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Abstract
In this paper, we deal with minimum cost b-matching problems on graphs where 
the nodes are assumed to belong to non-necessarily convex regions called neigh-
borhoods, and the costs are given by the distances between points of the neighbor-
hoods. The goal in the proposed problems is twofold: (i) finding a b-matching in the 
graph and (ii) determining a point in each neighborhood to be the connection point 
among the edges defining the b-matching. Different variants of the minimum cost 
b-matching problem are considered depending on the criteria to match neighbor-
hoods: perfect, maximum cardinality, maximal and the a–b-matching problems. The 
theoretical complexity of solving each one of these problems is analyzed. Different 
mixed integer non-linear programming formulations are proposed for each one of 
the considered problems and then reformulated as Second Order Cone formulations. 
An extensive computational experience shows the efficiency of the proposed formu-
lations to solve the problems under study.

Keywords  Matching · Neighborhoods · SOC formulations

1  Introduction

Matching problems are among the most well-studied problems in combinatorial 
optimization. The original motivations of the problem were minimizing transporta-
tion costs and optimally assigning personnel to job positions, although many more 
applications of matching problems can be formulated as optimization problems 
defined on networks. Matching theory has been even used in the solution of linear 
systems. In Schenk et  al. [33] proposed an alternative technique to the traditional 
pivoting strategies to factorize matrices based on symmetric weighted matchings. 
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Recently, matching theory has been used for modeling and analyzing wireless 
resource allocation in a wireless network [24], where a matching was essentially 
an allocation between resources and users. Many real world applications are usu-
ally modelled throughout the use of networks. However, very often the exact loca-
tion of the nodes is unknown or simply, we have to choose a location for the node 
within a given region. Thus, the assumption of modelling the nodes by points with 
a priori known location should be revised. In this sense, we propose to consider a 
region where the location of a node can lie, that is usually referred in the literature 
as neighborhood, see Arkin and Hassin [3], Dorrigiv et al. [14], Gentilini et al. [20] 
among others. In this paper, we deal with matching problems on graphs where nodes 
are points of their corresponding neighborhoods. For simplicity, we will say that the 
nodes of the graph are represented by neighborhoods.

A matching of a graph is a subgraph in which each node has a degree of at most 
one. A maximum matching is a matching of maximum cardinality, that is, a match-
ing with the greatest possible number of edges. If each edge has an associated 
weight, the maximum weight matching is a matching which maximizes the sum of 
the weights. Alternatively, edges may have costs, and the minimum cost matching 
consists of finding a matching with the lowest possible cost, satisfying some specific 
characteristic. In particular, the minimum cost maximal matching consists of finding 
a maximal matching (no other edge can be added to it while keeping the property 
of being a matching) which minimizes the sum of the costs of all the edges in the 
matching. There are excellent surveys on Matching Theory by Gerards [21], Lovasz 
and Plummer [25], and Pulleyblank [32].

Generalizations of the matching problem consider more general degree con-
straints. These generalizations lead to so called b-matchings or f-factors [19, 21, 
25]. The b-matching problems considered in this paper are those matching problems 
where each node is met by at most b edges and the same edge can be used at most 
once. Important applications of b-matching problems include the T-join problem, the 
Chinese postman problem, the 2-factor relaxation for the symmetric traveling sales-
man problem and capacitated vehicle routing [29]. The b-matching model is used 
to solve numerous problems in different areas, e.g. Tennenholtz [36] in the context 
of combinatorial auctions and Dong et al. [13] for energy allocation in sea surface 
monitoring problems. The problem of finding a b-matching of maximum cardinality 
has been widely studied [2, 18, 19]. The minimum-cost perfect bipartite b-matching 
problem has been studied in Cohen et al. [10]. Although the minimum cost maximal 
matching has been addressed by Bodur et al. [9], Taşkin and Ekim [35], Tural [37], 
to the best of our knowledge, the minimum cost maximal b-matching problem with 
b > 1 has not been studied.

The computational complexity of Matching problems, has been extensively 
studied in the literature. Edmond [17] proved that the maximum cardinality 
matching problem is solvable in polynomial-time and proposed a strongly poly-
nomial algorithm for the maximum (minimum) weighted matching problem. The 
minimum cost maximal 1-matching problem is NP-hard in general graphs [9]. 
Vaidya [38] showed that Euclidean matching problems, in which the nodes are 
given as points in the plane and the weight of an edge between the two points is 
the distance between the two points in the plane, can be solved in O(n5∕2(log n)4) 



527

1 3

Minimum cost b‑matching problems with neighborhoods﻿	

time, for n the number of nodes of the graph. When the points lie on the boundary 
of a convex polygon, a minimum weight perfect matching with Euclidean dis-
tances can be found in O(n log n) time [28]. They also proved that this complexity 
is O(nlog2n) when the points lie on a simple non-convex polygon. Cunningham 
and Marsh [11] found the first polynomial time algorithm for finding an opti-
mal b-matching of maximum cost and Anstee [2] presented a strongly polyno-
mial algorithm for solving this problem. The maximum cardinality b-matching of 
maximum cost can be solved in O(nmlog2n) time [19], for m the number of edges 
of the graph.

As far as we know, matching problems on a graph with neighborhoods have not 
been investigated yet. Recently, some extensions of combinatorial optimization 
problems have been considered on a graph using convex neighborhoods to repre-
sent its nodes. In particular, the Traveling Salesman Problem with Neighborhoods 
(TSPN) consists of searching the minimum-length tour visiting just once each one 
of the neighborhoods. This problem was introduced by Arkin and Hassin [3] and 
studied when the neighborhoods are polygonal regions, discs or disjoint convex full 
dimension objects [12, 16, 20, 22]. As a generalization of the classical TSP prob-
lem, the Euclidean TSPN problem is also NP-hard. The Minimum Spanning Tree 
Problem with Neighborhoods (MSTPN) aims to identify a representative point from 
each neighborhood so that the MSTP of the set of representative points has the mini-
mum total length among all possible spanning trees. The Minimum Spanning Tree 
Problem where neighborhoods are a set of disjoint disks, rectangles or second order 
cone representable, was analyzed in Blanco et  al. [8], Dorrigiv et  al. [14], Puerto 
and Valverde [31], Yang et al. [39]. The general case of this problem in the plane is 
NP-hard.

This paper concentrates on the Minimum Cost b-Matching Problems (MCbMP’s) 
with neighborhoods instead of nodes, where the costs represent distances between 
points in each neighborhood. Depending on the criteria of matching neighborhoods, 
different variants of the MCbMP’s are considered. In particular, we will study the 
minimum cost versions of: (i) the perfect b-matching problem (each neighborhoods 
is met by exactly b edges), (ii) the maximum cardinality b-matching problem (find a 
b-matching with the greatest possible number of edges), (iii) the maximal b-match-
ing problem (no other edge can be added to it while keeping the property of being 
a b-matching) and (iv) the a–b-matching problem (in addition to the conditions of a 
b-matching, at least a-edges are incident in each neighborhood).

