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a b s t r a c t 

This paper develops new formulations for the Strategic Berth Template Problem, which combines strategic 

and operational decisions for medium-term berth planning of a given set of cyclically calling ships. The 

strategic decisions determine the ship calls that will be served, whereas the operational ones establish the 

berth template that will be applied in a cyclic fashion in the planning horizon. The proposed formulations 

use binary variables that classify served ships depending on whether or not their service starts in their 

arrival cycle or in the next one. This helps modeling the problem, since a closed linear expression can 

be obtained for the waiting times. Constraints imposing that the availability of the berths is respected at 

each time period can be derived by defining additional binary variables pointing to the starting service 

times of the served ships. Aggregating such variables over all berths leads to a relaxed formulation, which 

can be solved in remarkably small computing times. Furthermore, the solution of an auxiliary subproblem 

produces feasible solutions to the original problem as well as a simple optimality check. Disaggregating 

the initial service time variables for the different berths leads to a valid formulation. Numerical results 

from extensive computational tests over a set of benchmark instances from the literature are presented 

and analyzed. The obtained results assess the excellent performance of the proposed formulations, which 

outperform existing ones. 

© 2021 The Author(s). Published by Elsevier B.V. 
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. Introduction 

In this paper we study the Strategic Berth Template Problem 

SBTP). The SBTP combines strategic and operational decisions for 

edium-term berth planning of a given set of cyclically calling 

hips. While the strategic decisions dictate the ship calls that will 

e served and those whose service call will be rejected, the op- 

rational decisions determine the berth template that will be ap- 

lied in a cyclic fashion in the considered planning horizon. Fur- 

hermore, there may be links relating the strategic decisions of 

ervice to ships belonging to certain groups. These links are de- 

ived from strong transhipment relations between some large-size 

other ships and some smaller feeder ships, which are contractu- 

lly attached to each other. All the ships within each group must 

e handled similarly, in the sense that all of them are either served 

r rejected. 

In particular, the SBTP aims at deciding which calling ships 

hould be accepted for berthing, and determines the most ap- 
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ropriate berth/time allocation for the accepted incoming traffic. 

pecifically, its aim is to develop a template for the accepted ships 

or a cyclic time horizon, consisting of a berth allocation together 

ith a service (berthing) time-window for each of the accepted 

hips. The following issues must be taken into account: ( i ) there is 

 limited number of available berths; ( ii ) due to the cyclic nature 

f the template, the service time-windows of the ships allocated 

o the same berth must be non-overlapping; and ( iii ) service to a 

hip may start in the next cycle to the one when it arrives to the

ort, or, even if service starts in the same cycle when the ship 

rrives, its service may terminate in the next cycle. The objective 

s to minimize the sum of the waiting times of the accepted ships 

lus a penalty for each rejected call proportional to its workload. 

Broadly speaking, berth allocation problems (BAP) aim at as- 

igning berthing positions and service times to calling ships at a 

ontainer terminal. Different variants of such problems have been 

tudied in the literature. The reader is addressed to Bierwirth & 

eisel (2010, 2015) for surveys on the topic, or to the inspiring 

ntroduction and literature review of Iris, Lalla-Ruiz, Lam, & Voss 

2018) where the relevance and actual economic implications of 

hese problems are highlighted, and the different perspectives and 

ngredients that BAPs may integrate are motivated and overviewed. 
 under the CC BY license ( http://creativecommons.org/licenses/by/4.0/ ) 
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xamples of BAP that address tactical or operational decisions re- 

ated to ships assignment and service are ( Buhrkal, Zuglian, Ropke, 

arsen, & Lusby, 2011; Cordeau, Laporte, Legato, & Moccia, 2005; 

mai, Nishimura, & Papadimitriou, 2003; Lalla-Ruiz & Voss, 2016; 

onaco & Sammarra, 2007; Xu, Li, & Leung, 2012 ), to mention just 

 few. Balancing the workload distribution over time was consid- 

red in Jin, Lee, & Hu (2015) , who addressed the quayside berthing 

ongestion from a tactical planning viewpoint. For this, the authors 

ointly addressed the berth template design problem and the yard 

emplate design problem with an objective combining costs due to 

ontainer flows with those dealing with quay-side workload imbal- 

nce. 

As indicated in Iris et al. (2018) , liner shipping companies usu- 

lly call each port on the same day of every week (see also Wang

 Lee, 2016; Wang & Qu, 2017 ). Hence, service contracts between 

hipping lines and ports require a template for berthing, i.e. pre- 

iously allocated berthing slots, which can be cyclically (weekly) 

epeated throughout the term of the contract so container ship- 

ing services to each ship are provided according to the template 

n a fixed day of each week. These circumstances motivated the 

tudy of the Berth Template Problem (BTP), which focuses on find- 

ng a template for a berth plan of fixed length (typically one week), 

hich is used cyclically over a long-term horizon. The essential 

ifference between the BTP and the BAP is that the fixed plan- 

ing horizon is repeated in a cyclic fashion. Hence BTP models 

ake into account that service to a vessel scheduled close to the 

nd of the planning horizon is likely to extend into the next plan- 

ing period. That is, the BTP is considered as a packing problem 

n a cylinder. Such a cyclical allocation of calling ships at multi- 

le terminals within the same port was first studied in Hendriks, 

aumanns, Lefeber, & Udding (2010) ; Imai, Yamakawa, & Huang 

2014) ; Moorthy & Teo (2006) ; Zhen & Chang (2012) . The BTP has

lso been studied for a continuous quay as a mid-term tactical de- 

ision problem in Huang, Suprayogi, & Ariantini (2016) . 

On the other hand, the limited weekly berthing capacity of 

orts makes it necessary to face with models integrating strate- 

ic decisions on the calls that must be accepted/rejected. Still most 

TPs studied in the literature ignore such strategic decisions. Imai 

t al. (2014) introduced the SBTP, which is defined on a strategic 

lanning level and integrates decisions regarding the selection of 

hip calls to be served with the assignment of berth time-windows 

or selected ships within a cyclic horizon. One of the modeling as- 

umptions of the SBTP is that the length of the cycle is the same

or all calls. Furthermore, the SBTP incorporates additional con- 

itions linking the acceptance/rejection decisions of mother and 

eeder ships under consideration. Imai et al. (2014) proposed a for- 

ulation extending the formulation of the dynamic berth alloca- 

ion problem of ( Imai, Nishimura, & Papadimitriou, 2001 ) and sev- 

ral heuristics based on the solution of a Lagrangean dual with al- 

ernative subgradient optimization approaches. The computational 

esults showed the difficulty for solving the problem with the pro- 

osed heuristics. The SBTP has also been studied by Iris et al. 

2018) , who analyzed the initial formulation proposed in Imai et al. 

2014) , which remained computationally unexplored, and proposed 

 different formulation based on the solution of a generalized set- 

acking problem (GSP). Both formulations were reinforced by in- 

luding additional lower bounds. A set of benchmark instances was 

reated and used in the extensive computational experiments car- 

ied out. The obtained results showed that both formulations no- 

ably improved with the addition of the lower bounds and high- 

ighted the superiority of the reinforced GSP formulation. 

In this paper we focus on the SBTP, and develop new mixed- 

nteger linear programming formulations and algorithmic alterna- 

ives for solving it. In addition to the natural strategic binary vari- 

bles associated with the acceptance/rejection of ship calls, all the 

roposed formulations use binary variables that classify served 
100 
hips depending on whether or not their service starts during their 

rrival cycle or in the next one. This helps modeling the STBP, 

ince a closed linear expression can be obtained for the waiting 

imes. The most basic formulations use additional variables that 

elate served ships with their immediate predecessors in the corre- 

ponding berths. Still, such variables can be avoided by expressing 

he starting times of service to ships in terms of new binary deci- 

ion variables indicating whether or not their service starts at the 

ifferent time periods of the planning horizon. In its turn, these 

ew binary variables allow us to count the number of ships be- 

ng served simultaneously at each time period, providing us with 

he possibility of guaranteeing that the availability of berths is re- 

pected at each time period. Aggregating the new decision vari- 

bles over all berths leads to a formulation for a relaxation of SBTP, 

hich can be solved in remarkably small computing times. More- 

ver, the solution to an auxiliary subproblem reveals if the relaxed 

ggregated solution can be disaggregated to a feasible SBTP solu- 

ion. This leads to a simple feasibility check indicating whether 

r not the solution at hand is optimal for the SBTP. Therefore, 

he aggregated formulation can be combined with the feasibility 

heck within a 2-phase solution algorithm for the SBTP. Alterna- 

ively, considering disaggregated variables for the initial time peri- 

ds for service to accepted ships at the different berths produces 

 valid formulation for the SBTP, at the expenses of increasing its 

otal number of binary variables and constraints. Still the formula- 

ion can be solved very efficiently with any off-the-shelf solver and 

roduces excellent results. 

Extensive computational tests have been carried out with the 

et of 96 benchmark instances generated in Iris et al. (2018) with 

 number of calling ships in { 50 , 70 , 100 , 150 } , and a number of

erths in { 4 , 8 , 12 } . The obtained results highlight the effective-

ess of the two formulations based on the indicator variables for 

he time periods when service to accepted ships start. Both the 

-phase solution algorithm based on the relaxed formulation with 

he aggregated variables, as well as the exact formulation using the 

isaggregated decision variables outperform the most efficient for- 

ulation proposed in Iris et al. (2018) . The 2-phase algorithm has 

olved to proven optimality for 78 out of the 96 considered bench- 

ark instances in computing times that are always below 500 sec- 

nds. The disaggregated formulation was able to solve 94 bench- 

ark instances within a maximum time limit of three hours, and 

roduced very small percentage optimality gaps for the remaining 

wo instances. 

This paper contributes to the study of the SBTP introducing a 

ew class of formulations using binary variables that allow to get 

 closed linear expression for waiting times. These formulation are 

olved very efficiently with any off-the-shelf solver. Also a relax- 

tion of the problem is introduced that produce very tight lower 

ounds in very small computing times. 

From algorithmically point of view, a two phase algorithm is 

ntroduced that solves a relaxed version of the problem and then 

akes simply feasibility test, giving the solution or proceeding to 

olve the non-relaxed formulation. 

The remainder of this paper is structured as follows. In 

ection 2 we give a formal definition of the SBTP and discuss its 

elation to some well-known combinatorial problems. Section 3 in- 

roduces the basic formulations where waiting times are expressed 

n terms of the decision variables indicating whether service to 

n accepted call starts in its arrival cycle or in the next one. 

n Section 3.1 we introduce a formulation with the aggregated 

ervice-start time period variables, whereas in Section 3.2 we show 

hat it is a relaxation of the SBTP and study some of its prop- 

rties that will be exploited in the design of the 2-phase algo- 

ithm. Sections 4 and 4.1 introduce the valid SBTP formulation 

ased on the disaggregated service-start time period variables, and 

ive a comparison of all the developed formulations in terms of 
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heir number of decision variables and constraints. In Section 5 we 

eal with several algorithmic issues that will be exploited for de- 

ermining feasible solutions, either from scratch or from the re- 

axed aggregated formulation. The computational tests that have 

een carried out are described in Section 6 where we summa- 

ize and analyze the numerical results that we have obtained, and 

ompare them with those of Iris et al. (2018) . The paper closes in

ection 7 with some conclusions and final remarks. 

. The strategic berth template problem 

As mentioned, the aim of the SBTP is to develop a template for 

 cyclic time horizon, in which service calls of some ships may 

e rejected. Such a template must differentiate among accepted 

 served ) and rejected ( non-served ) ships. Furthermore, it must take 

nto account that service to an accepted ship may start in the next 

ycle to the one when it arrives to the port, or that, even if service

tarts in the same cycle when the ship arrives, its service may ter- 

inate in the next cycle. In order to differentiate among the po- 

entially different cycles when operations take place, we will use 

he terms arrival cycle , service cycle , and termination cycle to refer 

o the cycle when a given ship arrives in port, its service starts, 

nd its service terminates, respectively. When the service cycle of 

 served ship does not coincide with its arrival cycle, it will be the 

ycle next to the arrival cycle of the ship. Similarly, when the ter- 

ination cycle of a served ship does not coincide with its service 

ycle, it will be the cycle next to the service (and arrival) cycle of 

he ship. 

Let H denote the duration of a cycle and V = { 1 , . . . , n } the in-

ex set for ships. Associated with each ship i ∈ V , let a i and c i de-

ote its arrival and processing (service) time, respectively. We as- 

ume that within each cycle all activities take place in a discretized 

ime horizon T = { 1 , . . . , H} . Thus, we assume that a i , c i , as well as

he times of all operations related to accepted ships take values in 

 . Let K = { 1 , . . . , m } denote the index set for the linked subgroups

f ships, V k ⊂ V the k -th subset of ships, and C k = 

∑ 

i ∈ V k c i the total

rocessing time of all the ships in mother-ship class k . By defin- 

ng a singleton subset V k = { i } (with associated coefficient C k = c i )

or every ship i originally not attached to any mother-ship, we as- 

ume without loss of generality that { V k } k ∈ K defines a partition of 

 . In the following, for each i ∈ V , k (i ) ∈ K denotes the index of the

ubset V k such that i ∈ V k (i ) . 

The objective of the SBTP is twofold. On the strategic side, it 

ims at reducing service call rejections. On the operational side, 

t aims at reducing the times that (served) ships wait since their 

rrival until their service starts. Specifically, let g ≥ 0 be a given 

enalty per rejected unit service time; that is, if the call of mother- 

hip class k ∈ K is rejected, then a cost g × C k is incurred. In addi-

ion, each served ship incurs a cost of one unit per unit of waiting

ime. Therefore, the objective consists of the sum of two terms: 

 i ) the total penalty for rejected calls ( g 
∑ 

k ∈ K C k ), and ( ii ) the total

aiting time of served ships ( 
∑ 

i ∈ V w i ), where K ⊆ K denotes the 

ndex set of rejected mother-ship classes, V ⊆ V the index set of 

erved ships, and w i the time that ship i waits since its arrival un-

il its service starts. 

The SBTP is to determine a partition of mother-ship classes to 

e served/rejected, as well as an allocation to berths together with 

 cyclic sequence for service to the accepted calls allocated to the 

ame berth, such that the overall service time of the calls served 

n the same berth does not exceed the duration of the cycle, H, of 

inimum total cost. 

Observe that the SBTP integrates three difficult combinatorial 

roblems. On the one hand, the selection of the ships that will 

e served, respecting the relations among the ships in each group. 

n the other hand, the allocation of accepted ships to berths, re- 
101 
pecting the cycle duration within each berth, which can be seen 

s a bin packing problem ( Korte & Vygen, 2006 ). Finally, the opti-

al sequencing of service to all the ships allocated to each berth, 

hich can be reduced to the problem of finding the service sched- 

le that minimizes the total tardiness ( Du & Leung, 1990 ). Both the

in packing and minimizing tardiness are already NP-hard prob- 

ems. 

. Mathematical programming formulations for the SBTP 

In this section we develop several mathematical programming 

ormulations for the SBTP. All of them use binary decision vari- 

bles to determine the strategic decisions on ship calls that are 

erved/rejected: 

• z k ∈ { 0 , 1 } , k ∈ K. z k = 1 ⇐⇒ the ships in mother-ship class k

are served. 

Since the objective function depends on the waiting times of 

erved ships, which, in turn, depend on their service starting times, 

e define the following additional decision variables: 

• s i : service starting time (or just starting time ) of ship i ∈ V . 
• w i : waiting time of served ship i ∈ V . This is the time since the

ship arrived at the terminal and its service started. 

Using variables z and w the objective function can be written 

s 

min g 
∑ 

k ∈ K 
C k (1 − z k ) + 

∑ 

i ∈ V 
w i . (1a) 

The conditions that regulate the relationship among the above 

ariables, and their relationship with the cycle length depend on 

hether or not the arrival, service and termination cycles of the 

nvolved served ships coincide. For instance, for ships whose ar- 

ival and service cycles coincide, it holds that s i ≥ a i . On the con-

rary, this lower bound on the value of s i is no longer valid for 

hips whose service starts in the next cycle after their arrival, for 

hich s i ≤ a i − 1 must hold to guarantee that the duration of the 

ycle is respected. For such ships, taking into account that the du- 

ation of the cycle must include service times, the above bound 

an be reinforced to s i ≤ a i − c i . A similar observation can be made

ith respect to the waiting times. While the duration of the cy- 

le imposes that w i ≤ H − a i − c i for the ships whose arrival and 

ervice cycles coincide, for ships with different arrival and service 

ycles we have that w i ≥ H − a i . The starting and waiting times of 

on-served ships will be zero. 

