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A B S T R A C T   

Technology innovation is widely recognised as a critical means in tackling climate change and fulfilling energy 
policy objectives. The objective of this paper is twofold: first, to provide a descriptive analysis of innovation in 
energy technology across countries and sectors and over time; and second, to explore the determining factors of 
patented knowledge diffusion of energy technologies by distinguishing between renewables and other energy 
patents, i.e., fossil and nuclear patents) thorough a regression analysis. The data employed in this paper consists 
of an original database on renewables and other energy patents applied by firms in the period 1990–2015 and 
contained in PATSTAT. By drawing on patent citations as an indicator of knowledge diffusion and focusing on 
characteristics extracted from patent documents, a set of econometric models is estimated. Our results show that 
those patents containing more citations to previous scientific literature and patents attain greater diffusion. Joint 
patents with other firms or universities exert a negligible effect on technology regarding renewables. Co- 
ownership with universities has a negative effect on the diffusion of other types of energy technology. Several 
policy implications can be determined from our results: for example, the justification for policies oriented to
wards enhancing the incorporation of scientific knowledge and co-inventorship in energy innovation.   

1. Introduction 

Technology innovation is widely recognised as a critical means in 
tackling climate change and attaining energy policy objectives, 
including those of increasing energy access and reducing air pollution 
(IEA, 2020). Mitigating the harmful effects of climate change involves 
working towards the best use of clean energy and encouraging the 
transition of the world energy system towards electricity generation 
from low-carbon sources and other gasses (IEA, 2017). Due to increasing 
concerns over the environmental consequences of greenhouse gas 
emissions from fossil fuels, renewable energy has emerged as a substi
tute energy source, since the reduction of CO2 emissions and the control 
of climate change must include the reorganization of the energy sector 
(Abulfotuh, 2007; Apergis and Payne, 2012; Balsalobre-Lorente et al., 
2018). It is clear that the energy sector will only reach net-zero emis
sions through a global effort for innovation (IEA, 2020). Furthermore, 
investing in renewable energy sources can contribute towards other 
public-policy objectives, such as greater energy security, in the face of 
the uncertain markets of fossil fuels (Johnstone et al., 2010). Further
more, this sector constitutes a driving force for innovation, since it exerts 

a significant impact on other sectors that are indirectly affected, such as 
transport and waste management (Schmidt et al., 2012). 

Previous research has revealed the importance of external knowl
edge sourcing and knowledge diffusion across sectors (Nemet, 2012; 
Duch-Brown and Costa-Campi, 2015), and geography (Binz and Ana
don, 2018; Gosens et al., 2015; Li et al., 2021). It has also shown the 
relevance of collaboration for green innovation (Ghisetti et al., 2015; 
Araújo and Franco, 2021) and in general for innovation, which is in line 
with the open innovation paradigm. Additionally, there is an observed 
increase towards the incorporation of science into energy patents, 
especially in renewables (Hötte et al., 2021; Perrons et al., 2021). 

This paper addresses two limitations of the extant literature. First, 
previous contributions on the diffusion of energy technology using 
patent data have focused on the effect of policy incentives in inducing 
innovation (Battke and Schmidt, 2015; Noailly and Shestalova, 2017; 
Popp, 2006; Johnstone et al., 2010; Miremadi et al., 2019; Hötte, 2020) 
or in the international or regional knowledge flows (Binz and Anadon, 
2018; Gosens et al., 2015; Li et al., 2021). Second, the literature 
exploring the effect of in-text patent indicators on knowledge diffusion 
has not focused on the energy sector and extant non-specific energy 
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sector reserch provides mixed evidence on the effect of scientific link
ages, backward citations, and co-ownership on the diffusion of tech
nology (e.g., see Acosta et al., 2009 for environmental technologies; 
Schmid, 2018 for military technologies; and Belderbos et al., 2014, 
Briggs, 2015, and Peeters et al., 2020 for general evidence). 

This paper aims to fill these gaps by providing a comprehensive 
analysis of patented energy technology generation and of the factors 
affecting its diffusion based on patent data. Firstly, a description is 
provided of the temporal evolution of patented energy technology over 
the period 1990–2015, and of its distribution across technological fields. 
Light is also shed on which countries lead the process of patented 
technology in the energy sector. Additionally, descriptive statistics 
enable comparisons between renewables and other energy technologies. 
Secondly, a set of econometric models is estimated to identify the factors 
that determine the diffusion of renewable energy technologies and other 
energy technologies, which includes scientific linkages, backward cita
tions, and co-ownership of patents. For this purpose, two technological 
sectors are distinguished: renewable technologies, and other technolo
gies producing energy. Renewable energy technologies include Wind, 
Solar, Geothermal, Marine, Hydro, Biomass, Waste, and Storage technol
ogies. Other technologies producing energy include Fossil Fuels and 
Nuclear technologies. Our analysis is based on the number of citations a 
patent receives in subsequent patents, that is, forward citations, as a 
proxy for knowledge diffusion. 

The consequences of patent diffusion make this research relevant 
both from the firms’ and policy-makers’ perspectives. At the firm level, 
empirical literature has shown a strong relationship between patent 
diffusion (e.g., the impact of a patent on subsequent patented in
ventions) and several indicators of firm performance (Chen and Chang, 
2010; Hall and MacGarvie, 2010; Hall et al., al., 2005; Harrigan et al., 
al., 2018; Hirschey and Richardson, 2004; Patel and Ward, 2011): for 
example, stock prices (Hall and MacGarvie, 2010), market value (Hall 
et al., 2005; Kim et al., 2018 for the renewables sector), and reputation 
for technological innovation, which in turn correlate with the firm’s 
competitive advantage (Henard and Dacin, 2010; Höflinger et al., al., 
2018). Furthermore, patent diffusion promotes innovation by reducing 
transaction costs and coordinating R&D efforts between rivals (Sag and 
Rohde, 2007; Thomas, 2002). From the policy-makers’ perspective, 
understanding innovation and diffusion of energy technologies become 
essential for efficient energy and environmental policy design, and may 
contribute towards explaining why certain existing technological solu
tions in the market diffuse slowly, even when they are technologically 
superior (Hötte, 2020). These crucial consequences of patent quality for 
the firm and for society trigger political and academic interest in un
derstanding the factors affecting patent diffusion in the energy sector. 

2. Theoretical background 

Broadly speaking, comprehension of the mechanisms underlying 
knowledge creation and diffusion is essential for economic growth to be 
understood (Silverberg et al., 1988; Klarl, 2014; Andergassen et al., 
2017). In one of the seminal contributions of knowledge diffusion, 
Rogers (1962, p. 5) defined diffusion as “a process by which an inno
vation is communicated through certain channels over time among the 
members of a social system”. This concept of diffusion conveys both 
market and non-market channels. However, in this paper, a more con
strained concept of diffusion is adopted, which is centered on knowledge 
spillovers. These can be defined as external knowledge sources upon 
which organisations are built and in which there is no compensation, or 
said compensation lies below the actual value of the knowledge (Jaffe, 
1998; Korres, 2012). From a macroeconomic viewpoint, knowledge 
diffusion through spillovers plays a key role in the literature on 
endogenous economic growth (Grossman and Helpman, 1991, 2018; 
Griliches, 1992; Aghion and Howitt, 1992; Acemoglu and Akcigit, 
2012). From a microeconomic viewpoint, technological diffusion pro
vides a key factor for productivity growth (Baumol, 1991). Furthermore, 

the identification and understanding of the processes of technological 
knowledge diffusion and acquisition is essential in the design of suc
cessful business strategies (Bonesso et al., 2011; Momeni and Rost, 
2016). However, the process of knowledge diffusion is not automatic, as 
shown by a large set of studies initiated by Jaffe et al. (1993), but instead 
depends on agents’ absorptive capacity (Cohen and Levinthal, 1990; 
Lane et al., 2006). 

