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Abstract. We introduce an approach of semantic segmentation to detect various objects for the
mobile robot system “ROSWITHA” (RObot System WITH Autonomy). Developing a semantic
segmentation method is a challenging research field in machine learning and computer vision.
The semantic segmentation approach is robust compared with the other traditional state-of-
the-art methods for understanding the surroundings. Semantic segmentation is a method that
presents the most information about the object, such as classification and localization of the
object on the image level and the pixel level, thus precisely depicting the shape and position
of the object in space. In this work, we experimented with verifying the effectiveness of semantic
segmentation when used as an aid to improving the performance of robust indoor navigation
tasks. To make the output map of semantic segmentation meaningful, and enhance the model
accuracy, points cloud data were extracted from the depth camera, which fuses the data origi-
nated from RGB and depth stream to improve the speed and accuracy compared with different
machine learning algorithms. We compared our modified approach with the state-of-the-art
methods and compared the results when trained with the available dataset NYUv2. Moreover,
the model was then trained with the customized indoor dataset 1 (three classes) and dataset 2
(seven classes) to achieve a robust classification of the objects in the dynamic environment of
Frankfurt University of Applied Sciences laboratories. The model attains a global accuracy of
98.2%, with a mean intersection over union (mIoU) of 90.9% for dataset 1. For dataset 2, the
model achieves a global accuracy of 95.6%, with an mIoU of 72%. Furthermore, the evaluations
were performed in our indoor scenario. © 2022 SPIE and IS&T [DOI: 10.1117/1.JEI.31.6.061818]
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1 Introduction

In recent years, robotics has emerged as a fast-developing field in industrial and research con-
texts. The advancement in the hardware accelerators in many fields, such as graphical processing
units (GPUs) and tensor processing units (TPUs), and the algorithms in computer vision,
machine learning, artificial intelligence (AI), notably in deep learning fields have achieved many
remarkable breakthroughs.1,2

Recognizing the potential, researchers recently have tried to corporate components of deep
learning in the computer vision field. Their objective is to enhance robots’ abilities, namely the
ability to see, feel, and understand the real world like a human, through sensors, actuators, and
cameras. Self-driving automobile companies, such as Tesla and NVIDIA,3 are examples of an
industry trying to make their machines more intelligent by powering them with AI to make them
fully discernible regarding surrounding objects and to navigate and localize themselves in new
environments.
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Indoor navigation is one of the fields that has lots of room for improvement. Indoor nav-
igation requires a robot to fully understand and precisely navigate in a complex environment
while avoiding different types of obstacles and finding the correct navigating paths.4

A conventional approach uses the two-dimensional (2D) laser scanner or the ultrasonic sen-
sor. It allows for detecting obstacles around robots, from which a suitable navigation path can be
calculated to avoid objects/obstacles. However, these sensors only detect the environment on a
flat plane at the sensor level. Therefore, these sensors have some limitations, such as not being
able to recognize all types of obstacles/objects. For example, a 2D laser scanner can only detect
four legs of a table but not the whole surface of the table and has difficulty navigating paths (for
instance, 2D laser scanner cannot see that there is a staircase in front of it). Not only are such
devices limited with the scanning ability, but they are also unable to tell the objects’ classes,
which is a significant drawback for complex tasks that require flexibility, such as path planning
when encountering different types of obstacles.

To deal with such issues, rich visual and space information retrieved from the RGB-D camera
can be used to make the robots fully aware of the indoor spaces and obstacles. The robots can
react differently from these data when encountering static obstacles versus dynamic obstacles.
Semantic segmentation is one of many solutions that we suggest to serve this task.5 In this paper,
Sec. 2 discusses the related works. Section 3 presents the model overview. Section 4 presents the
implementation and testing. Section 5 presents the results and the discussions of the experiments.
Finally, conclusions and future improvements are given in Sec. 6.