The above observation indicates that, in order to compute ac- 

urately the waiting times derived from feasible service schedules, 

dditional information is needed indicating whether or not the ser- 

ice cycle of each served ship coincides with its arrival cycle. To 

his end, associated with each i ∈ V we define two new comple- 

entary binary variables x i and y i , where x i = 1 (and y i = 0 ) if and

nly if ship i is served and its service cycle coincides with its ar- 

ival cycle, whereas x i = 0 (and y i = 1 ) if and only if ship i is served

ut its service cycle is the cycle next to its arrival cycle. There- 

ore, 

z k (i ) = x i + y i i ∈ V (2a) 

w i = s i − a i z k (i ) + H y i i ∈ V. (2b) 

Constraints (2a) also guarantee that the mother-ship relation- 

hip of the ships in each class is respected, and that for any 

on-served ship, x i = y i = 0 . Therefore, for non-served ships, Con- 

traints (2b) reduce to w i = s i , i.e. the waiting times of rejected 

hips coincide with their starting times. Taking into account the 

inimization objective function and that there are no lower 
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Berth 1

Berth 2
i=3; a3=5; s3=5;  w3=0; i=2; a2=1; s2=1;  w2=0;

i=4; a4=9; s4=9;  w4=0;

i=2; a2=1; s2=1;  w2=0; i=3; a3=5; s3=5;  w3=0;

i=4; a4=9; s4=9;  w4=0;
i=5; a5=10; 

s5=2;  w5=2;
i=1; a1=1; s1=4;  w1=3;

i=5 i=1, 
i=2

i=3 i=4 i=5i=4 i=1, 
i=2

... ...

... ...

i=3

Fig. 1. Example of definition of variables with n = 5 , H = 10 and b = 2 . 
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ounds for the starting times of non-served ships (see also con- 

traints (3a) –(3c) below), in any optimal solution for any non- 

erved ship it will hold that w i = s i = 0 . 

The transition between consecutive cycles is controlled through 

n additional set of binary variables f i , i ∈ V such that f i = 1 if and

nly if ship i is served and its service cycle does not coincide with

ts termination cycle. This means that the service cycle of ship i co- 

ncides with its arrival cycle ( x i = 1 ) but it does not coincide with

ts termination cycle ( s i + c i > H). Moreover, with the aid of vari-

bles f i , i ∈ V we can also relate the starting times of served ships

ith variables x and y . That is: 

f i ≤ x i i ∈ V (3a) 

(H + 1) f i ≤ s i + c i z k (i ) i ∈ V (3b) 

a i x i + y i ≤ s i ≤ (H − c i ) x i + c i f i + (a i − c i ) y i i ∈ V. (3c) 

Fig. 1 illustrates the definition of the above variables with an 

xample with two berths, five calling ships, singleton mother-ship 

lasses, and a time horizon H = 10 . Arrival and service times are

iven, by a = (1 , 1 , 5 , 9 , 10) and c = (3 , 3 , 3 , 3 , 2) , respectively. The

gure shows a solution in which ships { 1 , 4 , 5 } are served in berth

 (in that order) and ships { 2 , 3 } in berth 2. Since all the ships are

erved, we have z k = 1 , k ∈ { 1 , . . . , 5 } . In the displayed solution, the

tarting times are given by s = (4 , 1 , 5 , 9 , 2) , with associated wait-

ng times w = (3 , 0 , 0 , 0 , 2) . Since a i ≤ s i , for, i ∈ { 1 , 2 , 3 , 4 } we have

 1 = x 2 = x 3 = x 4 = 1 , as their service and arrival cycles coincide;

nstead, s 5 = 2 < a 5 = 10 , which means that service to ship 5 starts

n the next cycle to the one when it arrives so y 5 = 1 . Furthermore,

f 4 = 1 since its service cycle does not coincide with its termination 

ycle. 

In order to obtain the actual schedule of each berth and to 

uarantee that the overall processing time of all the ships served 

n the same berth does not exceed the cyclic time horizon H, we 

efine additional predecessor variables, which, even if they do not 

ive an explicit allocation of ships to berths, permit determining 

he service sequence at the berths, since they define the order in 

hich ships are served in each cycle and, implicitly, they define 

lusters of ships served cyclically in the same berth. In particular 

et: 

• p i j ∈ { 0 , 1 } , i, j ∈ V . When i 
 = j, p i j = 1 ⇐⇒ ships i and j are

processed consecutively in the same berth and ship j is served 

immediately before ship i , allowing that there is some idle time 

in the berth after termination of j. When p i j = 1 we will in-

distinctively say that j is the predecessor of i , j precedes i , or i 

follows j. When i = j, p ii = 1 means that ship i is its own pre-

decessor , that is, i is designated as the first ship processed in its 
berth. 

102 
The constraints regulating the service sequence of each berth 

re: ∑ 

j∈ V 
p i j = z k (i ) i ∈ V (4a) 

∑ 

j∈ V \{ i } 
p ji ≤ z k (i ) i ∈ V (4b) 

∑ 

i ∈ V 
p ii ≤ b. (4c) 

Constraints (4a) impose that each served ship has a unique pre- 

ecessor, whereas (4b) indicate that each served ship can precede 

t most one ship. The last ship served in each berth in each cy- 

le will not precede any other ship. Constraints (4a) also guarantee 

hat all the ships in each mother-ship class are either served or 

ejected. By constraint (4c) no more than b berths are used. 

Note that due to the cyclic nature of berth schedules, with the 

bove predecessor variables there can be multiple representations 

f the berth schedule associated with a given sequence of ships. 

he only difference among all the equivalent representations is, in 

ssence, the ship of the sequence that is designated as the first 

hip processed in the berth. Any served ship can be selected as the 

rst ship in its berth and the time period when its service starts 

an be used as the reference to ensure that the duration of the 

equence of all the ships served in that berth does not exceed the 

ycle duration H. For instance, in the example of Fig. 1 we could 

hose p 11 = p 41 = p 54 = 1 , p 22 = p 32 = 1 . 

We define a final set of decision variables associated with the 

imes where some events take place: 

• e i : completion time of ship i ∈ V , i.e. the time when service to

ship i ∈ V has been completed. This is the first period of time 

when the berth is already available for serving the next ship in 

the sequence of the berth. 
• v i : idle time of the berth where ship i ∈ V is served, immedi-

ately before its service starts. This is the time since the com- 

pletion of service to the predecessor of i and the arrival at the 

terminal of ship i . 
• o i : time that the berth that serves ship i has been occupied 

since the beginning of service to the first ship in the berth until 

service to ship i starts. 

Together with the relations that determine the precise values of 

ariables e i , the pairs of ships processed consecutively in the same 

erth must satisfy the following sets of constraints: 

e i = s i + c i z k (i ) − H f i i ∈ V (5a) 

s i ≥ e j − H(1 − p i j ) i, j ∈ V, i 
 = j (5b) 

w i ≥ e j − a i − H(1 − p i j ) i, j ∈ V, i 
 = j (5c) 

v i ≥ s i − e j − H(1 − p i j ) i, j ∈ V, i 
 = j (5d) 
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o i ≥ o j + c j + v i − H(1 − p i j ) i, j ∈ V, i 
 = j. (5e) 

Constraints (5b) –(5e) only become active for pairs of ships i, j ∈ 

 , i 
 = j, such that p i j = 1 . In particular, (5b) establish that, if i fol-

ows j, then service to ship i cannot start before termination of 

ervice to ship j. Similarly, (5d) impose that, if i follows j, the idle

ime immediately before service to ship i must be at least the dif- 

erence between the starting time of i and the completion time of 

j. The occupation times of consecutive ships in the same berth are 

egulated by (5e) . 

The inequalities (6a) and (6b) below set upper bounds for oc- 

upation and idle times, respectively. 

v i ≤ a i x i i ∈ V (6a) 

o i ≤ (H − c i )(z k (i ) − p ii ) i ∈ V. (6b) 

Note that occupation times reduce to zero for non-served ships 

s well as for the first ships served in each berth. The upper 

ounds H − c i , i ∈ V , guarantee that the cycle duration is respected.

on-zero idle times can only appear for ships whose arrival and 

ervice cycles coincide (otherwise the ship will be served as soon 

s the berth becomes available in the next cycle). That is, for each 

erth, we implicitly set the beginning of its cycle to the starting 

ime of the first ship served in the berth. 

It can be easily checked that in the running example of Fig. 1 ,

he values of these variables are e = (7 , 4 , 8 , 2 , 4) , v = (0 , 0 , 1 , 2 , 0) ,

 = (0 , 0 , 4 , 5 , 8) . 

Therefore a valid formulation for the SBTP is: 

0 min 

∑ 

i ∈ V 
w i + g 

∑ 

k ∈ K 
C k (1 − z k ) (1a) 

z k (i ) = x i + y i i ∈ V (2a) 

w i = s i − a i z k (i ) + H y i i ∈ V (2b) 

f i ≤ x i i ∈ V (3a) 

(H + 1) f i ≤ s i + c i z k (i ) i ∈ V (3b) 

a i x i + y i ≤ s i ≤ (H − c i ) x i + c i f i + (a i − c i ) y i i ∈ V (3c) ∑ 

j∈ V 
p i j = z k (i ) i ∈ V (4a) 

∑ 

j∈ V \{ i } 
p ji ≤ z k (i ) i ∈ V (4b) 

∑ 

i ∈ V 
p ii ≤ b (4c) 

e i = s i + c i z k (i ) − H f i i ∈ V (5a) 

s i ≥ e j − H(1 − p i j ) i, j ∈ V, i 
 = j (5b) 

w i ≥ e j − a i − H(1 − p i j ) i, j ∈ V, i 
 = j (5c) 

v i ≥ s i − e j − H(1 − p i j ) i, j ∈ V, i 
 = j (5d) 

o i ≥ o j + c j + v i − H(1 − p i j ) i, j ∈ V, i 
 = j (5e) 

v i ≤ a i x i i ∈ V (6a) 

o i ≤ (H − c i )(z k (i ) − p ii ) i ∈ V (6b) 

z k ∈ { 0 , 1 } k ∈ K (7a) 

p i j ∈ { 0 , 1 } i, j ∈ V (7b) 

x i , y i , f i ∈ { 0 , 1 } i ∈ V (7c) 

s i , w i , e i , v i , o i ≥ 0 i ∈ V. (7d) 

Formulation F0 can be reinforced by adding tighter lower and 

pper bounds on starting times, waiting times and termination 

imes (see (8a) and (8b) below), which reduce to zero for non- 

erved ships: 

H − a i + 1) y i ≤ w i ≤ (H − c i ) z k (i ) i ∈ V (8a) 

a i + c i ) x i − H f i + (1 + c i ) y i ≤ e i ≤ H(x i − f i ) + c i f i + a i y i i ∈ V. 

(8b) 
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Unfortunately, despite the above reinforcements (or other of 

imilar nature), the Linear Programming (LP) bounds of formula- 

ion F0 tend to be very weak, which is due to the Big-M type 

f Constraints (5b) –(5e) . For this reason, in the next sections we 

evelop other formulations in which these constraints can be re- 

oved, at the expenses of introducing additional sets of binary de- 

ision variables. 

.1. Counting the number of ships served at a given time period 

One of the main difficulties of the SBTP is to control in an ef- 

ective way that the number of ships being served simultaneously 

t any time period t ∈ T = { 1 , . . . , H} does not exceed the avail-

ble number of berths. With the current set of decision variables 

he limitation on the maximum number of available berths is only 

ontrolled via constraint (4c) , which counts the overall number of 

first ships”. In this section we introduce an additional set of de- 

ision variables that allows us to obtain a linear expression for 

he number of served ships at any time period. For a given so- 

ution s , let us identify the set of served ships whose status is 

being served” at a given time period t ∈ T . This set may con- 

ain ships whose service cycle coincides with the current cycle 

that is, s i ≤ t) as well as ships whose service started in the cy- 

le previous to that of t (that is, t < s i ). We denote by Z t 
= 
(s ) and

 

t −(s ) the index set of ships of each of these two clases whose 

ervice remains active at time period t , respectively. In particu- 

ar, Z t 
= 
(s ) consists of the indices of all served ships with s i ≤ t

uch that s i + c i − 1 ≥ t , whereas Z t 
−
(s ) consists of the indices

f all served ships with s i > t whose service remains active at 

ime period t of the following cycle, i.e. s i + c i − 1 − H ≥ t . While

nly ships with c i > t may appear in set Z t 
−
(s ) , the set Z t 

= 
(s )

ay contain indices of ships with both c i ≤ t and c i > t . There- 

ore, taking into account that 1 ≤ s i ≤ H, the above two sets are 

iven by Z t 
= 
(s ) = { i ∈ V | s i ∈ [ max { 1 , t − c i + 1 } , t] } , and Z t 

−
(s ) =

 i ∈ V | c i > t and s i ∈ [ t − c i + 1 + H, H] } . In particular, any served

hip i ∈ Z t 
= 
(s ) ∪ Z t 

−
(s ) will remain being served at time period t ,

nd the total number of ships that are being processed at a given 

ime period t ∈ T is precisely the cardinality of set Z t 
= 
(s ) ∪ Z t 

−
(s ) . 

Unfortunately, it is not possible to express this cardinality as a 

inear expression of the s variables. In order to overcome this lim- 

tation next we introduce a new set of binary decision variables: 

• h it ∈ { 0 , 1 } , i ∈ V, t ∈ T = { 1 , . . . , H} . h it = 1 ⇐⇒ service to ship

i starts at time period t . 

That is, h it = 1 ⇐⇒ s i = t . 

With the aid of variables h we can obtain linear expressions for 

 Z t 
= 
(s ) | and | Z t −(s ) | , namely 

 Z t 
= 
(s ) | = 

∑ 

i ∈ V 

t ∑ 

t ′ = max { 1 ,t−c i +1 } 
h it ′ and | Z t −(s ) | = 

∑ 

i ∈ V : 
c i >t 

H ∑ 

t ′ = t−c i +1+ H 
h it ′ . 

Hence, the total number of ships being processed at a given 

ime period t ∈ T can be written as: 

 

i ∈ V 

t ∑ 

t ′ = max { 1 ,t−c i +1 } 
h it ′ + 

∑ 

i ∈ V : 
c i >t 

H ∑ 

t ′ = t−c i +1+ H 
h it ′ , 

o the following set of constraints is valid for the SBTP: 

 

i ∈ V 

t ∑ 

t ′ = max { 1 ,t−c i +1 } 
h it ′ + 

∑ 

i ∈ V : 
c i >t 

H ∑ 

t ′ = t−c i +1+ H 
h it ′ ≤ b t ∈ T . (9a) 

The constraints ensuring that the new variables are well de- 

ned and linked to the s variables are: ∑ 

t∈ T 
h it = z k (i ) i ∈ V (9b) 
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s i = 

∑ 

t∈ T 
t h it i ∈ V. (9c) 

The relationship between the h variables and the existing x 

ariables is quite direct: 

x i = 

H ∑ 

t= a i 
h it i ∈ V, (9d) 

hereas in order to relate the h variables with the existing y vari- 

bles, we have to observe that when service to a ship i ∈ V starts

n the cycle next to its arrival cycle (i.e. y i = 1 ), then its starting

ime must be some time period smaller than or equal to a i − c i ,

ince otherwise the time between the arrival of the ship and the 

ermination of its service would exceed the duration of the cycle. 

his means that 

y i = 

{∑ a i −c i 
t=1 

h it i ∈ V s.t. a i − c i > 0 

y i = 0 i ∈ V s.t. a i − c i ≤ 0 

(12a) 

As will be seen in Section 6 , where we report numerical re- 

ults from computational tests, introducing the new set of decision 

ariables h together with the set of constraints (9a) –(12a) , has a 

emarkable effect on the quality of the LP bounds associated with 

he resulting formulation (see formulation F1 below), which be- 

ome extremely tight. 