2.1. The diffusion of technology in the energy sector 

Although not precisely focused on the factors affecting knowledge 
diffusion, a growing number of studies rely on patent data to examine 
innovation and knowledge sourcing in the energy sector and provide 
relevant clues for this research. 

Motivated by the fact that technological change is considered a cu
mulative process in which new technologies result from the recombi
nation of existing knowledge in innovative ways (Arthur, 2007), several 
papers have provided evidence on knowledge flows through the analysis 
of backward patent citations within/across technological sectors 
(Nemet, 2012; Duch-Brown and Costa-Campi, 2015) or geography (Binz 
and Anadon, 2018; Gosens et al., 2015; Li et al., 2021). In the case of 
renewables, evidence has revealed that energy innovation depends on a 
broad range of knowledge sources since it usually involves the combi
nation of diversified and complex knowledge areas (Nemet, 2012; 
Garrone et al., 2014; Noailly and Smeets, 2015; Popp, 2017). This 
highlights the importance of external knowledge sourcing to foster 
innovation and diffusion. However, the rate of diffusion depends on the 
type of technology. For example, green technologies exert a higher 
impact on future inventions (Barbieri et al., 2020). Overall, patents in 
wind, storage, and solar technologies tend to be more frequently cited 
than other renewable technologies (Noailly and Shestalova, 2017). 

Additionally, previous research has found that energy innovation 
increasingly relies on science (Hötte et al., 2021; Perrons et al., 2021), 
particularly in the case of renewable energies (Perrons et al., 2021; 
Persoon et al., 2020), which may indicate an increasing dependence of 
invention on scientific research over time. 

From an institutional point of view, open innovation becomes a 
relevant paradigm (see Lacerda and Van den Bergh, 2020 for renewable 
technologies). The open innovation perspective stresses the value of 
external knowledge by arguing it is a necessary strategy to increase R&D 
productivity in the face of growing competition and faster technology 
development cycles. Nevertheless, successful environmental in
novations are highly dependent on the participation of different stake
holders in their development/uptake, that is, they are likely to result 
from the cooperation between the public sector, academia, and business 
(Carrillo-Hermosilla et al., 2010).  However, it has been found that 
universities play a less important role in wind research than they do for 
solar and biofuels, which the authors interpret as being wind energy 
research at a more applied stage where commercialization and final 
product development has become more important than basic research 
(Hötte et al., 2021). In particular, green energy innovations rely on 
technologies developed outside the field of power generation (Noailly 
and Ryfish, 2015) and often require the combination of various items of 
knowledge developed by different actors in different countries (Cor
rocher and Mancussi, 2021), which exemplifies the relevance of open 
innovation. 

Despite the importance of building upon previous extant techno
logical, scientific knowledge and cooperation for energy innovation, 
their effect on diffusion has yet to be explored. Therefore, in the sub
sequent section, the non-specific energy empirical evidence on the de
terminants of patent diffusion is reviewed. 

2.2. Determinants of patent diffusion 

The cumulative nature of knowledge and path dependancy make it 
crucial to rely on previous knowledge for innovation. Two prominent 
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sources of knowledge are those of previous codified knowledge (either in 
patent or non-patent literature), and R&D cooperation (either with 
universities or firms). In this section, our hypotheses are derived, as 
summarised in Fig. 1. 

2.2.1. Citations to non-patent literature 
Scientific research has been largely discussed as being relevant for 

technological innovation (e.g., Bush, 1945; Brooks, 1994; Godin, 2006; 
Balconi et al., 2010 ; Fleming et al., 2019) Fleming & Sorenson (2004.) 
suggested that science functions as a map of the technological land
scapes that can guide private research towards useful combinations, 
thereby avoiding dead-end research efforts. Furthermore, the growth of 
markets for technology including those from academia, implies that 
firms have access to a larger scientific pool than ever (Marx and Fuegui, 
2020). 

Several papers have found a close relationship between scientific 
citations and the value of patented inventions (e.g., Sorenson and 
Fleming, 2004; Branstetter, 2005; Gambardella et al., 2005; Ahmadpoor 
and Jones, 2017; Poege et al., 2019 provide non-specific sector evi
dence; see, Harhoff et al. (2003), for pharmaceutical and chemical 
patents). However, the empirical evidence remains mixed. For example, 
Harhoff et al. (2003) found a positive effect of citations to the non-patent 
literature and the value of pharmaceutical and chemical patents, but not 
in other technical fields Cassiman et al. (2008). found that references to 
scientific publications are not relevant in explaining forward citations in 
patents from a set of technological classes, which they justify because 
patents citing science may be uncovering knowledge of a more complex 
and fundamental nature, which is less readily diffused or remains far 
from market applications Petruzzelli et al. (2015)., using a sample of 
biotechnology patents, found that the use of scientific knowledge varies 
in its impact depending on the level of analysis of knowledge diffusion. 
According to their results, non-patent citations do not affect the number 
of forward citations, nor do patent citations from the same technology 

domain, nor the number of citations from other assignees. However, 
they did find a negative effect of scientific citations on a patent’s impact 
on subsequent patents outside the biotechnology industry, and they 
found a positive effect of the technological relevance of the patent for 
the assignee’s future inventions. 

On the whole, the empirical evidence on the effect of scientific 
linkages of technological innovations remains largely unclear, although 
it does seem to remain dependent on the technological sector under 
analysis, whereby it has greater relevance in technologically complex 
sectors. The widely discussed relationship between science and tech
nology, and the increasing importance of science for energy innovations 
(Hötte et al., 2021; Perrons et al., 2021), motivates the following 
hypothesis: 

H1. More scientific knowledge sourcing exerts a positive effect on 
energy patent diffusion. 

2.2.2. Backward patent citations 
Backward citations have been used in other studies as a proxy for 

spillover effects and show a positive effect on the market value of firms 
(e.g., non-specific sector evidence available in Harhoff et al., 2003; 
Duguet and Macgarvie, 2005; Gay and Le Bas, 2005). 

Backward citations can be directed towards patents owned by others 
or to self-owned patents. In the specific case of self-citations, these are a 
measure of path-dependent technologies (Sørensen and Stuart, 2000 for 
high-tech industry; Song et al., 2003 for non-specific sector evidence). 
Interestingly, Hall et al. (2005) provided general empirical evidence that 
self-citations have an even stronger effect on market value than do other 
citations. Liu et al. (2008) found that US pharmaceutical and biotech
nology patents that are part of sequential inventions show increased 
technological value. Thus, the higher the number of self-citations 
included in a patent, the higher the expected number of forward cita
tions, since it signals that the firm maintains greater accumulated 
technological knowledge (Gay et al., 2005). 

Fig. 1. Research model and hypotheses.  
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In consideration of the positive effect of citations and self-citations 
on innovation performance and diffusion, we advance the following 
hypothesis: 

H2. More citations to the patents of others exerts a positive effect on 
the diffusion of energy patents. 