2 Related Work

Merging visual data and depth data streams to improve the accuracy of the RGB-D image seman-
tic segmentation algorithms is not a new approach in the research field. Because depth images are
invariant to lighting conditions, they will help the model detect objects in extreme and variant
lighting environments.

Traditional RGB-D image segmentation6 uses the basic features of the image, such as contour
and color homogeneity, to divide images into smaller clusters of superpixels regions. Regional
higher-level features can be extracted via handcrafted filtering operations before being fed into a
traditional machine learning classifier such as a support vector machine to classify the class of
each region. Afterward, a further post-processing algorithm, such as conditional random field, is
run over the image to refine the output of the classification stage. Finally, the segmented regions
with corresponding labels are the output. Reliably implementing tradition segmentation in real-
world or industrial scenarios is more complicated due to the involvement of multiple separate
stages, as well as the fact that the filtering operations during the feature extraction stage are
mostly handcrafted, thus leading to the liability of not being able to capture all of the data pre-
sented in the image and not being robust to different environmental scenarios. Also, the clas-
sifiers in such methods are naive. Finally, by dividing the image into multiple different regions,
the algorithms cannot learn the interconnected features between different adjacent regions.

Image segmentation with deep learning models7 uses new deep learning techniques to pro-
duce the segmentation map directly, without iterating through the segmenting, feature extracting,
classification, and refining steps compared with traditional ways. Such deep learning methods
commonly utilize the powerful learning capability of convolutional neural networks (CNNs).
In addition, the data from the RGB camera and depth camera are usually extracted in different
streams (encoder branches) before being fused in later steps.

Segmentation with deep learning models executes most of the stages in a one-shot fashion,
leading to higher flexibility and feasibility for implementation. In addition, we have found and
tested that CNN models tend to outperform traditional computer vision methods due to their
ability to generalize different types of images and capture low- and high-level (features from
faraway regions on the images) precisely and automatically. Therefore, deep learning methods
are becoming the leading research direction of robust object detection. Some notable works that
represent this trend are fused squeeze-and-excitation network (FuseNet),8 multi-modality and
multi-scale attention fusion network (MMAF-Net),9 and attention complementary network.10

However, some drawbacks include the high number of resulting hyperparameters cannot be
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implemented into mobile and embedded devices,9 they are prone to overfitting, they requiring
more time and power to train, and non-optimal approaches leverage the depth data into the deep
learning model.

In this work, we evaluate the viability of applying an efficient architecture in a real robot to
solve the following challenges:

R1 The robot distinguishes the surrounding obstacles by implementing a machine learning
model with a lightweight size (with better accuracy and precision); it is easy to train and
moves in real time.

R2 The robot operates under various indoor light conditions.

3 Model Overview

The backbone model that we use is fully connected harmonic DenseNet11 (FC-HarDNet), an
upgraded version of the fully connected DenseNet model.12 Because the main source code is
written in the Pytorch framework, which is used mainly in research, we rewrote the code in the
TensorFlow framework to make it easier to deploy on a TPU for training and to be optimized on
a GPU for inference. There are some advantages of applying FC-HarDNet:

• It has high efficiency on the benchmark outdoor dataset with IoU score up to 75% and
speed up to 75 FPS.11

• It is relatively small size to avoid overfitting in our Frankfurt University of Applied
Sciences (FRA-UAS) indoor dataset.

• To tackle the issue of vanishing gradient while maintaining the depth,13 it employs the skip
connection wisely. Skip connection is a concatenation or elementwise addition of layers,
allowing for gradients of later layers to flow directly to earlier layers without getting
attenuated.

• With the reordering of the skip connections resembling the harmonic waves, the authors of
FC-HarDNet prove that such organization would lead to faster input/ouput operation on
the dynamic random access memory (DRAM), resulting in a faster processing speed of up
to 36%. The author also injected a parameter k to control the depth of each convolution
layer in the HarDBlock.