1 min 

∑ 

i ∈ V 
w i + g 

∑ 

k ∈ K 
C k (1 − z k ) (1a) 

∑ 

j∈ V 
p i j = z k (i ) i ∈ V (4a) 

∑ 

j∈ V \{ i } 
p ji ≤ z k (i ) i ∈ V (4b) 

∑ 

i ∈ V 
p ii ≤ b (4c) 

z k (i ) = x i + y i i ∈ V (2a) 

w i = s i − a i z k (i ) + H y i i ∈ V (2b) 

f i ≤ x i i ∈ V (3a) 

(H + 1) f i ≤ s i + c i z k (i ) i ∈ V. (3b) 

a i x i + y i ≤ s i ≤ (H − c i ) x i + c i f i + (a i − c i ) y i i ∈ V (3c) 

e i = s i + c i z k (i ) − H f i i ∈ V (5a) 

s i ≥ e j − H(1 − p i j ) i, j ∈ V, i 
 = j (5b) 

w i ≥ e j − a i − H(1 − p i j ) i, j ∈ V, i 
 = j (5c) 

v i ≥ s i − e j − H(1 − p i j ) i, j ∈ V, i 
 = j (5d) 

o i ≥ o j + c j + v i − H(1 − p i j ) i, j ∈ V, i 
 = j (5e) 

v i ≤ a i x i i ∈ V (6a) 

o i ≤ (H − c i )(z k (i ) − p ii ) i ∈ V (6b) 

∑ 

i ∈ V 

t ∑ 

t ′ = max { 1 ,t−c i +1 } 
h it ′ + 

∑ 

i ∈ V : 
t−c i < 0 

H ∑ 

t ′ = H+(t−c i +1) 

h it ′ ≤ b 

t ∈ T (9a) 

∑ 

t∈ T 
h it = z k (i ) i ∈ V ({9b}) 

s i = 

∑ 

t∈ T 
t h it i ∈ V ({9c}) 

x i = 

H ∑ 

t= a i 
h it i ∈ V ({9d}) 

y i = 

{ ∑ a i −c i 
t=1 

h it i ∈ V s.t. a i − c i > 0 

y i = 0 i ∈ V s.t. a i − c i ≤ 0 

(12a) 
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z k , x i , y i , f i , h it ∈ { 0 , 1 } k ∈ K, i ∈ V, t ∈ T (13a) 

s i , w i , e i , v i , o i ≥ 0 i ∈ V. (13b) 

.2. Analysis of formulation F1 

The final goal of the SBTP is to determine the ships to be served 

nd to obtain the service sequences to be applied cyclically in each 

erth. Nevertheless, taking into account that the objective consists 

f a penalty for each non-served call plus the sum of the wait- 

ng times of the served ships, which are dictated by their start- 

ng times, the SBTP essentially reduces to identifying the served 

hips and finding feasible starting times for them. Indeed, feasible 

tarting times can be derived from feasible service sequences. This 

s, in fact, the main idea in the formulation we have presented, 

here the starting times of the served ships are determined from 

he sequences of predecessor variables p and their relation with 

ariables s and w , which is driven by constraints (5b) –(5e) . The

uestion that we raise here is whether feasible starting times can 

e obtained without having an explicit representation of the se- 

uences of ships served in the berths. In particular, whether or not 

ny set of variables z, x , y and s linked via constraints (2a) and (2b) ,

ogether with a set of variables h satisfying constraints (9a) –(12a) 

nduces a feasible solution to the SBTP. 

Regretfully, as shown by the example illustrated in Fig. 2 , the 

nswer to the above question is negative, indicating that con- 

traints (9a) –(12a) are not sufficient to guarantee that a feasible 

BTP solution can be obtained. The example considers a cycle du- 

ation H = 8 and V = { 1 , 2 , 3 } , where the processing time of all

hree ships is five units ( c i = 5 for all i ∈ V ). It is easy to check that

f the number of available berths is b = 2 , there is no feasible so-

ution where all three ships are served (independently of what the 

rrival times for the ships are). However, as Fig. 2 shows it is possi-

le to find starting times for the ships that satisfy constraints (9a) , 

.e. starting times such that at each time period at most two ships 

re being processed. In the solution depicted in the figure s 1 = 1 ,

 2 = 3 , and s 3 = 6 . That is, h 1 t = 1 for all t ∈ [1 , 5] ; h 2 t = 1 for all

 ∈ [3 , 7] ; and, h 3 t = 1 for all t ∈ [1 , 2] ∪ [6 , 8] . As can be seen, these

alues satisfy constraints (9a) . 

Therefore, we conclude that the formulation F2 below is a re- 

axation of the SBTP: 

2 min 

∑ 

i ∈ V 
w i + g 

∑ 

k ∈ K 
C k (1 − z k ) (1a) 

z k (i ) = x i + y i i ∈ V (2a) 

w i = s i − a i z k (i ) + H y i i ∈ V (2b) 

∑ 

i ∈ V 

t ∑ 

t ′ = max { 1 ,t−c i +1 } 
h it ′ + 

∑ 

i ∈ V : 
t−c i < 0 

H ∑ 

t ′ = H+(t−c i +1) 

h it ′ ≤ b 

t ∈ T (9a) 

∑ 

t∈ T 
h it = z k (i ) i ∈ V ({9b}) 

s i = 

∑ 

t∈ T 
t h it i ∈ V ({9c}) 

x i = 

H ∑ 

t= a i 
h it i ∈ V ({9d}) 

y i = 

{∑ a i −c i 
t=1 

h it i ∈ V s.t. a i − c i > 0 

y i = 0 i ∈ V s.t. a i − c i ≤ 0 

(12a) 

z k , x i , y i , h it ∈ { 0 , 1 } k ∈ K, i ∈ V, t ∈ T (14a) 

s , w ≥ 0 i ∈ V. (14b) 
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Fig. 2. Example with H = 8 , V = { 1 , 2 , 3 } , c i = 5 , i ∈ V , and b = 2 where no feasible solution serving all ships exists, but values h it satisfying constraints (9a) can be found. 
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The relationship between the optimal values of F 2 and SBT P 

s summarized below, where v (·) denotes the optimal value of a 

iven optimization problem. 

roposition 1. v (F 2) ≤ v (SBT P ) . 

Since a feasible solution to formulation F 2 does not necessarily 

nduce a feasible solution to the SBTP, we now address the ques- 

ion of whether we can know if there is a feasible solution to the 

BTP supported by a given vector ( ̄z , ̄h ) in the feasible domain of

 2 . As we next explain, the answer to this question can be ob-

ained by solving an auxiliary problem, that in the following will 

e referred to as AP ( ̄z , ̄h ) , which can be used as an oracle. Problem

P ( ̄z , ̄h ) assumes that all the ships indexed in V = { i ∈ V : z k (i ) = 1 }
ust be served and their service starting times are those dictated 

y h̄ . Essentially, AP ( ̄z , ̄h ) rephrases the above question in terms of

nding an assignment to berths of the ships indexed in V , such 

hat the overall service time of all the ships assigned to the same 

erth does not exceed the duration of a cycle, and minimizes the 

verall service overlap at berths. Since ideally each berth has a ser- 

ice capacity of one at each time period, we define the service 

verlap at a berth at a given time period t as the excess of ships

llocated to the berth at time period t . This excess is given by the 

umber of ships allocated to the berth being served at time period 

minus one, or zero when this quantity is negative. 

In the following, let R = { 1 , . . . , b} denote the index set

or the berths, and V 
t = { i ∈ V : h̄ i ≤ t and h̄ i + c i − 1 ≥ t} ∪ { i ∈ V :

¯
 i > t and ( ̄h i + c i − 1) ≥ t + H} the set of ships indexed in V being

erved at time period t assuming that their service starting times 

re dictated by h̄ . 

For each i ∈ V , r ∈ R , let λir ∈ { 0 , 1 } , be a binary variable, which

akes the value 1 if and only if ship i is allocated to berth r. Asso-

iated with each berth r ∈ R and time period t ∈ T let us consider

nother decision variable σrt indicating the service overlap in berth 

at time period t . That is, σrt = max { ∑ 

i ∈ Z t λir − 1 , 0 } is the excess

elative to the service capacity of berth r at time period t . 

The auxiliary allocation problem that we consider is therefore: 

P ( ̄z , ̄h ) : min 

∑ 

r∈ R 

∑ 

t∈ T 
σrt (15a) 

∑ 

r∈ R 
λir = 1 i ∈ V (15b) 

∑ 

i ∈ V 
c i λir ≤ H r ∈ R (15c) 

σrt ≥
∑ 

i ∈ V t 
λir − 1 r ∈ R, t ∈ T (15d) 

λir ∈ { 0 , 1 } i ∈ V , r ∈ R (15e) 

σrt ≥ 0 r ∈ R, t ∈ T . (15f) 
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Constraints (15b) guarantee that all the ships of V are allo- 

ated to some berth and (15c) that the total service time of all the 

hips allocated to the same berth does not exceed the cycle dura- 

ion. Finally, Constraints (15d) determine the overlaps, whose total 

mount is minimized. 

Note that AP ( ̄z , ̄h ) is a variation of a bin packing problem (see,

.g. chapter 18 in Korte & Vygen, 2006 ), where the capacity of the 

ins is H and the demand of item i ∈ V is c i , and recall that bin

acking is known to be NP-hard ( Garey & Johnson, 1979 ). More- 

ver, since we impose that all the ships indexed in V are allocated, 

t may happen that its feasible domain is empty. Let �
AP( ̄z , ̄h ) 

= 

 (λ, σ ) ∈ { 0 , 1 } | V | × R 

+ : satisfying (15b) –(15f) } denote the feasible

omain of AP ( ̄z , ̄h ) . 

roposition 2. 

• If �
AP( ̄z , ̄h ) 

= ∅ , then there is no feasible solution to SBT P serving 

all the ships indexed in V . 
• Suppose �

AP( ̄z , ̄h ) 

 = ∅ . Then, 

There is a feasible solution to the SBTP that serves all the ships 

indexed in V = { i ∈ V : z k (i ) = 1 } with starting times given by

{ ̄h it } i ∈ V ,t∈ T if and only if v (AP ( ̄z , ̄h )) is zero. 

Suppose v (AP ( ̄z , ̄h )) = 0 , and let λ̄ be the allocation vector asso-

ciated with an optimal solution to AP ( ̄z , ̄h ) . Then the solution 

( ̄z , ̄h ) where each ship i ∈ V starts its service at time period t

with h̄ it = 1 in the berth r ∈ R such that λ̄ir = 1 is an optimal

SBTP solution. 

When �
AP( ̄z , ̄h ) 


 = ∅ , but v (AP ( ̄z , ̄h )) > 0 , then no feasible solu-

ion to SBTP exists serving all the ships of V with starting times 

 ̄h it } i ∈ V ,t∈ T . Still, from an optimal allocation to AP ( ̄z , ̄h ) a feasible

BTP solution can be obtained heuristically. Since the total service 

ime of all the ships allocated to the same berth does not exceed 

he cycle duration, it is possible to sequence all these ships in such 

 way that there are no service overlaps, although this will carry 

hanges in the service starting times of some ships and, in its turn, 

n their waiting times, as will be discussed in Section 5 . 

. An SBTP formulation with disaggregated service time 

ariables 

In this section we introduce our final formulation for the SBTP, 

ased on the idea of counting the number of ships that are served 

imultaneously at a given time period that overcomes the difficul- 

ies discussed in the previous section, basically derived from the 

act that constraints (9a) aggregate the service occupation of all 

he berths. Hence, what we propose is to redefine the discretized 

inary variables h , i ∈ V , t ∈ T , in such a way that the berth to
it 
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Table 1 

Number of variables and constraints in the formulations. 

Formulation Variables Constraints 

Binary Continuous 

F0 p, z, x , y , f s , w , e , v , o 4 | V | (| V | − 1) + 10 | V | + 1 

| V | (| V | − 1) + 4 | V | 5 | V | 
F1 p, z, x , y , f , h s , w , e , v , o 4 | V | (| V | − 1) + 14 | V | + | T | + 1 

| V | (| V | − 1) + | V | × | T | + 4 | V | 5 | V | 
F2 z, x , y , h s , w 6 | V | + | T | 

| V | × | T | + 3 | V | 2 | V | 
F3 z, x , y , ˆ h s , w 6 | V | + | T | × | R | 

3 | V | + | V | × | T | × | R | 2 | V | 
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hich each served ship is allocated is made explicit. That is, con- 

ider the set of decision variables ˆ h itr ∈ { 0 , 1 } , i ∈ V , t ∈ T , r ∈ R ,

uch that 

ˆ 
 itr = 1 ⇐⇒ service to ship i starts at time period t in berth r. 

Now the constraints that guarantee that at most one ship is be- 

ng served at each berth at each time period are 

 

i ∈ V 

t ∑ 

t ′ = max { 1 ,t−c i +1 } 
ˆ h it ′ r + 

∑ 

i ∈ V : 
c i >t 

H ∑ 

t ′ = t−c i +1+ H 
ˆ h it ′ r ≤ 1 r ∈ R, t ∈ T . 

(16a) 

Given that constraints (16a) prevent service overlaps within the 

ame berth, neither variables e i , v i , and o i , nor constraints (5a) –

5e), (6a) and (6b) are needed anymore, since their role was to 

revent such infeasibilities. Therefore, taking into account that the 

elation h it = 

∑ 

r∈ R ˆ h itr , for all i ∈ V , t ∈ T , we have the following

alid formulation for the SBTP: 

3 min 

∑ 

i ∈ V 
w i + g 

∑ 

k ∈ K 
C k (1 − z k ) (1a) 

z k (i ) = x i + y i i ∈ V (2a) 

w i = s i − a i z k (i ) + H y i i ∈ V (2b) 

y i = 

{∑ a i −c i 
t=1 

∑ 

r∈ R ˆ h itr 

y i = 0 

i ∈ V s.t. a i − c i > 0 

i ∈ V s.t. a i − c i ≤ 0 

(12a) 

∑ 

i ∈ V 

t ∑ 

t ′ = max { 1 ,t−c i +1 } 
ˆ h it ′ r 

+ 

∑ 

i ∈ V : 
t−c i < 0 

H ∑ 

t ′ = H+(t−c i +1) 

ˆ h it ′ r ≤ 1 

t ∈ T , r ∈ R (16a) 

∑ 

t∈ T 

∑ 

r∈ R 
ˆ h it = z k (i ) i ∈ V (17a) 

s i = 

∑ 

t∈ T 

∑ 

r∈ R 
t ˆ h itr i ∈ V, (17b) 

x i = 

H ∑ 

t= a i 

∑ 

r∈ R 
ˆ h itr i ∈ V, (17c) 

z k , x i , y i , ̂  h itr ∈ { 0 , 1 } k ∈ K, i ∈ V, t ∈ T , r ∈ R (17d) 

s i , w i ≥ 0 i ∈ V. (17e) 

.1. Comparison of formulations 

Table 1 summarizes a theoretical comparison of the formula- 

ions we have introduced, based on the number and type of vari- 

bles and constraints that they involve. Observe that even if vari- 

bles s i , w i , e i , v i , o i are restricted to take integer values and thus 

hould be defined as integer, they can be relaxed to take non- 

egative values. The reason is that the constraints relate them 

o the x , y and f variables, which are restricted to take binary 
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alues, guarantee that those variables will take integer values in 

ny optimal solution. This information, will be complemented in 

ection 6 with an empirical comparison of the performance of the 

ormulations, based on the numerical results produced by each of 

hem in the computational tests that we have carried out. 

We close this section by pointing out that even if the formula- 

ions we have introduced produce SBTP solutions, the obtained so- 

utions may be not sufficiently explicit, in the sense that in some 

ases they do not give the specific allocations of served ships to 

erths, or they do not obtain the specific sequences of consecu- 

ive ships served in each berth. Such issues as well as other re- 

ated ones, become of interest when dealing algorithmically with 

he SBTP and will be addressed in the next section, where we fo- 

us on how to fully determine feasible solutions for the SBTP from 

artial or infeasible information provided by the proposed formu- 

ations. 

. Algorithmic issues for fully determining feasible SBTP 

olutions 

A feasible SBTP solution is fully determined by ( i ) the set of 

erved ships, ( ii ) the service time of each ship, and ( iii ) the allo-

ation of served ships to berths. All the formulations that we have 

ntroduced include explicit information on items ( i ) and ( ii ), via de-

ision variables z k , k ∈ K and s i , i ∈ V , respectively, which are the

wo sets of decision variables common to all four formulations. 

till, except for formulation F3, in which the expression 

∑ 

t∈ T ˆ h irt 

ives explicit information on whether or not ship i ∈ V is allocated 

o berth r ∈ R , all other formulations omit such information. More- 

ver, even if starting times together with the explicit allocation of 

hips to berths determine the service sequence of each berth, this 

nformation is not explicit in any of the formulations presented: 

n F0 and F1 because the berth allocation is not explicit (despite 

aving the predecessors vector p) and in formulations F2 and F3 

ecause they do not include explicit sequencing information. 

On the other hand, in Section 3.2 we have seen that F2 is a 

elaxation that does not necessarily produce feasible SBTP solu- 

ions, although in some cases the auxiliary subproblems AP ( ̄z , ̄h ) , 

 ∈ R give assignments of ships to berths that may result in fea- 

ible solutions. Obtaining feasible solutions from the information 

rovided by these auxiliary subproblems can be useful, not only 

ithin an algorithmic framework based on F2, but also to support 

ny valid formulation with some initial feasible solution, which 

ould be used as an incumbent and could possibly reduce the com- 

utational burden needed to optimally solve the formulations. 