H3. More citations to one’s own patents exerts a positive effect on the 
diffusion of energy patents. 

2.2.3. R&D collaboration and co-patenting 
Collaboration with external organisations is generally viewed as 

positive for the firm’s innovation because it provides access to resources, 
especially knowledge, that the focal firm lacks (Un et al., 2010). In the 
particular case of industry-university collaboration, universities can 
provide the scientific basis for technological progress and basic research 
(Peeters et al., 2020). Co-patenting implies the joint ownership of 
collaborative outcomes and has been used as an instrument to analyze 
the effect on value creation and appropiation (Belderbos et al., 2014). 
However, co-patenting creates uncertainty over the control that each 
co-owner possesses of the co-owned patent (Hagedoorn, 2003). 

Empirical evidence on the effect of co-ownership reveals mixed re
sults. Belderbos et al. (2014) find that co-ownership between firms re
ceives more forward citations than do single-owned patents, while 
co-ownership with a university yields no statistical difference in the 
number of forward citations received compared to single-owned patents. 
With respect to the latter, Briggs (2015) obtained similar results when 
using forward patent citations within three years, but found a positive 
effect of co-ownership with universities on quality when using the total 
number of forward citations over the whole life of the patent. Recently, 
Peeters et al. (2020) found a positive effect of co-ownership with uni
versities in exploratory trajectories, but a negative effect on forward 
citations for exploitative trajectories. They justify this result by stating 
that the more ‘certain’ exploitative trajectories are developed in-house, 
whereas the more uncertain types are more likely to be outsourced. 

Given the distinct benefits of collaborating with different types of 
partners, we consider that in-depth studies are needed into the effect of 
co-ownership with universities and firms on patent diffusion in the “era 
of open innovation” (Enkel et al., 2009). This leads us to advance the 
following hypotheses: 

H4. Co-patenting with other firms has a positive effect on the 
diffusion of energy patents. 

H5. Co-patenting with universities has a positive effect on the 
diffusion of energy patents. 

3. Methods and data 

3.1. Measuring knowledge diffusion through the forward citations of 
patents 

This paper relies on patent citations as an indicator of technological 
diffusion. Patent applicants are required to cite all “prior art” related to 
the invention (Criscuolo and Verspagen, 2008; Jaffe et al., 2000). Thus, 
patent citations are added to the patent documents if the knowledge in 
the cited patent is relevant to the citing patent. In other words, if patent 
B cites patent A, then it may be indicative of a knowledge flow from 
patent A to B (Hall et al., 2001). Following this reasoning, there is a large 
body of research using citation indicators of technological relations 
between the citing and cited patents (see, for example, Jaffe et al., 1993; 
Jaffe and Trajtemberg, 1999; Hall et al., 2001; Hu and Jaffe, 2003; 
Maurseth, 2005; Gay et al., 2005; Liu and Roseau, 2010; Schmid, 2018). 
However, patent citations fail to constitute a perfect measure of tech
nological diffusion for two basic reasons (Verspagen, 2000). First, they 
depend on the consideration of patents as a reliable indicator of inno
vation. Thus, in sectors where inventions are less prone to be patented, 
patent citations provide a limited indicator of diffusion. Second, patent 
citations serve a legal purpose by limiting the claims that can be made on 
the invention: on recognizing previous technology, they narrow the 

innovativeness of the invention. For this reason, it is the ultimate re
sponsibility of the patent examiner to determine which references 
should be included. It can happen, therefore, that the inventor remains 
unaware of the cited patent1 (Alcácer and Gittelman, 2006; Cockburn 
et al., 2002). Several studies have focused on the validation of patent 
citations as indicators of knowledge flows (for a review, see Jaffe and de 
Rassenfosse, 2017). The overall conclusion of these studies is that patent 
citations are an accurate, though noisy, indicator of actual knowledge 
flows. Nevertheless, they constitute “the most widely employed measure 
of knowledge flows in the economics, management, and policy litera
tures” (Roach and Cohen, 2013). 

From this literature, a number of studies have built upon the use of 
forward citations to measure technological diffusion (Sorenson and 
Fleming, 2004; Hoetker and Agarwal, 2007; Schmid, 2018). In addition, 
forward patent citations can be considered a measure of patent quality 
and hence a proxy for the economic value of a patent and its diffusion. 
An increased count of forward citations (citation of a patent in subse
quent patents) means that the patent contributes with relevant knowl
edge to other inventions (e.g., Trajtenberg, 1990; Gambardella et al., 
2008; Fischer and Leidinger, 2014; Briggs and Wade, 2014; Abrams 
et al., 2018). The relationship between forward patent citations and 
economic value suggests that patents related to a significant new tech
nical knowledge receive more citations than other patents, which in turn 
reveals a close association between citations and the socioeconomic 
value of innovations (Carpenter et al., 1981; Albert et al., 1991; Harhoff 
et al., 2003; Lanjouw and Schankerman, 2004; Gay et al., 2005). 

3.2. Variables, model, and data 

3.2.1. Variables 
A regression analysis of patent families (hereinafter referred to as 

“patents”) is conducted. 
Table 1 summarises variables and definitions. Our dependent vari

able (forward_citations_5years) is the count of citations that an inven
tion (i.e., patent family) receives within a 5-year window from the first 
publication date (for more details, see de Rassenfosse et al., 2014; 
Squicciarini et al., 2013). 

The mechanisms generating applicant and examiner citations differ 
widely (see discussions regarding the role of the examiner in Alcácer 
et al., 2009; Chen, 2017; Azagra-Caro and Tur, 2018). Examiner cita
tions are excluded since the inventor might remain unaware of the cited 
patents and may fail to utilize them for the creation of inventions and 
therefore may fail to truly indicate knowledge diffusion (Jaffe et al., 
2000) .2 Self-citations (i.e., citations made by an assignee to their own 
previous patents3) have also been excluded from the dependent variable 
(see, for example, Acosta et al., 2012). 

Further to factors mentioned in Section 2.2, other factors have also 
been identified as determinants of forward patent citations:  

- Previous experience of the applicant. Given the path dependancy nature 
of knowledge creation, it is assumed that inventors that have 

1 An analysis of the influence of citations included by the inventor and by the 
examiner, and the deviation generated in the determination of technological 
flows can be found in Alcácer & Gittelman (2006) and Thompson (2006).  

2 Following the recommendation of one anonoymous reviewer, we replicated 
our mainstream models using examiner citations as the dependent variable. 
Similar conclusions are reached regarding our hypotheses testing, except for 
Hypothesis 5. For brevity, the results are not displayed here but they are 
available from the authors upon request.  

3 To identify self-citations, we first harmonise companies’ names. To this end, 
we consider two applicants as being the same applicant if they have the same 
name (even if they have different legal forms) and belong to the same country 
(Callaert et al., 2011). 
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previously innovated are more likely to develop relevant patents 
than inventors with no experience (Gambardella et al., 2005).  

- Family size. The number of different jurisdictions where the same 
invention has been filed positively affects forward citations (e.g., 
Duch-Brown and Costa-Campi, 2015 for the oil and gas industries). 
The main argument explaining this relationship is that applying for 
protection is costly, therefore applicants are more likely to apply for 
protection in multiple countries for their most valuable inventions 
(Harhoff et al., 2003; Lanjouw and Schankerman, 2004 for 
manufacturing firms; Sampat, 2005). 