Applications of this kind of problems can be found in wireless network, where 
the goal is to serve the voice and/or data traffic demand of a particular geographic 
region (not always convex in structure). The traffic from and/or to a user device of 
a region is driven through a cell tower [30]. When the number of requests overhead 
the maximum capacity of the tower, the traffic is routed to the cell tower’s antenna 
in another region, usually the closest one to reduce costs and guarantee the signal 
quality. Hence, when designing the wireless network, one may pose the location of 
a cell tower in each region (neighborhood) taking into account to which other tower 
will be connected in case of overhead the maximum capacity. The goal is matching 
neighborhoods and locating a cell tower in each of them to minimize the total sum 
of all the distances between the matched neighborhoods’ towers. In order to prevent 
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that more than one tower overhead the maximum capacity, a number b could be set 
such that each neighborhood is matched to, at most, other b-neighborhoods instead 
of to only one. Depending on the criteria to find the b-matching with neighborhoods, 
the aforementioned problems arise. For instance, considering the maximum car-
dinality 2–4-matching criterion, the goal would be to find a matching taking into 
account that: (1) each tower can be covered, in the case of overhead its capacity, by 
at least two towers and at most four towers, (2) the higher number of towers to cover 
a possible overhead of another tower, the better for the quality of the connection 
among the towers.

To the best of our knowledge, this paper is the first attempt to deal with neigh-
borhoods in matching problems and there is no previous results on the complex-
ity of this kind of problems. We study different cases depending on b, the match-
ing criterion and the type of neighborhoods. Table  1 summarizes the complexity 
results for some of the b-matching problems studied in this paper. This table allows 
us to compare the complexity in the case of nodes and neighborhoods. It is worth 
mentioning that matching problems that are strongly polynomial with nodes are 
still polynomially solvable with Second Order Cone (SOC) representable neighbor-
hoods. However, they become NP-hard when non-convex polygons are considered 
as neighborhoods.

In spite of the hardness of some problems, we will provide mathematical pro-
gramming tools for solving the aforementioned problems. In particular, we provide 
SOC based formulations for these problems with non-convex neighborhoods given 
as the union of SOC representable sets. The main reason for this is that they can be 
solved by interior point methods and, in general, are more efficient that Semidefi-
nite Programming (SDP) problems. In addition, state-of-the-art solvers incorporate 
mixed integer non-linear implementations of SOC constraints. For further details on 
the SOC constraints, see the books of Ben-Tal and Nemirovski [5], Luemberger and 
Ye [27].

The rest of the paper is organized as follows. First, we describe the MCbMP’s 
with all the variants studied here. Their complexity is analyzed in Sect. 3. In Sect. 4, 
different non-linear integer programming formulations are developed for the differ-
ent variants of the b-matching problems. In Sect. 5, these formulations are rewritten 
as SOC programs in the case of non-convex neighborhoods given as the union of 
SOC representable sets. Before assessing their performance on randomly generated 
graphs in the computational results section, a procedure to generate initial solutions 
is described in Sect. 6. The paper ends with a section of conclusions and some pos-
sible future lines of research.

2 � Minimum cost b‑matching problems with neighborhoods

Let G = (V ,E) be an undirected graph where the nodes are represented by neighbor-
hoods Ni , with i ∈ N ∶= {1,… , n} , E be the set of edges between the neighbor-
hoods of V, and �(i) be the set of edges incident to Ni . In this paper, for the sake of 
presentation, we will restrict to three types of neighborhoods: non-convex polygons, 
balls of �p-norms and convex polyhedra. Depending on the case the neighborhoods 
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are encoded by the list of their consecutive vertices in case of non-convex polygons, 
the center, radius in case of a �p ball and by the set of inequalities describing the pol-
yhedron. A b-matching M ⊆ E is a subset of edges such that each neighborhood in 
V is met by at most b edges in M and the same edge can be used at most once. In the 
b-matching problem, b is the so-called node constraint or degree requirement and it 
could be considered different for each neighborhood. Indeed, the maximum number 
of edges that can met Ni will be the minimum of |�(i)| and b, and this can be differ-
ent for each neighborhood. For the sake of simplicity and without loss of generality, 
we will assume the same value b for all the neighborhoods.

In the MCbMP’s with neighborhoods the goal is twofold: (i) finding a b-matching 
in the underlying graph, and (ii) determining a point in each neighborhood to be 
the connection point among the edges defining the b-matching. We assume that the 
same point zi ∈ Ni is used to calculate the distances with all the matched neighbor-
hoods with Ni . Note that this point could be anywhere in the neighborhood, even in 
its interior. Therefore, the sum of the lengths (costs) of the edges defined by these 
points being part of the b-matching is minimized. Indeed, to minimize the sum of 
all distances between matched neighborhoods, we have to simultaneously obtain 
the b-matching and points zi ∈ Ni , determining the distances between the neighbor-
hoods. Note that the main difference with the MCbMP’s with nodes is that in the 
version with neighborhoods, the distances are not part of the input, but part of the 
decision.

We introduce the following optimization problems: 

	 (i)	 the minimum cost perfect b-matching problem (P_MCbMP) consists of finding 
the perfect b-matching of minimum cost, i.e., each neighborhoods is met by 
exactly b egdes.

	 (ii)	 the minimum cost maximum cardinality b-matching problem (Mcard_MCbMP) 
consists of finding a b-matching with the maximum cardinality of minimum 
cost, i.e., with the greatest possible number of matched neighborhoods.

	 (iii)	 the minimum cost maximal b-matching problem (Max_MCbMP) consists of 
finding a maximal b-matching of minimum cost, i.e., no other edge can be 
added to it while keeping the property of being a b-matching.

	 (iv)	 the minimum cost maximum cardinality/maximal a–b-matching problem, 
denoted by M card_MCabMP and Max_MCabMP respectively, with a ∈ ℤ , 
0 ≤ a < b , consists of finding a maximum cardinality/maximal b-matching 
of minimum cost where it is imposed that each neighborhood is matched to 
at least a neighborhoods. Observe that in a M card_MCbMP or Max_MCbMP, 
a neighborhood could be not matched to any neighborhood. This situation is 
avoided in the a–b-matching problem with a > 0 . When a = 0 , the classical 
minimum cost maximum cardinality/maximal b-matching problem is obtained.

The following example illustrates the MCbMP’s.

Example 2.1  Consider a graph G = (V ,E) in ℝ2 , with a set of nodes given by their 
coordinates V = {(40, 105), (63, 111), (103, 75), (66, 35), (36, 44), (58, 70)} , and the 
set of edges E = {(1, 2), (1, 3), (1, 6), (2, 3), (3, 6), (4, 5), (4, 6), (5, 6)} . An optimal 
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solution for the minimum cost maximal 2-matching problem using the Euclidean 
norm is given by the solid line in Fig. 1a, and the total cost is 182.32.

