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This paper develops new formulations for the Strategic Berth Template Problem, which combines strategic
and operational decisions for medium-term berth planning of a given set of cyclically calling ships. The
strategic decisions determine the ship calls that will be served, whereas the operational ones establish the
berth template that will be applied in a cyclic fashion in the planning horizon. The proposed formulations
use binary variables that classify served ships depending on whether or not their service starts in their
arrival cycle or in the next one. This helps modeling the problem, since a closed linear expression can
be obtained for the waiting times. Constraints imposing that the availability of the berths is respected at
each time period can be derived by defining additional binary variables pointing to the starting service
times of the served ships. Aggregating such variables over all berths leads to a relaxed formulation, which
can be solved in remarkably small computing times. Furthermore, the solution of an auxiliary subproblem
produces feasible solutions to the original problem as well as a simple optimality check. Disaggregating
the initial service time variables for the different berths leads to a valid formulation. Numerical results
from extensive computational tests over a set of benchmark instances from the literature are presented
and analyzed. The obtained results assess the excellent performance of the proposed formulations, which
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outperform existing ones.
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1. Introduction

In this paper we study the Strategic Berth Template Problem
(SBTP). The SBTP combines strategic and operational decisions for
medium-term berth planning of a given set of cyclically calling
ships. While the strategic decisions dictate the ship calls that will
be served and those whose service call will be rejected, the op-
erational decisions determine the berth template that will be ap-
plied in a cyclic fashion in the considered planning horizon. Fur-
thermore, there may be links relating the strategic decisions of
service to ships belonging to certain groups. These links are de-
rived from strong transhipment relations between some large-size
mother ships and some smaller feeder ships, which are contractu-
ally attached to each other. All the ships within each group must
be handled similarly, in the sense that all of them are either served
or rejected.

In particular, the SBTP aims at deciding which calling ships
should be accepted for berthing, and determines the most ap-
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propriate berth/time allocation for the accepted incoming traffic.
Specifically, its aim is to develop a template for the accepted ships
for a cyclic time horizon, consisting of a berth allocation together
with a service (berthing) time-window for each of the accepted
ships. The following issues must be taken into account: (i) there is
a limited number of available berths; (ii) due to the cyclic nature
of the template, the service time-windows of the ships allocated
to the same berth must be non-overlapping; and (iii) service to a
ship may start in the next cycle to the one when it arrives to the
port, or, even if service starts in the same cycle when the ship
arrives, its service may terminate in the next cycle. The objective
is to minimize the sum of the waiting times of the accepted ships
plus a penalty for each rejected call proportional to its workload.
Broadly speaking, berth allocation problems (BAP) aim at as-
signing berthing positions and service times to calling ships at a
container terminal. Different variants of such problems have been
studied in the literature. The reader is addressed to Bierwirth &
Meisel (2010, 2015) for surveys on the topic, or to the inspiring
introduction and literature review of Iris, Lalla-Ruiz, Lam, & Voss
(2018) where the relevance and actual economic implications of
these problems are highlighted, and the different perspectives and
ingredients that BAPs may integrate are motivated and overviewed.
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Examples of BAP that address tactical or operational decisions re-
lated to ships assignment and service are (Buhrkal, Zuglian, Ropke,
Larsen, & Lusby, 2011; Cordeau, Laporte, Legato, & Moccia, 2005;
Imai, Nishimura, & Papadimitriou, 2003; Lalla-Ruiz & Voss, 2016;
Monaco & Sammarra, 2007; Xu, Li, & Leung, 2012), to mention just
a few. Balancing the workload distribution over time was consid-
ered in Jin, Lee, & Hu (2015), who addressed the quayside berthing
congestion from a tactical planning viewpoint. For this, the authors
jointly addressed the berth template design problem and the yard
template design problem with an objective combining costs due to
container flows with those dealing with quay-side workload imbal-
ance.

As indicated in Iris et al. (2018), liner shipping companies usu-
ally call each port on the same day of every week (see also Wang
& Lee, 2016; Wang & Qu, 2017). Hence, service contracts between
shipping lines and ports require a template for berthing, i.e. pre-
viously allocated berthing slots, which can be cyclically (weekly)
repeated throughout the term of the contract so container ship-
ping services to each ship are provided according to the template
on a fixed day of each week. These circumstances motivated the
study of the Berth Template Problem (BTP), which focuses on find-
ing a template for a berth plan of fixed length (typically one week),
which is used cyclically over a long-term horizon. The essential
difference between the BTP and the BAP is that the fixed plan-
ning horizon is repeated in a cyclic fashion. Hence BTP models
take into account that service to a vessel scheduled close to the
end of the planning horizon is likely to extend into the next plan-
ning period. That is, the BTP is considered as a packing problem
on a cylinder. Such a cyclical allocation of calling ships at multi-
ple terminals within the same port was first studied in Hendriks,
Laumanns, Lefeber, & Udding (2010); Imai, Yamakawa, & Huang
(2014); Moorthy & Teo (2006); Zhen & Chang (2012). The BTP has
also been studied for a continuous quay as a mid-term tactical de-
cision problem in Huang, Suprayogi, & Ariantini (2016).

On the other hand, the limited weekly berthing capacity of
ports makes it necessary to face with models integrating strate-
gic decisions on the calls that must be accepted/rejected. Still most
BTPs studied in the literature ignore such strategic decisions. Imai
et al. (2014) introduced the SBTP, which is defined on a strategic
planning level and integrates decisions regarding the selection of
ship calls to be served with the assignment of berth time-windows
for selected ships within a cyclic horizon. One of the modeling as-
sumptions of the SBTP is that the length of the cycle is the same
for all calls. Furthermore, the SBTP incorporates additional con-
ditions linking the acceptance/rejection decisions of mother and
feeder ships under consideration. Imai et al. (2014) proposed a for-
mulation extending the formulation of the dynamic berth alloca-
tion problem of (Imai, Nishimura, & Papadimitriou, 2001) and sev-
eral heuristics based on the solution of a Lagrangean dual with al-
ternative subgradient optimization approaches. The computational
results showed the difficulty for solving the problem with the pro-
posed heuristics. The SBTP has also been studied by Iris et al.
(2018), who analyzed the initial formulation proposed in Imai et al.
(2014), which remained computationally unexplored, and proposed
a different formulation based on the solution of a generalized set-
packing problem (GSP). Both formulations were reinforced by in-
cluding additional lower bounds. A set of benchmark instances was
created and used in the extensive computational experiments car-
ried out. The obtained results showed that both formulations no-
tably improved with the addition of the lower bounds and high-
lighted the superiority of the reinforced GSP formulation.

In this paper we focus on the SBTP, and develop new mixed-
integer linear programming formulations and algorithmic alterna-
tives for solving it. In addition to the natural strategic binary vari-
ables associated with the acceptance/rejection of ship calls, all the
proposed formulations use binary variables that classify served
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ships depending on whether or not their service starts during their
arrival cycle or in the next one. This helps modeling the STBP,
since a closed linear expression can be obtained for the waiting
times. The most basic formulations use additional variables that
relate served ships with their immediate predecessors in the corre-
sponding berths. Still, such variables can be avoided by expressing
the starting times of service to ships in terms of new binary deci-
sion variables indicating whether or not their service starts at the
different time periods of the planning horizon. In its turn, these
new binary variables allow us to count the number of ships be-
ing served simultaneously at each time period, providing us with
the possibility of guaranteeing that the availability of berths is re-
spected at each time period. Aggregating the new decision vari-
ables over all berths leads to a formulation for a relaxation of SBTP,
which can be solved in remarkably small computing times. More-
over, the solution to an auxiliary subproblem reveals if the relaxed
aggregated solution can be disaggregated to a feasible SBTP solu-
tion. This leads to a simple feasibility check indicating whether
or not the solution at hand is optimal for the SBTP. Therefore,
the aggregated formulation can be combined with the feasibility
check within a 2-phase solution algorithm for the SBTP. Alterna-
tively, considering disaggregated variables for the initial time peri-
ods for service to accepted ships at the different berths produces
a valid formulation for the SBTP, at the expenses of increasing its
total number of binary variables and constraints. Still the formula-
tion can be solved very efficiently with any off-the-shelf solver and
produces excellent results.

Extensive computational tests have been carried out with the
set of 96 benchmark instances generated in Iris et al. (2018) with
a number of calling ships in {50, 70, 100, 150}, and a number of
berths in {4, 8,12}. The obtained results highlight the effective-
ness of the two formulations based on the indicator variables for
the time periods when service to accepted ships start. Both the
2-phase solution algorithm based on the relaxed formulation with
the aggregated variables, as well as the exact formulation using the
disaggregated decision variables outperform the most efficient for-
mulation proposed in Iris et al. (2018). The 2-phase algorithm has
solved to proven optimality for 78 out of the 96 considered bench-
mark instances in computing times that are always below 500 sec-
onds. The disaggregated formulation was able to solve 94 bench-
mark instances within a maximum time limit of three hours, and
produced very small percentage optimality gaps for the remaining
two instances.

This paper contributes to the study of the SBTP introducing a
new class of formulations using binary variables that allow to get
a closed linear expression for waiting times. These formulation are
solved very efficiently with any off-the-shelf solver. Also a relax-
ation of the problem is introduced that produce very tight lower
bounds in very small computing times.

From algorithmically point of view, a two phase algorithm is
introduced that solves a relaxed version of the problem and then
makes simply feasibility test, giving the solution or proceeding to
solve the non-relaxed formulation.

The remainder of this paper is structured as follows. In
Section 2 we give a formal definition of the SBTP and discuss its
relation to some well-known combinatorial problems. Section 3 in-
troduces the basic formulations where waiting times are expressed
in terms of the decision variables indicating whether service to
an accepted call starts in its arrival cycle or in the next one.
In Section 3.1 we introduce a formulation with the aggregated
service-start time period variables, whereas in Section 3.2 we show
that it is a relaxation of the SBTP and study some of its prop-
erties that will be exploited in the design of the 2-phase algo-
rithm. Sections 4 and 4.1 introduce the valid SBTP formulation
based on the disaggregated service-start time period variables, and
give a comparison of all the developed formulations in terms of
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their number of decision variables and constraints. In Section 5 we
deal with several algorithmic issues that will be exploited for de-
termining feasible solutions, either from scratch or from the re-
laxed aggregated formulation. The computational tests that have
been carried out are described in Section 6 where we summa-
rize and analyze the numerical results that we have obtained, and
compare them with those of Iris et al. (2018). The paper closes in
Section 7 with some conclusions and final remarks.

2. The strategic berth template problem

As mentioned, the aim of the SBTP is to develop a template for
a cyclic time horizon, in which service calls of some ships may
be rejected. Such a template must differentiate among accepted
(served) and rejected (non-served) ships. Furthermore, it must take
into account that service to an accepted ship may start in the next
cycle to the one when it arrives to the port, or that, even if service
starts in the same cycle when the ship arrives, its service may ter-
minate in the next cycle. In order to differentiate among the po-
tentially different cycles when operations take place, we will use
the terms arrival cycle, service cycle, and termination cycle to refer
to the cycle when a given ship arrives in port, its service starts,
and its service terminates, respectively. When the service cycle of
a served ship does not coincide with its arrival cycle, it will be the
cycle next to the arrival cycle of the ship. Similarly, when the ter-
mination cycle of a served ship does not coincide with its service
cycle, it will be the cycle next to the service (and arrival) cycle of
the ship.

Let H denote the duration of a cycle and V = {1, ..., n} the in-
dex set for ships. Associated with each ship i € V, let g; and ¢; de-
note its arrival and processing (service) time, respectively. We as-
sume that within each cycle all activities take place in a discretized
time horizon T = {1, ..., H}. Thus, we assume that g;, ¢;, as well as
the times of all operations related to accepted ships take values in
T. Let K ={1,..., m} denote the index set for the linked subgroups
of ships, V; c V the k-th subset of ships, and C, = Yiey, Ci the total
processing time of all the ships in mother-ship class k. By defin-
ing a singleton subset V} = {i} (with associated coefficient C, = c;)
for every ship i originally not attached to any mother-ship, we as-
sume without loss of generality that {V,},.x defines a partition of
V. In the following, for each i € V, k(i) € K denotes the index of the
subset Vi such that i € Vj;).

The objective of the SBTP is twofold. On the strategic side, it
aims at reducing service call rejections. On the operational side,
it aims at reducing the times that (served) ships wait since their
arrival until their service starts. Specifically, let g> 0 be a given
penalty per rejected unit service time; that is, if the call of mother-
ship class k € K is rejected, then a cost g x Cj, is incurred. In addi-
tion, each served ship incurs a cost of one unit per unit of waiting
time. Therefore, the objective consists of the sum of two terms:
(i) the total penalty for rejected calls (g3, % Ci), and (ii) the total
waiting time of served ships (3, ; w;), where K < K denotes the
index set of rejected mother-ship classes, V €V the index set of
served ships, and w; the time that ship i waits since its arrival un-
til its service starts.