In the remainder of this section first we give simple proce- 

ures to obtain explicit allocations to berths and to obtain explicit 

equences of consecutive ships served in each berth and discuss 

ome related algorithmic issues. Then we give a simple template 

or finding feasible SBTP solutions. 
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.1. Procedure for determining explicitly the set of ships served in the 

ame berth from a pair of vectors ( z, p) satisfying (4a) –(4c) 

From a vector z̄ representing the set of served ships and a pre- 

ecessors vector p̄ satisfying (4a) –(4c) , the set of ships that are al- 

ocated to each berth r ∈ R , B r , can be easily identified by tracing

ack the predecessor variables. For this we perform | R | iterations 

here at each of them we select a berth index r ∈ R not yet con-

idered and use the predecessors vector to determine the set of 

hips B r that will be allocated to it, using the following two steps; 

 i ) identify a served ship ̂  ı, not yet allocated, that does not precede

ny other served ship (i.e. ̂  ı such that z̄ k ( ̂ ı) = 1 and 

∑ 

j∈ V \{ ̂ ı} p̄ j ̂ ı = 0 ); 

nd, ( ii ) trace back the sequence of ships that precede ˆ ı using 

he predecessors vector p, by iteratively identifying the only index 

ˆ ∈ V that precedes the current ship ˆ ı (i.e. the only ˆ j s.t. p̄ ˆ ı ˆ j = 1 )

nd updating the index of the curent ship ̂  ı to that of its predeces- 

or (i.e. ̂  ı ← ˆ j ). Step ( ii ) is repeated until ̂  ı is the first ship procesed

n the berth (i.e., ˆ j = ̂  ı). Note that, given that in the SBTP all the

erths have the same characteristics, the obtained ship subsets B r 

re perfectly interchangeable among them. 

.2. Procedure for determining explicitly the predecessors vector 

ssociated with a feasible solution to F3 

It is clear that any feasible solution to F0 or F1, with starting 

imes dictated by a given vector s̄ , defines a feasible solution to F3, 

ith 

ˆ h itr = 1 if and only if s̄ i = t and i ∈ B r , where the sets of ships

erved in the same berth, { B r } r∈ R , can be identified with an algo-

ithm based on the description of Section 5.1 . Reciprocally, from 

 feasible vector ˆ h ∗ in the domain of F3 we can obtain a feasible 

olution to F0 or F1 by defining the predecessors vector ˆ p induced 

y the solution 

ˆ h with a procedure that initially determines the set 

f ships served in each berth, i.e. B r = { i ∈ V : 
∑ 

t∈ T ˆ h ∗
irt 

= 1 } , r ∈ R ,

nd then traces forward the sequence of ships indexed in each B r 

y determining the non-zero components of vector ˆ h ∗ with r fixed 

or progressively increasing time indices t ∈ T . Details are omitted. 

.3. Finding feasible berth allocations from scratch 

Feasible allocations of ships to berths can also be obtained from 

cratch, without information on the set of served ships or the pre- 

ecessors vector produced by formulations F0 or F1. For this, we 

an solve a variation of the auxiliary problem AP ( ̄z , ̄h ) in which the

et of ships to be served is not fixed in advance (i.e. z is an addi-

ional set of decision variables so there is no parameter z̄ ) and the 

rrival times are used as tentative service times (i.e. h̄ it = 1 if an 

nly if t = a i , i ∈ V ). Since now the set of ships to be served is not

nown in advance, in order to guarantee mother-ship restrictions, 

onstraints (15b) are stated as: 
 

r∈ R 
λir = z k (i ) , i ∈ V. (18a) 

Together with Constraints (15c) , the above constraints (18a) en- 

ure that a feasible allocation of served ships to berths is obtained. 

onstraints (15d) play the same role as in the original AP ( ̄z , ̄h ) for-

ulation and identify the overlaps that are produced. Now, in or- 

er to attain a tradeoff between served ships (which, as said, are 

ot known in advance) and service overlap (which can be quite 

igh, given that service times are set to arrival times) a suitable 

bjective is to consider a weighted combination of both criteria by 

aximizing: ∑ 

i ∈ V 
c i 

∑ 

r∈ R 
λir −

∑ 

r∈ R 

∑ 

t∈ T 
σrt , (19a) 

here μ is a parameter balancing the two terms of the involved 

bjective function. 
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The above problem will be referred to as AP ( ̄h ) where, as indi- 

ated in the beginning of this section, the vector h̄ is dictated by 

he arrival times. The set of ships served in each berth can be eas- 

ly identified from an optimal solution to AP ( ̄h ) , ( ̂ z , ̂  λ, ˆ σ ) . In par-

icular, B r = { i ∈ V : ̂  λir = 1 } , r ∈ R . 

.4. Determining a service sequencing for the set of ships allocated to 

he same berth 

When the set of ships B r allocated to berth r ∈ R is given, an

ptimal service sequence for the ships of B r that minimizes the 

otal waiting times can be obtained with a formulation that partic- 

larizes F2 for just one berth. Such a formulation assumes that all 

he ships indexed in B r can be served within one cycle, i.e. it is as-

umed that the condition 

∑ 

i ∈ B r c i ≤ H holds. Since we are restrict- 

ng to one single berth, no service overlaps may appear, meaning 

hat the right hand side of the updated constraint (9a) must be 1. 

he formulation corresponding to berth r is therefore: 

EQ r min 

∑ 

i ∈ B r 
w i (20a) 

x i + y i = 1 i ∈ B 

r (20b) 

w i = s i + H y i − a i i ∈ B 

r (20c) ∑ 

i ∈ V 

t ∑ 

t ′ = max { 1 ,t−c i +1 } 
h it ′ 

+ 

∑ 

i ∈ B r : 
t−c i < 0 

H ∑ 

t ′ = H+(t−c i +1) 

h it ′ ≤ 1 

t ∈ T (20d) 

∑ 

t∈ T 
h it = 1 i ∈ B 

r (20e) 

s i = 

∑ 

t∈ T 
t h it i ∈ B 

r (20f) 

x i = 

H ∑ 

t= a i 
h it i ∈ B 

r (20g) 

y i = 0 i ∈ B 

r s.t. a i − c i ≤ 0 (20h) 

y i = 

a i −c i ∑ 

t=1 

h it i ∈ B 

r s.t. a i − c i > 0 (20i) 

x i , y i , h it ∈ { 0 , 1 } i ∈ B 

r , t ∈ T (20j) 

s i , w i ≥ 0 i ∈ B 

r . (20k) 

Observe that the waiting times resulting from arrival times a i , 

an be seen as the tardiness relative to the due dates a i + c i − 1 .

herefore SEQ r is an exact formulation for the minimization of 

he total tardiness as defined above. As shown in Du & Leung 

1990) this problem is already NP-hard. 

.5. Algorithmic framework for finding feasible SBTP solutions 

Based on the ingredients described in the previous sections, an 

lgorithmic template for building feasible SBTP solutions is to ap- 

ly the following three steps: 

S1 Determine a subset of served ships, V , and tentative service 

times for the selected ships, h̄ i , i ∈ V , respecting the mother- 

ship constraints (2a) . 

S2 Determine an allocation of the ships of V to berths, { B r } r∈ R ,
that satisfies the cycle duration, i.e. 

∑ 

i ∈ B r c i ≤ H, r ∈ R , devi- 

ating as little as possible from the tentative service times h̄ i , 

i ∈ V . 

S3 For each berth r ∈ R , build a service sequence for the ships

allocated to it, { B r } . 
There are multiple ways in which the above algorithmic scheme 

an be implemented. Below we outline the two alternatives that 
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e have implemented and tested in our computational experi- 

ents. Both alternatives differ in how steps S1 and S2 are defined, 

ut, in essence, share step S3, which consists in solving the sub- 

roblems SEQ r induced by the subsets { B r } r∈ R produced by step S2 

see Section 5.4 ). 

HEUR : (simple heuristic based on the solution of subproblem 

P ( ̄h ) described in Section 5.3 ). In this heuristic steps S1 and S2

re merged in one single step, in which AP ( ̄h ) is solved using ar-

ival times as service times, and Constraints (18a) instead of Con- 

traints (15b) . 

S1 + S2: Solve AP ( ̄h ) . 

S3: Solve the subproblems SEQ r induced by the subsets { B r } r∈ R 
obtained in S1+S2. 

2-phase solution algorithm . Recall that Proposition 2 gives us a 

imple check for the optimality of the solutions produced by F2. 

n particular, when v (AP ( ̄z , ̄h )) = 0 , the solution produced by F2

s feasible for SBTP and thus optimal. This naturally leads to a 2- 

hase solution algorithm in which the first phase is step S1 when 

ormulation F2 is solved. In the second phase, which is determined 

y S2+S3, the solution of the auxiliary problem AP ( ̄z , ̄h ) is followed

y the solution of the subproblems SEQ r , associated with the re- 

ulting sets of ships B r , r ∈ R . In particular, the procedure is as fol-

ows: 

S1 Solve formulation F2. 

S2 Solve the auxiliary problem AP ( ̄z , ̄h ) . 

S3 Apply the Feasibility Check based on Proposition 2 . 

If ( v (AP ( ̄z , ̄h )) = 0 ) then (the solution obtained in S2 is opti-

mal) 

Else (the current solution is not optimal) 

Solve the subproblems SEQ r induced by the subsets 

{ B r } r∈ R obtained in S2. 

Observe that Step S1 of the 2-phase algorithm produces a valid 

ower bound, which is not necessarily associated with a feasible 

BTP solution, whereas the second phase produces a valid upper 

ound associated with the feasible SBTP solution obtained after ap- 

lying S2 + S3. 

. Computational experiments 

In order to study the empirical performance of the formulations 

ntroduced in the previous sections we have carried out a series of 

omputational experiments whose numerical results are presented 

nd analyzed in this section. 

All the computational tests have been carried out in an DELL 

PS 15 9550 Intel i7-6700HQ 2.6 GHz with 16 GB RAM, under 

indows 10 Pro as operating system. All formulations have been 

oded in Mosel 5.2.0 with Xpress Optimizer Version 36.01.03 using 

s solver ( Xpress, 2020 ). 

For the experiments we have used the set of 96 SBTP bench- 

ark instances generated by the authors of Iris et al. (2018) based 

n a prototypical instance of Imai et al. (2014) , that they used 

n their computational experiments. These instances are classified 

ccording to their number of calling ships n ∈ { 50 , 70 , 100 , 150 } ,
umber of berths b ∈ { 4 , 8 , 12 } , as well as the following character-

stics: 

• Proportion of small (feeder; F), medium (M) and large (jumbo; 

J) calling ships, which are determined by their service times 

(in hours). In instances labeled E (“equal”) the proportion of 

ships of types F, M and J is 33 . 3% , 33 . 3% , and 33 . 4% respectively,

whereas instances labeled A (“alternative”) the proportions are 

60% , 30% , and 10% , respectively. 
• Service times, which represent handling times (in hours). They 

have been generated from integer uniform distributions which, 
108 
on the one hand, depend on the ships characteristics (F, M, 

or J), and, on the other hand, can be either S (“small”) or L 

(“large”). 
• Service times for instances labeled S are drawn from U[4 , 8] , 

U[6 , 10] and U[8 , 12] for ships of type F, M and J, respectively. 
• Service times for instances labeled L are drawn from U[8 , 10] , 

U [10 , 14] and U [14 , 22] for ships of type F, M and J, respectively.

All instances are available at https://github.com/elalla/ 

trategic- berth- template- problem . Each instance is identified 

ith a label “i_n_b_c_s”, where i is the numeric label assigned to 

he instance in Iris et al. (2018) , n ∈ { 50 , 70 , 100 , 150 } its number

f ships, b ∈ { 4 , 8 , 12 } the number of berths, c ∈ { A, E} the type

f composition, and s ∈ { S, L } the type of service. In all instances

he planning horizon has a duration of 152 hours which is a 

rototype week that will be repeated cyclically. The number of 

onnections between mother/feeder ships depends on the instance 

ize, although usually 10 − 20% of all ships are in a mother-feeder 

ink. Finally, the penalty for each rejected call is g = 10 , 0 0 0 (see

ris et al., 2018 for further details). 

As we next explain this very high value of the penalty g plays 

n essential role for determining the optimal values of the con- 

idered SBTP instances. For this, we observe that, in the objec- 

ive function, the overall penalty associated with non-served calls, 

 

∑ 

k ∈ K C k (1 − z k ) , fully dominates the term 

∑ 

i ∈ V w i associated with 

he waiting times. Since the maximum waiting time of any served 

hip is w i ≤ H, a very crude upper bound of 
∑ 

i ∈ V w i is n × H,

hich for our considered parameter values n ≤ 150 and H = 152 

ndicates that for any of the considered instances it holds that 
 

i ∈ V w i ≤ 150 × 152 = 22 , 800 . On the other hand, since c i ≥ 4 for

ll i ∈ V (the value of 4 corresponds to the lower limit in U[4 , 8]

or instances labeled S of type F), the coefficient C k = 

∑ 

i ∈ V k c i ≥ 4 ,

or all k ∈ K, so each non-served class k ∈ K contributes to the ob-

ective function with a penalty greater than or equal to g × C k ≥
 × 10 , 0 0 0 = 40 , 0 0 0 . This means that the individual penalty cor-

esponding to each non-served class exceeds the maximum possi- 

le total value of the term 

∑ 

i ∈ V w i . Thus any optimal solution will 

eject as few service calls as possible or, equivalently, any optimal 

olution will serve as many classes as allowed by the overall berths 

apacity. Indeed it is possible to determine a priori the optimal 

alue for g 
∑ 

k ∈ K C k (1 − z k ) by finding a subset of ship classes that

an be assigned to the available berths with no overlaps (ignoring 

ny sequencing issues) of maximum value for 
∑ 

k ∈ K C k z k . Such a set 

an be found by solving the problem 

S ∗ = max 
∑ 

k ∈ K 
C k z k (21a) 

∑ 

r∈ R 
λir ≤ z k (i ) i ∈ V (21b) 

∑ 

i ∈ V 
c i λir ≤ H r ∈ R (21c) 

λir ∈ { 0 , 1 } i ∈ V , r ∈ R (21d) 

z k ∈ { 0 , 1 } . k ∈ K (21e) 

(21e) 

Thus, if S ∗ is the maximum capability of a given instance in 

erms of the overall service time of the accepted ships then, for 

ny optimal solution to the instance, the overall service time of 

he accepted ships will be precisely S ∗, That is, the total service 

ime of rejected ships will be 
∑ 

j∈ V c j − S ∗, so the overall penalty 

or the rejected ships is a constant P ∗ = g ×
(∑ 

j∈ V c j − S ∗
)
. Note fi- 

ally that the value of the maximum service capability of a given 

nstance, S ∗, can be computed by solving a variation of a bin pack- 

ng problem (see, e.g. chapter 8 in Martello & Toth, 1990 ) in which

here are b bins each of them with capacity H and the demand of 

https://github.com/elalla/strategic-berth-template-problem
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Table 2 

Summary of instances characteristics. 

b B = H × b n L/S A/E Instances D = 

∑ 

i ∈ V c i R = D/B P ∗

4 608 50 S A 1–4 341 50 0.56 0 

E 5–8 399 75 0.66 0 

L A 13–16 551 00 0.91 0 

E 9–12 634 50 1.04 265,000 

70 S A 71-20 464 00 0.76 0 

E 21–24 559 25 0.92 0 

L A 29–32 744 75 1.22 1,367,500 

E 25–28 864 25 1.42 2,562,500 

100 S A 33–36 676 25 1.11 682,500 

E 37–40 810 50 1.33 2,025,000 

L A 45–48 1067 50 1.76 4,595,000 

E 41–44 1195 25 1.97 5,872,500 

8 1216 70 S A 61–64 396 00 0.33 0 

E 57–60 487 25 0.40 0 

L A 49–52 784 50 0.65 0 

E 53–56 919 50 0.76 0 

100 S A 65–68 581 50 0.48 0 

E 77–80 700 25 0.58 0 

L A 69–72 1016 25 0.84 0 

E 73–76 1234 75 1.02 202,500 

12 1824 150 S A 93–96 865 25 0.47 0 

E 81–84 1054 00 0.58 0 

L A 89–92 1492 75 0.82 0 

E 85–88 1752 75 0.96 0 
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he items is c i , i ∈ V , where the condition that all the ships in each

lass are either allocated or rejected is guaranteed by the right 

and side of (21b) . For a better assessment of the results of our

omputational experiments, for each instance, we have precom- 

uted the value of its penalty P ∗. 