Now, we consider V = {N1,… ,N6} a set of neighborhoods with vi ∈ Ni , 
for i = 1,… , 6 and the same set of edges. For the sake of simplicity, the neigh-
borhoods are defined as Euclidean disks and rectangles. The centers and 
radii of the disks are given by {{(63, 111), 1.5}, {(36, 44), 5}, {(58, 70), 4}} , 
and the lower left corner/upper right corner of the rectangles are 
{{(40, 90), (46, 115)}, {(99, 72), (107, 78)}, {(66, 32), (70, 38)}} . For solving the 
minimum cost maximal 2-matching problem using the Euclidean norm, we have to 
simultaneously obtain the maximal 2-matching and six points zi ∈ Ni , which deter-
mine the distances between the neighborhoods. The same point zi ∈ Ni is used to 
calculate the distances with all the matched neighborhoods with Ni.

The optimal matching with neighborhoods is given by the solid line in Fig. 1b, 
and the total cost is 140.83. For instance, N1 is matched to N3 and N6 and the point 
of the neighborhood N1 used to calculate the distances to N3 and N6 is the same 
point for both of them, z1 . Note that the distance between N1 and N6 using z1 and z6 
is not the closest distance between neighborhoods N1 and N6.

Comparing the optimal solutions of the maximal 2-matching problem with/with-
out neighborhoods, we observe that N2 is not matched to any neighborhood in the 
optimal solution of the maximal 2-matching problem with neighborhoods (Fig. 1b). 
However, in the optimal solution without neighborhoods (Fig. 1a), v2 is matched to 
v1 and v3 . This shows the influence in the optimal solution of the points chosen in 
each neighborhood to determine the distances.

To illustrate the different b-matching problems introduced above, we consider the 
following example.

(a) (b)

Fig. 1   The minimum cost maximal 2-matching problem with euclidean distances
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Example 2.2  Consider the same graph of Example 2.1.
An optimal solution of the perfect 2-matching problem is given by the six solid 

lines in Fig. 2a and the total cost associated with this matching is 206.66. This is 
also the optimal solution of the maximum cardinality 2-matching problem. Note that 
this solution is maximal, and contains two edges more than the solution of the mini-
mum cost maximal 2-matching problem given in Fig. 1b with total cost 140.83.

The optimal solution of the minimum cost maximal 2-matching given in Fig. 1b 
allows a neighborhood not to be matched to any other (see neighborhood N2 ). 
If we impose that all the neighborhoods must be matched to at least another one 
(1–2-matching problem), the optimal solution of the maximal 1–2-matching of min-
imum cost is given in Fig. 2b. The total cost associated with this matching is then 
149.37. Note that now, neighborhood N6 is matched to N1 and N5 whereas in the 
optimal solution of the minimum cost maximal 0–2-matching N6 was matched to N1 
and N3.

Observe that whenever the minimum cost perfect b-matching problem is feasible, 
the minimum cost maximum cardinality b-matching problem has the same solution 
(see Fig. 2a). However, the former can be unfeasible and the latter is always feasible, 
see Fig. 3.

3 � Comparing the MCbMP’s and analyzing the complexity

After describing in Sect.  2 the different b-matching problems of minimum cost 
studied in this paper, we show the relationship between the optimal total cost of 
all of them. Let f P

b
 , f MC

b
 , f M

b
 be the optimal objective value of the P_MCbMP, 

(a) (b)

Fig. 2   2-matching problems of minimum cost
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M card_MCbMP and Max_MCbMP, respectively, and f MC
ab

 , f M
ab

 the corresponding 
version of the a–b-matching.

Proposition 3.1  The following relationships are satisfied:

	 (i)	 f M
b

≤ f MC
b

 and f MC
b

= f P
b

 , if P_MCbMP is feasible.
	 (ii)	 f M

b
≤ f M

ab
.

	 (iii)	 f MC
b

≤ f MC
ab

.

Proof  This result follows from the fact that the solutions of the perfect b-match-
ing are feasible solutions of b-matching of maximum cardinality problems. Moreo-
ver, the feasible solutions of the latter are also feasible solutions of the maximal 
b-matching problem. On the other hand, the feasible solutions of the a–b-matching 
are feasible solutions of the corresponding minimum cost b-matching problem. 	�  ◻

Figure 4 shows the relationship among feasible solutions sets of the MCbMP’s 
depending on the values of a and b.

In the following, we analyze the complexity of the different variants of the 
MCbMP’s depending on b and the structure of the neighborhoods.

Proposition 3.2  The P_MCbMP and Mcard_MCbMP are NP-hard with non-convex 
polygons.

Proof  We consider a graph G = (V ,E) where V = {Ni ∶ i = 1,… , k} , 
with N1 a point, Ni ( i ≠ 1 ) given by non-convex polygons, and 

Fig. 3   The minimum cost 
maximum cardinality 2-match-
ing problem
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E = {(1, 2), (2, 3), (3, 4),… , (k − 1, k)(k, 1)} (Fig.  5). The minimum cost perfect/
maximum cardinality 2-matching problem is equivalent to the Touring Polygons 
problem [15] which consists of finding a shortest tour (shortest cycle) that starts at 
N1 , visits the polygons in the given order, and ends again at N1 . Since the polygons 
are non-convex, the Touring Polygons problem is NP-hard for any metric �p , p ≥ 1 
[1, 15]. Therefore, the P_MCbMP and M card_MCbMP are NP-hard and the result 
holds. 	�  ◻

From Proposition 3.2, we have the following result.

Corollary 3.1  The Mcard_MCabMP is NP-hard with non-convex polygons.

Fig. 4   Relationship among feasible solutions sets of the MCbMP’s

Fig. 5   Minimum cost perfect/
maximum cardinality 2-match-
ing problem with non-convex 
neighborhoods
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Observe that (Max_MCbMP) and (Max_MCabMP) are NP-hard because the 
minimum cost maximal 1-matching problem where the nodes are points is NP-hard.

However, when b = 1 the complexity of some versions of the minimum cost 
1-matching problems become polynomial in some cases.

Proposition 3.3  The P_MC1MP and Mcard_MC1MP with SOC-representable neigh-
borhoods are solvable in polynomial time.

Proof  When b = 1 , each neighborhood is met by at most one edge and the distances 
between neighborhoods are independent of one another. Therefore, we can previ-
ously determine the distances between neighborhoods (solving minimum distances 
problems between neighborhoods) and then solving a classical matching problem in 
a graph with nodes using these computed distances as the costs or distances of the 
edges between the nodes.

Provided that the distances between neighborhoods can be computed in polyno-
mial time, since these distances can be reduced to solve a SOC programming prob-
lem and the version of the minimum cost perfect and maximum cardinality match-
ing problems are solvable in polynomial time, the result follows. 	�  ◻

Proposition 3.4  The Max_MC1MP on trees with SOC-representable neighborhoods 
is solvable in polynomial time.