The SBTP is to determine a partition of mother-ship classes to
be served/rejected, as well as an allocation to berths together with
a cyclic sequence for service to the accepted calls allocated to the
same berth, such that the overall service time of the calls served
in the same berth does not exceed the duration of the cycle, H, of
minimum total cost.

Observe that the SBTP integrates three difficult combinatorial
problems. On the one hand, the selection of the ships that will
be served, respecting the relations among the ships in each group.
On the other hand, the allocation of accepted ships to berths, re-
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specting the cycle duration within each berth, which can be seen
as a bin packing problem (Korte & Vygen, 2006). Finally, the opti-
mal sequencing of service to all the ships allocated to each berth,
which can be reduced to the problem of finding the service sched-
ule that minimizes the total tardiness (Du & Leung, 1990). Both the
bin packing and minimizing tardiness are already NP-hard prob-
lems.

3. Mathematical programming formulations for the SBTP

In this section we develop several mathematical programming
formulations for the SBTP. All of them use binary decision vari-
ables to determine the strategic decisions on ship calls that are
served/rejected:

e 2z, €{0,1}, keK. z, =1 < the ships in mother-ship class k
are served.

Since the objective function depends on the waiting times of
served ships, which, in turn, depend on their service starting times,
we define the following additional decision variables:

e s;: service starting time (or just starting time) of ship i e V.
* w;: waiting time of served ship i € V. This is the time since the
ship arrived at the terminal and its service started.

Using variables z and w the objective function can be written

as
gY G(l—-z)+) w

keK ieV

min (1a)

The conditions that regulate the relationship among the above
variables, and their relationship with the cycle length depend on
whether or not the arrival, service and termination cycles of the
involved served ships coincide. For instance, for ships whose ar-
rival and service cycles coincide, it holds that s; > ;. On the con-
trary, this lower bound on the value of s; is no longer valid for
ships whose service starts in the next cycle after their arrival, for
which s; < a; — 1 must hold to guarantee that the duration of the
cycle is respected. For such ships, taking into account that the du-
ration of the cycle must include service times, the above bound
can be reinforced to s; < a; — ¢;. A similar observation can be made
with respect to the waiting times. While the duration of the cy-
cle imposes that w; <H —a; —¢; for the ships whose arrival and
service cycles coincide, for ships with different arrival and service
cycles we have that w; > H — a;. The starting and waiting times of
non-served ships will be zero.

The above observation indicates that, in order to compute ac-
curately the waiting times derived from feasible service schedules,
additional information is needed indicating whether or not the ser-
vice cycle of each served ship coincides with its arrival cycle. To
this end, associated with each i ¢ V we define two new comple-
mentary binary variables x; and y;, where x; = 1 (and y; = 0) if and
only if ship i is served and its service cycle coincides with its ar-
rival cycle, whereas x; = 0 (and y; = 1) if and only if ship i is served
but its service cycle is the cycle next to its arrival cycle. There-
fore,
ieV

Zyiy = Xi + Vi (2a)

Wi = S§; — AiZi) + Hy,- ieV. (Zb)

Constraints (2a) also guarantee that the mother-ship relation-
ship of the ships in each class is respected, and that for any
non-served ship, x; = y; = 0. Therefore, for non-served ships, Con-
straints (2b) reduce to w; =s;, i.e. the waiting times of rejected
ships coincide with their starting times. Taking into account the
minimization objective function and that there are no lower
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i=3 ‘ =1, i=5 li=1,
v L v V2 v v v v =2
T
| 5 | 6 | 7 | 8 | 9 | 10 1| 2 | 3 ] 4 ] 5 | 6 | 7 | 8 ] 9 | 10 1] 2 | 3 | | |
Berth 1 e . i=5; a;=10; | . cee
i=4; a,=9; 5,=9} w,;=0; i=1; a;=1; s;=4; w,=3; i=4; a;,=9; 5,=9; w,=0;
Ss=2; Ws=2;

Berth 2

i=3; a3=5; 53=5; w3=0; i=2; a,=1; s,=1; w,=0;

i=3; a3=5; 53=5; w3=0; i=2; a,=1; 5,=1; w,=0;

Fig. 1. Example of definition of variables with n =5, H=10 and b = 2.

bounds for the starting times of non-served ships (see also con-
straints (3a)-(3c) below), in any optimal solution for any non-
served ship it will hold that w; = s; = 0.

The transition between consecutive cycles is controlled through
an additional set of binary variables f;, i € V such that f; =1 if and
only if ship i is served and its service cycle does not coincide with
its termination cycle. This means that the service cycle of ship i co-
incides with its arrival cycle (x; = 1) but it does not coincide with
its termination cycle (s; + ¢; > H). Moreover, with the aid of vari-
ables f;, i e V we can also relate the starting times of served ships
with variables x and y. That is:

fi<x ieV (3a)
(H =+ 1)fl <S;i+ CiZk(i) ieV (3b)
axi+yi<si<H—cpxi+cifi+ (ai—c)y; ieV. (3¢)

Fig. 1 illustrates the definition of the above variables with an
example with two berths, five calling ships, singleton mother-ship
classes, and a time horizon H = 10. Arrival and service times are
given, by a = (1,1,5,9,10) and c = (3, 3, 3, 3, 2), respectively. The
figure shows a solution in which ships {1, 4, 5} are served in berth
1 (in that order) and ships {2, 3} in berth 2. Since all the ships are
served, we have z, =1, k € {1,..., 5}. In the displayed solution, the
starting times are given by s = (4,1,5,9, 2), with associated wait-
ing times w = (3, 0,0, 0, 2). Since q; < s;, for, i € {1, 2, 3, 4} we have
X1 =Xy = X3 = X4 = 1, as their service and arrival cycles coincide;
instead, ss = 2 < as = 10, which means that service to ship 5 starts
in the next cycle to the one when it arrives so ys = 1. Furthermore,
f4 = 1 since its service cycle does not coincide with its termination
cycle.

In order to obtain the actual schedule of each berth and to
guarantee that the overall processing time of all the ships served
in the same berth does not exceed the cyclic time horizon H, we
define additional predecessor variables, which, even if they do not
give an explicit allocation of ships to berths, permit determining
the service sequence at the berths, since they define the order in
which ships are served in each cycle and, implicitly, they define
clusters of ships served cyclically in the same berth. In particular
let:

e pije{0.1}, i, jeV. When i# j, pjj =1 < shipsi and j are
processed consecutively in the same berth and ship j is served
immediately before ship i, allowing that there is some idle time
in the berth after termination of j. When p;; =1 we will in-
distinctively say that j is the predecessor of i, j precedes i, or i
follows j. When i = j, p; =1 means that ship i is its own pre-
decessor, that is, i is designated as the first ship processed in its
berth.
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The constraints regulating the service sequence of each berth
are:

ZPU = Zk(i)

ieV (4a)
jev
Z Dji < Zk() ieV (4b)
Jjev\{i}
> pi<bh (4c)
ieV

Constraints (4a) impose that each served ship has a unique pre-
decessor, whereas (4b) indicate that each served ship can precede
at most one ship. The last ship served in each berth in each cy-
cle will not precede any other ship. Constraints (4a) also guarantee
that all the ships in each mother-ship class are either served or
rejected. By constraint (4c) no more than b berths are used.

Note that due to the cyclic nature of berth schedules, with the
above predecessor variables there can be multiple representations
of the berth schedule associated with a given sequence of ships.
The only difference among all the equivalent representations is, in
essence, the ship of the sequence that is designated as the first
ship processed in the berth. Any served ship can be selected as the
first ship in its berth and the time period when its service starts
can be used as the reference to ensure that the duration of the
sequence of all the ships served in that berth does not exceed the
cycle duration H. For instance, in the example of Fig. 1 we could
chose pyy = psy1 =psa=1,pp=pn=1

We define a final set of decision variables associated with the
times where some events take place:

» ¢;: completion time of ship i € V, i.e. the time when service to
ship i € V has been completed. This is the first period of time
when the berth is already available for serving the next ship in
the sequence of the berth.

v;: idle time of the berth where ship i € V is served, immedi-
ately before its service starts. This is the time since the com-
pletion of service to the predecessor of i and the arrival at the
terminal of ship i.

o;: time that the berth that serves ship i has been occupied
since the beginning of service to the first ship in the berth until
service to ship i starts.

Together with the relations that determine the precise values of
variables e;, the pairs of ships processed consecutively in the same
berth must satisfy the following sets of constraints:

e = Si + CiZyi) — H f; ieV (5a)
si>=ej—H(1 - p;j) LjeVii#j (5b)
w; > e; —a; — H(1 - p;j) LjeV,i#j (5¢)
v >si—ej—H(1 - pjj) ijeVii#j (5d)
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0; > 0j+c¢j+v;—H(1 - p;) i,jeV,i#]. (5e)

Constraints (5b)-(5e) only become active for pairs of ships i, j €
V, i+ j, such that p;; = 1. In particular, (5b) establish that, if i fol-
lows j, then service to ship i cannot start before termination of
service to ship j. Similarly, (5d) impose that, if i follows j, the idle
time immediately before service to ship i must be at least the dif-
ference between the starting time of i and the completion time of
j. The occupation times of consecutive ships in the same berth are
regulated by (5e).

The inequalities (6a) and (6b) below set upper bounds for oc-
cupation and idle times, respectively.

V; < QiX; ieV (6a)
0; < (H —¢) (zkay — pii) ieV. (6b)

Note that occupation times reduce to zero for non-served ships
as well as for the first ships served in each berth. The upper
bounds H —¢;, i € V, guarantee that the cycle duration is respected.
Non-zero idle times can only appear for ships whose arrival and
service cycles coincide (otherwise the ship will be served as soon
as the berth becomes available in the next cycle). That is, for each
berth, we implicitly set the beginning of its cycle to the starting
time of the first ship served in the berth.

It can be easily checked that in the running example of Fig. 1,
the values of these variables are e = (7,4, 8,2,4), v=(0,0,1, 2,0),
0=(0,0,4,5,8).

Therefore a valid formulation for the SBTP is:

FO min) wi+g)» G(1-z) (1a)
ieV keK
Zyiy = Xi +Yi ieV (2a)
Wi =S — aiZiiy) + HY; ieV (2b)
fi <x; ieV (3a)
(H+1)fi < si + Gizyy ieV (3b)
aixi+yi <si< (H-c)xi+¢ifi+ (@i —¢))yiieV (30)
D bij =2k ieV (4a)
jev
> i <z ieV (4b)
jeV\{i}
> pi<h (4c)
ieV
e =S; + Cizxiy — H f; ieV (5a)
si>ej—H(1-py) i,jeV,i#j (5b)
w; > ej—a; —H(1 — pjj) i,jeV,i#j (5¢)
v >si—e;—H(1 —p;j) i,jeV,i#j (5d)
0; > 0j+¢j+v;—H(1 - p;) i,jeV,i#]j (5e)
Vi < aiX; ieV (6a)
0; < (H = ¢;) (Zky — Pit) ieV (6b)
7 € {0, 1} keK (7a)
pij €{0,1} i,jeV (7b)
X, yi, fi € {0, 1} ieV (7¢)
Si, Wi, €;, 1,0, = 0 ieV. (7d)

Formulation FO can be reinforced by adding tighter lower and
upper bounds on starting times, waiting times and termination
times (see (8a) and (8b) below), which reduce to zero for non-
served ships:

(H—a;+ 1Dy <w; < (H- )z ieV (8a)
(@+c)xi—Hfi+ A +c)yi<es<HX - f)+cfi+ay ieV.
(8b)
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Unfortunately, despite the above reinforcements (or other of
similar nature), the Linear Programming (LP) bounds of formula-
tion FO tend to be very weak, which is due to the Big-M type
of Constraints (5b)—(5e). For this reason, in the next sections we
develop other formulations in which these constraints can be re-
moved, at the expenses of introducing additional sets of binary de-
cision variables.

3.1. Counting the number of ships served at a given time period

One of the main difficulties of the SBTP is to control in an ef-
fective way that the number of ships being served simultaneously
at any time period t e T ={1,...,H} does not exceed the avail-
able number of berths. With the current set of decision variables
the limitation on the maximum number of available berths is only
controlled via constraint (4c), which counts the overall number of
“first ships”. In this section we introduce an additional set of de-
cision variables that allows us to obtain a linear expression for
the number of served ships at any time period. For a given so-
lution s, let us identify the set of served ships whose status is
“being served” at a given time period t € T. This set may con-
tain ships whose service cycle coincides with the current cycle
(that is, s; <t) as well as ships whose service started in the cy-
cle previous to that of ¢ (that is, t < s;). We denote by Z!~ (s) and
Zt7(s) the index set of ships of each of these two clases whose
service remains active at time period t, respectively. In particu-
lar, Zt~(s) consists of the indices of all served ships with s; <t
such that s;+¢;—1>t, whereas Z'™ (s) consists of the indices
of all served ships with s; >t whose service remains active at
time period t of the following cycle, i.e. s;+c¢;—1—H >t. While
only ships with ¢; >t may appear in set Z'™ (s), the set Zt™ (s)
may contain indices of ships with both ¢; <t and ¢; > t. There-
fore, taking into account that 1 <s; < H, the above two sets are
given by Z8=(s) ={ieV |s; e [max{1,t —¢; + 1}, t]}, and Z'" (s) =
{fieV]|c>tands;e[t—c+1+H, H]}. In particular, any served
ship i e Z8~ (s) UZt™ (s) will remain being served at time period t,
and the total number of ships that are being processed at a given
time period t € T is precisely the cardinality of set Z¢~ (s) UZ!™ (s).