Table 2 summarizes the instances characteristics. The first three 

olumns indicate the number of berths, b, the overall service ca- 

ability B = b × H, and the number n of calling ships respectively. 

he following two columns indicate whether service times are S/L 

nd whether the proportion of small/large/jumbo calling ships is 

/E , respectively. Column labeled Instances indicates the range of 

umeric labels of the four benchmark instances with those spe- 

ific parameters, whereas columns under D = 

∑ 

i ∈ V c i and R = D/B 

ive the averages, over those four instances, of the overall service 

emand D and the demand rate , R , respectively. The last column of 

able 2 gives average values of P ∗ for the different instance classes, 

recomputed as explained above. 

In the following the set consisting of the four instances 

_n_b_c_s sharing the same parameter values for n , c, b and s will 

e denoted by C n _ b _ c _ s . In Table 2 and the rest of this section, re-

ults are presented for the different groups which, for the same 

umber of berths and calling ships, are ordered by increasing value 

f demand rate. Note that this grouping does not correspond to in- 

reasing values of the numerical labels of the instances, which we 

lways indicate so the specific instances to which the results cor- 

espond can be identified. 

.1. Numerical results for instances with four berths 

We start our analysis by comparing several formulations and 

imple algorithmic schemes among them on the instances with 

our berths, all of which have a number of calling ships n ∈ 

 50 , 70 } . That is, we consider the classes C n _ 4 _ c _ s , for varying val-

es of the remaining parameters. 

Preliminary testing indicated that formulation F0 produced very 

eak LP bounds and was only able to solve to proven optimality 

mall size instances. We thus excluded it from further considera- 

ion and focused on the remaining formulations. In the remainder 

f this section we will compare the following bounds: 

• Lower bounds: 
109 
- L 0 : value of the LP relaxation of formulation F1. 

- L 1 : lower bound produced by formulation F1 at termination. 

- L 2 : optimal value of formulation F2 

(valid lower bound, obtained in S2 of the 2-phase algo- 

rithm). 

- L 3 : lower bound produced by formulation F3 at termination. 
• Upper bounds: 

- U 0 : value of the feasible solution obtained with the heuris- 

tic HEUR described in Section 5.5 . In the objective func- 

tion (19a) of problem AP ( ̄h ) , the weight that has been used 

for the combination of the service and overlap criteria is 

μ = 100 . This value was chosen after some preliminary test- 

ing, where we observed that this is a good tradeoff of the 

two terms of the involved objective function. 

- U 1 : upper bound corresponding to the value of the best so- 

lution produced by formulation F1 at termination. 

- U 2 : upper bound associated with the solution produced by 

the 2-phase algorithm of described in Section 5.5 

- U 3 : upper bound corresponding to the value of the best so- 

lution produced by formulation F3 at termination. 

F3 produced proven optimal solutions for all the considered in- 

tances within a maximum computing time of 3600 seconds, with 

he exception of instance 21_70_4B_E_S, for which F3 consumed 

ver 90 0 0 seconds. This allows us to report percentage devia- 

ions of the above lower and upper bounds relative to optimal val- 

es, as well as percentage optimality gaps of the intervals [ L i , U i ] ,

 = 0 , 1 , 2 , 3 . In all cases, the bounds that we analyze correspond to

aiting times. That is, if the value of a solution is W + P ∗, where

 = 

∑ 

i ∈ V w i is the total waiting time of the served ships, we ex- 

lude the constant penalty term P ∗, and only consider the value 

 . Otherwise, relatively large differences in the value of W may 

omehow be hidden behind the large value of the penalty term P ∗. 

herefore, the actual bounds that we consider for i = 0 , . . . , 3 are

 

w 

i 
and U 

w 

i 
, such that L i = L w 

i 
+ P ∗ and U i = U 

w 

i 
+ P ∗. Then, if W 

∗ is

he overall waiting time in an optimal solution, the percentage de- 

iations and optimality gaps that we report are defined as follows: 

• Deviations of the lower bounds from optimal values: % DL w 

i 
= 

100(W 

∗ − L w 

i 
) /W 

∗, i = 0 , . . . , 3 . 
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Table 3 

Summary of numerical results for small instances with b = 4 and n ∈ { 50 , 70 } . 
n : 50 70 

L/S-A/E: S-A S-E L-A L-E S-A S-E L-A L-E 

Inst. labels: 1–4 5–8 13–16 9–12 17–20 21–24 29–32 25–28 

HEUR DL w 0 0.00 0.10 1.42 4.66 1.13 0.91 8.04 7.85 

DU w 0 31.40 38.28 46.46 92.77 59.04 43.40 246.14 179.85 

% G w 0 31.40 38.42 48.52 103.92 61.00 44.79 281.38 203.05 

CPU 0 0.74 0.69 3.59 12.18 26.80 4.29 7.30 6.03 

# Opt 0 0 0 0 0 0 0 0 0 

F1 DL w 1 0.00 0.00 1.49 0.11 0.00 0.17 4.86 4.44 

DU w 1 0.00 0.00 76.55 43.60 11.86 33.79 126.25 125.64 

% G w 1 0.00 0.00 80.01 43.25 11.86 30.00 137.52 136.52 

CPU 1 2.54 6.71 3599.81 3600.29 1846.31 3599.87 3599.86 3600.51 

# Opt 1 4 4 0 0 2 0 0 0 

F2 DL w 2 0.00 0.00 0.00 0.00 0.00 0.00 0.39 2.82 

T L w 2 0.21 0.26 2.56 7.83 0.79 6.76 19.35 15.74 

DU w 2 0.00 0.00 0.00 4.77 0.00 0.00 9.33 46.23 

T U w 2 0.04 0.05 0.06 5.23 0.20 0.06 6.96 75.53 

% G w 2 0.00 0.00 0.00 4.77 0.00 0.00 9.76 50.47 

CPU 2 0.25 0.31 2.62 13.06 1.00 6.83 26.31 91.26 

# Opt 2 4 4 4 3 4 4 2 0 

F3 DL w 3 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

DU w 3 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

% G w 3 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

CPU 3 1.52 1.73 53.83 407.46 7.03 2357.58 650.40 576.25 

# Opt 3 4 4 4 4 4 4 4 4 
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• Deviations of the upper bounds from optimal values: % DU 

w 

i 
= 

100(U 

w 

i 
− W 

∗) /W 

∗, i = 0 , . . . , 3 . 
• Optimality gaps: % G 

w 

i 
= 100(U 

w 

i 
− L w 

i 
) /L w 

i 
, i = 0 , . . . , 3 . 

Table 3 gives average values, over all the instances in each of 

he classes C n _ 4 _ c _ s , of the above percentage deviations and gaps, 

s well as the computing times (in seconds) required to obtain 

ach of the corresponding bounds. A maximum computing time 

f 3600 seconds was established in all the tests, with the excep- 

ion of instance 21_70_4B_E_S with formulation F3 for which, as 

entioned, we allowed to exceed that time limit in order to guar- 

ntee the optimality of the obtained solution. The table also gives 

he total number of instances of the corresponding class solved to 

roven optimality in each case. The heading of the table consists 

f three rows indicating the number of calling ships ( n ), the pa-

ameter combinations (S/L-A/E), and the labels of the instances in 

he corresponding class ( Inst. labels ), respectively. As can be seen, 

ach instance class C n _ 4 _ c _ s is associated with one column. The nu- 

erical results are summarized in four blocks of rows, the first 

ne, labeled HEUR , for the heuristic solution combined with the 

P bound of F1, is followed by one block for each of the formu- 

ations F1, F2 and F3, each of them labeled as F i , i = 1 , . . . , 3 , re-

pectively. Blocks HEUR , F 1 and F 3 have the same structure con- 

isting of five rows; the first three rows refer to % DL w 

i 
, % DU 

w 

i 
and

 G 

w 

i 
, respectively, row CPU i to computing times, and row # Opt i 

ives the number of instances in each class optimally solved within 

he maximum computing time. Block F 2 consists of seven rows, 

he first two ones related to the outcome of formulation F2: av- 

rage percentage deviations % DL w 

2 
, and average computing times 

or optimally solving F2 ( T L 2 ). The next two rows are related to

he outcome of the second phase of the algorithmic procedure we 

ave explained: average percentage deviations of the obtained up- 

er bounds ( % DU 

w 

2 ) and average computing times ( T U 2 ). The final

hree rows give the average percentage gaps at termination ( % G 

w 

2 
), 

he total computing times ( CP U 2 = T L 2 + T U 2 ), and the number of

nstances solved to proven optimality ( # Opt 2 ), which is given by 

he number of instances in each class for which the optimality 
110 
heck based Proposition 2 indicated that the solution produced by 

2 was feasible for SBTP. 

At a first glance, the results of HEUR may seem quite modest, 

lthough a closer look highlights the following positive aspects: 

he simplicity of the procedures used to obtain the lower and up- 

er bounds, the quality of the LP bounds produced by formulation 

1, and the small computing times required to obtain these (initial) 

ower and upper bounds. Indeed these results are outperformed by 

hose of F1 , although it is somehow disappointing that the good 

uality of the initial LP bounds does not result in a more effec- 

ive exploration of the enumeration tree. As can be seen, only 10 

ut of these 32 benchmark instances were optimally solved within 

he maximum time limit of one hour. Note that all the instances 

ptimally solved belong to classes where the type of service pa- 

ameter is s = S, i.e., they have small service times. Among the in- 

tances with large service times those corresponding with compo- 

ition A (where the proportion of the different types of ships is 

ot the same) produced somewhat tighter lower bounds at termi- 

ation; in particular those lower bounds coincided with the opti- 

al value for two additional instances in class C 50 _ 4 _ A _ L and one 

dditional instance in C 70 _ 4 _ A _ L . Nevertheless, the overall results in- 

icate that while F1 produces very tight lower bounds in small 

omputing times, it has difficulties in producing feasible solutions 

f good quality. In fact, for several unsolved instances, the upper 

ound at termination was associated with a solution found by the 

efault heuristic at the root node. 

On the contrary, the results shown in the block F2 indicate the 

ffectiveness of the 2-phase solution procedure based on formu- 

ation F2. On the one hand, F2 produces extremely tight lower 

ounds, which already correspond to SBTP optimal values for 15 

nd 10 out of the 16 instances with n = 50 and n = 70 , respec-

ively analyzed in Table 3 . As can be seen, the value of % DL w 

2 for

he class C 50 _ 4 _ L _ E is 0, which means that for instance 11, which 

s the only instance of C 50 _ 4 _ L _ E where the outcome of F2 was not 

easible for SBTP, the obtained lower bound coincided with the op- 

imal SBTP value. The values of % DL w 

2 
for the classes C 70 _ 4 _ L _ A and 

 70 _ 4 _ L _ E are a little higher: 0.39 and 2.82, respectively. For C 70 _ 4 _ L _ A 

here is again one single instance (the one labeled 31) for which 
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Table 4 

Summary of numerical results with F2 for instances with b ∈ { 4 , 8 , 12 } and n ∈ { 70 , 100 , 150 } . 
b n S/L A/E Inst. % DL w 2 T L 2 % DU w 2 T U 2 % G w 2 CPU 2 # Opt 2 

4 100 S A 33–36 0.00 12.14 3.75 2.01 3.75 14.15 3 

E 37–40 0.00 16.97 0.00 0.08 0.00 17.05 4 

L A 45–48 0.29 25.48 31.46 8.77 31.91 34.24 1 

E 41–44 2.03 20.72 34.01 1.94 36.91 22.66 0 

8 70 S A 61–64 0.00 0.30 0.00 0.12 0.00 0.41 4 

E 57–60 0.00 0.32 0.00 0.12 0.00 0.45 4 

L A 49–52 0.00 0.43 0.00 0.15 0.00 0.57 4 

E 53–56 0.00 0.46 0.00 0.19 0.00 0.65 4 

100 S A 65–68 0.00 0.42 0.00 0.16 0.00 0.58 4 

E 77–80 0.00 0.52 0.00 0.12 0.00 0.64 4 

L A 69–72 0.00 1.43 0.00 0.26 0.00 1.70 4 

E 73–76 0.07 10.67 2.84 225.56 2.92 236.22 1 

12 150 S A 93–96 0.00 0.77 0.00 0.21 0.00 0.98 4 

E 81–84 0.00 0.83 0.00 0.33 0.00 1.16 4 

L A 89–92 0.00 1.65 0.00 4.18 0.00 5.83 4 

E 85–88 0.00 6.69 0.00 14.55 0.00 21.23 4 

Table 5 

Summary of numerical results with F3 for instances with b ∈ { 4 , 8 , 12 } and n ∈ 
{ 70 , 100 , 150 } . 

b n S/L A/E Inst. % DL w 3 % DU w 3 % G w 3 CPU 3 # Opt 3 

4 100 S A 33–36 0.00 0.00 0.00 848.24 4 

E 37–40 0.00 0.00 0.00 1112.21 4 

L A 45–48 0.00 0.00 0.00 401.28 4 

E 41–44 0.00 0.00 0.00 522.88 4 

8 70 S A 61–64 0.00 0.00 0.00 3.19 4 

E 57–60 0.00 0.00 0.00 3.51 4 

L A 49–52 0.00 0.00 0.00 5.99 4 

E 53–56 0.00 0.00 0.00 6.90 4 

100 S A 65–68 0.00 0.00 0.00 5.75 4 

E 77–80 0.00 0.00 0.00 6.64 4 

L A 69–72 0.00 0.00 0.00 1030.30 4 

E 73–76 0.00 0.00 0.00 3258.72 4 

12 150 S A 93–96 0.00 0.00 0.00 9.45 4 

E 81–84 0.00 0.00 0.00 12.76 4 

L A 89–92 0.00 0.00 0.00 22.46 4 

E 85–88 0.10 1.60 1.70 7173.10 2 
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he lower bound produced by F2 did not coincide with the optimal 

BTP value. Instead, none of the lower bounds obtained for the in- 

tances of C 70 _ 4 _ L _ E coincided with their optimal values, and their 

ercentage deviations range in 2.04–4.63. We would like to call the 

ttention on the computing times needed to optimally solve F2, 

hich for all instances with n = 50 and n = 70 were smaller than

2 and 26 seconds, respectively. 

Nevertheless, the best results were clearly obtained with for- 

ulation F3, which produced proven optimal solutions for all the 

onsidered instances. The computing times are remarkable. All in- 

tances in classes C 50 _ 4 _ S _ A and C 50 _ 4 _ S _ E were solved in less than 

.5 seconds; the computing times of instances in C 50 _ 4 _ L _ A range in 

.9–73.1 seconds, except for instance 15, which required 128.4 sec- 

nds. Instances in C 50 _ 4 _ L _ E were solved in less than 275 seconds, 

ith the exception of instance 9, which required 128.4 seconds. 

s could be expected, computing times increase with the num- 

er of calling ships, although the computing times are still very 

mall. Only two out of the 16 instances with n = 70 required more 

han 10 0 0 seconds: instance 21, which, as mentioned, consumed 

,368.14 seconds, and instance 31, which consumed 1,091.5 sec- 

nds. 

.2. Numerical results for larger instances 

Next we present the results we have obtained with the in- 

tances with b ∈ { 8 , 12 } , all of which have a number of calling

hips n ∈ { 70 , 100 , 150 } . Taking into account the results obtained
111 
ith the smaller instances, now we have tested the 2-phase al- 

orithm based on F 2 and formulation F 3 . While we did not set a

aximum time limit for the 2-phase algorithm, as for all instances 

he procedure terminated in small computing times, we did set a 

aximum time limit of 10,800 seconds (three hours) for the solu- 

ion of formulation F3. To facilitate the readability of the numeri- 

al results they are summarized in two different tables: Table 4 for 

he 2-phase procedure based on F2 and Table 5 for the results ob- 

ained with formulation F 3 . The structure of both tables is similar: 

ach row corresponds to a class of instances and, except for the 

olumns showing instance characteristics, there is one column for 

ach of the items analyzed. Hence, Table 4 has seven such columns, 

espectively labeled with % DL w 

2 
, T L 2 , % DU 

w 

2 
, T U 2 , % G 

w 

2 
, CP U 2 , and

 Opt 2 , whereas Table 5 has five such columns, respectively labeled 

ith % DL w 

3 , % DU 

w 

3 , % G 

w 

3 , CP U 3 , and # Opt 3 . The meaning of the head-

ngs is the same as in Table 3 . 