To fuse the data from the RGB camera and depth camera, we used the architecture from
MMAF-Net,9 in which there are two separate encoders to extract data from two cameras, and
we fuse them before each downsampling stage to create a main branch. The main branch is then
used to upsample the feature map back to the original. Our model used a slightly different atten-
tion module from the MMAF-Net. “The attention modules are used to help any neural network
models to learn and focus on the most important information rather than irrelevant background
data. For example, the human brain tends to focus on specific part of the image and view the non-
useful information in ways that may aid perception.”14,15 Our attention module is taken from the
Google brain’s image classification model, EfficientNet.16 EfficientNet makes use of the atten-
tion mechanism (or so-called squeeze–excitation network17), in which the module helps the
model know which features are useful and which features are not for the learning process
by multiplying an added weight to each feature map. The weight will be zero if the feature map
is useless and positive or negative depending on the usefulness of the feature map. Figure 1
shows the overall architecture of our models.

4 Implementation and Testing

Our model is implemented to guide a mobile robot system named “ROSWITHA” (RObot
System WITH Autonomy)18 by running the robot randomly in the Laboratory of Autonomous
Systems and Intelligent Sensors at FRA-UAS, Germany. By segmenting captured images into
classes, we differentiate between objects that are static or dynamic. Figure 2 shows the structure
of the ROSWITHA robot and the mounted Intel RealSense depth camera.

Before feeding our depth data into the model, we first converted the depth image into a point
cloud. The reason for this is that the model can infer more features from the environment by
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having point cloud data. For example, walls tend to have the same relative horizontal distance to
the camera, whereas the ceiling tends to have a higher height than the camera. Meanwhile, sup-
pose we use only the original depth image. In that case, the Euclidian distance from the point to
the camera or the distance of the projection of the point onto the center axis of the camera can be
extracted. To convert into point clouds, we use the following imaging model19:

EQ-TARGET;temp:intralink-;e001;116;156x ¼ ðxd − cxdÞ �
depthðxd; ydÞ

fxd
; (1)

EQ-TARGET;temp:intralink-;e002;116;100y ¼ ðyd − cydÞ �
depthðxd; ydÞ

fyd
; (2)

EQ-TARGET;temp:intralink-;e003;116;64z ¼ depthðxd; ydÞ; (3)

Fig. 2 ROSWITHA robot equipped with an Intel RealSense depth camera (located in red box).

Fig. 1 Overall architecture of our modified RGB-D semantic segmentation combined with the
attention module.
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where x, y, and z are the real-world coordinates; (xd; yd) are the pixel coordinates; cxd and cyd
are the pixel coordinate of the principal point (center of projection); fxd and fyd are the focal
length of the image. The multiplication of the pixel width, and depth (xd; yd) is the real-world
depth at the pixel coordinate (xd; yd). This imaging model improves our model mean intersection
over union (mIoU) from 0.31 to 0.40. Because the JPG image file extension only allows for
positive integers, whereas the point clouds are real and float numbers, our pipeline also scales
the point clouds’ frames back into integers in the range [0,255] to save them as images and save
the disk memory. This also offers an advantage that the model will generalize the relative posi-
tion of points in space rather than learning their exact coordinates.

Our data came from two main sources: an external synthetic indoor RGB-D dataset with a
segmentation label and our generated dataset at FRA-UAS laboratories. The reason for choo-
singthe first source is to give our model good initial weights, which would bring good results
when we apply it to retrain with our custom dataset. The synthetic datasets have been proven to
work in many computers vision tasks20 and are more precise than human-labeled ones. The
dataset that we used is SceneNet RGB-D,21 which has up to 5 million images in 14 classes
[background, bed, books, ceiling, chair, floor, furniture, objects, picture, sofa, table, television
(TV), wall, and window] at a resolution of 240 × 320. Some examples of the SceneNet RGB-D
dataset are shown in Fig. 3.