Unfortunately, it is not possible to express this cardinality as a
linear expression of the s variables. In order to overcome this lim-
itation next we introduce a new set of binary decision variables:

e hjy €{0,1},ieV,teT={1,...,H}. hy =1 <= service to ship
i starts at time period t.

Thatis, hy =1 & s;=t.
With the aid of variables h we can obtain linear expressions for
|Zt=(s)| and |Zt™ (s)|, namely

t H
ZZ@I=Y Y he and 1ZGI=Y Y he

ieV t'=max{1,t—c;+1} Z:evt: t'=t—ci+1+H
>

Hence, the total number of ships being processed at a given
time period t € T can be written as:

H
hit/ + Z Z hit/ >

ieV: t'=t—c+1+H
ci>t

t

)IEDD

ieV t'=max{1,t—c;+1}

so the following set of constraints is valid for the SBTP:

t H
> Y h+Y Y hesb

ieV t'=max{1,t—c;+1} ieV: t'=t—c+1+H
ci>t

teT. (9a)

The constraints ensuring that the new variables are well de-
fined and linked to the s variables are:

Z hie = z4;)

teT

ieV (9b)
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Si = Zt h,‘t ieV. (9C)
teT
The relationship between the h variables and the existing x

variables is quite direct:

H
Xj = Zhit

t=q;

ieV, (9d)
whereas in order to relate the h variables with the existing y vari-
ables, we have to observe that when service to a ship i € V starts
in the cycle next to its arrival cycle (i.e. y; = 1), then its starting
time must be some time period smaller than or equal to a; —¢;,
since otherwise the time between the arrival of the ship and the
termination of its service would exceed the duration of the cycle.
This means that

yi= { ihy ieVsta-¢>0
1
y

=0 ieVsta-¢c=<0 (12a)

As will be seen in Section 6, where we report numerical re-
sults from computational tests, introducing the new set of decision
variables h together with the set of constraints (9a)-(12a), has a
remarkable effect on the quality of the LP bounds associated with
the resulting formulation (see formulation F1 below), which be-
come extremely tight.

F1 min) w;+g) G(1-z) (1a)
ieV keK
> pij =2k ieV (4a)
jev
Z Pji < ZkG) ieV (4b)
jeV\{i}
Zpii <b (4c)
ieV
Zri) = Xi +Yi ieV (2a)
Wi =S — AiZygj) + Hy; ieV (2b)
fi<x ieV (3a)
(H+1)fi < s + Gizyay ieV. (3b)
axi+yi<si< (H-c)x+cfi+ (@ —-c)yiieV (30)
€ = Si + CiZk(i) — Hf, ieV (5a)
si>e;—H( - p;j) i,jeV,i#j (5b)
w;>e;—a;—H(1 - pjj) i,jeV,i#j (50)
Vi >si—ej—H(1 - p;j) i,jeV,i#]j (5d)
0; > 0j+¢j+v; — H(1 - pyj) i,jeV,i#j (5e)
Vi < aiX; ieV (6a)
0; < (H—¢) (zkqp) — pi) ieV (6b)
t
2 > hip + 3
ieV t’=max{1,t—c;+1} ieV:
u t—¢i<0 teT (9a)
Z hit’ < b
t'=H+(t—c;i+1)
D hi =2z ieV ({9b})
teT
Si = Zt hit ieV ({QC})
teT
H
X = Z hie ieV ({9d})
t=q
?;}Ci h,‘t ieV st ai—c¢ >0
yi={yi=0 ieVsta—-¢=<0 (12a)
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2, Xi, Yi, fi, hie € {0, 1}
Si, Wi, €;, V;, 0; > 0

keK,ieV, t(&3h)
ieV. (13b)

3.2. Analysis of formulation F1

The final goal of the SBTP is to determine the ships to be served
and to obtain the service sequences to be applied cyclically in each
berth. Nevertheless, taking into account that the objective consists
of a penalty for each non-served call plus the sum of the wait-
ing times of the served ships, which are dictated by their start-
ing times, the SBTP essentially reduces to identifying the served
ships and finding feasible starting times for them. Indeed, feasible
starting times can be derived from feasible service sequences. This
is, in fact, the main idea in the formulation we have presented,
where the starting times of the served ships are determined from
the sequences of predecessor variables p and their relation with
variables s and w, which is driven by constraints (5b)-(5e). The
question that we raise here is whether feasible starting times can
be obtained without having an explicit representation of the se-
quences of ships served in the berths. In particular, whether or not
any set of variables z, x, y and s linked via constraints (2a) and (2b),
together with a set of variables h satisfying constraints (9a)-(12a)
induces a feasible solution to the SBTP.

Regretfully, as shown by the example illustrated in Fig. 2, the
answer to the above question is negative, indicating that con-
straints (9a)-(12a) are not sufficient to guarantee that a feasible
SBTP solution can be obtained. The example considers a cycle du-
ration H=8 and V = {1, 2, 3}, where the processing time of all
three ships is five units (¢; = 5 for all i € V). It is easy to check that
if the number of available berths is b = 2, there is no feasible so-
lution where all three ships are served (independently of what the
arrival times for the ships are). However, as Fig. 2 shows it is possi-
ble to find starting times for the ships that satisfy constraints (9a),
i.e. starting times such that at each time period at most two ships
are being processed. In the solution depicted in the figure s; =1,
Sy =3, and s3 =6. That is, hyy =1 for all t €[1,5]; hy, =1 for all
t €[3,7]; and, h3; =1 for all t € [1,2] U [6, 8]. As can be seen, these
values satisfy constraints (9a).

Therefore, we conclude that the formulation F2 below is a re-
laxation of the SBTP:

F2 min) wi+g) G(1-z) (1a)
ieV keK
Zi(@iy = Xi + Vi ieV (Za)
Wi =S — QiZy) + Hy; ieV (2b)
t
> hy + 3
ieV t’=max{1,t—c;+1} ieV:
u t—ci<0 teT (9a)
> hy <b
t'=H+(t—c;+1)
Z hie = zy) ieV ({9b})
teT
Si = Zt hit ieV ({9(:})
teT
H
Xi=y hy ieV ({od})
t=q;
G Ch ieVsta—¢>0
- t=1 "Mt i i
y'_{yl:o ieVsta—-¢<0 (12a)

Zk, Xi, Vi hi[ € {O’ 1}
Si,w; >0

keK,ieV,teT (14a)
ieV. (14b)
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Fig. 2. Example with H=8,V ={1,2,3}, ¢c; =5, i€V, and b = 2 where no feasible solution serving all ships exists, but values h; satisfying constraints (9a) can be found.

The relationship between the optimal values of F2 and SBTP
is summarized below, where v(-) denotes the optimal value of a
given optimization problem.

Proposition 1. v(F2) < v(SBTP).

Since a feasible solution to formulation F2 does not necessarily
induce a feasible solution to the SBTP, we now address the ques-
tion of whether we can know if there is a feasible solution to the
SBTP supported by a given vector (z, h) in the feasible domain of
F2. As we next explain, the answer to this question can be ob-
tained by solving an auxiliary problem, that in the following will
be referred to as AP(z, h), which can be used as an oracle. Problem
AP(Z, h) assumes that all the ships indexed in V ={ieV : Zyiy =1}
must be served and their service starting times are those dictated
by h. Essentially, AP(Z, h) rephrases the above question in terms of
finding an assignment to berths of the ships indexed in V, such
that the overall service time of all the ships assigned to the same
berth does not exceed the duration of a cycle, and minimizes the
overall service overlap at berths. Since ideally each berth has a ser-
vice capacity of one at each time period, we define the service
overlap at a berth at a given time period t as the excess of ships
allocated to the berth at time period t. This excess is given by the
number of ships allocated to the berth being served at time period
t minus one, or zero when this quantity is negative.

In the following, let R={1,..., b} denote the index set
for the berths, and V' ={ieV:hj<tand hj+c—1>t}ufieV:
hi > t and (h; + ¢; — 1) > t + H} the set of ships indexed in V being
served at time period t assuming that their service starting times
are dictated by h.

For each i eV, r e R, let A; € {0, 1}, be a binary variable, which
takes the value 1 if and only if ship i is allocated to berth r. Asso-
ciated with each berth r € R and time period t € T let us consider
another decision variable oy, indicating the service overlap in berth
r at time period t. That is, oy = max{ZiEZt Air — 1, 0} is the excess
relative to the service capacity of berth r at time period t.

The auxiliary allocation problem that we consider is therefore:

AP(z.h): min)_ > oy (15a)

reR teT

> k=1 ieV (15b)

reR

> chi <H reR (15¢)

iV

Ot =Y hip— reRteT (15d)
ieVt

Lir € {0, 1} ieV,reR (15e)

o >0 reRtel. (15f)
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Constraints (15b) guarantee that all the ships of V are allo-
cated to some berth and (15c) that the total service time of all the
ships allocated to the same berth does not exceed the cycle dura-
tion. Finally, Constraints (15d) determine the overlaps, whose total
amount is minimized.

Note that AP(Z, h) is a variation of a bin packing problem (see,
e.g. chapter 18 in Korte & Vygen, 2006), where the capacity of the
bins is H and the demand of item i € V is ¢;, and recall that bin
packing is known to be NP-hard (Garey & Johnson, 1979). More-
over, since we impose that all the ships indexed in V are allocated,
it may happen that its feasible domain is empty. Let QAP@B) =

{(h,0) €{0, 1}‘7_‘ x R*: satisfying (15b)-(15f)} denote the feasible
domain of AP(Z, h).

Proposition 2.

o If QAP(i =9 then there is no feasible solution to SBTP serving

all the ships indexed in V.

e Suppose QAP@B) £ (. Then,

There is a feasible solution to the SBTP that serves all the ships
indexed in V={ieV : Zyy = 1} with starting times given by
{Flff}iev,teT if and only if V(AP(Z, h)) is zero.

Suppose v(AP(zZ, h)) =0, and let A be the allocation vector asso-
ciated with an optimal solution to AP(Z, h). Then the solution
(. h) where each ship i eV starts its service at time period t
with hy =1 in the berth r € R such that A =1 is an optimal
SBTP solution.

When Q7 # %, but V(AP h)) > 0, then no feasible solu-

tion to SBTP exists serving all the ships of V with starting times
{h lt}:ev,ter Still, from an optimal allocation to AP(Z, h) a feasible
SBTP solution can be obtained heuristically. Since the total service
time of all the ships allocated to the same berth does not exceed
the cycle duration, it is possible to sequence all these ships in such
a way that there are no service overlaps, although this will carry
changes in the service starting times of some ships and, in its turn,
in their waiting times, as will be discussed in Section 5.

4. An SBTP formulation with disaggregated service time
variables

In this section we introduce our final formulation for the SBTP,
based on the idea of counting the number of ships that are served
simultaneously at a given time period that overcomes the difficul-
ties discussed in the previous section, basically derived from the
fact that constraints (9a) aggregate the service occupation of all
the berths. Hence, what we propose is to redefine the discretized
binary variables hy, i€V, t €T, in such a way that the berth to
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Table 1
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Number of variables and constraints in the formulations.

Formulation  Variables Constraints
Binary Continuous

FO Dz XYy f s,w,e,v,0 4lV|([V|-1)+10|V|+1
VIV = 1) + 4|V 5[V|

F1 Dz XYy f,h s,w,e,v,0  4VI(|[V|-1)+14|V|+|T|+1
VIAVI = 1) + [V x [T +4[V|  5|V|

F2 2%y h s, w 6|V|+T|
VI IT| +3[V| 2|V|

F3 zZ, Xy h s, W 6|V| +|T| x |R|
3IVI+ VI < IT x |R| 2|V|

which each served ship is allocated is made explicit. That is, con-
sider the set of decision variables hy, € {0,1}, ieV, teT, reR,
such that

hi; =1 <= service to ship i starts at time period t in berth r.