Proof  The case of Max_MC1MP is solvable in polynomial time on trees [37]. Fol-
lowing similar arguments to the ones given in Proposition 3.3, the result holds. 	�  ◻

Note that the complexity given in the previous two results are polynomial in the 
sense of the complexity of interior point algorithm for solving SOC representable 
problems. Moreover, the results given in Propositions 3.3 and 3.4 could be extended 
to the case of any neighborhood, not only SOC-representable, provided that the dis-
tances between neighborhoods could be computed in polynomial time.

4 � Formulations for MCbMP’s

In this section we present mixed integer non-linear programming formulations for 
the different MCbMP’s defined in Sect. 2. All formulations use the following sets of 
decision variables:

Moreover, we denote || ⋅ ||q the standard �q-norm with q ∈ [1,∞) . In this sec-
tion, constraints related to the structure of the neighborhoods are not explicitly 

xij =

{
1, if (i, j) belongs to the matching,

0, otherwise,
∀(i, j) ∈ E, (i < j).

zi ∶ continuous variables to represent the point selected in each neighborhood, ∀i ∈ N.
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formulated, and we will refer to them just by zi ∈ Ni . In Sect. 5, we will formulate 
them properly.

4.1 � The minimum cost perfect b‑matching problem

This section deals with the P_MCbMP, where each neighborhood Ni is met by 
exactly b edges. This problem can be formulated as follows:

The objective function (1) accounts for the sum of the length of the matching edges 
which is determined by the distance between the chosen points in each neighbor-
hood. Constraints (2) define the perfect b-matching constraints, i.e., each neighbor-
hood meets exactly b edges.

4.2 � The minimum cost b‑matching problem with maximum cardinality

The M card_MCbMP can be formulated as a maximum weight b-matching problem 
as follows:

where M ∶= max i,j∈N

zi∈Ni,zj∈Nj

{||zi − zj||q} + 1.

This problem has been transformed in a maximum problem using a big-M 
parameter, in such a way that if an edge is not used, the penalization is huge. 
Therefore, the choice of the maximum number of edges is guaranteed. Family of 
constraints (3) is the classical family of b-matching constraints when the number 
of edges is being maximized.

(1)
(FP)min

∑

(i,j)∈E

i<j

||zi − zj||qxij

(2)

s.t.
∑

j∶(i,j)∈E

i<j

xij +
∑

j∶(i,j)∈E

j<i

xji = b, ∀i ∈ N,

xij ∈ {0, 1}, ∀i, j(i < j) ∈ N,

zi ∈ Ni, ∀i ∈ N.

(3)

(Fcard)max
∑

(i,j)∈E

i<j

(M − ||zi − zj||q)xij

s.t.
∑

j∶(i,j)∈E

i<j

xij +
∑

j∶(i,j)∈E

j<i

xji ≤ b, ∀i ∈ N,

xij ∈ {0, 1}, ∀i, j(i < j) ∈ N,

zi ∈ Ni, ∀i ∈ N,
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4.3 � The minimum cost maximal b‑matching problem

In this section we propose two different formulations for the Max_MCbMP. First, 
we give the following definition. A neighborhood Ni ∈ V  is said saturated if no 
other edge can met Ni . For each Ni ∈ V  , the maximum number of edges that can 
met Ni is defined as Si = min{b, |�(i)|} . Thus, a neighborhood Ni is said saturated if ∑

j∶(i,j)∈E

i<j
xij +

∑
j∶(i,j)∈E

j<i
xji = Si.

The first formulation of the minimum cost maximal b-matching problem consider 
binary y-variables to keep under control when neighborhood i can be matched with 
neighborhood j (because they are not saturated), i.e.,

Hence, this problem can be formulated as follows:

Constraints (4) ensures that the generated solution is a b-matching. Constraints (5) 
ensure that yij = 1 if neighborhood Ni is not saturated without using edge (i,  j) 
( 
∑

k∶(i,k)∈E

k≠j;i<k
xik +

∑
k∶(i,k)∈E

k≠j;k<i
xki < Si ). Constraints (6) ensure that xij = 1 if yij = 1 and yji = 1 . 

That is, if neighborhoods Ni and Nj are not saturated, then Ni and Nj are matched.
An alternative formulation can be considered using the following binary vari-

ables [35]:

yij =

{
1, if (i, j) could be in the matching,

0, otherwise,
∀(i, j) ∈ E.

(4)

(F1max)min
∑

(i,j)∈E

i<j

||zi − zj||qxij

s.t.
∑

j∶(i,j)∈E

i<j

xij +
∑

j∶(i,j)∈E

j<i

xji ≤ Si, ∀i ∈ N,

(5)Siyij ≥ Si −

⎛
⎜
⎜
⎜
⎝

�

k∶(i,k)∈E

k≠j;i<k

xik +
�

k∶(i,k)∈E

k≠j;k<i

xki

⎞
⎟
⎟
⎟
⎠

, ∀i ∈ N, j ∶ (i, j) ∈ E,

(6)xij ≥ yij + yji − 1, ∀(i, j) ∈ E, i < j,

(7)
yij ∈ {0, 1}, ∀(i, j) ∈ E,

xij ∈ {0, 1}, ∀(i, j) ∈ E, i < j,

(8)zi ∈ Ni, ∀i ∈ N.

yi =

{
1, if Ni is saturated in the matching,

0, otherwise.
∀i ∈ N.
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The alternative formulation for the minimum cost maximal b-matching problem 
using the variables defined above is given by

Constraints (9) enforce the condition that if xij = 0 , neighborhood i or j has to be 
saturated, i.e., yi = 1 or yj = 1 . Constraints (10) ensure that if neighborhood i is not 
saturated, ( 

∑
j∶(i,j)∈E

i<j
xij +

∑
j∶(i,j)∈E

j<i
xji < Si ) then yi = 0.

The following constraints are valid inequalities for (F2max),

That is, if neighborhood Ni is saturated ( 
∑

j∶(i,j)∈E

i<j
xij +

∑
j∶(i,j)∈E

j<i
xji = Si) , then yi = 1.

Further constraints can be added to reinforce the formulation in cases where 
|�(i)| = 1:

To the best of our knowledge, the Max_MCbMP with b > 1 , for the standard 
case (by considering a set of nodes), has not been studied. Therefore, formula-
tions (F1max ) and (F2max ) after removing (8) are also valid for solving the standard 
minimum cost maximal b-matching problem if we consider singletons instead of 
neighborhoods.

4.4 � The minimum cost a–b‑matching problems

This section is devoted to the minimum cost b-matching problems where addi-
tional constraints are imposed to the matching in order to guarantee each neigh-
borhood Ni is matched to at least a neighborhoods, with 1 ≤ a ≤ b . These models 
are called minimum cost a–b-matching problems.

Formulations for the Max_MCabMP and M card_MCabMP are obtained by add-
ing the following constraints to the corresponding formulations given in the pre-
vious subsections:

(9)

(F2max)min
∑

(i, j) ∈ E

i < j

�zi − zj��qxij

s.t.
(4), (7), (8)

xij ≥ 1 − yi − yj, ∀(i, j) ∈ E, i < j,

(10)
Siyi ≤

∑

j∶(i,j)∈E

i<j

xij +
∑

j∶(i,j)∈E

j<i

xji, ∀i ∈ N,

yi ∈ {0, 1}, ∀i ∈ N.