We can again appreciate the excellent performance of both the 

-phase solution procedure and formulation F3. The algorithmic 

cheme based on F2 produced a provable optimal solution for 53 

ut of the 64 larger instances, and for the instances where an op- 

imal solution was not found the percentage deviations % DL w 

2 are 

xtremely small. The largest such deviations appear in C 100 _ 4 _ L _ E , 

n particular for instance 44_50_4B_E_L, where the percentage de- 

iation of the lower bound produced by F2 and the optimal value 

s 3.85. Other classes of instances where optimal SBTP solutions 

ere not always found are C 100 _ 4 _ S _ A , C 100 _ 4 _ L _ A , and C 100 _ 8 _ L _ E . Still, 

or most instances where F2 did not produce an optimal solution, 
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Table 6 

Comparison of F 2 , F 3 and GSP + . 

F2 F3 GSP + 

b n S/L A/E Inst. % G w 2 CPU # Opt 2 % G w 3 CPU # Opt 3 % G w I CPU # np _ Opt # Opt

4 50 S A 1–4 0.00 0.25 4 0.00 1.52 4 0.00 5.88 0 4 

E 5–8 0.00 0.31 4 0.00 1.73 4 0.00 6.23 0 4 

L A 13–16 0.00 2.62 4 0.00 53.83 4 9.92 8103.40 2 1 

E 9–12 4.77 13.06 3 0.00 407.46 4 77.23 10,800.00 1 0 

70 S A 17–20 0.00 1.00 4 0.00 7.03 4 4.63 2709.45 0 3 

E 21–24 0.00 6.83 4 0.00 2357.58 4 0.00 673.98 0 4 

L A 29–32 9.76 26.31 2 0.00 650.40 4 9.82 4703.08 0 3 

E 25–28 50.47 91.26 0 0.00 576.25 4 3.94 3330.65 1 3 

100 S A 33–36 3.75 14.15 3 0.00 848.24 4 12.06 7189.75 1 2 

E 37–40 0.00 17.05 4 0.00 1112.21 4 0.00 2525.68 0 4 

L A 45–48 1.91 34.24 1 0.00 401.28 4 5.89 4381.63 1 3 

E 41–44 6.91 22.66 0 0.00 522.88 4 8.33 3526.25 1 3 

8 70 S A 61–64 0.00 0.41 4 0.00 3.19 4 0.00 15.43 0 4 

E 57–60 0.00 0.45 4 0.00 3.51 4 0.00 17.40 0 4 

L A 49–52 0.00 0.57 4 0.00 5.99 4 0.00 23.45 0 4 

E 53–56 0.00 0.65 4 0.00 6.90 4 0.00 24.95 0 4 

100 S A 65–68 0.00 0.58 4 0.00 5.75 4 0.00 23.95 0 4 

E 77–80 0.00 0.64 4 0.00 6.64 4 0.00 26.35 0 4 

L A 69–72 0.00 1.70 4 0.00 1030 30.4 0.00 337.20 0 4 

E 73–76 2.92 236.22 1 0.00 3258.72 4 951.74 10,800.00 0 0 

12 150 S A 93–96 0.00 0.98 4 0.00 9.45 4 0.00 64.50 0 4 

E 81–84 0.00 1.16 4 0.00 12.76 4 0.00 93.78 0 4 

L A 89–92 0.00 5.83 4 0.00 22.46 4 0.00 182.50 0 4 

E 85–88 0.00 21.23 4 1.70 7173.10 2 25.21 7437.80 0 2 

# Instances Optimally solved in total: 78 94 7 76 
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the full set of individual instances both for F2 and F3. 
he obtained lower bound coincides with the optimal SBTP value, 

he only exceptions being instance 46_100_4B_E_L with a percent- 

ge deviation of 1.18 and instance 76 with a percentage deviation 

f 0.29. 

While the lower bounds produced by F2 are optimal or quasi- 

ptimal, the quality of the upper bounds is not so high for in- 

tances where the optimality check did not certify the optimality 

f the obtained solution. This is not surprising, given the simplicity 

f the second phase, which produces a feasible solution in which 

he assignment of served ships to berths is dictated by the out- 

ome of AP ( ̄z , ̄h ) , despite the fact that the optimality check has

ested negative, which is a rather clear indication that such assign- 

ent is probably not an optimal one. Still, the upper bounds that 

e obtain in such cases are, in general, quite tight, with the excep- 

ion of those for instances in classes C 100 _ 4 _ L _ A and C 100 _ 4 _ L _ E . 

Note that all the instances that were not optimally solved with 

he procedure based on F2 correspond to classes with high val- 

es of the demand ratio R = D/B . In particular, for C 100 _ 4 _ L _ E , which

roduced the largest percentage deviation gaps, R = 1 . 97 (the over- 

ll demand is nearly twice as service capacity), which is the largest 

alue among all classes. Classes C 100 _ 4 _ S _ A , C 100 _ 4 _ L _ A , and C 100 _ 8 _ L _ E 

lso have values of R > 1 . 

We finally observe that the total computing times required by 

he 2-Phase procedure are remarkably small. Average total com- 

uting times are always below 250 seconds, even for the most 

emanding class in that sense, C 100 _ 8 _ L _ E . Notice that the aver- 

ge computing times of the first phase in which formulation F2 

s solved to optimality, T L 2 , are below 26 seconds for all classes

f instances. The most demanding individual instance for the first 

hase was instance 45, which required less than 35 seconds. The 

rst phase consumed less than five seconds for all instances with 

 = 150 , with the exception of instance 85, which required nearly 

6 seconds. In fact the computing load of the 2-phase proce- 

ure relies essentially on the second phase and, in particular, on 

he solution on the berth allocation problem AP ( ̄z , ̄h ) , which be-

omes more demanding, not only as the sizes of the instances in- 

rease, but mainly as the demand ratio R increases. We can ob- 

erve that the largest average computing time for the second phase 
112 
f 236.22 seconds corresponds again to class C 100 _ 8 _ L _ E , which, as 

entioned, has the largest value of R . 

We now focus our attention on the results of formulation F3, 

hich are summarized in Table 5 . As can be seen, 62 out of the

4 instances of the considered classes were solved to proven op- 

imality within the maximum time limit of 10,800 seconds. The 

nly two instances that were not solved to optimality belong to 

lass C 150 _ 12 _ L _ E , namely instances 85 and 86. Since both of these 

nstances were optimally solved with the 2-phase procedure, we 

now their optimal values, so the obtained results can be better 

ssessed. In particular, their optimal total waiting times are 440 

nd 362, respectively. At termination, the lower and upper bounds 

n the total waiting time that we obtained for instance 85 are 

 

w 

3 
= 439 . 30 and U 

w 

3 
= 467 , respectively, with corresponding per-

entage deviations of DL w 

3 = 0 . 16% and DU 

w 

3 = 6 . 14% . For instance

6 the obtained bounds are L w 

3 
= 361 . 16 and U 

w 

3 
= 363 , resulting

n percentage deviations of DL w 

3 
= 0 . 23% and DU 

w 

3 
= 0 . 51% . Thus, in

oth cases by rounding up the lower bound we obtain the optimal 

alues. While the upper bound of instance 86 differs in just one 

nit from the optimal value, the best solution found for instance 

5 has a value of 467, with a difference of 27 from the optimal 

alue. 

In general, the computing times needed to solve F3 are no- 

ably below the maximum time limit. Apart from instances 85–

6, which reached the limit, only three instances (71, 75 and 76) 

equired more than one hour of computing time; their respective 

omputing times being 4044, 4376 and 6043 seconds. 

Similarly to what we have observed with the 2-phase algo- 

ithm, the difficulty for solving an instance clearly depends on 

ts demand rate: the higher average computing times are, in gen- 

ral again associated with instances with values of R very close to 

. The two instances that reached the limit belong have n = 150 , 

 = 12 , i.e. 228,0 0 0 binary variables ˆ h , and have a demand rate

 = 0 . 96 , which, is quite close to 1, and is the largest demand rate

mong all classes of instances with n = 150 . This can be clearly ap-

reciated in Fig. 3 where we have plotted the computing times of 
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Fig. 3. Computing times for F 2 , F 3 for the full set of benchmark instances. 
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Fig. 4. Average computing times for F 2 , F 3 and GSP + , for instances with b = 4 . 
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A detailed look at the individual lower and upper bounds for 

ach of the instances (see Tables 7–12 in the Appendix) highlight 

he remarkable quality of the lower bounds obtained with both F2 

nd F3, which already are the optimal value or deviate very few 

nits from it. Moreover, these bounds (or others with less than 

ne unit of difference from them) are usually attained already at 

he root node of the enumeration tree. Obtaining optimal or near- 

ptimal feasible solutions is usually more demanding although the 

btained results are equally satisfactory, particularly those of F3, 

hich solved to proven optimality all but two instances. In total 

nly five out of the 96 considered instances consumed more than 

ne hour. 

.3. Comparison of F2 and F3 with the results of Iris et al. (2018) 

We conclude this section with a comparison of our numeri- 

al results with those of Iris et al. (2018) with the same set of

enchmark instances. In particular, we compare F2 and F3 with 

he so-called formulation GSP + , which produced the best results 

mong the alternatives tested computationally in Iris et al. (2018) . 

he comparison is summarized in Table 6 , where the full set of 

nstances is considered and each row corresponds to a class of 

nstances. The table contains three blocks of columns, for the 2- 

hase algorithm based on F 2 , for formulation F 3 , and for formula-

ion GSP + , respectively. Each block has a first column for average 
113 
ercentage optimality gaps at termination (labeled % G 

w ), a second 

olumn for average computing times (labeled CP U), and a final col- 

mn showing the number of instances solved to proven optimality 

#Opt). The block GSP + contains another column (#np_Opt), just 

efore the final one, indicating the number of instances for which 

he best solution found was optimal, although its optimality could 

ot be proven within the allowed computing time. Since the de- 

iations reported in Iris et al. (2018) are computed relative to the 

verall objective function value, from the results reported in the 

aper, for each instance we have computed the deviations % G 

w rel- 

tive to the waiting times, by subtracting from the reported objec- 

ive function values the constant penalty value P ∗. 

The results of Table 6 show that both the 2-phase procedure 

ased on F2 and F3 outperform GSP + in terms of the number of so- 

utions found whose optimality could be proven. This superiority is 

articularly relevant in terms of the computational effort required 

o obtain the results, as can be observed in Figs. 4 and 5 , where

nstances have been grouped by classes with the same parameter 

alues and the horizontal axis indicates the average demand ratio 

 = D/C. In all the figures the vertical axis considers a maximum 

f 18,0 0 0 seconds, except for the comparison for n = 70 and b = 8

left most image of Fig. 5 ) where the maximum of the vertical axis 

s only 60 seconds, because the computing times of all instances 

nd compared formulations were always below that time limit. 
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. Conclusions 

In this paper we have studied the SBTP in which there is a set 

f ships cyclically calling for service at a port. The STBP combines 

trategic decisions for selecting the ships to serve and operational 

ecisions for setting the service times for the selected ships, with 

he objective of minimizing a penalty for the rejected ships plus 

he total sum of the waiting times of the accepted ships. Several 

ormulations have been developed. All of them use binary vari- 

bles that classify served ships depending on whether or not their 

ervice starts during their arrival cycle or in the next one. This 

elps modeling the STBP, since a closed linear expression can be 

btained for the waiting times. The most basic formulations pre- 

ented, which, in addition use predecessor variables to identify the 

equence of calling ships served consecutively in the same berth, 

re outperformed by alternative formulations that avoid such vari- 

bles, in which alternative binary decision variables are defined to 

etermine the actual time period in which service to each ship 

tarts. Two such alternatives have been introduced and studied: F2 

here the new decision variables are aggregated over all berths, 

nd F3 where variables consider in addition the index of the berth 

here the ship is served. While F2 is a relaxation of SBTP, it can 

e solved in remarkably small computing times and, together with 

 simple check that indicates whether or not its optimal solution 

s also optimal for SBTP, can be used very effectively to produce 

ptimal or near-optimal SBTP solutions in a 2-phase solution algo- 

ithm. F3 is an exact formulation that produces SBTP solutions of 

uaranteed optimality. The proposed formulations have been com- 

utationally tested on a set of benchmark instances from the lit- 

rature. The obtained numerical results assess the efficiency of the 

-phase solution procedure based on F2 and on formulation F3. 

oth alternatives outperform the so-called formulation GSP + of Iris 

t al. (2018) , which is the best SBTP formulation in the literature, 

oth in terms of the number of provable optimal solutions that 

hey produce and the computing time requirements. 

The proposed formulations can be extended in several ways to 

eal with more general versions of the SBTP. At the strategic level, 

ne can easily incorporate requirements imposing that a given sub- 

et of ships must be necessarily served, either by fixing at value 

ne their associated z k variables or by increasing arbitrarily their 

ejection penalty. Another straightforward extension is to consider 

hip-dependent penalties for the rejected ships, not necessarily 

roportional to their service times. 

A more challenging extension is to consider situations in which 

he number of available berths is time dependent. This would al- 

ow to consider periods of lower activity like, for instance, Sundays. 

et b t , t ∈ T denote the number of berths available at time period t ,

hen the right hand side of the berths availability constraint (9a) at 

ime period t ∈ T of formulation F2 can be easily substituted by b t .

ormulation F3 can also be easily adapted by considering a time- 
 

114 
ependent index set of available berths R t = { 1 , . . . , b t } , t ∈ T , and

y stating the feasibility constraints (16a) , for r ∈ R t , t ∈ T . 

Finally, a further non-trivial extension of the SBTP would be to 

onsider scenarios where different calling companies have differ- 

nt cycle lengths. In its turn this would require to propose new 

ormulations as the current ones are no longer valid. 
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ppendix A. Tables with detailed results 

In this appendix we give detailed results for the individual in- 

tances obtained with each of the tested formulations and solu- 

ion alternatives, as well as for the formulation GSP + of Iris et al. 

2018) . In all cases, the bounds that we analyze correspond to 

aiting times. That is, if the value of a solution is W + P ∗, where

 = 

∑ 

i ∈ V w i is the total waiting time of the served ships and P ∗

he constant penalty term, we ignore the term P ∗, and only con- 

ider the value W . Otherwise, relatively large differences in the 

alue of W may somehow be hidden behind the large value of the 

enalty term P ∗. In all cases, the bounds on the overall objective 

unction value can be obtained by adding the penalty value P ∗. 

Tables 7 and 8 refer to instances with four berths and a number 

f calling ships n = 50 and n = 70 , respectively. Both tables have a

imilar structure. The meaning of the columns is as follows: Entries 

n bold indicate best-known results. 

• The first three columns give the numerical instance label, the 

value of the penalty ( P ∗), and the optimal value of the total

waiting time ( W 

∗) of the instance, respectively. 
• Block HEUR refers to the feasible solution obtained with the 

procedure described in Section 5.5 in which a variation of 

AP ( ̄z , ̄h ) is solved with V = V , h̄ it = 1 if an only if t = a i , i ∈ V ,

Constraints (15b) stated as “≤” inequalities, and the additional 

mother-ship constraints 
∑ 

r∈ R λir = z k (i ) , i ∈ V . In the objective 

function, the weight that has been used for the combination of 

the service and overlap criteria is μ = 100 . 

The values reported in this block are U 

w 

0 
, % U 

w 

0 
= 100(U 

w 

0 
−

W 

∗) /W 

∗, and T 0 , for the overall waiting time, its per-

centage deviation from the optimal total waiting time, 

and the computing time required to obtain the solution 

respectively. 
• Blocks F1 , F2 , F3 and GSP + for the results of formulations F1, F3

and GSP + formulation of Iris et al. (2018) , respectively. 

The values reported in these blocks are in each case L w 

i 
, U 

w 

i 
,

% G 

w 

0 
= 100(U 

w 

i 
− L w 

i 
) /L ∗

i 
, and T i , for the overall waiting times of

https://doi.org/10.13039/501100003329
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Table 7 

Results on instances with 50 ships and 4 berths. 