Now the constraints that guarantee that at most one ship is be-
ing served at each berth at each time period are

H
her+Y. > her<1 reRteT.

ith: t'=t—c;+14+H

>

t

X

ieV t'=max{1,t—c;+1}
(16a)

Given that constraints (16a) prevent service overlaps within the
same berth, neither variables e;, v;, and o;, nor constraints (5a)-
(5e), (6a) and (6b) are needed anymore, since their role was to
prevent such infeasibilities. Therefore, taking into account that the
relation hy =Y, ¢ hy,, for all ieV, t e T, we have the following
valid formulation for the SBTP:

F3 min) wi+g)» G(1-z) (1a)
ieV keK
Zyiy = Xi +Yi ieV (2a)
Wi = S; — QiZy ) + Hy; ieV (2b)
a;—C; ~ .
o Y ek hitr ieVsta—c>0
Vi {yi = " ieVsta—¢=<0 (123)
t ~
> > higr
ieV t'=max{1,t—c;+1}
H R teT,reR (16a)
+ Z Z hit’r = 1
ieV: t/=H+(t—ci+1)
t—c;<0
Z Z Fl,’t = Zx(i) ieV (173)
teT reR
si= > thy ieV, (17b)
teT reR
H ~
Xi= )" hy ieV, (17¢)
t=a; reR
Zp, X, Vi, higr € {0, 1} keKieV,teT,reR (17d)
s, w; >0 ieV. (17e)

4.1. Comparison of formulations

Table 1 summarizes a theoretical comparison of the formula-
tions we have introduced, based on the number and type of vari-
ables and constraints that they involve. Observe that even if vari-
ables s;, w;, e;, v;, 0; are restricted to take integer values and thus
should be defined as integer, they can be relaxed to take non-
negative values. The reason is that the constraints relate them
to the x, y and f variables, which are restricted to take binary
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values, guarantee that those variables will take integer values in
any optimal solution. This information, will be complemented in
Section 6 with an empirical comparison of the performance of the
formulations, based on the numerical results produced by each of
them in the computational tests that we have carried out.

We close this section by pointing out that even if the formula-
tions we have introduced produce SBTP solutions, the obtained so-
lutions may be not sufficiently explicit, in the sense that in some
cases they do not give the specific allocations of served ships to
berths, or they do not obtain the specific sequences of consecu-
tive ships served in each berth. Such issues as well as other re-
lated ones, become of interest when dealing algorithmically with
the SBTP and will be addressed in the next section, where we fo-
cus on how to fully determine feasible solutions for the SBTP from
partial or infeasible information provided by the proposed formu-
lations.

5. Algorithmic issues for fully determining feasible SBTP
solutions

A feasible SBTP solution is fully determined by (i) the set of
served ships, (ii) the service time of each ship, and (iii) the allo-
cation of served ships to berths. All the formulations that we have
introduced include explicit information on items (i) and (ii), via de-
cision variables z,, k € K and s;, i € V, respectively, which are the
two sets of decision variables common to all four formulations.
Still, except for formulation F3, in which the expression Y, r ﬁm
gives explicit information on whether or not ship i ¢ V is allocated
to berth r € R, all other formulations omit such information. More-
over, even if starting times together with the explicit allocation of
ships to berths determine the service sequence of each berth, this
information is not explicit in any of the formulations presented:
in FO and F1 because the berth allocation is not explicit (despite
having the predecessors vector p) and in formulations F2 and F3
because they do not include explicit sequencing information.

On the other hand, in Section 3.2 we have seen that F2 is a
relaxation that does not necessarily produce feasible SBTP solu-
tions, although in some cases the auxiliary subproblems AP(Z, h),
r € R give assignments of ships to berths that may result in fea-
sible solutions. Obtaining feasible solutions from the information
provided by these auxiliary subproblems can be useful, not only
within an algorithmic framework based on F2, but also to support
any valid formulation with some initial feasible solution, which
could be used as an incumbent and could possibly reduce the com-
putational burden needed to optimally solve the formulations.

In the remainder of this section first we give simple proce-
dures to obtain explicit allocations to berths and to obtain explicit
sequences of consecutive ships served in each berth and discuss
some related algorithmic issues. Then we give a simple template
for finding feasible SBTP solutions.
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5.1. Procedure for determining explicitly the set of ships served in the
same berth from a pair of vectors (z, p) satisfying (4a)-(4c)

From a vector Z representing the set of served ships and a pre-
decessors vector p satisfying (4a)-(4c), the set of ships that are al-
located to each berth r € R, B, can be easily identified by tracing
back the predecessor variables. For this we perform |R| iterations
where at each of them we select a berth index r € R not yet con-
sidered and use the predecessors vector to determine the set of
ships B" that will be allocated to it, using the following two steps;
(i) identify a served ship 1, not yet allocated, that does not precede
any other served ship (i.e. T such that Zy;) = 1 and 3oy Pji = 0);
and, (ii) trace back the sequence of ships that precede 1 using
the predecessors vector p, by iteratively identifying the only index
J €V that precedes the current ship 1 (i.e. the only j s.t. pj; = 1)
and updating the index of the curent ship 1 to that of its predeces-
sor (i.e. T < J). Step (ii) is repeated until 1 is the first ship procesed
in the berth (i.e., j =1). Note that, given that in the SBTP all the
berths have the same characteristics, the obtained ship subsets B"
are perfectly interchangeable among them.

5.2. Procedure for determining explicitly the predecessors vector
associated with a feasible solution to F3

It is clear that any feasible solution to FO or F1, with starting
times dictated by a given vector S, defines a feasible solution to F3,
with hy, = 1 if and only if §; =t and i € B", where the sets of ships
served in the same berth, {B"},cr, can be identified with an algo-
rithm based on the description of Section 5.1. Reciprocally, from
a feasible vector fi* in the domain of F3 we can obtain a feasible
solution to FO or F1 by defining the predecessors vector p induced
by the solution h with a procedure that initially determines the set
of ships served in each berth, i.e. B ={ieV: Yt fl;‘n =1}, reR,
and then traces forward the sequence of ships indexed in each B"
by determining the non-zero components of vector fr* with r fixed
for progressively increasing time indices t € T. Details are omitted.

5.3. Finding feasible berth allocations from scratch

Feasible allocations of ships to berths can also be obtained from
scratch, without information on the set of served ships or the pre-
decessors vector produced by formulations FO or F1. For this, we
can solve a variation of the auxiliary problem AP(Z, h) in which the
set of ships to be served is not fixed in advance (i.e. z is an addi-
tional set of decision variables so there is no parameter z) and the
arrival times are used as tentative service times (i.e. hy =1 if an
only if t = a;, i € V). Since now the set of ships to be served is not
known in advance, in order to guarantee mother-ship restrictions,
Constraints (15b) are stated as:

Z)\,ir = Zk(,‘), l S V.

reR

(18a)

Together with Constraints (15c), the above constraints (18a) en-
sure that a feasible allocation of served ships to berths is obtained.
Constraints (15d) play the same role as in the original AP(z, h) for-
mulation and identify the overlaps that are produced. Now, in or-
der to attain a tradeoff between served ships (which, as said, are
not known in advance) and service overlap (which can be quite
high, given that service times are set to arrival times) a suitable
objective is to consider a weighted combination of both criteria by
maximizing:

BY Y ke Yo,

ieV  reR reR teT

(19a)

where w1 is a parameter balancing the two terms of the involved
objective function.
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The above problem will be referred to as ﬁ(ﬁ)_where, as indi-
cated in the beginning of this section, the vector h is dictated by
the arrival times. The set of ships served in each berth can be eas-
ily identified from an optimal solution to AP(h), (2.4,6). In par-
ticular, B ={ieV: Ay =1}, reR.

5.4. Determining a service sequencing for the set of ships allocated to
the same berth

When the set of ships B" allocated to berth r € R is given, an
optimal service sequence for the ships of B" that minimizes the
total waiting times can be obtained with a formulation that partic-
ularizes F2 for just one berth. Such a formulation assumes that all
the ships indexed in B" can be served within one cycle, i.e. it is as-
sumed that the condition }";_pr ¢; < H holds. Since we are restrict-
ing to one single berth, no service overlaps may appear, meaning
that the right hand side of the updated constraint (9a) must be 1.
The formulation corresponding to berth r is therefore:

SEQ, min Z w; (20a)
ieBr
Xi+yi=1 ieB (20Db)
w;=Ss+Hy —aq icB (20c)
t
> hye
ieV t'=max(1,t—c;+1}
H teT (20d)
+ > > hiy <1
ieB": t'=H+(t—c;+1)
—ci<0
> hy = ieB (20e)
teT
Si = Zt hif ie B’ (20f)
teT
H
Xi = Zhit ieB’ (20g)
t=q;
yi=0 ieB st.ai—c <0 (20h)
a;—C;
yi=>_ hy ieB st.a—c¢>0 (20i)
t=1
i,y hi € {0, 1} ieB,teT (20j)
s, w; >0 ieB. (20k)

Observe that the waiting times resulting from arrival times a;,
can be seen as the tardiness relative to the due dates a; + ¢; — 1.
Therefore SEQ, is an exact formulation for the minimization of
the total tardiness as defined above. As shown in Du & Leung
(1990) this problem is already NP-hard.

5.5. Algorithmic framework for finding feasible SBTP solutions

Based on the ingredients described in the previous sections, an
algorithmic template for building feasible SBTP solutions is to ap-
ply the following three steps:

S1 Determine a subset of served ships, V, and tentative service
times for the selected ships, h;, i € V, respecting the mother-
ship constraints (2a).

S2 Determine an allocation of the ships of V to berths, {B"},cr,
that satisfies the cycle duration, i.e. > ;pr ¢; < H, 1 € R, devi-
ating as little as possible from the tentative service times h;,
ieV.

S3 For each berth r € R, build a service sequence for the ships
allocated to it, {B"}.

There are multiple ways in which the above algorithmic scheme
can be implemented. Below we outline the two alternatives that
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we have implemented and tested in our computational experi-
ments. Both alternatives differ in how steps S1 and S2 are defined,
but, in essence, share step S3, which consists in solving the sub-
problems SEQ, induced by the subsets {B"},.z produced by step S2
(see Section 5.4).

HEUR: (simple heuristic based on the solution of subproblem
AP(h) described in Section 5.3). In this heuristic steps S1 and S2
are merged in one single step, in which AP(h) is solved using ar-
rival times as service times, and Constraints (18a) instead of Con-
straints (15b).

S1 + S2: Solve AP(h).
S3: Solve the subproblems SEQ, induced by the subsets {B"},cr
obtained in S1+S2.

2-phase solution algorithm. Recall that Proposition 2 gives us a
simple check for the optimality of the solutions produced by F2.
In particular, when v(AP(Z, h)) =0, the solution produced by F2
is feasible for SBTP and thus optimal. This naturally leads to a 2-
phase solution algorithm in which the first phase is step S1 when
formulation F2 is solved. In the second phase, which is determined
by S2+S3, the solution of the auxiliary problem AP(Z, h) is followed
by the solution of the subproblems SEQ,, associated with the re-
sulting sets of ships B, r € R. In particular, the procedure is as fol-
lows:

S1 Solve formulation F2.
S2 Solve the auxiliary problem AP(Z, h).
S3 Apply the Feasibility Check based on Proposition 2.
If W(AP(Z, h)) = 0) then (the solution obtained in S2 is opti-
mal)
Else (the current solution is not optimal)
Solve the subproblems SEQ, induced by the subsets
{B"},cr obtained in S2.

Observe that Step S1 of the 2-phase algorithm produces a valid
lower bound, which is not necessarily associated with a feasible
SBTP solution, whereas the second phase produces a valid upper
bound associated with the feasible SBTP solution obtained after ap-
plying S2 + S3.

6. Computational experiments

In order to study the empirical performance of the formulations
introduced in the previous sections we have carried out a series of
computational experiments whose numerical results are presented
and analyzed in this section.

All the computational tests have been carried out in an DELL
XPS 15 9550 Intel i7-6700HQ 2.6 GHz with 16 GB RAM, under
Windows 10 Pro as operating system. All formulations have been
coded in Mosel 5.2.0 with Xpress Optimizer Version 36.01.03 using
as solver (Xpress, 2020).

For the experiments we have used the set of 96 SBTP bench-
mark instances generated by the authors of Iris et al. (2018) based
on a prototypical instance of Imai et al. (2014), that they used
in their computational experiments. These instances are classified
according to their number of calling ships n e {50, 70, 100, 150},
number of berths b € {4, 8, 12}, as well as the following character-
istics:

e Proportion of small (feeder; F), medium (M) and large (jumbo;
]) calling ships, which are determined by their service times
(in hours). In instances labeled E (“equal”) the proportion of
ships of types F, M and ] is 33.3%, 33.3%, and 33.4% respectively,
whereas instances labeled A (“alternative”) the proportions are
60%, 30%, and 10%, respectively.

« Service times, which represent handling times (in hours). They
have been generated from integer uniform distributions which,
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on the one hand, depend on the ships characteristics (F, M,
or J), and, on the other hand, can be either S (“small”) or L
(“large”).
o Service times for instances labeled S are drawn from U[4, 8],
U[6, 10] and U[8, 12] for ships of type F, M and ], respectively.
e Service times for instances labeled L are drawn from U[8, 10],
U[10, 14] and U[14, 22] for ships of type F, M and ], respectively.