(11)
yi ≥

∑

j∶(i,j)∈E

i<j

xij +
∑

j∶(i,j)∈E

j<i

xji − Si + 1, ∀i ∈ N.

yj ≥ 1 − xij ∀(i, j) ∈ E, |�(i)| = 1.
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and are denoted by (Fab
max

 ) and (Fab
card

 ), respectively.

5 � SOC formulations for the MCbMP’s with neighborhoods

Observe that all the formulations of the different versions of the MCbMP’s given in 
the previous section can be written as follows:

where [MC] is the set of Matching Constraints given in each formulation depending 
on the problem (perfect b-matching, maximum cardinality b-matching, maximal 
b-matching and a–b-matching) and M ∶= max i,j∈N

zi∈Ni,zj∈Nj

{||zi − zj||q} + 1 , for the 

case of the maximum cardinality version, and 0 otherwise.
One of the main difficulty of the problem above lies in the term ||zi − zj||qxij 

of the objective function (12). Let us define a new set of variables dij ≥ 0 as 
dij = ||zi − zj||qxij , ∀(i, j) ∈ E , i < j . Then, the formulations for the MCbMP’s pre-
sented in the previous section can be reformulated as follows:

where Mij ∶= maxzi∈Ni,zj∈Nj
{||zi − zj||q} . Although the reformulation has a linear 

objective function, constraints (13) are not linear since they are considering a �q-
norm. However, this type of constraints have a representation as Second Order Cone 
(SOC) inequalities, see Blanco et  al. [7]. Most of the state-of-the-art solvers are 
capable to efficiently solve optimization problems involving SOC constraints by 
means of quadratic constraints with positive definite matrices.

∑

j∶(i,j)∈E

i<j

xij +
∑

j∶(i,j)∈E

j<i

xji ≥ a,∀i ∈ N,

(12)

min
∑

(i,j)∈E

i<j

||zi − zj||qxij −
∑

(i,j)∈E

i<j

Mxij

s.t.[MC]

xij ∈ {0, 1}, ∀(i, j) ∈ E, i < j,

zi ∈ Ni, ∀i ∈ N,

(13)

(Fgeneral)min
∑

(i,j)∈E

i<j

dij −
∑

(i,j)∈E

i<j

Mxij

s.t.[MC]

||zi − zj||q ≤ dij +Mij(1 − xij), ∀(i, j) ∈ E, i < j,

(14)

dij ≥ 0, ∀(i, j) ∈ E,

xij ∈ {0, 1}, ∀(i, j) ∈ E, i < j,

zi ∈ Ni, ∀i ∈ N,
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So far, we have focused our attention in the modelling aspects of the objec-
tive function and constraints to model the corresponding matching criterion under 
study. And, we have obtained a linear objective function and a set of constraints 
with a SOC representation. However, the characterization of the neighborhoods 
have not been addressed yet. Particularly, we will concentrate on neighborhoods 
given by the union of SOC-representable sets [26], more precisely, polyhedra 
and �q balls. Different transformations of ( Fgeneral ) (one for each matching cri-
terion) will be carried out to accommodate it to the use of second order cone 
optimization. The main reason for this is that it can be solved by interior point 
methods and, in general, they are more efficient that Semidefinite Programming 
(SDP) problems. For further details on the SOC constraints, see books Ben-Tal 
and Nemirovski [5], Luemberger and Ye [27].

5.1 � SOC formulations for the MCbMP’s with some non‑convex neighborhoods

In this subsection, we consider the case where the neighborhoods belong to a 
family of non-convex sets given by a finite union of polyhedrons and �q-norm 
balls as Fig. 6. We will use results from disjunctive programming [4, 34] to for-
mulate the MCbMP’s with these neighborhoods.

Let us consider a set of neighborhoods Ni , with i ∈ N , defined as 
Ni =

�⋃
j∈Pi P

i
j

�
∪
�⋃

k∈Di D
i
k

�
 where Pi

j
 is a full-dimensional polyhedron given 

by Pi
j
∶= {x ∈ ℝm ∶ Ai

j
x ≤ bi

j
} , whose recession cone is the null vector, with Ai

j
 a 

real matrix and bi
j
∈ ℝ for any j ∈ Pi ∶= {1,… , pi} , and 

D
i
k
∶= {x ∈ ℝm ∶ ||x − ci

k
||q ≤ ri

k
} where || ⋅ ||q denotes the standard �q-norm with 

q ∈ [1,∞) , q ∈ ℚ , and ci
k
∈ ℝm and ri

k
∈ ℝ for any k ∈ Di ∶= {1,… , di} . Observe 

that neighborhoods Ni are not convex in general.

Fig. 6   Different neighborhoods
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Let zi be a point in the neighborhood Ni . Then zi belongs to a polyhedron Pi
j
 , for 

some j ∈ Pi , or a �q-norm ball Di
k
 , for some k ∈ Di . We will use the following vari-

ables to distinguish points in the polyhedron or �q-norm ball.

•	 Continuous variables ui
j
∈ ℝm to represent a point in the polyhedron Pi

j
.

•	 Continuous variables wi
k
∈ ℝm to represent a point in the �q-norm ball Di

k
.

•	 Binary variables ti
j
 equal to 1 if zi is in the polyhedron Pi

j
 and 0 otherwise.

•	 Binary variables si
k
 equal to 1 if zi is in the �q-norm ball Di

k
 and 0 otherwise.

The following proposition give a characterization of a point belonging to a 
neighborhood.

Proposition 5.1  zi ∈ Ni if and only if

Proof  (⇒ ) Let zi ∈ Ni . Then, zi belongs to a polyhedron Pi
j0
 , for some j0 ∈ Pi , or a 

�q-norm ball Di
k0

 , for some k0 ∈ Di (if zi belongs to the intersection of both, we only 
consider one of the two cases).

•	 if zi ∈ P
i
j0
 , we consider ti

j0
= 1 , ti

j
= 0 and ui

j
= � ∈ ℝm , ∀j(≠ j0) ∈ Pi , ui

j0
= zi , 

si
k
= 0 and wi

k
= ci

k
 , ∀k ∈ Di . Hence, (15)–(19) are satisfied.

•	 if zi ∈ D
i
k0

 , we consider si
k0
= 1 , si

k
= 0 and wi

k
= ci

k
 ∀k(≠ k0) ∈ Di , wi

k0
= zi , 

ti
j
= 0 and ui

j
= � ∈ ℝm , ∀j ∈ Pi . Hence, (15)–(19) are satisfied.

(⇐ ) Let zi a point satisfying (15)–(19). From (18) and (19), there exists either j0 ∈ Pi 
such that ti

j0
= 1 and ti

j
= 0 ∀j(≠ j0) ∈ Pi and si

k
= 0 ∀k ∈ Di , or there exists k0 ∈ Di 

such that si
k0
= 1 and si

k
= 0 , ∀k(≠ k0) ∈ Di and ti

j
= 0 , ∀j ∈ Pi.