We generated a dataset at FRA-UAS laboratories. SceneNet does not include some classes
that we are interested in, such as humans, backpacks, robots, and obstacles in general.
Meanwhile, there are many irrelevant classes, such as bed, toilet, or ceiling. The FRA-UAS
laboratories environment is much different from the scenarios presented in the SceneNet dataset.
Therefore, to make the model work well with our scenarios, we must collect more images around
robotics laboratories. The images were gathered by a D435 Intel RealSense attached to the
mobile robot ROSWITHA. The images were captured at the resolution of 640 × 480 at 90
FPS, and the point clouds converting speed was 30 FPS. The robot was driven around the cor-
ridor and the robotics laboratories on the second floor of building eight at FRA-UAS, Germany,
to collect the images. The generated dataset is divided into two subdatasets.

Fig. 3 Examples synthetic images from the SceneNet dataset (from top to bottom: RGB, depth,
and label images).

Sharan, Nauth and Domínguez-Jiménez: Accurate semantic segmentation of RGB-D images. . .

Journal of Electronic Imaging 061818-5 Nov∕Dec 2022 • Vol. 31(6)



The first dataset has ∼1400 images of three classes: “obstacles,” “free space,” and “human”
(Fig. 4). These images are created and then tested on the performance of our model in the real
world. After achieving better results, we increased the number of classes. We created the second
dataset with ∼390 images of seven different classes, including “free space,” “human,” “chair,”
“table,” “robot,” “backpack,” and “other obstacles” (Fig. 5).

The model training process is divided into three stages:

• Training the model with the SceneNet dataset to give good initial weights to the model.
• Training the model with the FRA-UAS dataset 1 with three classes.
• Training the model with the FRA-UAS dataset 2 with seven classes.

Fig. 4 Three-classes FRA-UAS dataset (from top to bottom: RGB, x; y , and z coordinates, and
labeled images).
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Normally, when training for other domain tasks, only the weights of some of the last layers
are trained, whereas the previous layer’s weights are frozen. Early layers are trained very well on
the large dataset to extract the best features from any images. In contrast, later layers are more
specific to a particular task. (Edges features will be necessary for any classification task and
extracted correctly in early layers. However, complex features, such as body parts, are important
for human classification but not vehicle classifications, and those features need to be learned in
later layers.)

In our scenario, we froze the encoder branches of the model and only trained on the decoder
because the decoder is the part of the model responsible for inferring from the data extracted by
the encoder. As the training progressed, once we saw no improvement in the validation accuracy,
we unfroze the encoder branches and fully trained the model with a small learning rate (10−4) to

Fig. 5 Seven-classes FRA-UAS dataset (from top to bottom: RGB, x; y , and z coordinates, and
labeled images).
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squeeze some more accuracy gain from the model while also ensuring that the weights did not
drift too much from the original numbers.

To verify the advantages of the transfer learning approach versus learning from scratch,
we conducted an experiment between our model training on the seven-classes FRA-UAS data-
set with two different sets of weights: completely random weights (train from scratch) and
pretrained weights of the SceneNet dataset and three-classes FRA-UAS dataset. In our pre-
trained version, we only continue the training process of the decoder while freezing the
encoder. As Table 1 shows, the model when trained from scratch achieved a lower accuracy,
took longer to converge, and occupied more RAM compared with when trained by transfer
learning.

5 Result and Discussion

This evaluation aims to solve the challenges R1 and R2 raised in Sec. 2.
R1: The robot distinguishes the surrounding obstacles well by implementing a machine

learning model with lightweight size (with better accuracy and precision) that is easy to train
and runs in real time.