P ∗ w 

∗ HEUR F1 F2 F3 GSP + 

U w 0 % U w 0 T 0 L w 1 U w 1 % G w 1 T 1 L w 2 % L w 2 T L 2 Feas. U w 2 % U w 2 T U 2 T 2 L w 3 U w 3 % G w 3 T 3 L w I U w I % G w I T I 

1 0 11 11 0.00 0.5 11.0 11 0.00 1.0 11 0.00 0.2 Y 11 0.00 0.04 0.2 11.0 11 0.00 1.4 11.0 11 0.00 5.6 

2 0 13 16 23.00 0.6 13.0 13 0.00 3.2 13 0.00 0.2 Y 13 0.00 0.04 0.2 13.0 13 0.00 2.0 13.0 13 0.00 6.2 

3 0 16 23 43.75 0.5 16.0 16 0.00 3.0 16 0.00 0.2 Y 16 0.00 0.05 0.3 16.0 16 0.00 1.4 16.0 16 0.00 6.1 

4 0 14 18 28.57 0.5 14.0 14 0.00 3.0 14 0.00 0.2 Y 14 0.00 0.04 0.3 14.0 14 0.00 1.3 14.0 14 0.00 5.6 

5 0 22 25 13.64 0.4 22.0 22 0.00 1.5 22 0.00 0.2 Y 22 0.00 0.05 0.3 22.0 22 0.00 1.4 22.0 22 0.00 6.1 

6 0 23 38 65.22 0.6 23.0 23 0.00 4.5 23 0.00 0.3 Y 23 0.00 0.04 0.3 23.0 23 0.00 1.7 23.0 23 0.00 6.3 

7 0 62 97 56.45 1.2 62.0 62 0.00 17.6 62 0.00 0.3 Y 62 0.00 0.04 0.3 62.0 62 0.00 2.2 62.0 62 0.00 6.4 

8 0 23 28 21.74 0.4 23.0 23 0.00 3.3 23 0.00 0.3 Y 23 0.00 0.05 0.3 23.0 23 0.00 1.6 23.0 23 0.00 6.1 

9 300,000 166 372 124.10 7.2 156.6 372 137.59 3599.7 166 0.00 11.6 Y 166 0.00 0.04 11.7 166.0 166 0.00 945.2 149.9 172 13.31 10800.0 

10 270,000 236 494 109.32 9.0 236.0 494 109.32 3599.4 236 0.00 8.7 Y 236 0.00 0.04 8.7 236.0 236 0.00 374.9 211.0 236 10.59 10800.0 

11 350,000 728 914 25.55 27.4 726.1 914 25.89 3600.2 728 0.00 8.7 N 867 19.09 20.79 29.4 728.0 728 0.00 250.0 359.9 1012 89.57 10800.0 

12 140,000 252 371 47.22 182.7 252.0 371 47.22 3600.0 252 0.00 2.4 Y 252 0.00 0.05 2.5 252.0 252 0.00 59.7 142.2 286 57.06 10800.0 

13 0 291 440 51.20 6.8 291.0 423 45.36 3600.1 291 0.00 6.6 Y 291 0.00 0.05 6.6 291.0 291 0.00 73.1 259.6 291 10.79 10800.0 

14 0 228 319 39.91 2.9 228.0 313 37.28 3599.5 228 0.00 1.3 Y 228 0.00 0.07 1.3 228.0 228 0.00 10.9 213.9 231 7.50 10800.0 

15 0 216 351 62.50 6.3 215.1 351 63.24 3599.4 216 0.00 2.1 Y 216 0.00 0.06 2.2 216.0 216 0.00 128.4 180.6 216 16.39 10800.0 

16 0 107 167 56.07 1.9 107.0 136 27.10 3602.1 107 0.00 0.3 Y 107 0.00 0.06 0.4 107.0 107 0.00 2.9 107.0 107 0.00 13.6 

Table 8 

Results on instances with 70 ships and 4 berths. 

P ∗ w 

∗ HEUR F1 F2 F3 GSP + 

U w 0 % U w 0 T 0 L w 1 U w 1 % G w 1 T 1 L w 2 % L w 2 T L 2 Feas. U w 2 % U w 2 T U 2 T 2 L w 3 U w 3 % G w 3 T 3 L w I U w I % G w I T I 

17 0 239 349 46.03 12.9 239.0 331 38.49 3599.6 239 0.00 1.4 Y 239 0.00 0.07 1.47 239.0 239 0.00 14.9 205.0 243 15.90 10800.0 

18 0 56 82 46.43 0.8 56.0 61 8.93 3599.7 56 0.00 0.6 Y 56 0.00 0.08 0.66 56.0 56 0.00 3.5 56.0 56 0.00 13.1 

19 0 64 85 32.81 0.7 64.0 64 0.00 70.9 64 0.00 0.5 Y 64 0.00 0.60 1.10 64.0 64 0.00 2.3 64.0 64 0.00 8.6 

20 0 104 146 40.38 0.6 104.0 104 0.00 114.9 104 0.00 0.7 Y 104 0.00 0.07 0.76 104.0 104 0.00 7.4 104.0 104 0.00 16.1 

21 0 612 739 20.75 2.9 608.5 734 20.63 3599.7 612 0.00 22.7 Y 612 0.00 0.07 22.74 612.0 612 0.00 9368.1 612.0 612 0.00 2384.1 

22 0 217 313 44.24 1.2 217.0 293 35.02 3599.7 217 0.00 0.9 Y 217 0.00 0.06 1.02 217.0 217 0.00 6.4 217.0 217 0.00 22.1 

23 0 331 407 22.96 3.8 331.0 404 22.05 3600.2 331 0.00 1.0 Y 331 0.00 0.06 1.03 331.0 331 0.00 19.6 331.0 331 0.00 24.5 

24 0 215 343 59.53 8.1 214.8 340 58.27 3599.8 215 0.00 2.4 Y 215 0.00 0.06 2.52 215.0 215 0.00 36.2 215.0 215 0.00 265.2 

25 2,500,000 147 362 146.26 6.9 142.6 362 153.79 3599.3 144 2.04 24.2 N 206 40.14 8.84 33.03 147.0 147 0.00 768.3 127.0 147 13.61 10800.0 

26 2,420,000 86 196 127.91 3.9 82.2 196 138.50 3600.3 84 2.33 9.4 N 130 51.16 227.31 236.69 86.0 86 0.00 534.9 86.0 86 0.00 778.9 

27 2,590,000 87 167 91.95 3.4 80.6 167 107.22 3599.7 85 2.30 25.5 N 133 52.87 9.80 35.25 87.0 87 0.00 609.3 87.0 87 0.00 693.5 

28 2,740,000 108 258 138.89 6.7 103.0 258 150.56 3600.1 103 4.63 3.9 N 152 40.74 56.16 60.07 108.0 108 0.00 392.5 108.0 108 0.00 1050.2 

29 1,410,000 153 305 99.35 3.5 150.1 305 103.25 3602.1 153 0.00 23.5 Y 153 0.00 23.55 47.05 153.0 153 0.00 423.7 112.0 156 28.76 10800.0 

30 1,480,000 100 230 130.00 2.9 90.5 230 154.06 3600.2 100 0.00 24.3 N 128 28.00 2.30 26.56 100.0 100 0.00 583.3 100.0 100 0.00 6436.3 

31 1,290,000 129 301 133.33 2.3 123.0 301 144.68 3599.8 127 1.55 11.4 N 141 9.30 1.90 13.29 129.0 129 0.00 1091.5 129.0 129 0.00 658.1 

32 1,290,000 183 439 139.89 5.1 179.9 439 144.08 3599.9 183 0.00 18.3 Y 183 0.00 0.07 18.35 183.0 183 0.00 503.1 183.0 183 0.00 917.9 

Table 9 

Results on instances with 100 ships and 4 berths. 

P ∗ w 

∗ F2 F3 GSP + 

L w 2 % L w 2 T L 2 Feas. U w 2 % U w 2 T U 2 T 2 L w 3 U w 3 % G w 3 T 3 L w I U w I % G w I T I 

33 770,000 219 219 0.00 16.59 Y 219 0.00 0.07 16.6 219.0 219 0.00 429.9 219.0 219 0.00 3776.1 

34 620,000 132 132 0.00 13.19 Y 132 0.00 0.07 13.3 132.0 132 0.00 560.6 127.0 132 3.94 10800.0 

35 640,000 180 180 0.00 7.32 Y 180 0.00 0.09 7.4 180.0 180 0.00 719.2 180.0 180 0.00 3382.9 

36 700,000 300 300 0.00 11.48 N 345 15.00 7.80 19.3 300.0 300 0.00 1683.3 224.5 324 44.32 10800.0 

37 2,240,000 86 86 0.00 22.95 Y 86 0.00 0.08 23.0 86.0 86 0.00 766.0 86.0 86 0.00 773.1 

38 1,880,000 88 88 0.00 6.81 Y 88 0.00 0.09 7.0 88.0 88 0.00 887.3 88.0 88 0.00 2718.2 

39 1,840,000 115 115 0.00 25.71 Y 115 0.00 0.08 25.8 115.0 115 0.00 1289.2 115.0 115 0.00 3346.8 

40 2,140,000 145 145 0.00 12.42 Y 145 0.00 0.08 12.5 145.0 145 0.00 1506.4 145.0 145 0.00 3264.6 

41 5,760,000 42 41 2.38 19.34 N 53 26.19 1.21 20.5 42.0 42 0.00 272.3 42.0 42 0.00 842.6 

42 5,980,000 53 52 1.89 25.14 N 78 47.17 2.19 27.3 53.0 53 0.00 586.1 53.0 53 0.00 1029.9 

43 5,780,000 54 54 0.00 20.47 N 65 20.37 1.42 21.9 54.0 54 0.00 782.8 54.0 54 0.00 1432.5 

44 5,970,000 52 50 3.85 17.93 N 74 42.31 2.92 20.8 52.0 52 0.00 450.3 39.0 52 33.33 10800.0 

45 4,670,000 64 64 0.00 34.90 N 76 18.75 0.99 35.9 64.0 64 0.00 311.6 51.8 64 23.55 10800.0 

46 4,440,000 85 84 1.18 16.29 N 127 49.41 32.11 48.40 85.0 85 0.00 618.8 85.0 85 0.00 4010.6 

47 4,740,000 62 62 0.00 27.73 Y 62 0.00 0.09 27.82 62.0 62 0.00 375.9 62.0 62 0.00 924.3 

48 4,530,000 52 52 0.00 22.98 N 82 57.69 1.88 24.9 52.0 52 0.00 298.8 52.0 52 0.00 1791.6 

 

the lower and upper bounds obtained with the corresponding 

formulation, their percentage optimality gaps, and the comput- 

ing times required to obtain the solution respectively. A time 

limit of one hour (3600 seconds) was set for F 1 , whereas this 

limit was of three hours for F 3 and GSP + . 
In the block GSP + the bounds and deviations for the waiting 

times have been calculated from the results reported in Iris 
115 
et al. (2018) . The computing times have been reproduced from 

the referenced paper. 
• Block F2 refers to the results of the 2-phase algorithm based 

on F2. Its first three columns give information on the output 

of the first phase: L w 

2 
, % L w 

2 
= 100(W 

∗ − L w 

2 
) /W 

∗, and T L 2 , for the

overall waiting time of the optimal solution of F2, its percent- 

age deviation from the optimal waiting time, and the comput- 
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Table 10 

Results on instances with 70 ships and 8 berths. 

P ∗ w 

∗ F2 F3 GSP + 

L w 2 % L w 2 T L 2 Feas. U w 2 % U w 2 T U 2 T 2 L w 3 U w 3 % G w 3 T 3 L w I U w I % G w I T I 

49 0 39 39 0.00 0.4 Y 39 0.00 0.13 0.6 39.0 39 0.00 5.8 39.00 39 0.00 26.4 

50 0 10 10 0.00 0.4 Y 10 0.00 0.17 0.6 10.0 10 0.00 5.3 10.00 10 0.00 20.1 

51 0 8 8 0.00 0.5 Y 8 0.00 0.14 0.6 8.0 8 0.00 5.8 8.00 8 0.00 19.9 

52 0 26 26 0.00 0.4 Y 26 0.00 0.15 0.6 26.0 26 0.00 7.0 26.00 26 0.00 27.4 

53 0 32 32 0.00 0.4 Y 32 0.00 0.20 0.6 32.0 32 0.00 7.1 32.00 32 0.00 28.1 

54 0 11 11 0.00 0.5 Y 11 0.00 0.20 0.7 11.0 11 0.00 6.8 11.00 11 0.00 21.1 

55 0 22 22 0.00 0.4 Y 22 0.00 0.20 0.6 22.0 22 0.00 6.6 22.00 22 0.00 28.6 

56 0 44 44 0.00 0.5 Y 44 0.00 0.17 0.7 44.0 44 0.00 7.2 44.00 44 0.00 22.0 

57 0 0 0 0.00 0.3 Y 0 0.00 0.13 0.5 0.0 0 0.00 3.4 0.00 0 0.00 16.0 

58 0 1 1 0.00 0.3 Y 1 0.00 0.14 0.5 1.0 1 0.00 3.4 1.00 1 0.00 20.1 

59 0 0 0 0.00 0.3 Y 0 0.00 0.12 0.4 0.0 0 0.00 3.7 0.00 0 0.00 18.1 

60 0 0 0 0.00 0.3 Y 0 0.00 0.11 0.4 0.0 0 0.00 3.6 0.00 0 0.00 15.4 

61 0 0 0 0.00 0.3 Y 0 0.00 0.12 0.4 0.0 0 0.00 3.3 0.00 0 0.00 16.2 

62 0 0 0 0.00 0.3 Y 0 0.00 0.13 0.4 0.0 0 0.00 3.2 0.00 0 0.00 15.2 

63 0 0 0 0.00 0.3 Y 0 0.00 0.11 0.4 0.0 0 0.00 3.1 0.00 0 0.00 14.3 

64 0 1 1 0.00 0.3 Y 1 0.00 0.11 0.4 1.0 1 0.00 3.2 1.00 1 0.00 16.0 

Table 11 

Results on instances with 100 ships and 8 berths. 

P ∗ w 

∗ F2 F3 GSP + 

L w 2 % L w 2 T L 2 Feas. U w 2 % U w 2 T U 2 T 2 L w 3 U w 3 % G w 3 T 3 L w I U w I % G w I T I 

65 0 0 0 0.00 0.4 Y 0 0.00 0.1 0.6 0.0 0 0.00 5.3 0.0 0 0.00 23.0 

66 0 22 22 0.00 0.4 Y 22 0.00 0.2 0.6 22.0 22 0.00 6.1 22.0 22 0.00 25.8 

67 0 4 4 0.00 0.4 Y 4 0.00 0.2 0.6 4.0 4 0.00 5.9 4.0 4 0.00 23.6 

68 0 1 1 0.00 0.4 Y 1 0.00 0.2 0.6 1.0 1 0.00 5.7 1.0 1 0.00 23.4 

69 0 74 74 0.00 0.6 Y 74 0.00 0.2 0.9 74.0 74 0.00 8.2 74.0 74 0.00 29.2 

70 0 86 86 0.00 0.8 Y 86 0.00 0.3 1.1 86.0 86 0.00 9.2 86.0 86 0.00 54.5 

71 0 304 304 0.00 2.2 Y 304 0.00 0.3 2.5 304.0 304 0.00 4044.3 304.0 304 0.00 1172.3 

72 0 265 265 0.00 2.1 Y 265 0.00 0.3 2.4 265.0 265 0.00 59.4 265.0 265 0.00 92.8 

73 160,000 469 469 0.00 9.6 Y 469 0.00 16.5 26.1 469.0 469 0.00 389.5 317.0 662 108.83 10800.0 

74 490,000 267 267 0.00 13.7 N 279 4.49 362.2 375.9 267.0 267 0.00 2226.8 239.0 465 94.56 10800.0 

75 80,000 718 718 0.00 10.1 N 742 3.34 71.9 82.0 718.0 718 0.00 4375.6 631.0 743 17.75 10800.0 

76 80,000 339 338 0.29 9.2 N 351 3.54 451.6 460.8 339.0 339 0.00 6043.0 303.0 11,168 3585.81 10800.0 

77 0 5 5 0.00 0.5 Y 5 0.00 0.1 0.7 5.0 5 0.00 6.5 5.0 5 0.00 25.6 

78 0 7 7 0.00 0.5 Y 7 0.00 0.1 0.6 7.0 7 0.00 6.3 7.0 7 0.00 27.8 

79 0 16 16 0.00 0.5 Y 16 0.00 0.1 0.6 16.0 16 0.00 6.5 16.0 16 0.00 27.6 

80 0 1 1 0.00 0.5 Y 1 0.00 0.1 0.6 1.0 1 0.00 7.3 1.0 1 0.00 24.4 

Table 12 

Results on instances with 150 ships and 12 berths. 