In the first case, on the one hand, since ti
j0
= 1 and ti

j
= 0 ∀j(≠ j0) ∈ Pi then, by 

(16), ui
j0
∈ P

i
j0
 and Ai

j
ui
j
≤ 0 , ∀j(≠ j0) ∈ Pi . Since any vector satisfying Ai

j
ui
j
≤ 0 , 

∀j(≠ j0) ∈ Pi would be a vector of recession cone of Pi
j
 and, by hypothesis, this is 

(15)zi =
∑

j∈Pi

ui
j
+

∑

k∈Di

(wi
k
− ci

k
(1 − si

k
)),

(16)Ai
j
ui
j
≤ bi

j
ti
j
, j ∈ Pi,

(17)||wi
k
− ci

k
||q ≤ ri

k
si
k
, k ∈ Di,

(18)
∑

j∈Pi

ti
j
+

∑

k∈Dk

si
k
= 1,

(19)ti
j
, si

k
∈ {0, 1}, j ∈ Pi, k ∈ Di.
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the null vector, then ui
j
= � ∈ ℝm , ∀j(≠ j0) ∈ Pi . Moreover, on the other hand, if 

si
k
= 0 ∀k ∈ Di , by (17), we have that ||wi

k
− ci

k
||q = 0 , ∀k ∈ Di , that is, wi

k
= ci

k
 . 

Therefore, from (15), we obtain that zi = ui
j0
∈ P

i
j0
 . That is, zi belongs to the polyhe-

dron Pi
j0
.

Analogously in the second case, if we have that there exists k0 ∈ Di such that 
si
k0
= 1 and si

k
= 0 , ∀k(≠ k0) ∈ Di and ti

j
= 0 , ∀j ∈ Pi , then we would obtain that 

zi = wi
k0
∈ D

i
k0

 , that is, zi belongs to the �q-norm ball Di
k0

 . 	�  ◻

Therefore, (14) can be replaced by (15)–(19). Hence, since constraints (17) are 
SOC-representable, ( Fgeneral ) is a mixed integer SOC-formulation when the neighbor-
hoods are defined by a finite union of polyhedrons and �q-norm balls, and the distances 
are also measured with a �q-norm. We could even consider neighborhoods with dif-
ferent �q-norms or distances between neighborhoods using simultaneously different �q

-norms, with q ∈ [1,∞).

6 � Procedure for generating an initial solution

In this section we describe a procedure to generate an initial solution for solving the 
MCbMP’s with neighborhoods.

This procedure starts by considering a fixed point in each neighborhood, vi ∈ Ni . 
Now, V = {v1,… , vn} . The distances �ij = ||vi − vj||q between these points are cal-
culated. Afterwards, we solve the standard version (without neighborhoods) of the 
MCbMP’s by considering these points:

where M ∶= maxvi,vj∈V{||vi − vj||q} + 1 . Notice that in the case of the Max_
MCbMP, this model include binary y-variables.

Let x̄v (and ȳv for (F2max )) the optimal solution of the above problem. This is a par-
tial feasible solution of the general formulation with neighborhoods (Fgeneral ). We pro-
vide these values of the x-variables (y-variables) as feasible starting solution for the 
(Fgeneral ) model.

The goodness of the initial solution generated by the procedure will depend on the 
points chosen in each neighborhood. Figure 1 showed that the optimal matching of the 
problems with/without neighborhoods is not the same and depends on the choice of the 
points. This procedure is tested in the next section.

(Fpoint)min
∑

(i,j)∈E

i<j

𝛿ij −
∑

(i,j)∈E

i<j

Mxij

s.t. [MC]

xij ∈ {0, 1}, ∀(i, j) ∈ E, i < j,
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7 � Computational study

A computational experiment was carried out to assess the usefulness of the given 
formulations for solving the proposed MCbMP’s with neighborhoods. Tests are per-
formed on instances with n neighborhoods defined in ℝm (with m = 2 or 3). We con-
sider two kind of neighborhoods: convex sets ( �2-norm unit balls and polyhedra) 
and non-convex sets defined as the union of three of these convex sets. We have 
considered the number of neighborhoods n ∈ [10, 26] , b ∈ [1, 5] and the Euclidean 
norm to measure the distances. Graphs with different settings have been considered. 
The expected edge density of the graph (measured as 2|E|

n⋅(n−1)
 , see Taşkin and Ekim 

[35]) takes values 0.4, 0.6, 0.8 and 1 (complete graph).
All the formulations were coded in Python 3.8, and solved using Gurobi 9.1.2. 

[23] in a Windows 10 Server with an Intel Xeon W-2245 processor at 3.9 GHz and 
256 MB of RAM and setting by default all cuts and presolve strategies of the solver. 
A limit of one hour of CPU time was set in all the experiments.

The procedure described in Sect. 6 for getting an initial feasible solution is tested. 
The results obtained by using the solution procedure are indicated with Proc.

7.1 � Computational results with non‑convex neighborhoods

First, different tests are performed on non-convex neighborhoods. These neighbor-
hoods were generated by considering the union of three convex sets of the following:

•	 In the case of the plane: �2-norm disks with different radii randomly generated, 
and rectangles with sides parallel to the axis and lengths randomly generated.

•	 In the 3D-space, �2-norm balls with different radii randomly generated and poly-
hedra whose faces are rectangles randomly generated.

The neighborhoods were generated taking into account different factors such as size, 
overlapping, and spatial distribution among them. First, n random points in [0, 100]m 
are generated. Each point will belong to one of the neighborhoods and will be in at 
least one of the three sets of this neighborhood. The minimum distance among the 
randomly generated points is calculated ( � ), and a fixed percentage f (factor) of � is 
calculated. The diameters of �2-norm balls and the sides of the rectangles will have 
a randomly generated length in (0, f ⋅ 𝓁).

Similar procedures to generate instances have been used in the literature of the 
combinatorial optimization problems with neighborhoods (see Blanco et  al. [8], 
Gentilini et al. [20] among others).

A preliminary study with n = {12, 14, 16, 18, 20} and b = {1, 2, 3, 4, 5} for a 
complete graph in the plane was carried out. Five different instances were gen-
erated for each combination of n and b-values. Figure 7 displays the percentage 
of instances solved (within a given time) for the different formulations proposed 
here with the procedure (solid line) and without procedure (dashed line). As can 
be seen, this percentage increases when the solution procedure is considered for 
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all the MCbMP’s studied. In the case of the P_MCbMP (blue line) this percentage 
increases up to 20% . The hardest problem to be solved is M card_MCbMP (brown 
and yellow lines) where less than 10% of instances were solved to optimality after 
1 hour. We think it is due to the big-M parameter defined in the objective func-
tion. Moreover, the behaviour of (F2max ) and (F2ab

max
 ) are quite similar with both 

formulations.
In this figure does not appear formulation (F1max ) because provides worse 

computational results than (F2max ) for solving Max_MCbMP (see Fig. 8, which 
displays, in logarithmic scale, the average of the times for different values of n 
and b of both formulations).