In this section, first, we presented and justified the results of our model, which is a modified
model with having small size parameters. We compared it with other deep learning RGB-D
segmentation models. We tested the model on the renowned benchmark indoor dataset NYU-
Depth V2,22 which contains 1449 labeled images of indoor scenes with 41 classes. We compared
the model size (number of parameters in millions), global accuracy precision (gAP), mean
accuracy precision (mAP), and mIoU. The comparison results are shown in Table 2. In
Table 2, pretrained denotes that the model has been trained in advance on the 1-million-image
1000 class dataset ImageNet before being trained on the NYUv2 dataset. HHA encoding is a
geocentric embedding for each pixel in addition to the horizontal disparity depth images that
encodes height above ground and angle with gravity for each pixel. A model’s name with HHA
denotes that the depth data were pre-preprocessed and converted to HHA encoding23 before
being fed to the model.

Therefore, according to the results, we can see that the proposed model with a lightweight
size achieves a results for gAP, mAP, and mIoU of 65.1%, 46.1%, and 34.1%, respectively,
which are acceptable compared with other deep learning methods. Additionally, the model
is easy to train and deploy, which makes it run in real time with sufficient hardware strength,
and it achieved acceptable results regarding accuracy and processing time within our customized
FRA-UAS laboratory dataset.

R2: The robot operates under various indoor light conditions.
Furthermore, to achieve robust results for our application of indoor detection, we include the

light condition in the test.
First, we trained our model with the SceneNet dataset, which achieved the global accuracy

and mIoU of 0.73 and 0.39, respectively, with respect to per-class IoU, as shown in Table 3.
Some examples are shown in Fig. 6 after the SceneNet data have been processed by our

model; the segmented objects are expressed with different colors.
Similarly, after retraining with the FRA-UAS dataset 1 (three classes), our model achieved

the results for global accuracy and mIoU of 0.982 and 0.909, respectively, with respect to

Table 1 Comparison between without pretrained and pretrained
model for mIoU, iterations until convergence, and required RAM.

Without
pretrained Pretrained

mIoU score 0.67 0.70

Training iterations until convergence 10,000 8000

%RAM required when train with batch size = 28 100% 78%
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Table 3 mIoU per class of the SceneNet dataset.

Global and mean metrics

Global accuracy 0.73

mIoU 0.39

Per-class IoU Background 0.92

Bed 0.36

Books 0.00

Ceiling 0.69

Chair 0.34

Floor 0.66

Furniture 0.22

Objects 0.4

Picture 0.4

Sofa 0.05

Table 0.33

TV 0.25

Wall 0.67

Window 0.20

Table 2 Performance comparison between our model and others.

Model name
Size

(in millions)
gAP
(%)

mAP
(%)

mIoU
(%)

DeepLab24 >21 50 23.9 15.9

HAA-CNN VGG1624 >42 59.1 30.8 21.9

D-CNN + HHA VGG1624 >42 61.4 35.6 26.2

D-CNN VGG1624 >21 60.3 39.3 27.8

FCN-32s25 >138 61.5 42.4 30.5

(Pretrained) Facebook AlexNet26 >63 62.9 41.3 30.8

(Pretrained) FuseNet8,27 >30 66.0 43.3 32.7

(Pretrained) FCH-32s + HHA25 >138 64.3 44.9 32.8

(Pretrained) FCN-16s + HHA25 >70 65.4 46.1 34.0

(Pretrained) Facebook VGG1626 >138 65.6 45.1 34.1

Our model 6.5 65.1 46.1 34.1

(Pretrained) DeepLab-L + HHA28 >37 68.4 49.0 37.6

(Pretrained) MMAF-Net-1529 122.3 72.2 59.2 44.8

(Pretrained) 3M2RNet29 225.4 76.0 63.0 48.0
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per-class IoU, as shown in Table 4. The examples of segmented objects with different colors are
shown in Fig. 7.

Finally, the model is retrained with the FRA-UAS dataset 2 (seven classes) and achieved
the results for global accuracy and mIoU of 0.956 and 0.72, respectively, with respect to
per-class IoU. The examples of segmented object detection are shown in Table 5 and Fig. 8,
respectively.

