.2 8.9 9.3 0.0(5) 0.0 

60 9.0 141.0 0.0(5) 0.0 3.6 9.3 23.2 0.0(5) 0.0 4.5 9.0 20.7 0.0(5) 0.0 

70 9.3 1613.6 1.0(1) 0.1 3.2 9.2 1158.1 0.5(3) 0.0 4.1 9.1 959.8 0.3(4) 0.0 

5 1 50 11.2 1546.2 6102.5(2) 25.3 0.0 11.2 181.1 0.0(5) 0.0 0.0 11.0 185.9 0.0(5) 0.0 

60 16.6 1742.8 6551.2(1) 24.6 0.1 16.0 917.2 0.1(3) 0.0 0.1 16.0 803.1 0.1(4) 0.0 

70 33.2 1837.5 11417.1(0) 29.4 0.2 32.6 853.6 0.2(4) 0.0 0.2 32.6 769.9 0.2(4) 0.0 

10 50 9.1 342.8 0.0(5) 0.0 1.7 9.2 34.8 0.0(5) 0.0 1.7 9.0 30.0 0.0(5) 0.0 

60 9.6 1527.2 1.1(1) 0.2 1.7 9.2 696.4 0.0(5) 0.0 1.7 9.2 434.5 0.0(5) 0.0 

70 9.5 1811.4 1.2(0) 0.8 0.5 9.5 733.6 0.2(4) 0.0 0.5 9.4 687.4 0.5(4) 0.3 

20 50 9.0 9.4 0.0(5) 0.0 1.2 8.9 9.6 0.0(5) 0.0 1.3 8.8 9.5 0.0(5) 0.0 

60 9.2 44.5 0.0(5) 0.0 1.3 9.0 17.1 0.0(5) 0.0 1.4 8.9 15.5 0.0(5) 0.0 

70 9.3 1324.6 0.4(2) 0.0 0.8 9.1 730.6 0.0(4) 0.0 0.8 9.3 493.2 0.1(4) 0.0 

3
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Table 11 

Number of constraints, variables, and nodes visited in the branching tree of formulations (Flow-Cov), (Path-Cov), and (Path-Cov) + VI on pmedb. 

(Flow-Cov) (Path-Cov) (Path-Cov) + VI 

Data c v bv nodes c v bv nodes c v bv nodes 

pmedb 2147283.6 1599445.8 802394.7 1809.3 35199.8 6849.2 6350.2 97218.6 35336.9 6849.2 6350.2 80667.2 
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f (Flow-Cov) (3.1%), (Path-Cov) and (Path-Cov) + VI (4.0%) are bet- 

er than the linear relaxation gap of (Path) and (Path) + VI (47.5%). 

n Table 9 the different sizes of the problem for each formulation 

an be appreciated. 

In Table 10 , we report the result obtained on datasets of larger 

ize, named pmedb. More concretely, the table shows the results 

f formulations (Flow-Cov), (Path-Cov), and (Path-Cov) + VI on 

arger pmed datasets (pmed6-pmed10). These networks contain 

00 nodes and 777.8 edges on average (the smallest have 774 and 

he largest 785). Note that the results of (Path), (Path) + VI are 

ot reported because very few instances were solved to optimal- 

ty. In Table 11 , a similar analysis to Table 9 is depicted. A detailed

able can be found in the supplementary material. In Fig. 6 , the 

erformance profile of the number of solved instances using these 

ormulations is depicted. 

As can be appreciated in Table 10 and Fig. 6 , (Path-Cov) + VI

utperforms (Flow-Cov) and (Path-Cov). Observe that although the 

ap of the linear relaxation of (Flow-Cov) ( 3 . 4% ) is smaller than the

ap of (Path-Cov) and (Path-Cov) + VI ( 4% ), the latter is the one

hat solves to optimality within the time limit the largest number 

f instances. 

Based on the results presented in this subsection, we conclude 

hat the best formulation for solving Up-MCLP on pmedian graphs 

as (Path-Cov) + VI. Furthermore, the results included in this sub- 

ection show the usefulness of including the valid inequalities dis- 

ussed in the paper. 

. Conclusions and outlook 

In this paper, we have tackled an interesting problem: the up- 

rading maximal covering location problem with edge length mod- 

fications, Up-MCLP. As far as we know, it is the first time that this 

roblem is discussed in the literature. 

Since we were dealing with a new problem, we proposed three 

ifferent mixed-integer formulations to model the situation from 

arious perspectives. Moreover, we developed an effective prepro- 

essing phase, which fixed many variables and reduced the size of 

he problem considerably. Then, for each formulation, we provided 

everal sets of valid inequalities. These constraints allowed us to 

trengthen the formulations and to reduce the symmetries con- 

ained in the problem, shortening the time to solve the formula- 

ions. The performance of the three formulations and the improve- 

ent provided by the preprocessing phase and the valid inequal- 

ties can be appreciated in the computational results included in 

he paper. In these experiments, it can be seen that the most effi- 

ient formulations for solving Up-MCLP are (Flow-Cov) and (Path- 

ov). In complete graphs, there is little difference in performance 

etween these two formulations, while in sparse graphs (Path-Cov) 

erforms better than (Flow-Cov). In both types of graphs, the addi- 

ion of valid inequalities allows us to optimally solve a larger num- 

er of instances within the time limit. 

We believe that this paper is an encouraging starting point that 

pens up many opportunities for further research. While our pre- 

rocessing techniques and valid inequalities allow us to solve sig- 

ificantly larger instances, and in shorter time, the size of the solv- 

ble instances still falls short of what you would encounter in 

ractice. This leads to the necessity of developing heuristics that 

an obtain good solutions (even if they are not optimal) in shorter 
35 
ime than the exact algorithms. An additional line of future work 

s to further study and develop formulations for other upgrading 

ersions of location problems. For example, interesting and simi- 

ar problems could be obtained by modifying the covering crite- 

ion (e.g. gradual coverage, cooperative coverage, etc.), the location 

riterion (e.g. center problems, set covering problems, etc.), and 

he upgrading assumptions (e.g. non-linear upgrading cost or ad- 

itional requirements on the sets of edges to be reduced, e.g., they 

ave to form a connected set). 
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