As consequence of this first experiment, we decided focus our computational 
study on formulations solving the largest percentage of instances within the time 
limit. Since the behaviour of (F2max ) and (F2ab

max
 ) are quite similar, we concentrate 

on (FP ) and (F2max ) providing an initial solution. The CPU time to obtain an initial 
solution using the procedure in Sect. 6 is around 0.1–0.2 seconds on most instances.

Fig. 7   Percentage of instances solved within given time for all the formulations in a complete graph

Fig. 8   Average time (logarithmic scale) for (F1max ) and (F2max)
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Table  2 summarizes the results for (FP ). We concentrated on complete graphs 
(density equal to one) due to the number of unfeasible problems obtained when 
graphs of other densities were used. The first two columns are the values of n and b, 
respectively. The column CPU reports the average computing time (in seconds) to 
attain optimality. Notice that, here, a CPU time equal to 1H has been attributed for 
the instances that could not be solved within this limit, therefore times are underes-
timated. Column # gives the number of solved instances. Whenever the time limit 
of 1 hour is reached without certifying optimality, a gap between the lower and 
upper objective bound is calculated. Thus, if zu is the upper bound (the best solu-
tion found) and zl is the lower bound, then gap is defined as 100 |zu − zl|∕|zu| . When 
zu = 0 and zl ≠ 0 , the gap is defined to be infinity. Column GBS reports the average 
percentage gap of those instances where the gap is not infinity (a superscript indi-
cates the number of these instances).

The first observation that comes after running the experiment is that the compu-
tational times increase with the size of n and b. Moreover, the number of unsolved 
instances increases with b.

Table 2   Average results for (FP ) 
in complete graphs

n b CPU # GBS

12 1 9.3 5/5
2 13.2 5/5
3 80.9 5/5
4 905.8 5/5
5 1959.4 3/5 32.5

14 1 12.7 5/5
2 16.1 5/5
3 155.0 5/5
4 807.2 4/5 2.0
5 948.7 4/5 4.0

16 1 16.2 5/5
2 35.3 5/5
3 86.3 5/5
4 2187.2 4/5 4.0
5 2587.6 2/5 3.0

18 1 18.0 5/5
2 75.6 5/5
3 845.0 5/5
4 2431.9 3/5 2.0
5 3106.2 2/5 4.0

20 1 26.6 5/5
2 454.9 5/5
3 2326.8 2/5 5.0
4 1H 0/5 4.8
5 1H 0/5 5.4
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Table 3 shows the results for (F2max ) with graphs of different densities. In all the 
experiments the valid inequalities (11) have been included (their inclusion provided 
better computational results in a preliminary study). As it can be seen, the compu-
tational times increase with the density of the graph. Solving instances in complete 
graphs is harder than solving instances in graphs with lower densities. This can be 
better appreciated in Figs. 9 and 10, which display the averages of the CPU times 
for different values of n and b, respectively, depending on the density of the graph. 
In addition, an extension of the experiment was carried out to evaluate up to what 
size of instances we could solve with (F2max ). Table  4 shows that even for lower 
densities, with n ≥ 22 , and b ≥ 3 , the instances are hard to solve. Moreover, they 
show the behaviour of (F2ab

max
 ) with a = 1 (we proved different values of a obtaining 

similar results).
Another computational study was still carried out to test three-dimensional 

instances with (FP ) and (F2max ) in complete graphs (see Table 5). We observe that 

Table 3   Average results for (F2max)

Complete graph Density=0.8 Density=0.6 Density=0.4

n b CPU # GBS CPU # GBS CPU # GBS CPU # GBS

12 1 5.7 5/5 2.0 5/5 1.1 5/5 2.0 5/5
2 14.0 5/5 11.8 5/5 17.6 5/5 3.9 5/5
3 34.6 5/5 17.6 5/5 12.2 5/5 5.0 5/5
4 40.4 5/5 30.6 5/5 77.6 5/5 6.3 5/5
5 992.0 4/5 1.8 938.2 4/5 35.4 22.2 5/5 6.7 5/5

14 1 9.88 5/5 8.3 5/5 6.4 5/5 1.9 5/5
2 22.4 5/5 15.6 5/5 12.7 5/5 5.8 5/5
3 914.5 5/5 30.5 5/5 18.5 5/5 11.0 5/5
4 1029 4/5 5.9 233.2 5/5 1298.4 4/5 17.2 12.2 5/5
5 1460 4/5 3.9 258.4 5/5 1126.4 4/5 29.0 6.8 5/5

16 1 14.7 5/5 8.9 5/5 10.9 5/5 4.3 5/5
2 36.3 5/5 24.9 5/5 18.5 5/5 15.3 5/5
3 493.3 5/5 47.2 5/5 36.3 5/5 139.2 5/5
4 3297.0 1/5 3.7 860.9 5/5 84.7 5/5 75.9 5/5
5 1H 0/5 5.0 1608.0 3/5 4.8 899.7 4/5 43.3 21.9 5/5

18 1 16.9 5/5 13.9 5/5 11.7 5/5 8.0 5/5
2 95.6 5/5 35.1 5/5 25.9 5/5 23.8 5/5
3 2067.0 5/5 592.5 5/5 97.1 5/5 437.1 5/5
4 1H 0/5 4.5 2406.9 2/5 3.6 904.3 5/5 1625.3 3/5 14.3
5 1H 0/5 7.1 2855.2 2/5 3.2 1671.0 3/5 23.5 1475.4 3/5 8.5

20 1 23.4 5/5 18.9 5/5 15.2 5/5 8.8 5/5
2 796.9 5/5 99.6 5/5 33.6 5/5 19.2 5/5
3 2929.0 1/5 6.4 1829.4 3/5 6.0 842.7 5/5 37.0 5/5
4 1H 0/5 9.2 1H 0/5 7.7 1308.6 4/5 6.0 2837.6 2/5 42.5
5 1H 0/5 11.2 1H 0/5 7.3 3372.1 2/5 4.1 2186.4 2/5 35.0
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three-dimensional instances are harder to solve than two-dimensional ones, given 
the same number of neighborhoods, n. See n = 18 and b = 3 . the case of (FP ), 
the average time for solving 2D-instances was 845 seconds, whereas three of the 
3D-instances could not be solved in one hour for the same size. For (F2max ), the 
average time of 2D-instances tested was 2067 seconds, whereas none of the five 
3D-instances could be solved in one hour.