- Number of claims. Each claim represents a distinct inventive contri
bution (Tong and Frame, 1992). Patents with more claims delimit 
broader property rights and thus are expected to be more frequently 
cited (see Bessen, 2008 for a set of technological sectors; Nemet, 
2012 for energy technologies).  

- Number of inventors. Increased team size increases richness of the 
knowledge involved in the patent and the access to a wider and more 
heterogeneous network (for non-energy specific evidence, see: 
Guellec and Van Pottelsberghe de la Potterie, 2001; Lee et al., 2007; 
Singh, 2008; Cassiman et al., 2008; Sun et al., 2020).  

- Originality. Patent originality refers to the breadth of the fields of 
technology upon which a patent relies (Squicciarini et al., 2013). It is 
expected that the most original patents receive, on average, more 
citations since a broader search is the base for a broader range of 
subsequent innovations (Petruzelli et al., 2015 provide evidence for 
biotechnology). However, it has also been argued that searching 
widely is a risky process that conveys uncertainty regarding the 
outcomes (Petruzelli et al., 2015).  

- Technological scope. A higher frequency of citations is expected when 
the patent family is assigned to a broader range of technological 
fields (Trajtenberg et al., 1997). 

- Triadic families. It has been shown that EP patents simultaneously 
applied to US and Japan receive, on average, a higher number of 

citations than EP-only patents (Criscuolo, 2006 for a set of techno
logical sectors, but not specific to energy).  

- Accumulated stock of knowledge. The number of citations also depends 
on the number of opportunities to be cited: a large number of patents 
in a given technological domain indicate more inventors working on 
related technologies and thus the increased propensity of a given 
patent to be diffused (Acosta et al., 2013, and Schmid, 2018, for 
military technologies). 

All regressions control for year and field effects by including 
dummies. The year’s fixed effects capture differences in the quality of 
patents relative to the last year in the sample. Similarly, several 
dummies capture possible differences between technological sub
categories in the energy sector, both in renewables (Wind, Solar, 
Geothermal, Marine, Hydro, Biomass, Waste, and Storage) and other 
technologies (Fossil and Nuclear) (see Noailly and Shestalova, 2017, and 
Albino et al., 2014 for the list of IPC codes identifying each category). 
Each variable takes the value of 1 if the corresponding technological 
field appears in the group of IPC classification assigned to the patent 
family, and 0 otherwise. 

Table 2 shows the frequencies of citations over 5 years for the whole 
sample. Our data shows that 74.45% of the patents in our sample do not 
receive citations in a 5-year window and 8.16% receive only one 
citation. 

3.2.2. Model specification 
As mentioned above, in order to estimate the influence of the various 

factors on the diffusion of knowledge in the energy sector, we estimate a 
model using the count data of forward citations over a 5-year window as 
a dependent variable (forward_citations_5years). The nature of the data 
implies the formulation and estimation of a counting model (Poisson or 
Negative Binomial), since estimates obtained from linear regression can 
be inconsistent, inefficient, and biased (Amano and Fujita, 1970; Long, 
1997). Similar to many other studies, a baseline specification is assumed 
following a Poisson distribution with non-linear form. However, one 
restriction of the Poisson model is that it assumes the mean and variance 
of the dependent variable to be equal. When the dependent variable 
shows over-dispersion, (i.e., when the variance of the dependent vari
able is greater than the mean), then negative binomial models are 
preferred (for details, see Cameron and Trivedi, 1986). Given the large 
number of zeros in our sample (as shown in Table 2, almost 75% of the 
patents in our sample fail to receive citations in a 5-year window), 
zero-inflated negative binomial regression models could be considered. 
However, these models assume that there is a mixed distribution 
composed of the two processes, one representing the count (Poisson or 
NB) and the other the excess of zeros (e.g., a logistic function). Following 
Bornmann and Leydesdorff (2015), since there is no known difference in 
the mechanism for the first citation and the later citations, zero-inflated 
negative binomial models are not used in this paper Thelwall and 

Table 1 
Variables and definitions.  

Variable Definition 

Dependent variable 
Forward_citations_5years No. of forward citations within the window of 5 years 
Independent variables 
Non_patent_literature No. of citations to non-patent literature 
Backward_others_citations No. of backward citations 
Backward_self_citations No. of backward self-citations 
Collaboration_firm Dummy: 1 indicates collaboration with a firm, 

0 otherwise 
Collaboration_university Dummy: 1 indicates collaboration with a university, 

0 otherwise 
Previous_experience No. of total inventions in energy technologies of the firms 

owning the patent in the previous ten years before the 
application date of the patent (as a logarithm) 

Family_size No. of different patent jurisdictions in the patent family 
Claims No. of claims in the patent family 
Inventors Maximum number of inventors in the patent family 
Original Originality index based on Trajtenberg et al. (1997). If all 

cited patents belong to exactly the same set of 
technologies, then the originality index is 0. A large 
“originality” value indicates broader technological roots 
of the invention 

Scope No. of different 4-digit IPC subclasses 
US_JP Dummy: 1 indicates protection in the US and JP, 

0 otherwise 
Stock No. of inventions that already exist in the particular 

technological field over the last 10 years (as a logarithm) 
Control variables 
Year dummies Year effects: Dummy variable from 1990 to 2005, taking 

2006 as base category 
Field dummies Field effects: Dummy variable. Renewables (Wind, Solar, 

Geothermal, Marine, Hydro, Biomass, Waste and Storage) 
and other technologies (Fossil and Nuclear) 

Source: Author’s own based on Patstat data. 

Table 2 
Frequency of 5-year forward citations (1990–2015).  

No. of forward 
citations 

No. of 
patents 

Cumulative 
count 

% of patents 
over total 

Cumulative 
% 

0 40,632 40,632 74.45 74.45 
1 4451 45,083 8.16 82.60 
2 2566 47,649 4.70 87.30 
3 1681 49,330 3.08 90.38 
4 1138 50,468 2.09 92.47 
5 864 51,332 1.58 94.05 
6 673 52,005 1.23 95.29 
7 460 52,465 0.84 96.13 
8 375 52,840 0.69 96.82 
9 284 53,124 0.52 97.34 
10 220 53,344 0.40 97.74 
>10 1234 54,578 2.26 100 

Source: Author’s own based on Patstat data. 
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Wilson (2014). recommended the use of the generalised linear model 
with lognormal residuals for scientific citation data, although they 
recognize limitations to their study that probably provoke the over
estimation of the unreliability of negative binomial regression for cita
tions. Despite these limitations, and given the similarities in the 
distribution of patent and scientific citations, ordinary least squares 
models based on logarithmised citation data were additionally calcu
lated to test the robustness of our results.4 

3.2.3. Data 
The empirical data consists of 54,578 energy patent families applied 

for by firms and which includes at least one application to the European 
Patent Office (EPO) in the period 1990–2015, considering the earliest 
filing year of the family, that is, the priority date. The source of data is 
the EPO Worldwide Patent Statistical Database (Patstat, autumn 2017 
edition). In order to uniquely identify patent applicants, the OECD HAN 
database is employed together with manual harmonization. The OECD 
HAN database provides harmonised patent applicants’ names, but it is 
only available for patent applicants at the EPO. Hence, our sample is 
limited to families of patents that include at least one application at the 
EPO. We follow the classification scheme based on the International 
Patent Classification Codes (IPC) as proposed in Noailly & Shestalova 
(2017) for renewables and fossil technologies, and in Albino et al. 
(2014) for nuclear technologies. 