All instances are available at https://github.com/elalla/
strategic-berth-template-problem. Each instance is identified
with a label “i_n_b_c_s”, where i is the numeric label assigned to
the instance in Iris et al. (2018), n € {50, 70, 100, 150} its number
of ships, b e {4,8,12} the number of berths, c € {A,E} the type
of composition, and s € {S, L} the type of service. In all instances
the planning horizon has a duration of 152 hours which is a
prototype week that will be repeated cyclically. The number of
connections between mother/feeder ships depends on the instance
size, although usually 10 — 20% of all ships are in a mother-feeder
link. Finally, the penalty for each rejected call is g = 10,000 (see
Iris et al., 2018 for further details).

As we next explain this very high value of the penalty g plays
an essential role for determining the optimal values of the con-
sidered SBTP instances. For this, we observe that, in the objec-
tive function, the overall penalty associated with non-served calls,
8> kek Gk (1 — z;.), fully dominates the term ;. w; associated with
the waiting times. Since the maximum waiting time of any served
ship is w; <H, a very crude upper bound of Y ;, w; is nxH,
which for our considered parameter values n < 150 and H = 152
indicates that for any of the considered instances it holds that
Y icv Wi < 150 x 152 = 22,800. On the other hand, since ¢; > 4 for
all i e V (the value of 4 corresponds to the lower limit in U[4, 8]
for instances labeled S of type F), the coefficient C, = Z,-Evk ¢ >4,
for all k € K, so each non-served class k € K contributes to the ob-
jective function with a penalty greater than or equal to g x C, >
4 x 10,000 = 40, 000. This means that the individual penalty cor-
responding to each non-served class exceeds the maximum possi-
ble total value of the term )_;., w;. Thus any optimal solution will
reject as few service calls as possible or, equivalently, any optimal
solution will serve as many classes as allowed by the overall berths
capacity. Indeed it is possible to determine a priori the optimal
value for g« Ci(1 —z,) by finding a subset of ship classes that
can be assigned to the available berths with no overlaps (ignoring
any sequencing issues) of maximum value for )" Gczy. Such a set
can be found by solving the problem

§*=max Y Gz (21a)
keK

> hir < 2k ieV (21b)

reR

Y cikir<H reR (21¢)

iV

Lir € {0, 1} ieV,reR (21d)

z, € {0,1}. keK (21e)
(21e)

Thus, if $* is the maximum capability of a given instance in
terms of the overall service time of the accepted ships then, for
any optimal solution to the instance, the overall service time of
the accepted ships will be precisely S*, That is, the total service
time of rejected ships will be };., c; —S¥ so the overall penalty
for the rejected ships is a constant P* = g x (3_j.y ¢; — S*). Note fi-
nally that the value of the maximum service capability of a given
instance, S*, can be computed by solving a variation of a bin pack-
ing problem (see, e.g. chapter 8 in Martello & Toth, 1990) in which
there are b bins each of them with capacity H and the demand of
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Table 2
Summary of instances characteristics.
b B=Hxb n L/S AJE Instances D=3, R=D/B  P*
4 608 50 S A 1-4 341 50 0.56 0
E 5-8 399 75 066 0
L A 13-16 551 00 091 0
E 9-12 634 50 1.04 265,000
70 S A 71-20 464 00 0.76 0
E 21-24 559 25 0.92 0
L A 29-32 744 75  1.22 1,367,500
E 25-28 864 25 142 2,562,500
100 S A 33-36 676 25 1.11 682,500
E 37-40 810 50 1.33 2,025,000
L A 45-48 1067 50 1.76 4,595,000
E 41-44 1195 25  1.97 5,872,500
8 1216 70 S A 61-64 396 00 033 0
E 57-60 487 25 040 0
L A 49-52 784 50  0.65 0
E 53-56 919 50 0.76 0
100 S A 65-68 581 50 0.48 0
E 77-80 700 25 0.58 0
L A 69-72 1016 25 0.84 0
E 73-76 1234 75 1.02 202,500
12 1824 150 S A 93-96 865 25 047 0
E 81-84 1054 00 058 0
L A 89-92 1492 75 0.82 0
E 85-88 1752 75  0.96 0

the items is ¢;, i € V, where the condition that all the ships in each
class are either allocated or rejected is guaranteed by the right
hand side of (21b). For a better assessment of the results of our
computational experiments, for each instance, we have precom-
puted the value of its penalty P*.

Table 2 summarizes the instances characteristics. The first three
columns indicate the number of berths, b, the overall service ca-
pability B=b x H, and the number n of calling ships respectively.
The following two columns indicate whether service times are S/L
and whether the proportion of small/large/jumbo calling ships is
AJE, respectively. Column labeled Instances indicates the range of
numeric labels of the four benchmark instances with those spe-
cific parameters, whereas columns under D= Y";_,¢; and R=D/B
give the averages, over those four instances, of the overall service
demand D and the demand rate, R, respectively. The last column of
Table 2 gives average values of P* for the different instance classes,
precomputed as explained above.

In the following the set consisting of the four instances
*_n_b_c_s sharing the same parameter values for n, ¢, b and s will
be denoted by C, j, . 5. In Table 2 and the rest of this section, re-
sults are presented for the different groups which, for the same
number of berths and calling ships, are ordered by increasing value
of demand rate. Note that this grouping does not correspond to in-
creasing values of the numerical labels of the instances, which we
always indicate so the specific instances to which the results cor-
respond can be identified.

6.1. Numerical results for instances with four berths

We start our analysis by comparing several formulations and
simple algorithmic schemes among them on the instances with
four berths, all of which have a number of calling ships n e
{50, 70}. That is, we consider the classes C, 4 5, for varying val-
ues of the remaining parameters.

Preliminary testing indicated that formulation FO produced very
weak LP bounds and was only able to solve to proven optimality
small size instances. We thus excluded it from further considera-
tion and focused on the remaining formulations. In the remainder
of this section we will compare the following bounds:

¢ Lower bounds:
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- Ly: value of the LP relaxation of formulation F1.

- Lq: lower bound produced by formulation F1 at termination.

- L,: optimal value of formulation F2
(valid lower bound, obtained in S2 of the 2-phase algo-
rithm).

- L3: lower bound produced by formulation F3 at termination.

o Upper bounds:

- Up: value of the feasible solution obtained with the heuris-
tic HEUR described in Section 5.5. In the objective func-
tion (19a) of problem AP(h), the weight that has been used
for the combination of the service and overlap criteria is
= 100. This value was chosen after some preliminary test-
ing, where we observed that this is a good tradeoff of the
two terms of the involved objective function.

- U;: upper bound corresponding to the value of the best so-
lution produced by formulation F1 at termination.

- Uy: upper bound associated with the solution produced by
the 2-phase algorithm of described in Section 5.5

- Us: upper bound corresponding to the value of the best so-
lution produced by formulation F3 at termination.

F3 produced proven optimal solutions for all the considered in-
stances within a maximum computing time of 3600 seconds, with
the exception of instance 21_70_4B_E_S, for which F3 consumed
over 9000 seconds. This allows us to report percentage devia-
tions of the above lower and upper bounds relative to optimal val-
ues, as well as percentage optimality gaps of the intervals [L;, U;],
i=0,1,2,3.In all cases, the bounds that we analyze correspond to
waiting times. That is, if the value of a solution is W + P*, where
W =3,y w; is the total waiting time of the served ships, we ex-
clude the constant penalty term P* and only consider the value
W. Otherwise, relatively large differences in the value of W may
somehow be hidden behind the large value of the penalty term P*.
Therefore, the actual bounds that we consider for i=0,...,3 are
L¥ and U}, such that L; = LV 4+ P* and U; = U + P*. Then, if W* is
the overall waiting time in an optimal solution, the percentage de-
viations and optimality gaps that we report are defined as follows:

« Deviations of the lower bounds from optimal values: %DL}" =
1oWw* - L)W+, i=0,...,3.
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Table 3
Summary of numerical results for small instances with b =4 and n € {50, 70}.

n: 50 70

L/S-AJE: S-A S-E L-A L-E S-A S-E L-A L-E

Inst. labels: 1-4 5-8 13-16 9-12 17-20 21-24 29-32 25-28

HEUR DLy 0.00 0.10 1.42 4.66 1.13 0.91 8.04 7.85
Dbuy 3140 38.28 46.46 92.77 59.04 43.40 246.14 179.85
%Gy 31.40 38.42 48.52 103.92 61.00 44.79 281.38 203.05
CPUy 0.74 0.69 3.59 12.18 26.80 4.29 7.30 6.03
#0pty 0 0 0 0 0 0 0 0

F1 DLY 0.00 0.00 1.49 0.11 0.00 0.17 4.86 4.44
DUy 0.00 0.00 76.55 43.60 11.86 33.79 126.25 125.64
%GY 0.00 0.00 80.01 43.25 11.86 30.00 137.52 136.52
CPUy 2.54 6.71 3599.81 3600.29  1846.31  3599.87 3599.86  3600.51
#0pt; 4 4 0 0 2 0 0 0

F2 DLY 0.00 0.00 0.00 0.00 0.00 0.00 0.39 2.82
TLY 0.21 0.26 2.56 7.83 0.79 6.76 19.35 15.74
DUy 0.00 0.00 0.00 4.77 0.00 0.00 9.33 46.23
TUyY 0.04 0.05 0.06 5.23 0.20 0.06 6.96 75.53
%GY 0.00 0.00 0.00 4.77 0.00 0.00 9.76 50.47
CPU, 0.25 0.31 2.62 13.06 1.00 6.83 26.31 91.26
#0pt, 4 4 4 3 4 4 2 0

F3 DLY 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
DUy 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
%GY 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
CPU3 1.52 1.73 53.83 407.46 7.03 2357.58 650.40 576.25
#0pts 4 4 4 4 4 4 4 4

« Deviations of the upper bounds from optimal values: %DU} =
100Uy —W*)/W*,i=0,...,3.
« Optimality gaps: %G} = 100(U}" — L)/L¥

Y,i=0,...,3.

Table 3 gives average values, over all the instances in each of
the classes C, 4 -5, of the above percentage deviations and gaps,
as well as the computing times (in seconds) required to obtain
each of the corresponding bounds. A maximum computing time
of 3600 seconds was established in all the tests, with the excep-
tion of instance 21_70_4B_E_S with formulation F3 for which, as
mentioned, we allowed to exceed that time limit in order to guar-
antee the optimality of the obtained solution. The table also gives
the total number of instances of the corresponding class solved to
proven optimality in each case. The heading of the table consists
of three rows indicating the number of calling ships (n), the pa-
rameter combinations (S/L-A/E), and the labels of the instances in
the corresponding class (Inst. labels), respectively. As can be seen,
each instance class Cy, 4 ¢ s is associated with one column. The nu-
merical results are summarized in four blocks of rows, the first
one, labeled HEUR, for the heuristic solution combined with the
LP bound of F1, is followed by one block for each of the formu-
lations F1, F2 and F3, each of them labeled as F, i=1,...,3, re-
spectively. Blocks HEUR, F; and F; have the same structure con-
sisting of five rows; the first three rows refer to %DL{, %DU}" and
%G}, respectively, row CPU; to computing times, and row #Opt;
gives the number of instances in each class optimally solved within
the maximum computing time. Block F, consists of seven rows,
the first two ones related to the outcome of formulation F2: av-
erage percentage deviations %DLY, and average computing times
for optimally solving F2 (TL,). The next two rows are related to
the outcome of the second phase of the algorithmic procedure we
have explained: average percentage deviations of the obtained up-
per bounds (%DUJ’) and average computing times (TU,). The final
three rows give the average percentage gaps at termination (%GY),
the total computing times (CPU, = TL, + TU,), and the number of
instances solved to proven optimality (#Opt;), which is given by
the number of instances in each class for which the optimality
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check based Proposition 2 indicated that the solution produced by
F2 was feasible for SBTP.

At a first glance, the results of HEUR may seem quite modest,
although a closer look highlights the following positive aspects:
the simplicity of the procedures used to obtain the lower and up-
per bounds, the quality of the LP bounds produced by formulation
F1, and the small computing times required to obtain these (initial)
lower and upper bounds. Indeed these results are outperformed by
those of F1, although it is somehow disappointing that the good
quality of the initial LP bounds does not result in a more effec-
tive exploration of the enumeration tree. As can be seen, only 10
out of these 32 benchmark instances were optimally solved within
the maximum time limit of one hour. Note that all the instances
optimally solved belong to classes where the type of service pa-
rameter is s =S, i.e., they have small service times. Among the in-
stances with large service times those corresponding with compo-
sition A (where the proportion of the different types of ships is
not the same) produced somewhat tighter lower bounds at termi-
nation; in particular those lower bounds coincided with the opti-
mal value for two additional instances in class Csg 4 4 ; and one
additional instance in C79_4 4 ;. Nevertheless, the overall results in-
dicate that while F1 produces very tight lower bounds in small
computing times, it has difficulties in producing feasible solutions
of good quality. In fact, for several unsolved instances, the upper
bound at termination was associated with a solution found by the
default heuristic at the root node.