Table 4   Average results for 
(F2max ) with higher n 

Density = 0.6 Density = 0.4

n b CPU # GBS CPU # GBS

22 1 22.4 5/5 16.1 5/5
2 1696.4 4/5 6.0 59.7 5/5
3 1H 0/5 15.0 2091.8 3/5 4.5

24 1 31.4 5/5 21.9 5/5
2 2470.4 2/5 8.0 528.9 5/5
3 1H 0/5 20.0 2959.4 1/5 7.5

26 1 50.0 5/5 25.4 5/5
2 1H 0/5 14.4 330.2 5/5
3 1H 0/5 24.2 1H 0/5 14.0

(a) (b)

(d)(c)

Fig. 9   Average time by number of neighborhoods
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(a) (b)

(d)(c)

Fig. 10   Average time by size of b 

Table 5   Average results for (FP ) 
and (F2max ) in complete graphs 
with 3D-instances

FP F2max

n b CPU # GBS CPU # GBS

12 1 23.0 5/5 23.1 5/5
3 829.3 4/5 – 122.7 5/5
5 1H 0/5 (3)5.5 3517.8 1/5 (1)6.1

14 1 26.8 5/5 28.6 5/5
3 1660.3 3/5 3.5 946.9 5/5
5 1H 0/5 (4)10.0 1H 0/5 (1)9.5

16 1 32.5 5/5 37.8 5/5
3 1H 0/5 (2)8.3 3196.9 1/5 (2)5.0
5 1H 0/5 (3)10.0 1H 0/5 9.7

18 1 47.8 5/5 45.8 5/5
3 3158.8 2/5 9.3 1H 0/5 11.5
5 1H 0/5 (4)6.0 1H 0/5 (2)14.7

20 1 55.7 5/5 53.4 5/5
3 1H 0/5 12.1 1H 0/5 14.3
5 1H 0/5 13.4 1H 0/5 (1)21.3
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We have noticed by testing different instances that overlapping does not influence 
the overall CPU time. Nevertheless, the size of the neighborhoods may influence the 
difference in CPU time. In order to illustrate the effect of the size of the neighborhoods, 
Fig. 11 shows the averaged time (logarithmic scale) for (F2max ) with n = 12 with dif-
ferent scale factors (0.5, 0.7 and 0.9). This confirms that instances with larger neighbor-
hoods are harder to solve than instances with smaller ones.

7.2 � Computational results with convex neighborhoods

A second study was carried out to compare the performance of (FP ) and (F2max ) 
with convex neighborhoods. We concentrate on the plane and consider two kind of 
instances: all the neighborhoods are �2-norm disks or all are squares (see Blanco et al. 
[8], Blanco [6] for similar instances). First, n random points in [0, 100]m are generated. 
In the first set of instances, these points will be the centers for disks. In the second set 
of instances, they will be the centers of the squares. With the same randomly generated 
points, the two set of instances are obtained. The radius of the disks is 4 units, and the 
side length of the squares is 6 units. Five different set of points were generated for each 
combination of n = {12, 14, 16, 18, 20, 22, 24, 26} and b = {1, 3, 5}.

The average results with both set of instances are given in Table 6. The results 
show that solving instances with �2-norm disks is much harder than with squares. 
See n = 20 and b = 5 . (FP ) and (F2max ) did not solve to optimality any of the 
instances with disks in 1 hour. However, when the instances are squares, the time is 
10.2 for (FP ) and 64.7 for (F2max ). This is due the fact that when neighborhoods are 
squares, the constraints are all linear.

8 � Concluding remarks

This work can be considered as another step forward to address combinatorial opti-
mization problems on graphs with neighborhoods instead of nodes. Different ver-
sions of the b-matching problem with minimum cost have been studied: the perfect 

Fig. 11   Time average (logarithmic scale) for (F2max ) neighborhoods (n = 12) with different scale factors
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matching problem, the maximum cardinality matching problem, the maximal match-
ing problem and the a–b-matching problem. The property of the standard match-
ing problems (without neighborhoods) of being solvable in polynomial-time, is not 
guaranteed with neighborhoods. We have proved that, in general, all the versions of 
the b-matching with non-convex neighborhoods studied here are NP-hard, even for 
non-convex polygons.

Different non-linear integer programming formulations for the minimum cost 
b-matching problems with all the versions presented in this paper have been devel-
oped and then reformulated as mixed integer SOC formulations. We have performed 
a series of computational experiments in order to compare the performance of 
the given formulations, as well as to explore the limitations of each one of them. 
For this, we have generated several batteries of instances with different settings. 
The extensive computational experience shows the usefulness of the formulations 

Table 6   Average results for (FP ) and (F2max ) in complete graphs with disks vs. squares neighborhoods

FP F2max

Disks Squares Disks Squares

n b CPU # GBS CPU # GBS CPU # GBS CPU # GBS

12 1 2.1 5/5 0.1 5/5 1.4 5/5 0.1 5/5
3 8.8 5/5 0.3 5/5 23.6 5/5 0.9 5/5
5 63.6 5/5 0.3 5/5 78.1 5/5 1.6 5/5

14 1 3.9 5/5 0.2 5/5 2.1 5/5 0.2 5/5
3 39.9 5/5 0.6 5/5 380.3 5/5 2.2 5/5
5 2630.2 2/5 3.0 1.7 5/5 749.7 5/5 3.0 5/5

16 1 6.1 5/5 0.2 5/5 3.2 5/5 0.2 5/5
3 35.0 5/5 1.0 5/5 122.0 5/5 3.9 5/5
5 2745.6 2/5 1.3 2.7 5/5 2476.2 5/5 7.5 5/5

18 1 9.2 5/5 0.4 5/5 5.5 5/5 0.5 5/5
3 480.7 5/5 2.9 5/5 1850.4 4/5 8.6 13.0 5/5
5 2947.3 1/5 3.0 5.1 5/5 1H 0/5 4.9 37.0 5/5

20 1 5.0 5/5 0.4 5/5 5.3 5/5 0.5 5/5
3 999.5 4/5 3.0 2.9 5/5 779.9 5/5 8.7 5/5
5 1H 0/5 3.0 10.2 5/5 1H 0/5 5.1 64.7 5/5

22 1 9.8 5/5 0.4 5/5 12.7 5/5 0.5 5/5
3 2527.9 3/5 3.5 4.3 5/5 1H 0/5 9.6 17.7 5/5
5 1H 0/5 3.6 11.5 5/5 1H 0/5 12.8 303.1 5/5

24 1 13.4 5/5 0.4 5/5 9.1 5/5 0.6 5/5
3 1H 0/5 4.4 6.6 5/5 1H 0/5 11.4 59.7 5/5
5 1H 0/5 (1)16.8 52.7 5/5 1H 0/5 16.5 1346.6 4/5 0.6

26 1 30.9 5/5 0.5 5/5 23.0 5/5 0.9 5/5
3 1H 0/5 5.4 13.1 5/5 1H 0/5 16.9 197.0 5/5
5 1H 0/5 (3)31.5 27.7 5/5 1H 0/5 15.1 2421.8 2/5 0.9
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to solve the proposed problems. We have developed an initial solution procedure 
that allows to reduce the computational times and solve to optimality some initially 
unsolved instances.

The findings of this paper can be the basis of further research on some other com-
binatorial optimization problems with neighborhoods. It would be interesting to 
explore alternative algorithms for solving the MCbMP’s, as Benders decomposition 
methods or good matheuristics to be able to solve larger instances.
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