The DOCDB simple patent family concept is employed to build 
families, that is, a collection of patent documents that share identical 
technical content and are considered to protect a single invention. Our 
data is obtained from patent families instead of individual patents for 
several reasons (see Martínez, 2011, for a discussion on patent families). 
Since the same invention can be patented in multiple offices (Popp, 
2005), in order to avoid duplication, patent families are used as an in
ventive integral unit, instead of using the individual counting of appli
cations (Martínez, 2011). Furthermore, patent families can be associated 
to a unique priority filing (i.e., the earliest priority date), which should 
be that closest to the invention (Bastianin et al., 2021). From the side of 
citations, the focus on families prevents the multiple counting of cita
tions (Fischer and Leidinger, 2014; Nesta et al., 2014). Moreover, if an 
application of the family receives a citation, it is just as valid as that 
received directly to the initial application (Bakker et al., 2016). Given 
these benefits of patent families, it is not unusual that they are 
increasingly used as the unit for counting patents (e.g., Baruffaldi and 
Shimeth, 2020; Bastianin et al., 2021), and examining knowledge 
diffusion across sectors (Nemet, 2012; Duch-Brown and Costa-Campi, 
2015) or geographical areas (e.g., Li et al., 2021, for energy 
technologies). 

Since citations can continue accumulating over a patent’s life, the 
count of patent citations presents a truncation problem. Additionally, 
since older patents have had more time to be cited, they are expected to 
have received more citations. In accordance with previous contribu
tions, we deal with these issues by using citations within a five-year time 
window (Petruzzelli et al., 2015) subsequent to when the invention was 
first published (Hall and Helmers, 2013; Moaniba et al., 2018). 

However, our data is still truncated for two reasons. First, there is a 
publication delay: an application takes 18 months to be published after 
the initial filing date. Second, many EP applications are increasingly 
based on earlier PCT applications. For PCT applications, the applicant 
has 31 months to decide whether or not the application becomes a Eu
ropean application. In this paper, families with at least one EP appli
cation with priority date between 1990 and 2015 are considered, and 
hence the analysis of the data beyond 2011, which is the latest 
comprehensive year in our sample, should be approached with caution. 
In order to deal with these data truncation issues in regression analysis, 

the time frame of our sample is limited to enable the citation window to 
be completed. For example, the main set of econometric models is 
estimated using data for 1990–2006 patents to have complete infor
mation for the 5-year citation window. 

4. Results 

In this section, the results of our descriptive analysis are provided 
together with the estimation of an econometric model to identify the 
factors affecting forward citations of patented energy technology. 
Separate models for renewables and other technologies are estimated. In 
so doing, allowances are made for differences in the factors that 
encourage the diffusion of renewables and other technologies. 

4.1. Descriptive analysis 

For the purpose of contextualization, a brief description is presented 
of patent families in our sample to provide insights into innovation in 
energy over time and its distribution across technological fields. 
Regarding the temporal evolution, Fig. 2 shows the number of patents 
related to renewable energy, related to other types of energy, and the 
total number of energy patents. For the joint series of renewables and 
other types of technologies, a consistent increase in the number of pat
ents is observed from 1990 to 2011, and a decay from 2012 onwards. 
With the focus on renewables, the data reveals the catching up of 
innovation in renewable energies rising from 117 in 1990 to 2040 in 
2011 (a 1643.59% increase), while other technologies rise from 984 in 
1990 to 2160 in 2011 (119.51%). In 2011, renewable patents repre
sented 49.95% of the total number of patented energy technologies. As 
in Haščič et al. (2015), the drop in recent years is likely to be due to a 
temporary phenomenon whereby certain batches of new data are 
included with a time lag. 

Fig. 3 depicts the number of 5-year forward citations to energy 
patents, which shows an increasing trend from 1990 to 2007, but a 
notable decrease from 2008. This result can be explained: since citations 
are computed at the family level, and recent patent families might still 
be incomplete in that further applications might be expected to be added 
to the family. Moreover, it is worth mentioning that the number of ci
tations that an invention receives becomes 0 in 2015, because these 
patents have not had enough time to be cited (5-year window not 
completed). Comparing these two types of energy technologies, Fig. 3 
confirms the relevance of renewable energy technologies as having in
ventions that are more frequently cited for the generation of electricity 
since 2004. 

Finally, by focusing on 5-year forward citations per patent over time, 
Fig. 4 shows a major increase in renewable energies, which surpass other 
technologies. 

Table 3 reports the distribution of patent families and forward cita
tions per technological field. Our results show that other technologies 
account for the largest share of total patents in the energy sector 
(65.25%). However, renewable energy technologies are cited more often 
than other traditional technologies for the generation of electricity (the 
former accounts for 51.58% of 5-year forward citations in the energy 
sector). Focusing on technological fields, our results also reveal that 
Solar (12.22%), Wind (11.63%), and Storage (6.37%) technologies ac
count for the largest number of patents among the renewable energy 
technologies. These are also the fields with the largest share of citations 
in the energy sector. Furthermore, the minor importance of nuclear 
technologies in terms of patents and citations can be observed in com
parison to fossil fuel technologies. The last column in Table 3 depicts 
information regarding citations over 5 years per patent family, once 
again revealing a higher impact of renewable energies (1.67) than for 
other technologies (0.84). Wind, Biomass, and Storage are the fields that 
receive more citations per patent family. 

In order to shed light on which countries lead the process of 
knowledge generation in the energy sector, Table 4 presents the top ten 

4 Whereby 1 is added to the citation data, the logarithm is taken, and ordi
nary least squares regression is used. 
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Fig. 2. Number of inventions per type of energy technology (1990–2015), Source: Authors’ own based on Patstat data.  

Fig. 3. Number of 5-year-window forward citations (1990–2015).  

Fig. 4. Number of 5-year forward citations per patent (1990–2015), Source: Authors’ own based on Patstat data.  
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countries with the highest number of energy inventions in the European 
Patent Office. Our data shows that 60.31% of the inventions in total 
energy originate from the United States, Germany, and Japan, with a 
high concentration in a few countries. This value falls to 57.19% in re
newables, led by Germany, and rises to 62.07% in other technologies, 
led by the US. Regarding citations over 5 years per invention, Table 4 
also shows the importance of the US as the leader of 5-year forward 
citations and 5-year citations per patent in renewables, other technol
ogies, and total energy. Our data confirms the concentration of inno
vation activity in energy (for evidence on renewable technologies, see 
Garrone et al., 2014; Haščič and Migotto, 2015; Noailly and Ryfisch, 
2015). When focusing on 5-year citations per patent, the best perform
ing countries are Spain (1.39) and Republic of Korea (1.32) in renewable 
energy technologies, Japan in other technologies (0.73), and Denmark 
in total energy (1.06). 