On the contrary, the results shown in the block F2 indicate the
effectiveness of the 2-phase solution procedure based on formu-
lation F2. On the one hand, F2 produces extremely tight lower
bounds, which already correspond to SBTP optimal values for 15
and 10 out of the 16 instances with n =50 and n = 70, respec-
tively analyzed in Table 3. As can be seen, the value of %DLY for
the class Csg 4 1 ¢ is 0, which means that for instance 11, which
is the only instance of Csy 4 ; ¢ Where the outcome of F2 was not
feasible for SBTP, the obtained lower bound coincided with the op-
timal SBTP value. The values of %DLY for the classes C79 4 4 and
C70_4 1 _ are a little higher: 0.39 and 2.82, respectively. For C7g9 4 1 4
there is again one single instance (the one labeled 31) for which
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Table 4
Summary of numerical results with F2 for instances with b € {4, 8, 12} and n € {70, 100, 150}.
b n SIL  A/E  Inst. DLy Tl DUy TU, %Gy CPU, #0pt,
4 100 S A 33-36 0.00 12.14 3.75 2.01 3.75 14.15 3
E 37-40 0.00 16.97 0.00 0.08 0.00 17.05 4
L A 45-48 0.29 25.48 31.46 8.77 31.91 34.24 1
E 41-44 2.03 20.72 34.01 1.94 36.91 22.66 0
8 70 S A 61-64 0.00 0.30 0.00 0.12 0.00 0.41 4
E 57-60 0.00 0.32 0.00 0.12 0.00 0.45 4
L A 49-52 0.00 0.43 0.00 0.15 0.00 0.57 4
E 53-56 0.00 0.46 0.00 0.19 0.00 0.65 4
100 S A 65-68 0.00 0.42 0.00 0.16 0.00 0.58 4
E 77-80 0.00 0.52 0.00 0.12 0.00 064 4
L A 69-72 0.00 1.43 0.00 0.26 0.00 1.70 4
E 73-76 0.07 10.67 2.84 225.56 2.92 236.22 1
12 150 S A 93-96 0.00 0.77 0.00 0.21 0.00 0.98 4
E 81-84 0.00 0.83 0.00 0.33 0.00 1.16 4
L A 89-92 0.00 1.65 0.00 4.18 0.00 5.83 4
E 85-88 0.00 6.69 0.00 14.55 0.00 21.23 4
Table 5
Summary of numerical results with F3 for instances with be {4,8,12} and ne
{70, 100, 150}.
b n S[L  AJE Inst. %DLY %DU3" %Gy CPU3 #0pts3
4 100 S A 33-36 0.00 0.00 0.00 848.24 4
E 37-40 0.00 0.00 0.00 1112.21 4
L A 45-48 0.00 0.00 0.00 401.28 4
E 41-44 0.00 0.00 0.00 522.88 4
8 70 S A 61-64 0.00 0.00 0.00 3.19 4
E 57-60 0.00 0.00 0.00 3.51 4
L A 49-52 0.00 0.00 0.00 5.99 4
E 53-56 0.00 0.00 0.00 6.90 4
100 S A 65-68 0.00 0.00 0.00 5.75 4
E 77-80 0.00 0.00 0.00 6.64 4
L A 69-72 0.00 0.00 0.00 1030.30 4
E 73-76 0.00 0.00 0.00 3258.72 4
12 150 S A 93-96 0.00 0.00 0.00 9.45 4
E 81-84 0.00 0.00 0.00 12.76 4
L A 89-92 0.00 0.00 0.00 22.46 4
E 85-88 0.10 1.60 1.70 7173.10 2

the lower bound produced by F2 did not coincide with the optimal
SBTP value. Instead, none of the lower bounds obtained for the in-
stances of C7g 4 ; ¢ coincided with their optimal values, and their
percentage deviations range in 2.04-4.63. We would like to call the
attention on the computing times needed to optimally solve F2,
which for all instances with n =50 and n = 70 were smaller than
12 and 26 seconds, respectively.

Nevertheless, the best results were clearly obtained with for-
mulation F3, which produced proven optimal solutions for all the
considered instances. The computing times are remarkable. All in-
stances in classes Csg 4 s 4 and Csg 4 s g were solved in less than
2.5 seconds; the computing times of instances in Csp 4 | 4 range in
2.9-73.1 seconds, except for instance 15, which required 128.4 sec-
onds. Instances in Csqg 4 | ¢ were solved in less than 275 seconds,
with the exception of instance 9, which required 128.4 seconds.
As could be expected, computing times increase with the num-
ber of calling ships, although the computing times are still very
small. Only two out of the 16 instances with n = 70 required more
than 1000 seconds: instance 21, which, as mentioned, consumed
9,368.14 seconds, and instance 31, which consumed 1,091.5 sec-
onds.

6.2. Numerical results for larger instances

Next we present the results we have obtained with the in-
stances with b € {8,12}, all of which have a number of calling
ships n e {70, 100, 150}. Taking into account the results obtained

m

with the smaller instances, now we have tested the 2-phase al-
gorithm based on F2 and formulation F3. While we did not set a
maximum time limit for the 2-phase algorithm, as for all instances
the procedure terminated in small computing times, we did set a
maximum time limit of 10,800 seconds (three hours) for the solu-
tion of formulation F3. To facilitate the readability of the numeri-
cal results they are summarized in two different tables: Table 4 for
the 2-phase procedure based on F2 and Table 5 for the results ob-
tained with formulation F3. The structure of both tables is similar:
each row corresponds to a class of instances and, except for the
columns showing instance characteristics, there is one column for
each of the items analyzed. Hence, Table 4 has seven such columns,
respectively labeled with %DLY, TL,, %DUY’, TU,, %Gy, CPU,, and
#0pt,, whereas Table 5 has five such columns, respectively labeled
with %DLY, %DUY", %GY, CPUs, and #0pt3. The meaning of the head-
ings is the same as in Table 3.

We can again appreciate the excellent performance of both the
2-phase solution procedure and formulation F3. The algorithmic
scheme based on F2 produced a provable optimal solution for 53
out of the 64 larger instances, and for the instances where an op-
timal solution was not found the percentage deviations %DLY are
extremely small. The largest such deviations appear in Cigo 4 1 E,
in particular for instance 44_50_4B_E_L, where the percentage de-
viation of the lower bound produced by F2 and the optimal value
is 3.85. Other classes of instances where optimal SBTP solutions
were not always found are C100.4.5 A C100.4. L A» and ClOO_S_L_E- Still,

for most instances where F2 did not produce an optimal solution,
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Table 6
Comparison of F2, F3 and GSP*.
F2 F3 GSP+
b n S/L  A/E Inst %GY CPU #0pt;  %GY CPU #0pts %G} CPU #np_Opt  #Opt
4 50 S A 1-4 0.00 025 4 0.00 152 4 0.00 588 0 4
E 5-8 0.00 031 4 0.00 173 4 0.00 623 0 4
L A 13-16 0.00 262 4 0.00 5383 4 9.92 8103.40 2 1
E 9-12 4.77 13.06 3 0.00 40746 4 77.23 10,800.00 1 0
70 S A 17-20 0.00 1.00 4 0.00 7.03 4 4.63 270945 0 3
E 21-24 0.00 683 4 0.00 235758 4 0.00 67398 0 4
L A 29-32 9.76 2631 2 0.00 65040 4 9.82 4703.08 0 3
E 25-28 5047 9126 0 0.00 576.25 4 3.94 333065 1 3
100 S A 33-36 3.75 1415 3 0.00 84824 4 12.06 7189.75 1 2
E 37-40 0.00 17.05 4 0.00 111221 4 0.00 2525.68 0 4
L A 45-48 1.91 3424 1 0.00 401.28 4 5.89 438163 1 3
E 41-44 6.91 2266 0 0.00 52288 4 8.33 352625 1 3
8 70 S A 61-64 0.00 041 4 0.00 319 4 0.00 1543 0 4
E 57-60 0.00 045 4 0.00 351 4 0.00 1740 O 4
L A 49-52 0.00 057 4 0.00 599 4 0.00 2345 0 4
E 53-56 0.00 065 4 0.00 690 4 0.00 2495 0 4
100 S A 65-68 0.00 058 4 0.00 575 4 0.00 2395 0 4
E 77-80 0.00 064 4 0.00 6.64 4 0.00 2635 0 4
L A 69-72 0.00 1.70 4 0.00 1030 304 0.00 33720 0 4
E 73-76 292 23622 1 0.00 3258.72 4 951.74  10,800.00 O 0
12 150 S A 93-96 0.00 098 4 0.00 945 4 0.00 6450 0 4
E 81-84 0.00 116 4 0.00 1276 4 0.00 93.78 0 4
L A 89-92 0.00 583 4 0.00 2246 4 0.00 18250 0 4
E 85-88 0.00 2123 4 1.70 717310 2 25.21 743780 0 2
# Instances Optimally solved in total: 78 94 7 76

the obtained lower bound coincides with the optimal SBTP value,
the only exceptions being instance 46_100_4B_E_L with a percent-
age deviation of 1.18 and instance 76 with a percentage deviation
of 0.29.

While the lower bounds produced by F2 are optimal or quasi-
optimal, the quality of the upper bounds is not so high for in-
stances where the optimality check did not certify the optimality
of the obtained solution. This is not surprising, given the simplicity
of the second phase, which produces a feasible solution in which
the assignment of served ships to berths is dictated by the out-
come of AP(Z, h), despite the fact that the optimality check has
tested negative, which is a rather clear indication that such assign-
ment is probably not an optimal one. Still, the upper bounds that
we obtain in such cases are, in general, quite tight, with the excep-
tion of those for instances in classes Cigg 4 1 4 and Cipg 4 | k.

Note that all the instances that were not optimally solved with
the procedure based on F2 correspond to classes with high val-
ues of the demand ratio R = D/B. In particular, for Cigg_4 | g, which
produced the largest percentage deviation gaps, R = 1.97 (the over-
all demand is nearly twice as service capacity), which is the largest
value among all classes. Classes C1pg_4_s a» C100.4_1 4> and Cio0 8.1 E
also have values of R > 1.

We finally observe that the total computing times required by
the 2-Phase procedure are remarkably small. Average total com-
puting times are always below 250 seconds, even for the most
demanding class in that sense, Cigg g | . Notice that the aver-
age computing times of the first phase in which formulation F2
is solved to optimality, TL,, are below 26 seconds for all classes
of instances. The most demanding individual instance for the first
phase was instance 45, which required less than 35 seconds. The
first phase consumed less than five seconds for all instances with
n = 150, with the exception of instance 85, which required nearly
16 seconds. In fact the computing load of the 2-phase proce-
dure relies essentially on the second phase and, in particular, on
the solution on the berth allocation problem AP(z, h), which be-
comes more demanding, not only as the sizes of the instances in-
crease, but mainly as the demand ratio R increases. We can ob-
serve that the largest average computing time for the second phase
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of 236.22 seconds corresponds again to class Cygo_g 1 g, Which, as
mentioned, has the largest value of R.

We now focus our attention on the results of formulation F3,
which are summarized in Table 5. As can be seen, 62 out of the
64 instances of the considered classes were solved to proven op-
timality within the maximum time limit of 10,800 seconds. The
only two instances that were not solved to optimality belong to
class Ci59_ 121 g, Namely instances 85 and 86. Since both of these
instances were optimally solved with the 2-phase procedure, we
know their optimal values, so the obtained results can be better
assessed. In particular, their optimal total waiting times are 440
and 362, respectively. At termination, the lower and upper bounds
on the total waiting time that we obtained for instance 85 are
LY =439.30 and Uy’ = 467, respectively, with corresponding per-
centage deviations of DLY = 0.16% and DUy’ = 6.14%. For instance
86 the obtained bounds are LY =361.16 and U}’ = 363, resulting
in percentage deviations of DLY = 0.23% and DU}’ = 0.51%. Thus, in
both cases by rounding up the lower bound we obtain the optimal
values. While the upper bound of instance 86 differs in just one
unit from the optimal value, the best solution found for instance
85 has a value of 467, with a difference of 27 from the optimal
value.

In general, the computing times needed to solve F3 are no-
tably below the maximum time limit. Apart from instances 85-
86, which reached the limit, only three instances (71, 75 and 76)
required more than one hour of computing time; their respective
computing times being 4044, 4376 and 6043 seconds.

Similarly to what we have observed with the 2-phase algo-
rithm, the difficulty for solving an instance clearly depends on
its demand rate: the higher average computing times are, in gen-
eral again associated with instances with values of R very close to
1. The two instances that reached the limit belong have n = 150,
b =12, i.e. 228,000 binary variables h, and have a demand rate
R = 0.96, which, is quite close to 1, and is the largest demand rate
among all classes of instances with n = 150. This can be clearly ap-
preciated in Fig. 3 where we have plotted the computing times of
the full set of individual instances both for F2 and F3.
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Fig. 3. Computing times for F2, F3 for the full set of benchmark instances.
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Fig. 4. Average computing times for F2, F3 and GSP*, for instances with b = 4.