P ∗ w 

∗ F2 F3 GSP + 

L w 2 % L w 2 T L 2 Feas. U w 2 % U w 2 T U 2 T 2 L w 3 U w 3 % G w 3 T 3 L w I U w I % G w I T I 

81 0 0 0.0 0.00 0.9 Y 0 0.00 0.3 1.1 0.0 0 0.00 11.1 0.0 0 0.00 98.7 

82 0 6 6.0 0.00 0.8 Y 6 0.00 0.3 1.1 6.0 6 0.00 13.2 6.0 6 0.00 86.2 

83 0 15 15.0 0.00 0.8 Y 15 0.00 0.3 1.1 15.0 15 0.00 13.8 15.0 15 0.00 89.9 

84 0 20 20.0 0.00 0.8 Y 20 0.00 0.5 1.3 20.0 20 0.00 12.9 20.0 20 0.00 100.3 

85 0 440 440.0 0.00 15.3 Y 440 0.00 7.5 22.7 439.3 467 6.31 10801.8 384.0 464 20.83 10800.0 

86 0 362 362.0 0.00 4.7 Y 362 0.00 12.1 16.8 361.2 363 0.51 10803.4 362.0 362 0.00 3511.0 

87 0 285 285.0 0.00 2.3 Y 285 0.00 17.5 19.8 285.0 285 0.00 782.9 285.0 285 0.00 4640.2 

88 0 250 250.0 0.00 4.4 Y 250 0.00 21.1 25.5 250.0 250 0.00 6304.3 165.0 297 80.00 10800.0 

89 0 74 74.0 0.00 1.1 Y 74 0.00 3.2 4.3 74.0 74 0.00 15.1 74.0 74 0.00 150.0 

90 0 87 87.0 0.00 2.4 Y 87 0.00 5.1 7.5 87.0 87 0.00 18.4 87.0 87 0.00 273.0 

91 0 22 22.0 0.00 1.0 Y 22 0.00 4.3 5.3 22.0 22 0.00 15.9 22.0 22 0.00 87.0 

92 0 312 312.0 0.00 2.1 Y 312 0.00 4.1 6.2 312.0 312 0.00 40.5 312.0 312 0.00 220.0 

93 0 0 0.0 0.00 0.8 Y 0 0.00 0.2 1.0 0.0 0 0.00 9.8 0.0 0 0.00 66.0 

94 0 0 0.0 0.00 0.8 Y 0 0.00 0.2 1.0 0.0 0 0.00 8.2 0.0 0 0.00 62.2 

95 0 0 0.0 0.00 0.8 Y 0 0.00 0.2 1.0 0.0 0 0.00 10.1 0.0 0 0.00 64.9 

96 0 1 1.0 0.00 0.7 Y 1 0.00 0.2 0.9 1.0 1 0.00 9.6 1.0 1 0.00 64.9 

 

 

1  
ing times required to optimally solve F2 respectively. The next 

four columns refer to the second phase of the algorithm. The 

entries of Feas. are Y or N depending on whether or not the out- 

come of the feasibility check based on the auxiliary subproblem 

AP ( ̄z , ̄h ) establishes the optimality for the SBTP of the solution 

of F2; columns U 

w 

2 
, % U 

w 

2 
= 100(U 

w 

2 
− W 

∗) /W 

∗, and T U 2 , give the

total waiting time of the feasible solution obtained in the sec- 

1  

116 
ond phase of the algorithm, its percentage deviation from the 

optimal value W 

∗, and the computing time consumed in the 

second phase of the algorithm. The final column T 2 = T L 2 + T U 2 
gives the total time. 

Tables 9 –12 refer to the larger instances with b = 4 and n =
00 ( Table 9 ), b = 8 and n ∈ { 70 , 100 } ( Tables 10 and 11 ), and b =
2 and n = 150 ( Table 12 ). For these instances we report results



E. Fernández and M. Munoz-Marquez European Journal of Operational Research 298 (2022) 99–117 

r

t

s

R

B  

B  

B  

C

D  

G  

H  

H

I  

I  

I  

I  

J  

K

L  

M

M

M

W

W  

X

X  

Z

eferring to formulations F2, and F3 with a maximum computing 

ime of three hours. The meaning of the different columns is the 

ame as explained above. 

eferences 

ierwirth, C. , & Meisel, F. (2010). A survey of berth allocation and quay crane
scheduling problems in container terminals. European Journal of Operational Re- 

search, 202 (3), 615–627 . 

ierwirth, C. , & Meisel, F. (2015). A follow-up survey of berth allocation and quay
crane scheduling problems in container terminals. European Journal of Opera- 

tional Research, 244 (3), 675–689 . 
uhrkal, K. , Zuglian, S. , Ropke, S. , Larsen, J. , & Lusby, R. (2011). Models for the dis-

crete berth allocation problem: A computational comparison. Transportation Re- 
search Part E: Logistics and Transportation Review, 47 (4), 461–473 . 

ordeau, J.-F., Laporte, G., Legato, P., & Moccia, L. (2005). Models and tabu search 

heuristics for the berth-allocation problem. Transportation Science, 39 (4), 526–
538. https://doi.org/10.1287/trsc.1050.0120 . 

u, J. , & Leung, J. Y.-T. (1990). Minimizing total tardiness on one machine is np-hard.
Mathematics of Operations Research, 15 , 4 83–4 95 . 

arey, M. R. , & Johnson, D. S. (1979). Computers and intractability: A guide to the
theory of NP-completeness. Series of books in the mathematical sciences . W. H. 

Freeman . 

endriks, M. , Laumanns, M. , Lefeber, E. , & Udding, J. (2010). Robust cyclic berth
planning of container vessels. OR Spectrum, 32 , 501–517 . 

uang, K. , Suprayogi , & Ariantini (2016). A continuous berth template design model 
with multiple wharfs. Maritime Policy & Management, 43 (6), 763–775 . 

mai, A. , Nishimura, E. , & Papadimitriou, S. (2001). The dynamic berth allocation
problem for a container port. Transportation Research Part B: Methodological, 

35 (4), 401–417 . 

mai, A. , Nishimura, E. , & Papadimitriou, S. (2003). Berth allocation with service pri-
ority. Transportation Research Part B: Methodological, 37 (5), 437–457 . 
117 
mai, A. , Yamakawa, Y. , & Huang, K. (2014). The strategic berth template problem.
Transportation Research Part E: Logistics and Transportation Review, 72 , 77–100 . 

ris, Ç. , Lalla-Ruiz, E. , Lam, J. , & Voss, S. (2018). Mathematical programming formula-
tions for the strategic berth template problem. Computers & Industrial Engineer- 

ing, 124 , 167–179 . 
in, J. , Lee, D.-H. , & Hu, H. (2015). Tactical berth and yard template design at con-

tainer transshipment terminals: A column generation based approach. Trans- 
portation Research Part E: Logistics and Transportation Review, 73 , 168–184 . 

orte, B. , & Vygen, J. (2006). Combinatorial optimization . Springer-Verlag Berlin Hei- 

delberg . 
alla-Ruiz, E. , & Voss, S. (2016). Popmusic as a matheuristic for the berth allocation

problem. Annals of Mathematics and Artificial Intelligence, 76 , 173–189 . 
artello, S. , & Toth, P. (1990). Knapsack problems; algorithms and computer im- 

plementations. Wiley-Interscience series in discrete mathematics and optimization . 
John Wiley and Sons . 

onaco, M. , & Sammarra, M. (2007). The berth allocation problem: A strong formu- 

lation solved by a Lagrangean approach. Transportation Science, 41 (2), 265–280 . 
oorthy, R. , & Teo, C.-P. (2006). Berth management in container terminal: The tem- 

plate design problem. OR Spectrum, 28 , 495–518 . 
ang, Q. M. S. , & Lee, C.-Y. (2016). Liner container assignment model with transit–

time-sensitive container shipment demand and its applications. Transportation 
Research Part B: Methodological, 90 , 135–155 . 

ang, Z. L. S. , & Qu, X. (2017). Weekly container delivery patterns in liner shipping

planning models. Maritime Policy & Management, 44 , 442–457 . 
press 2020. Fico® xpress solver. https://www.fico.com/es/products/ 

fico- xpress- solver . 
u, D. , Li, C.-L. , & Leung, J.-T. (2012). Berth allocation with time-dependent physical

limitations on vessels. European Journal of Operational Research, 216 (1), 47–56 . 
hen, L. , & Chang, D.-F. (2012). A bi-objective model for robust berth allocation 

scheduling. Computers & Industrial Engineering, 63 , 262–273 . 

http://refhub.elsevier.com/S0377-2217(21)00593-2/sbref0001
http://refhub.elsevier.com/S0377-2217(21)00593-2/sbref0001
http://refhub.elsevier.com/S0377-2217(21)00593-2/sbref0001
http://refhub.elsevier.com/S0377-2217(21)00593-2/sbref0001
http://refhub.elsevier.com/S0377-2217(21)00593-2/sbref0002
http://refhub.elsevier.com/S0377-2217(21)00593-2/sbref0002
http://refhub.elsevier.com/S0377-2217(21)00593-2/sbref0002
http://refhub.elsevier.com/S0377-2217(21)00593-2/sbref0002
http://refhub.elsevier.com/S0377-2217(21)00593-2/sbref0003
http://refhub.elsevier.com/S0377-2217(21)00593-2/sbref0003
http://refhub.elsevier.com/S0377-2217(21)00593-2/sbref0003
http://refhub.elsevier.com/S0377-2217(21)00593-2/sbref0003
http://refhub.elsevier.com/S0377-2217(21)00593-2/sbref0003
http://refhub.elsevier.com/S0377-2217(21)00593-2/sbref0003
http://refhub.elsevier.com/S0377-2217(21)00593-2/sbref0003
https://doi.org/10.1287/trsc.1050.0120
http://refhub.elsevier.com/S0377-2217(21)00593-2/sbref0005
http://refhub.elsevier.com/S0377-2217(21)00593-2/sbref0005
http://refhub.elsevier.com/S0377-2217(21)00593-2/sbref0005
http://refhub.elsevier.com/S0377-2217(21)00593-2/sbref0005
http://refhub.elsevier.com/S0377-2217(21)00593-2/sbref0006
http://refhub.elsevier.com/S0377-2217(21)00593-2/sbref0006
http://refhub.elsevier.com/S0377-2217(21)00593-2/sbref0006
http://refhub.elsevier.com/S0377-2217(21)00593-2/sbref0006
http://refhub.elsevier.com/S0377-2217(21)00593-2/sbref0007
http://refhub.elsevier.com/S0377-2217(21)00593-2/sbref0007
http://refhub.elsevier.com/S0377-2217(21)00593-2/sbref0007
http://refhub.elsevier.com/S0377-2217(21)00593-2/sbref0007
http://refhub.elsevier.com/S0377-2217(21)00593-2/sbref0007
http://refhub.elsevier.com/S0377-2217(21)00593-2/sbref0007
http://refhub.elsevier.com/S0377-2217(21)00593-2/sbref0008
http://refhub.elsevier.com/S0377-2217(21)00593-2/sbref0008
http://refhub.elsevier.com/S0377-2217(21)00593-2/sbref0008
http://refhub.elsevier.com/S0377-2217(21)00593-2/sbref0008
http://refhub.elsevier.com/S0377-2217(21)00593-2/sbref0008
http://refhub.elsevier.com/S0377-2217(21)00593-2/sbref0009
http://refhub.elsevier.com/S0377-2217(21)00593-2/sbref0009
http://refhub.elsevier.com/S0377-2217(21)00593-2/sbref0009
http://refhub.elsevier.com/S0377-2217(21)00593-2/sbref0009
http://refhub.elsevier.com/S0377-2217(21)00593-2/sbref0009
http://refhub.elsevier.com/S0377-2217(21)00593-2/sbref0010
http://refhub.elsevier.com/S0377-2217(21)00593-2/sbref0010
http://refhub.elsevier.com/S0377-2217(21)00593-2/sbref0010
http://refhub.elsevier.com/S0377-2217(21)00593-2/sbref0010
http://refhub.elsevier.com/S0377-2217(21)00593-2/sbref0010
http://refhub.elsevier.com/S0377-2217(21)00593-2/sbref0011
http://refhub.elsevier.com/S0377-2217(21)00593-2/sbref0011
http://refhub.elsevier.com/S0377-2217(21)00593-2/sbref0011
http://refhub.elsevier.com/S0377-2217(21)00593-2/sbref0011
http://refhub.elsevier.com/S0377-2217(21)00593-2/sbref0011
http://refhub.elsevier.com/S0377-2217(21)00593-2/sbref0012
http://refhub.elsevier.com/S0377-2217(21)00593-2/sbref0012
http://refhub.elsevier.com/S0377-2217(21)00593-2/sbref0012
http://refhub.elsevier.com/S0377-2217(21)00593-2/sbref0012
http://refhub.elsevier.com/S0377-2217(21)00593-2/sbref0012
http://refhub.elsevier.com/S0377-2217(21)00593-2/sbref0012
http://refhub.elsevier.com/S0377-2217(21)00593-2/sbref0013
http://refhub.elsevier.com/S0377-2217(21)00593-2/sbref0013
http://refhub.elsevier.com/S0377-2217(21)00593-2/sbref0013
http://refhub.elsevier.com/S0377-2217(21)00593-2/sbref0013
http://refhub.elsevier.com/S0377-2217(21)00593-2/sbref0013
http://refhub.elsevier.com/S0377-2217(21)00593-2/sbref0014
http://refhub.elsevier.com/S0377-2217(21)00593-2/sbref0014
http://refhub.elsevier.com/S0377-2217(21)00593-2/sbref0014
http://refhub.elsevier.com/S0377-2217(21)00593-2/sbref0014
http://refhub.elsevier.com/S0377-2217(21)00593-2/sbref0015
http://refhub.elsevier.com/S0377-2217(21)00593-2/sbref0015
http://refhub.elsevier.com/S0377-2217(21)00593-2/sbref0015
http://refhub.elsevier.com/S0377-2217(21)00593-2/sbref0015
http://refhub.elsevier.com/S0377-2217(21)00593-2/sbref0016
http://refhub.elsevier.com/S0377-2217(21)00593-2/sbref0016
http://refhub.elsevier.com/S0377-2217(21)00593-2/sbref0016
http://refhub.elsevier.com/S0377-2217(21)00593-2/sbref0016
http://refhub.elsevier.com/S0377-2217(21)00593-2/sbref0017
http://refhub.elsevier.com/S0377-2217(21)00593-2/sbref0017
http://refhub.elsevier.com/S0377-2217(21)00593-2/sbref0017
http://refhub.elsevier.com/S0377-2217(21)00593-2/sbref0017
http://refhub.elsevier.com/S0377-2217(21)00593-2/sbref0018
http://refhub.elsevier.com/S0377-2217(21)00593-2/sbref0018
http://refhub.elsevier.com/S0377-2217(21)00593-2/sbref0018
http://refhub.elsevier.com/S0377-2217(21)00593-2/sbref0018
http://refhub.elsevier.com/S0377-2217(21)00593-2/sbref0019
http://refhub.elsevier.com/S0377-2217(21)00593-2/sbref0019
http://refhub.elsevier.com/S0377-2217(21)00593-2/sbref0019
http://refhub.elsevier.com/S0377-2217(21)00593-2/sbref0019
http://refhub.elsevier.com/S0377-2217(21)00593-2/sbref0020
http://refhub.elsevier.com/S0377-2217(21)00593-2/sbref0020
http://refhub.elsevier.com/S0377-2217(21)00593-2/sbref0020
http://refhub.elsevier.com/S0377-2217(21)00593-2/sbref0020
https://www.fico.com/es/products/fico-xpress-solver
http://refhub.elsevier.com/S0377-2217(21)00593-2/sbref0022
http://refhub.elsevier.com/S0377-2217(21)00593-2/sbref0022
http://refhub.elsevier.com/S0377-2217(21)00593-2/sbref0022
http://refhub.elsevier.com/S0377-2217(21)00593-2/sbref0022
http://refhub.elsevier.com/S0377-2217(21)00593-2/sbref0022
http://refhub.elsevier.com/S0377-2217(21)00593-2/sbref0023
http://refhub.elsevier.com/S0377-2217(21)00593-2/sbref0023
http://refhub.elsevier.com/S0377-2217(21)00593-2/sbref0023
http://refhub.elsevier.com/S0377-2217(21)00593-2/sbref0023

	New formulations and solutions for the strategic berth template problem
	1 Introduction
	2 The strategic berth template problem
	3 Mathematical programming formulations for the SBTP
	3.1 Counting the number of ships served at a given time period
	3.2 Analysis of formulation F1

	4 An SBTP formulation with disaggregated service time variables
	4.1 Comparison of formulations

	5 Algorithmic issues for fully determining feasible SBTP solutions
	5.1 Procedure for determining explicitly the set of ships served in the same berth from a pair of vectors (, ) satisfying (4a)-(4c)
	5.2 Procedure for determining explicitly the predecessors vector associated with a feasible solution to F3
	5.3 Finding feasible berth allocations from scratch
	5.4 Determining a service sequencing for the set of ships allocated to the same berth
	5.5 Algorithmic framework for finding feasible SBTP solutions

	6 Computational experiments
	6.1 Numerical results for instances with four berths
	6.2 Numerical results for larger instances
	6.3 Comparison of F2 and F3 with the results of Iris et al. (2018)

	7 Conclusions
	Acknowledgments
	Appendix A Tables with detailed results
	References