4.2. Main estimation results 

Table 5 reports the descriptive statistics for all the explanatory var
iables, including patents from renewable energy technologies and other 
technologies. Renewable energy patents receive more citations on 
average than do other technologies (3.0573 vs. 1.1864). Several of the 
most notable differences are subsequently highlighted. Renewable en
ergy patents are more prone to cite previous patents (Back
ward_others_citations and Backward_self_citations). The mean number of 
inventors and claims is also higher for renewable energy patents than for 
other technologies. On the other hand, average previous experience and 
scope is larger for other technologies than for renewables. Interestingly, 
co-ownership with other firms is more usual for other technologies than 
for renewable energy patents (0.3259 vs. 0.3080, respectively), while 
co-ownership with universities is more frequent in renewable energy 
technologies than in other technologies (0.0102 vs. 0.0018, 
respectively). 

As explained above, the dependent variable is the number of times 
that a patent family is cited as being the relevant state of the art in 
subsequent patent families filed within 5 years after the first publication 
of the patent family, excluding examiner citations and self-citations 
(Forward_citations_5years). According to Table 5, the variance (square 
of standard deviation) is greater than the mean. This difference suggests 
that over-dispersion is present and that a Negative Binomial model 
would be appropriate. 

Table 6 shows the main econometric results using Negative Binomial 
models. Models 1, 3, and 5 explain knowledge diffusion in the renewable 
sector and include binary variables for each field. Models 2, 4, and 6 are 
estimated for other technologies and include two binary variables to 
control for nuclear and fossil energy innovations. In all the regressions, 

we also control for temporal effects. Patents that share codes from both 
renewables and other technologies are excluded. Furthermore, since 
Backward_self_citations and Backward_others_citations are components of 
the total backward citations, and despite not showing high linear cor
relations to each other and the fact that the VIFs are low, we estimate our 
Negative Binomial model by including Backward_others_citations and 
omitting Backward_self_citations (and vice versa). Given the space limi
tations herein, only the results of Negative Binomial regressions for 
these separated regressions are included in Table 6, which are the 
preferred models, given the over-dispersion of citations. 

The results show certain similarities in the variables in the expla
nation of the diffusion of renewables and other technologies. In all 
models, backward citations to other patents show a positive and sig
nificant coefficient, which emphasises the importance of knowledge 
sourcing for knowledge diffusion. Backward self-citations are also sig
nificant in all models, thus supporting the cumulative nature of 
knowledge. Co-ownership with other firms is not relevant in any model. 
The number of inventors, claims, scope, originality, and previous 
experience in the development of innovations exert a positive and sig
nificant effect on enhancing knowledge diffusion. Non-patent literature 
citations are only relevant for renewable energy technologies, but theyt 
also become significant for other technologies when omitting Back
ward_self_citations or Backward_others_citations from the main regression 
(see Models 4 and 6). While being wary of encountering a possible 
multicollinearity problem, we conclude that scientific knowledge is 
relevant for innovations in the energy sector, both in renewables and 
other technologies. 

Additionally, several differences across renewables and other tech
nologies are also observed. There is a negative effect of co-ownership 
with universities and a positive effect of triadic families on knowledge 
diffusion within 5 years for other energy technologies, but this effect 
does not hold for renewable energy technologies. The stock of knowl
edge in the energy sector is only relevant in fossil and nuclear technol
ogies, which exerts a negative effect on the number of citations thus 
suggesting that the competition effect for citations is greater than the 
size effect. In contrast, family size only increases the impact of renew
able patented technologies since it is not relevant for the diffusion of 
other energy technologies. 

4.3. Robustness checks 

In addition to the sensitivity analysis provided in the previous sec
tion, we estimate the models using the number of 3-year forward patent 
citations as a dependent variable (Table 7). Given the shorter 3-year 
citation window, we extend the period of the sample used in the esti
mations until 2009. The results of the alternative specifications included 

Table 3 
Distribution of patent families and forward citation per technological field (1990–2015).  

Technological 
field 

A. No. of patent 
families 

No. of patent families per field 
/total no. of energy patents (%) 

B. No. of 5-year 
forward citations 

No. of 5-year forward citations per field/ total 
no. of energy 5-year forward citations 

B/A5-year forward 
citations per patent family 

Wind 6565 11.63 11,445 18.00 1.74 
Solar 6901 12.22 10,357 16.28 1.50 
Geothermal 274 0.49 300 0.47 1.09 
Marine 878 1.55 1049 1.65 1.19 
Hydro 522 0.92 792 1.25 1.52 
Biomass 310 0.55 540 0.85 1.74 
Waste 573 1.01 489 0.77 0.85 
Storage 3597 6.37 7834 12.32 2.18 
Renewables 19,620 34.75 32,806 51.58 1.67 
Fossil 33,493 59.31 29,465 46.33 0.88 
Nuclear 3355 5.94 1330 2.09 0.40 
Other 

technologies 
36,848 65.25 30,795 48.42 0.84 

Total energy 56,468 100 63,601 100 1.13 

Note that a patent family may be related to more than one technological sector. For this reason, the sum of patent families is greater than the total sample. 
Source: Authors’ own based on Patstat data. 
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in Table 7 largely mirror the results from the main models in Table 6 
regarding the principal conclusions. However, one notable result can be 
observed: the coefficient of co-ownership (either with universities or 
firms) is negative and significant in other energy patents, which strongly 
supports the conclusion that co-patenting with other companies or 
universities significantly hinders the diffusion of knowledge in the 3- 
year shorter run for fossil and nuclear technologies. The effect of co- 
ownership on the diffusion of renewable patented technologies re
mains insignificant. 

Table 8 presents ordinary least squares regression models based on 
logarithmised citations, both for 5-year forward citations and 3-year 
forward citations. Due to the limited space, only the re-calculation of 
models 1, 2, 7, and 8 are presented (those including Back
ward_self_citations and Backward_others_citations). The comparison of the 
results of these models with those of the negative binomial regression 
models largely confirms the robustness of our results. 

5. Discussion 

In this section, we focus on the implications of the effects found for 
the main variables of our study, namely those related to external 
knowledge sourcing, which have been the focus of our hypotheses: sci
entific citations, patent citations and co-ownership with other firms and 
universities. 

Non-patent literature citation exerts a positive effect on knowledge 
diffusion of renewables and other energy technologies, which confirms 
Hypothesis 1 and is in line with the literature that signals the increasing 
importance of science for energy innovations, specially in the renew
ables sector (Hötte et al., 2021; Perrons et al., 2021). These findings are 
consistent with the “linear model” of innovation, which argues that 
scientists work to advance understanding, but that such advances may 
underlie practical applications, often in indirect or unexpected ways 
(Ahmadpoor and Jones, 2017). 

We found a positive effect of backward patent citations both to self- 
owned patents and other companies in knowledge diffusion, thus sup
porting Hypothesis 2 and Hypothesis 3. This result confirms the path 
dependancy and cumulative nature of knowledge and supports the 
reasoning that a large number of backward citations indicates a strong 
technological base, which is associated with patents of a more valuable 
nature (Harhoff et al., 2003; Harhoff and Wagner, 2009; Lee and Sohn, 
2017). 