A detailed look at the individual lower and upper bounds for
each of the instances (see Tables 7-12 in the Appendix) highlight
the remarkable quality of the lower bounds obtained with both F2
and F3, which already are the optimal value or deviate very few
units from it. Moreover, these bounds (or others with less than
one unit of difference from them) are usually attained already at
the root node of the enumeration tree. Obtaining optimal or near-
optimal feasible solutions is usually more demanding although the
obtained results are equally satisfactory, particularly those of F3,
which solved to proven optimality all but two instances. In total
only five out of the 96 considered instances consumed more than
one hour.

6.3. Comparison of F2 and F3 with the results of Iris et al. (2018)

We conclude this section with a comparison of our numeri-
cal results with those of Iris et al. (2018) with the same set of
benchmark instances. In particular, we compare F2 and F3 with
the so-called formulation GSP*, which produced the best results
among the alternatives tested computationally in Iris et al. (2018).
The comparison is summarized in Table 6, where the full set of
instances is considered and each row corresponds to a class of
instances. The table contains three blocks of columns, for the 2-
phase algorithm based on F2, for formulation F3, and for formula-
tion GSP*, respectively. Each block has a first column for average
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percentage optimality gaps at termination (labeled %G"), a second
column for average computing times (labeled CPU), and a final col-
umn showing the number of instances solved to proven optimality
(#0pt). The block GSP* contains another column (#np_Opt), just
before the final one, indicating the number of instances for which
the best solution found was optimal, although its optimality could
not be proven within the allowed computing time. Since the de-
viations reported in Iris et al. (2018) are computed relative to the
overall objective function value, from the results reported in the
paper, for each instance we have computed the deviations %G" rel-
ative to the waiting times, by subtracting from the reported objec-
tive function values the constant penalty value P*.

The results of Table 6 show that both the 2-phase procedure
based on F2 and F3 outperform GSP* in terms of the number of so-
lutions found whose optimality could be proven. This superiority is
particularly relevant in terms of the computational effort required
to obtain the results, as can be observed in Figs. 4 and 5, where
instances have been grouped by classes with the same parameter
values and the horizontal axis indicates the average demand ratio
R=D/C. In all the figures the vertical axis considers a maximum
of 18,000 seconds, except for the comparison for n =70 and b = 8
(left most image of Fig. 5) where the maximum of the vertical axis
is only 60 seconds, because the computing times of all instances
and compared formulations were always below that time limit.
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7. Conclusions

In this paper we have studied the SBTP in which there is a set
of ships cyclically calling for service at a port. The STBP combines
strategic decisions for selecting the ships to serve and operational
decisions for setting the service times for the selected ships, with
the objective of minimizing a penalty for the rejected ships plus
the total sum of the waiting times of the accepted ships. Several
formulations have been developed. All of them use binary vari-
ables that classify served ships depending on whether or not their
service starts during their arrival cycle or in the next one. This
helps modeling the STBP, since a closed linear expression can be
obtained for the waiting times. The most basic formulations pre-
sented, which, in addition use predecessor variables to identify the
sequence of calling ships served consecutively in the same berth,
are outperformed by alternative formulations that avoid such vari-
ables, in which alternative binary decision variables are defined to
determine the actual time period in which service to each ship
starts. Two such alternatives have been introduced and studied: F2
where the new decision variables are aggregated over all berths,
and F3 where variables consider in addition the index of the berth
where the ship is served. While F2 is a relaxation of SBTP, it can
be solved in remarkably small computing times and, together with
a simple check that indicates whether or not its optimal solution
is also optimal for SBTP, can be used very effectively to produce
optimal or near-optimal SBTP solutions in a 2-phase solution algo-
rithm. F3 is an exact formulation that produces SBTP solutions of
guaranteed optimality. The proposed formulations have been com-
putationally tested on a set of benchmark instances from the lit-
erature. The obtained numerical results assess the efficiency of the
2-phase solution procedure based on F2 and on formulation F3.
Both alternatives outperform the so-called formulation GSP* of Iris
et al. (2018), which is the best SBTP formulation in the literature,
both in terms of the number of provable optimal solutions that
they produce and the computing time requirements.

The proposed formulations can be extended in several ways to
deal with more general versions of the SBTP. At the strategic level,
one can easily incorporate requirements imposing that a given sub-
set of ships must be necessarily served, either by fixing at value
one their associated z;, variables or by increasing arbitrarily their
rejection penalty. Another straightforward extension is to consider
ship-dependent penalties for the rejected ships, not necessarily
proportional to their service times.

A more challenging extension is to consider situations in which
the number of available berths is time dependent. This would al-
low to consider periods of lower activity like, for instance, Sundays.
Let b;, t € T denote the number of berths available at time period t,
then the right hand side of the berths availability constraint (9a) at
time period t € T of formulation F2 can be easily substituted by b;.
Formulation F3 can also be easily adapted by considering a time-
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dependent index set of available berths Ry = {1,...,b¢}, t € T, and
by stating the feasibility constraints (16a), for r e R;, t € T.

Finally, a further non-trivial extension of the SBTP would be to
consider scenarios where different calling companies have differ-
ent cycle lengths. In its turn this would require to propose new
formulations as the current ones are no longer valid.

Acknowledgments

This research was partially funded by the Spanish Ministry of
Economy and Competitiveness and ERDF funds [Grant PID2019-
105824GB-I00 (MINECO/FEDER)]. This support is gratefully ac-
knowledged. The authors are thankful to Eduardo Lalla-Ruiz who
kindly made available to us the set of benchmark instances.

Appendix A. Tables with detailed results

In this appendix we give detailed results for the individual in-
stances obtained with each of the tested formulations and solu-
tion alternatives, as well as for the formulation GSP* of Iris et al.
(2018). In all cases, the bounds that we analyze correspond to
waiting times. That is, if the value of a solution is W + P*, where
W =3,y w; is the total waiting time of the served ships and P*
the constant penalty term, we ignore the term P*, and only con-
sider the value W. Otherwise, relatively large differences in the
value of W may somehow be hidden behind the large value of the
penalty term P*. In all cases, the bounds on the overall objective
function value can be obtained by adding the penalty value P*.

Tables 7 and 8 refer to instances with four berths and a number
of calling ships n = 50 and n = 70, respectively. Both tables have a
similar structure. The meaning of the columns is as follows: Entries
in bold indicate best-known results.

e The first three columns give the numerical instance label, the
value of the penalty (P*), and the optimal value of the total
waiting time (W*) of the instance, respectively.

Block HEUR refers to the feasible solution obtained with the
procedure described in Section 5.5 in which a variation of
AP(z,h) is solved with V=V, hy =1 if an only if t = a;, i e V,
Constraints (15b) stated as “<” inequalities, and the additional
mother-ship constraints ", g Air = Z4(;), i € V. In the objective
function, the weight that has been used for the combination of
the service and overlap criteria is p = 100.

The values reported in this block are Uy, %Uy = 100Uy —
W*)/W*, and Ty, for the overall waiting time, its per-
centage deviation from the optimal total waiting time,
and the computing time required to obtain the solution
respectively.

Blocks F1, F2, F3 and GSP™ for the results of formulations F1, F3
and GSP* formulation of Iris et al. (2018), respectively.

The values reported in these blocks are in each case L, UY,
%Gy =100(UY — L)/Ly, and T;, for the overall waiting times of
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Table 7
Results on instances with 50 ships and 4 berths.
P* w*  HEUR F1 F2 F3 GSp+
uy wuy T Ly uy %Gy T Ly %Ly T, Feas. Uy %Uy Ty, L Ly Uy %Gy Ts Ly Uy %Gy T
1 0 1 11 000 05 110 11 0.00 1.0 11 0.00 0.2 Y 11 0.00 004 02 11.0 11 000 14 110 11 0.00 5.6
2 0 13 16 2300 06 13.0 13 0.00 32 13 0.00 0.2 Y 13 0.00 004 02 130 13 000 20 13.0 13 0.00 6.2
3 0 16 23 4375 05 160 16 0.00 3.0 16 0.00 0.2 Y 16 0.00 005 03 16.0 16 000 14 160 16 0.00 6.1
4 0 14 18 2857 05 140 14 0.00 30 14 0.00 02 Y 14 0.00 004 03 140 14 000 13 140 14 0.00 5.6
5 0 22 25 1364 04 220 22 0.00 1.5 22 0.00 0.2 Y 22 0.00 005 03 220 22 0.00 14 220 22 0.00 6.1
6 0 23 38 6522 0.6 230 23 0.00 45 23 0.00 03 Y 23 0.00 004 03 230 23 0.00 1.7 230 23 0.00 6.3
7 0 62 97 5645 12 620 62 000 176 62 0.00 0.3 Y 62 0.00 004 03 620 62 000 22 620 62 0.00 6.4
8 0 23 28 2174 04 23.0 23 0.00 33 23 0.00 03 Y 23 000 005 03 230 23000 16 230 23 0.00 6.1
9 300,000 166 372 124.10 7.2 156.6 372 137.59 3599.7 166 0.00 11.6 Y 166 0.00 0.04 11.7 166.0 166 0.00 9452 149.9 172 13.31 10800.0
10 270,000 236 494 109.32 9.0 236.0 494 109.32 3599.4 236 0.00 8.7 Y 236 0.00 0.04 8.7 236.0 236 0.00 3749 211.0 236 10.59 10800.0
11 350,000 728 914 25.55 27.4 726.1 914 25.89 3600.2 728 0.00 8.7 N 867 19.09 20.79 29.4 728.0 728 0.00 250.0 359.9 1012 89.57 10800.0
12 140,000 252 371 47.22 182.7 252.0 371 47.22 3600.0 252 0.00 2.4 Y 252 0.00 0.05 2.5 252.0 252 0.00 59.7 142.2 286 57.06 10800.0
13 0 291 440 51.20 6.8 291.0 423 4536 3600.1 291 0.00 6.6 Y 291 0.00 0.05 6.6 291.0 291 0.00 73.1 259.6 291 10.79 10800.0
14 0 228 319 3991 29 228.0 313 37.28 3599.5 228 0.00 1.3 Y 228 0.00 0.07 1.3 228.0 228 0.00 109 2139 231 7.50 10800.0
15 0 216 351 6250 6.3 215.1 351 63.24 3599.4 216 0.00 2.1 Y 216 0.00 0.06 2.2 216.0 216 0.00 128.4 180.6 216 16.39 10800.0
16 0 107 167 56.07 1.9 107.0 136 27.10 3602.1 107 0.00 0.3 Y 107 0.00 0.06 0.4 107.0 107 0.00 29 107.0 107 0.00 13.6
Table 8
Results on instances with 70 ships and 4 berths.
P* w* HEUR F1 F2 F3 GSP*
uy sy T Ly uy %Gy h LY %Ly T, Feas. Uy %Uy Ty, T Ly Uy %GY T3 Ly Uy %GY T
17 0 239 349 46.03 12.9 239.0 331 38.49 3599.6 239 0.00 14 Y 239 0.00 007 1.47 239.0 239 0.00 149 205.0 243 15.90 10800.0
18 0 56 82 4643 08 56.0 61 893 3599.7 56 0.00 0.6 Y 56 0.00 0.08 0.66 56.0 56 0.00 35 56.0 56 0.00 13.1
19 0 64 85 3281 07 640 64 0.00 709 64 0.00 05 Y 64 000 060 110 640 64 0.00 23 64.0 64 0.00 8.6
20 0 104 146 4038 0.6 104.0 104 0.00 114.9 104 0.00 0.7 Y 104 0.00 0.07 0.76 104.0 104 0.00 7.4 104.0 104 0.00 16.1
21 0 612 739 20.75 2.9 608.5 734 20.63 3599.7 612 0.00 22.7 Y 612 0.00 0.07 22.74 612.0 612 0.00 9368.1 612.0 612 0.00 2384.1
22 0 217 313 4424 1.2 217.0 293 35.02 3599.7 217 0.00 0.9 Y 217 0.00 0.06 1.02 217.0 217 0.00 6.4 217.0 217 0.00 221
23 0 331 407 2296 3.8 331.0 404 22.05 3600.2 331 0.00 1.0 Y 331 0.00 006 1.03 331.0 331 0.00 19.6 331.0 331 0.00 24.5
24 0 215 343 59.53 8.1 214.8 340 58.27 3599.8 215 0.00 24 Y 215 0.00 006 252 215.0 215 0.00 36.2 215.0 215 0.00 265.2
25 2,500,000 147 362 146.26 6.9 142.6 362 153.79 3599.3 144 2.04 242 N 206 40.14 8.84 33.03 147.0 147 0.00 768.3 127.0 147 13.61 10800.0
26 2,420,000 86 196 127.91 3.9 82.2 196 138.50 3600.3 84 233 9.4 N 130 51.16 227.31 236.69 86.0 86 0.00 5349 86.0 86 0.00 7789
27 2,590,000 87 167 91.95 3.4 80.6 167 107.22 3599.7 85 2.30 255 N 133 5287 9.80 35.25 87.0 87 0.00 6093 87.0 87 0.00 693.5
28 2,740,000 108 258 138.89 6.7 103.0 258 150.56 3600.1 103 4.63 3.9 N 152 40.74 56.16 60.07 108.0 108 0.00 392.5 108.0 108 0.00 1050.2
29 1,410,000 153 305 99.35 3.5 150.1 305 103.25 3602.1 153 0.00 23.5 Y 153 0.00 23.55 47.05 153.0 153 0.00 423.7 112.0 156 28.76 10800.0
30 1,480,000 100 230 130.00 2.9 90.5 230 154.06 3600.2 100 0.00 243 N 128 28.00 230 26.56 100.0 100 0.00 583.3 100.0 100 0.00 6436.3
31 1,290,000 129 301 133.33 2.3 123.0 301 144.68 3599.8 127 1.55 11.4 N 141 930 1.90 13.29 129.0 129 0.00 1091.5 129.0 129 0.00 658.1
32 1,290,000 183 439 139.89 5.1 179.9 439 144.08 3599.9 183 0.00 18.3 Y 183 0.00 0.07 18.35 183.0 183 0.00 503.1 183.0 183 0.00 917.9
Table 9
Results on instances with 100 ships and 4 berths.
P* w* F2 F3 GSP+
Ly %LY 1., Feas. Uy %0y Ty, T LY uy %Gy T Ly uy %Gy T
33 770,000 219 219 0.00 16.59 Y 219 0.00 0.07 16.6 219.0 219 0.00 4299 219.0 219 0.00 3776.1
34 620,000 132 132 0.00 13.19 Y 132 0.00 0.07 133 1320 132 0.00 5606 127.0 132 3.94 10800.0
35 640,000 180 180  0.00 7.32 Y 180 0.00 0.09 7.4 180.0 180 0.00 719.2 180.0 180 0.00 33829
36 700,000 300 300 0.00 11.48 N 345 15.00 7.80 19.3 3000 300 0.00 16833 2245 324 4432  10800.0
37 2,240,000 86 86 0.00 2295 Y 86 0.00 0.08 23.0 86.0 86  0.00 766.0 86.0 86 0.00 773.1
38 1,880,000 88 88  0.00 6.81 Y 88 0.00 0.09 7.0 88.0 88  0.00 887.3 88.0 88 0.00 2718.2
39 1,840,000 115 115 0.00 25.71 Y 115 0.00 0.08 258 1150 115 0.00 12892 1150 115 0.00 3346.8
40 2,140,000 145 145 0.00 12.42 Y 145 0.00 0.08 125 1450 145 0.00 15064 145.0 145 0.00 3264.6
41 5,760,000 42 41 238 1934 N 53  26.19 1.21 20.5 42.0 42 0.00 2723 42.0 42 0.00 842.6
42 5,980,000 53 52 189 25.14 N 78  47.17 2.19 27.3 53.0 53 0.00 586.1 53.0 53 0.00 1029.9
43 5,780,000 54 54 0.00 2047 N 65  20.37 1.42 21.9 54.0 54  0.00 782.8 54.0 54 0.00 1432.5
44 5,970,000 52 50 385 1793 N 74 4231 2.92 20.8 52.0 52 0.00 450.3 39.0 52 33.33  10800.0
45 4,670,000 64 64 0.00 34.90 N 76  18.75 0.99 35.9 64.0 64  0.00 311.6 51.8 64 23,55 10800.0
46 4,440,000 85 84 118 16.29 N 127 4941 3211 48.40 85.0 85  0.00 618.8 85.0 85 0.00 4010.6
47 4,740,000 62 62 0.00 27.73 Y 62 0.00 0.09 27.82 62.0 62  0.00 375.9 62.0 62 0.00 924.3
48 4,530,000 52 52 000 2298 N 82  57.69 1.88 24.9 52.0 52 0.00 298.8 52.0 52 0.00 1791.6