We can see (Fig. 8) that the performance of our model in different lighting conditions is very
robust. For example, we can see from our results that the camera detected the objects (static and
human) when the camera was exposed directly to the sunlight. The color of the human’s face
cannot be differentiated from the color curtains as well in the indoor light condition. However,
by relying on the information provided by the depth camera, the human and the obstacles
were detected correctly. We conclude that our model also detects the obstacles and humans in
different indoor light conditions.

Fig. 6 Segmentation samples on the validation set of the SceneNet dataset (top row: RGB image,
middle row: ground truth, and last row: predictions).

Table 4 mIoU per class of FRA-UAS dataset 1.

Global and mean metrics

Global accuracy 0.982

mIoU 0.909

Per-class IoU Obstacles 0.9801

Free space 0.8503

Human 0.8966
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6 Conclusion and Future Work

In this work, we have solved the problem of object detection by applying our modified deep
learning model during the operation of the mobile system in the FRA-UAS robotic laboratory.
Compared with other deep learning RGB-D segmentation models, our model achieved compar-
ative results when trained with the available NYUv2 dataset.

Furthermore, the modified model was trained by our customized indoor FRA-UAS dataset 1
with three classes and FRA-UAS dataset 2 with seven classes and achieved the global accuracy

Fig. 7 Segmentation samples from the three-classes FRA-UAS dataset (top row: RGB image,
middle row: ground truth, and last row: predictions).

Table 5 mIoU per class of FRA-UAS dataset 2.

Global and mean metrics

Global accuracy 0.9564

mIoU 0.7203

Per-class IoU Other obstacles 0.9506

Human 0.8524

Table 0.6628

Chair 0.7632

Robot 0.7085

Backpack 0.2129

Free space 0.8914
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of ~98% and 95%, respectively. We have obtained better results than other traditional models for
the application of mobile robot ROSWITHA in our indoor environment laboratory.

Our model segmentation output was used during the testing scenario to create the mobile
robot’s local cost map for its mobility. The results were optimal in the detection of difficult-to-
detect objects, such as tables. We checked that our model was enough for the robots to navigate
in the indoor environment without using other sensors for obstacle detection. Therefore, the
performance of our model was robust in indoor light conditions.

Moreover, after achieving better results, we still found some limitations of our model. When
the image is extremely blurred, the model does not detect the objects correctly. To overcome this
limitation, we can reduce the confidence in the point cloud sent by the model during the fast
turning of the robot or use another method to exploit the time component of the video stream.
The model may rely more on the information of previous frames to infer the current blurred
frames. To solve these issues, some researchers have tried to incorporate optical flow or a long
short-term memory network into the CNN model to capture the relationship between adjacent
frames.21,30

One of many possible directions for future development is to convert the original image
segmentation problem into a video segmentation problem. The video segmentation problem will
help the model become more robust to blur in the image and fast-moving scenes and objects as it
can incorporate the time-series features of the data into the learning process. Also, learning
images as a video will enhance the stability of the prediction because two adjacent frames tend
not to differ very much, thus reducing the outliers in the predictions of the model.

Another possible direction to increase the robustness of the model would be enriching the
real-world indoor dataset used to train and validate the model. Because our collected and labeled
dataset is relatively small, collecting more data will make the model robust to different envi-
ronments, and the model’s performance evaluation result will be more trustworthy.

Fig. 8 Segmentation samples from the seven-classes FRA-UAS dataset (top row: RGB image,
middle row: ground truth, and last row: predictions).
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With segmenting, the robot captures images into classes to differentiate whether objects
are static or stationary, and we can create the mobile robot’s local cost map for its mobility.
By applying navigation algorithms in later steps, the robot can move to the designed position
and avoid collision with obstacles along its way. In future work, we will integrate the model with
the navigation method of the mobile robot to understand the dynamic and static objects and
apply it to the real-world robot’s (ROSWITHA) application of maneuvering in a dynamic
environment.
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