Hypothesis 4 and Hypothesis 5 on the positive effect of co-ownership 
on diffusion are rejected in all models. However, our results are sector- 
and/or time-dependant. For renewable energy patents, the effect of co- 
ownership with other firms and universities is not significant. This is in 
line with the general evidence provided by Belderbos et al. (2014) and 
partially in line with Briggs (2015), who obtained similar results when 
using forward patent citations within three years, but found a positive 
effect of co-ownership with universities on quality when using total 
forward citations over the whole life of the patent. In contrast, for other 
technologies, the effect of co-ownership with universities and other 
firms is significant in the 3-year diffusion window, which indicates that 
co-patenting hinders the diffusion of other energy technologies in the 
shorter run. Co-patenting with universities also has a negative effect on 
5-year forward citations received by other technologies. Although our 
data provides no clues as to the underlying mechanisms motivating 
these results, the contribution of Peeters et al. (2020) is relevant here. 
They found a negative effect of co-patenting with universities on for
ward citations for exploitative trajectories, which they justify because 
riskier trajectories are more likely to be outsourced. Although the 
exploitative or exploratory nature of each individual patent remains 
unexamined, it is well known that fossil and nuclear technologies are in 
a more mature stage than are renewables, which remain in a more 
exploitative phase: this could explain the negative effect of co-patenting 
for this sector. 
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6. Conclusions and policy implications 

Innovation in energy technologies is required for the reduction of the 
enviromental impact of power production. Therefore, ascertaining the 
factors that affect the diffusion of technology is essential. This paper 
contributes towards identifying the factors that affect the diffusion of 
patented technology in the energy sector. The empirical analysis is based 

on forward patent citations. 
Our descriptive analysis shows an increasing trend towards innova

tion in renewable energy technologies from 1990 to 2011, the latest full 
year of our sample. Our data also confirms the relevance of renewable 
technologies in terms of the number of forward citations. Since in
ventions from renewable energy technologies are more frequently cited 
than other technologies, their knowledge is better distributed and 

Table 5 
Descriptive statistics (1990–2006).   

RENEWABLES OTHER TECHNOLOGIES  
Mean SD Min Max Mean SD Min Max 

Forward_citations_5years 3.0573 6.1617 0 99 1.1864 3.6416 0 186 
Non_patent_literature 2.5193 12.2941 0 300 0.9785 7.5843 0 374 
Backward_others_citations 6.4541 14.6875 0 176 3.6455 10.4930 0 197 
Backward_self_citations 0.8803 2.8636 0 65 0.6937 2.3606 0 88 
Collaboration_firm 0.3080 0.4617 0 1 0.3259 0.4687 0 1 
Collaboration_university 0.0102 0.1003 0 1 0.0018 0.0419 0 1 
Previous_experience 2.7610 2.3586 0 9.5613 3.8262 2.5453 0 10.0459 
Family_size 5.4917 3.0381 1 30 5.4201 3.3320 1 33 
Claims 16.8781 15.5567 0 199 14.1813 11.3574 0 373 
Inventors 2.7742 1.9072 0 20 2.5751 1.7979 0 26 
Original 0.6177 0.2443 0 0.9731 0.6990 0.2019 0 0.9750 
Scope 2.3607 1.6393 1 23 2.9768 1.5925 1 26 
US_JP 0.4583 0.4983 0 1 0.4487 0.4974 0 1 
Stock 8.7658 0.5643 5.8579 10.0685 11.1509 0.4754 9.3248 11.6006 
No. Obs. (year<=2006) 5900 19,343  

Table 6 
Negative binomial estimations. Dependent variable: 5-year forward citations (1990–2006).   

Negative Binomial Negative BinomialBackward_self_citations omitted Negative BinomialBackward_others_citations omitted  
Renew.(1) Other(2) Renew.(3) Other(4) Renew.(5) Other(6) 

Non_patent_literature 0.0047** 0.0024 0.0055*** 0.0032* 0.0126*** 0.0092***  
(0.0021) (0.0016) (0.0021) (0.0017) (0.0023) (0.0019) 

Backward_others_citations 0.0111*** 0.0152*** 0.0123*** 0.0170***    
(0.0018) (0.0020) (0.0018) (0.0019)   

Backward_self_citations 0.0231*** 0.0445***   0.0318*** 0.0568***  
(0.0060) (0.0079)   (0.0065) (0.0080) 

Ccollaboration_firm 0.0720 − 0.0860 0.0725 − 0.0879 0.0731 − 0.0778  
(0.0570) (0.0568) (0.0567) (0.0569) (0.0567) (0.0565) 

Collaboration_university 0.3676* − 0.8377** 0.3651* − 0.8840** 0.3041 − 0.7812**  
(0.2207) (0.3957) (0.2175) (0.3964) (0.2104) (0.3945) 

Previous_experience 0.0511*** 0.0686*** 0.0569*** 0.0791*** 0.0468*** 0.0602***  
(0.0109) (0.0096) (0.0107) (0.0093) (0.0109) (0.0093) 

Family_size 0.0468*** − 0.0004 0.0469*** 0.0005 0.0517*** 0.0009  
(0.0092) (0.0088) (0.0092) (0.0088) (0.0092) (0.0088) 

Claims 0.0187*** 0.0320*** 0.0189*** 0.0329*** 0.0204*** 0.0353***  
(0.0019) (0.0022) (0.0019) (0.0021) (0.0019) (0.0021) 

Inventors 0.0449*** 0.0503*** 0.0451*** 0.0511*** 0.0490*** 0.0524***  
(0.0145) (0.0119) (0.0145) (0.0119) (0.0145) (0.0116) 

Original 0.5039*** 1.0320*** 0.5201*** 1.0376*** 0.5170*** 1.0979***  
(0.1289) (0.1462) (0.1283) (0.1465) (0.1284) (0.1457) 

Scope 0.0490*** 0.0625*** 0.0501*** 0.0613*** 0.0515*** 0.0704***  
(0.0153) (0.0160) (0.0153) (0.0160) (0.0152) (0.0157) 

US_JP 0.0809 0.6745*** 0.0741 0.6801*** 0.1012 0.6904***  
(0.0933) (0.0731) (0.0931) (0.0730) (0.0936) (0.0735) 

Stock 0.0340 − 2.7247*** 0.0404 − 2.7627*** − 0.0127 − 2.6944***  
(0.2117) (0.6258) (0.2117) (0.6260) (0.2126) (0.6173) 

_cons − 1.4396 23.1848*** − 1.4969 23.5537*** − 1.0962 22.8783***  
(1.6464) (5.9100) (1.6457) (5.9110) (1.6491) (5.8284) 

Time dummies YES YES YES YES YES YES 
Sector dummies YES YES YES YES YES YES 
lnalpha 1.2641*** 1.6633*** 1.2667*** 1.6672*** 1.2723*** 1.6734***  

(− 0.0302) (− 0.0243) (− 0.0301) (− 0.0243) (− 0.0301) (− 0.0241) 
No. obs. 5900 19,343 5900 19,343 5900 19,343 
pseudo R2 0.044 0.058 0.043 0.058 0.043 0.057 
Log-likelihood − 10,825.3080 − 21,385.0997 − 10,828.4833 − 21,396.5387 − 10,836.3758 − 21,409.9299 
Wald chi2 1147.9718*** 1759.5052*** 1136.2801*** 1695.8557*** 1079.6083*** 1705.5769*** 

Standard errors are given in parentheses. 
* p < 0.1. 
** p < 0.05. 
*** p < 0.01. 
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environmental improvement is therefore encouraged. 
The objective of our econometric model is to determine the factors 

affecting knowledge diffusion in the energy sector, by focusing on the 
role of non-patent literature citations, backward patent citations, and co- 
ownership of patents. Certain similarities are found in the factors 
affecting forward citations between renewables and other patented 
technologies: backward citations to other patents, backward self- 
citations, co-inventorship, claims, scope, originality, previous experi
ence of the applicant in energy technologies, and non-patent literature 
all exert a positive effect on knowledge diffusion. However, certain 
differences across sectors can also be found. Family size is a significant 
variable in enabling the diffusion of renewable energy technologies, 
while triadic families exert a positive effect only in the diffusion of other 
technologies. An accumulated stock of knowledge negatively affects the 
number of forward citations of patented inventions in fossil and nuclear 
technologies. Interestingly, we find that co-ownership with other firms 
or universities is not significant for the diffusion of renewable energy 
technologies. In contrast, when focusing on other technologies, co- 
ownership with universities hinders the diffusion of innovations. It is 
also found that co-ownership with other firms negatively affects the 
diffusion of other energy technologies but only in the shorter 3-year 
term. 