the lower and upper bounds obtained with the corresponding
formulation, their percentage optimality gaps, and the comput-
ing times required to obtain the solution respectively. A time
limit of one hour (3600 seconds) was set for F1, whereas this
limit was of three hours for F3 and GSP*.

In the block GSP* the bounds and deviations for the waiting
times have been calculated from the results reported in Iris
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et al. (2018). The computing times have been reproduced from
the referenced paper.

Block F2 refers to the results of the 2-phase algorithm based
on F2. Its first three columns give information on the output
of the first phase: LY, %Ly = 100(W* —LY)/W*, and Ty, for the
overall waiting time of the optimal solution of F2, its percent-
age deviation from the optimal waiting time, and the comput-
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Table 10
Results on instances with 70 ships and 8 berths.
P* w* F2 F3 GSP+
v %y T, Feas UY %Y T, L LY uyoo%ey T L I 7o
49 0 39 39 0.00 0.4 Y 39 0.00 0.13 0.6 39.0 39 0.00 5.8 39.00 39 0.00 26.4
50 0 10 10 0.00 0.4 Y 10 0.00 0.17 0.6 10.0 10 0.00 53 10.00 10 0.00 20.1
51 0 8 8 0.00 0.5 Y 8 0.00 0.14 0.6 8.0 8 0.00 5.8 8.00 8 0.00 19.9
52 0 26 26 0.00 0.4 Y 26 0.00 0.15 0.6 26.0 26 0.00 7.0 26.00 26 0.00 274
53 0 32 32 0.00 0.4 Y 32 0.00 0.20 0.6 32.0 32 0.00 7.1 32.00 32 0.00 28.1
54 0 11 11 0.00 0.5 Y 11 0.00 0.20 0.7 11.0 11 0.00 6.8 11.00 11 0.00 211
55 0 22 22 0.00 0.4 Y 22 0.00 0.20 0.6 22.0 22 0.00 6.6 22.00 22 0.00 28.6
56 0 44 44 0.00 0.5 Y 44 0.00 0.17 0.7 44.0 44 0.00 7.2 44.00 44 0.00 22.0
57 0 0 0 0.00 0.3 Y 0 0.00 0.13 0.5 0.0 0 0.00 34 0.00 0 0.00 16.0
58 0 1 1 000 03 Y 1 000 0.14 05 1.0 1 000 34 1.00 1 0.00 20.1
59 0 0 0 0.00 0.3 Y 0 0.00 0.12 0.4 0.0 0 0.00 3.7 0.00 0 0.00 181
60 0 0 0 0.00 0.3 Y 0 0.00 0.11 0.4 0.0 0 0.00 3.6 0.00 0 0.00 15.4
61 0 0 0 0.00 0.3 Y 0 0.00 0.12 0.4 0.0 0 0.00 33 0.00 0 0.00 16.2
62 0 0 0 0.00 0.3 Y 0 0.00 0.13 0.4 0.0 0 0.00 3.2 0.00 0 0.00 15.2
63 0 0 0 0.00 0.3 Y 0 0.00 0.11 0.4 0.0 0 0.00 31 0.00 0 0.00 143
64 0 1 1 0.00 0.3 Y 1 0.00 0.11 0.4 1.0 1 0.00 3.2 1.00 1 0.00 16.0
Table 11
Results on instances with 100 ships and 8 berths.
P* w* F2 F3 GSP*
ooy T, Feas. UY — %UY Ty, T I wooo%ey T Ly uy %Gy T
65 0 0 0 0.00 0.4 Y 0 0.00 0.1 0.6 0.0 0 0.00 53 0.0 0 0.00 23.0
66 0 22 22 0.00 0.4 Y 22 0.00 0.2 0.6 22.0 22 0.00 6.1 22.0 22 0.00 25.8
67 0 4 4 0.00 0.4 Y 4 0.00 0.2 0.6 4.0 4 0.00 5.9 4.0 4 0.00 23.6
68 0 1 1 0.00 0.4 Y 1 0.00 0.2 0.6 1.0 1 0.00 5.7 1.0 1 0.00 234
69 0 74 74 0.00 0.6 Y 74 0.00 0.2 0.9 74.0 74 0.00 8.2 74.0 74 0.00 29.2
70 0 86 86 0.00 0.8 Y 86 0.00 0.3 1.1 86.0 86 0.00 9.2 86.0 86 0.00 54.5
71 0 304 304 0.00 2.2 Y 304 0.00 0.3 25 304.0 304 0.00 4044.3 304.0 304 0.00 11723
72 0 265 265 0.00 2.1 Y 265 0.00 0.3 24 265.0 265 0.00 594  265.0 265 0.00 92.8
73 160,000 469 469 0.00 9.6 Y 469 0.00 16.5 26.1 469.0 469 0.00 389.5 317.0 662 108.83 10800.0
74 490,000 267 267 0.00 13.7 N 279 449 362.2 375.9 267.0 267 0.00 2226.8 239.0 465 94.56 10800.0
75 80,000 718 718 0.00 10.1 N 742 334 71.9 820 7180 718 0.00 43756 631.0 743 17.75  10800.0
76 80,000 339 338 0.29 9.2 N 351 3.54 4516 4608 339.0 339 0.00 6043.0 303.0 11,168 3585.81 10800.0
77 0 5 5 0.00 0.5 Y 5 0.00 0.1 0.7 5.0 5 0.00 6.5 5.0 5 0.00 25.6
78 0 7 7 0.00 0.5 Y 7 0.00 0.1 0.6 7.0 7 0.00 6.3 7.0 7 0.00 27.8
79 0 16 16 0.00 0.5 Y 16 0.00 0.1 0.6 16.0 16 0.00 6.5 16.0 16 0.00 27.6
80 0 1 1 0.00 0.5 Y 1 0.00 0.1 0.6 1.0 1 0.00 7.3 1.0 1 0.00 244
Table 12
Results on instances with 150 ships and 12 berths.
P* w* F2 F3 GSP*
Ly Wy T, Feas. Uy %Y T, D Ly IA e A Ly T Te A
81 0 0 0.0 0.00 0.9 Y 0 0.00 0.3 1.1 0.0 0 0.00 11.1 0.0 0 0.00 98.7
82 0 6 6.0 0.00 0.8 Y 6 0.00 0.3 1.1 6.0 6 0.00 13.2 6.0 6 0.00 86.2
83 0 15 15.0 0.00 0.8 Y 15 0.00 0.3 1.1 15.0 15 0.00 13.8 15.0 15 0.00 89.9
84 0 20 20.0 0.00 0.8 Y 20 0.00 0.5 13 20.0 20 0.00 12.9 20.0 20 0.00 100.3
85 0 440 4400 000 153 Y 440 0.00 75 227 4393 467 631 10801.8 3840 464 20.83  10800.0
86 0] 362 362.0 0.00 4.7 Y 362 0.00 121 16.8 361.2 363 0.51 10803.4 362.0 362 0.00 3511.0
87 0 285 285.0 0.00 23 Y 285 0.00 17.5 19.8 285.0 285 0.00 782.9 285.0 285 0.00 4640.2
88 0 250 250.0 0.00 4.4 Y 250 0.00 211 255 250.0 250 0.00 6304.3 165.0 297 80.00 10800.0
89 0 74 74.0 0.00 1.1 Y 74 0.00 3.2 43 74.0 74 0.00 151 74.0 74 0.00 150.0
90 0 87 87.0 0.00 24 Y 87 0.00 5.1 7.5 87.0 87 0.00 18.4 87.0 87 0.00 273.0
91 0 22 22.0 0.00 1.0 Y 22 0.00 4.3 53 22.0 22 0.00 15.9 220 22 0.00 87.0
92 0 312 312.0 0.00 2.1 Y 312 0.00 41 6.2 312.0 312 0.00 40.5 312.0 312 0.00 220.0
93 0 0 0.0 0.00 0.8 Y 0 0.00 0.2 1.0 0.0 0 0.00 9.8 0.0 0 0.00 66.0
94 0 0 0.0 0.00 0.8 Y 0 0.00 0.2 1.0 0.0 0 0.00 8.2 0.0 0 0.00 62.2
95 0 0 0.0 0.00 0.8 Y 0 0.00 0.2 1.0 0.0 0 000 10.1 0.0 0 0.00 64.9
96 0 1 1.0 0.00 0.7 Y 1 0.00 0.2 0.9 1.0 1 0.00 9.6 1.0 1 0.00 64.9

ing times required to optimally solve F2 respectively. The next
four columns refer to the second phase of the algorithm. The
entries of Feas. are Y or N depending on whether or not the out-
come of the feasibility check based on the auxiliary subproblem
AP(z, h) establishes the optimality for the SBTP of the solution
of F2; columns Uy, %U}" = 100(Uy" — W*)/W*, and Ty,, give the
total waiting time of the feasible solution obtained in the sec-

ond phase of the algorithm, its percentage deviation from the
optimal value W*, and the computing time consumed in the
second phase of the algorithm. The final column T, = T;, + Ty,
gives the total time.

Tables 9 -12 refer to the larger instances with b=4 and n =

100 (Table 9), b =8 and n € {70, 100} (Tables 10 and 11), and b =

12

116

and n = 150 (Table 12). For these instances we report results



E. Ferndndez and M. Munoz-Marquez

referring to formulations F2, and F3 with a maximum computing
time of three hours. The meaning of the different columns is the
same as explained above.
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