The analysis offered several practical implications for policy-makers 
and firms. Our results show that patents more extensively based on 
scientific knowledge diffuse more readily, thereby enhancing the 
development of future innovations. For firms, this result highlights the 

importance of strengthening their scientific base through, for example, 
the incorporation of scientists into their research teams. Innovation 
policies could therefore be oriented towards creating incentives for this 
incorporation. Furthermore, this result, together with the positive effect 
of backward citations to other patents, justify initiatives oriented to
wards the creation of knowledge pools of patents and scientific papers 
related to research on energy technologies in order to enhance knowl
edge accessibility and the retrieval of potentially interesting information 
in this line of research. For example, the IPC Green Inventory, which 
facilitates searches for patent information relating to Environmentally 
Sound Technologies (ESTs), constitutes a well-justified initiative ac
cording to our results. Similar initiatives could also be addressed for the 
creation of a pool of publicly available scientific papers that would 
provide a scientific base for the development of further clean 
technologies. 

Our results also show that co-ownership with other firms or uni
versities may hinder the diffusion of fossil and nuclear patented tech
nologies, while it exerts a negligible effect on the diffusion of renewable 
energy technologies. From the perspective of the firm, this finding is 
relevant because technological impact of the research is related to firm 
performance (e.g., Kim et al., 2018). Additionally, our results do not 
provide support for public or firm initiatives supporting co-patenting 
strategies if the objective involves theenhancement of the diffusion of 
patented technologies. In contrast, the role of co-inventorship is clear 
both in renewables and other technologies, and hence company strate
gies and policies oriented towards the formation of research teams are 

Table 7 
Negative binomial estimations. Dependent variable: 3-year forward citations (1990–2008).   

Negative Binomial Negative BinomialBackward_self_citationsomitted Negative BinomialBackward_others_citationsomitted  
Renew.(7) Other(8) Renew.(9) Other(10) Renew.(11) Other(12) 

Non_patent_literature 0.0051** 0.0044* 0.0056** 0.0053** 0.0151*** 0.0111***  
(0.0021) (0.0023) (0.0022) (0.0023) (0.0023) (0.0023) 

Backward_others_citations 0.0119*** 0.0164*** 0.0135*** 0.0185***    
(0.0020) (0.0028) (0.0020) (0.0027)   

Backward_self_citations 0.0265*** 0.0497***   0.0388*** 0.0645***  
(0.0086) (0.0117)   (0.0086) (0.0116) 

Collaboration_firm 0.0848 − 0.2808*** 0.0767 − 0.2738*** 0.0960 − 0.2683***  
(0.0724) (0.0902) (0.0721) (0.0903) (0.0722) (0.0897) 

Collaboration_university 0.4288 − 1.5744*** 0.4162 − 1.6640*** 0.3765 − 1.4455**  
(0.3205) (0.6093) (0.3203) (0.5993) (0.3137) (0.6225) 

Previous_experience 0.0248* 0.0576*** 0.0306** 0.0698*** 0.0202 0.0468***  
(0.0134) (0.0146) (0.0133) (0.0140) (0.0134) (0.0140) 

Family_size 0.0441*** 0.0088 0.0446*** 0.0086 0.0474*** 0.0090  
(0.0114) (0.0169) (0.0114) (0.0169) (0.0114) (0.0169) 

Claims 0.0186*** 0.0310*** 0.0189*** 0.0319*** 0.0209*** 0.0355***  
(0.0024) (0.0032) (0.0023) (0.0032) (0.0024) (0.0031) 

Inventors 0.0613*** 0.0828*** 0.0608*** 0.0831*** 0.0650*** 0.0847***  
(0.0186) (0.0172) (0.0186) (0.0173) (0.0185) (0.0170) 

Original 0.5433*** 1.3965*** 0.5511*** 1.3878*** 0.5694*** 1.4685***  
(0.1632) (0.2392) (0.1624) (0.2401) (0.1629) (0.2381) 

Scope 0.0766*** 0.0986*** 0.0786*** 0.0975*** 0.0810*** 0.1040***  
(0.0188) (0.0236) (0.0188) (0.0235) (0.0186) (0.0233) 

US_JP − 0.0313 0.5014*** − 0.0405 0.5074*** − 0.0082 0.5247***  
(0.0967) (0.1096) (0.0972) (0.1097) (0.0961) (0.1096) 

Stock − 0.1859 − 2.0636** − 0.1752 − 2.0957** − 0.2129 − 2.0958**  
(0.1975) (0.9137) (0.1967) (0.9206) (0.1969) (0.8987) 

_cons − 0.1174 16.0783* − 0.2027 16.4102* 0.0608 16.2942*  
(1.5700) (8.5704) (1.5639) (8.6335) (1.5655) (8.4271) 

Time dummies YES YES YES YES YES YES 
Year dummies YES YES YES YES YES YES 
lnalpha 2.0534*** 2.7004*** 2.0552*** 2.7031*** 2.0605*** 2.7096***  

(0.0297) (0.0308) (0.0296) (0.0308) (0.0296) (0.0304) 
No. obs. 8559 22,256 8559 22,256 8559 22,256 
pseudo R2 0.0371 0.0460 0.0368 0.0456 0.0363 0.0451 
Log-likelihood − 10,496.1332 − 13,775.3583 − 10,498.5317 − 13,781.0434 − 10,504.6038 − 13,789.0086 
Wald chi2 37,333.4499*** 936.0816*** 34,582.4743*** 890.6581*** 37,490.0924*** 916.8443*** 

Robust standard errors are given in parentheses. 
* p < 0.1. 
** p < 0.05. 
*** p < 0.01. 

A.M. Fernández et al.                                                                                                                                                                                                                          



Technological Forecasting & Social Change 178 (2022) 121566

12

preferred over the facilitation of the R&D co-patenting strategies. 
This paper presents several limitations. First, despite the widespread 

use of patent citations as indicators of knowledge diffusion, its use is not 
without limitations since knowledge diffusion is a complex proccess that 
can be measured through a variety of indicators. Second, not all 
collaborative efforts result in the co-ownership of a patent, and hence 
the conclusions cannot be extended to include all collaboration in R&D. 
Third, the geographical or sectoral profile of the co-assignee remains to 
be analysed, which could shed light on the characteristics of collabo
rations of a more successful nature. Fourth, data on knowledge diffusion 
is truncated (citations are measured at a point in time) and diffusion in 
longer time windows has yet to be explored. These limitations could be 
addressed in further research. 
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