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Abstract: In this work, the complex geometry of beams obtained from topology optimization is
characterized through the fractal dimension (FD). The fractal dimension is employed as an efficiency
measure of the mass distribution in the beams, that is, the capacity of the optimized solutions to be
efficiently distributed in the design space. Furthermore, the possible relationships between the fractal
dimension and beams’ mechanical properties are explored. First, a set of theoretical beams are studied
based on their well-known fractal dimension. A 3D fractal called Menger sponge is reproduced on
a Michell’s beam (cantilever with a single force applied at the end). The programming codes that
generate those beams are created in Matlab software, as are the algorithms for estimating the fractal
dimension (box-counting method). Subsequently, identical beams are modelled in the software
Inspire in order to apply the topology optimization and determine the mechanical parameters from
the static analysis. Results indicate that the fractal dimension is affected by the design geometry
and proposed optimized solutions. In addition, several relationships among fractal dimension and
some mechanical resistance parameters could be established. The obtained relations depended on
the objectives that were initially defined in the topology optimization.

Keywords: fractal dimension; topology optimization; static analysis; box-counting; Michell’s beam

1. Introduction

Fractal geometry [1] is one of the most established theories for characterizing complex
geometries. This geometry, also called geometry of nature, makes it possible to describe
complex shapes and relate them to mechanical, rheological and morphological proper-
ties [2]. Optimal structures have a grillage pattern at both macro- and microscales, such as
natural (e.g., bones) and artificial structures [3]. Moreover, biomimetics is gaining relevance
as a tool to solve problems in engineering by means of the emulation and application of
natural geometries and shapes [4,5]. Fractal geometry is a suitable candidate for generating
structures based on natural shapes due to its ability to construct repetitive and hierarchical
self-similar patterns [6].

Because natural shapes are related to mechanical, acoustic and electrical properties in
nature [7], it might be interesting to know if there is a relationship between fractal geometry
and mechanical properties in human-made objects. However, the literature about associa-
tions between objects constructed or generated by fractal geometries and their physical
properties is scarce [7]. Some works have explored the potential of generating fractal
structures for optimizing physical properties, for example in branching channel networks
of internal cooling passages [8], fractal-like geometries for microchannel heat sinks [9] and
bionic optimizations for enhancing latent heat thermal energy storage performances [10].
In ref. [11], the influence of fractal dimension on the porosity, permeability and thermal
conductivity of porous fibrous materials was studied, showing interesting results when
fractal dimension was included as a comparative parameter.
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On the other hand, topology optimization is a design method to obtain optimized
structures. Topology optimization aims to determine the optimal distribution of a material
within a design domain by considering both a set of boundary conditions and performance
objectives [12]. This procedure arises as a solution for defining geometries in order to mini-
mize the cost of the product, while maintaining the constraints and fitting the boundary
conditions [13]. Topology optimization is based on iterative mathematical algorithms for
reaching a design goal. In general, this process aims to minimize the amount of material for
designing and manufacturing a product, while meeting a set of restrictions (stresses, limita-
tion of displacement, stiffness, maximum deviation, etc.). Generally, topology optimization
methods employ finite element methods (FEMs) and are common add-ons in computer-
aided design programs such as Inspire, Solidworks, Fusion 360, etc. The main advantage
of product design based on topology optimization is to obtain pieces with reduced weight
and volume without compromising their mechanical specifications. However, the complex
geometry of these solutions can make them difficult to manufacture. This disadvantage
has been overcome thanks to advances in additive manufacturing (e.g., 3D printing).

Inspired on the so-called Michell’s beam [14], this work is conducted using a cantilever
beam as a case study. This is the first mention of structural topology optimization and
dates back to 1904 [15]. It is based on a geometrically unconstrained problem, in which the
mechanical compliance of the optimized object is optimal with respect to stress [16]. The
pioneer topology optimization developed by [14] was based on truss structures, and later
extended to grillages (beam systems) in [17,18]. In this context, the application of fractal
geometry for generating tensegrity structures has been explored by means of self-similar
subdivisions of finite or infinite basic modules [19,20]. This makes it possible to gener-
ate tensegrity fractals that optimize the values of suitable complexity parameters under
mechanical performance criteria [21]. Topology optimization has also focused on other
objectives, such as the minimization of the dynamic components in the frequency range of
vibration [22]. After reviewing the latest works on two-dimensional and three-dimensional
topology optimization, a trend to study weakly coupled fluid–structure systems is ob-
served [23], providing topology optimization models for different engineering applications
and taking into account the optimization of the volume. Currently, topology optimization
solutions provide information about the percentage of maintained material with respect to
the original material. However, different geometric configurations can be obtained with
equal percentage of material. Fractal dimension is a descriptive parameter about the way
in which a material fills the space, so it could be useful for evaluating how efficient the
optimized solution is from a geometric approach. However, few works consider the fractal
dimension as an additional parameter for the objective function of topology optimizations.
Thus, we hypothesize that fractal dimension might be a complementary parameter of
the maintained mass, adding useful information about the geometrical efficiency of the
optimized solution.

This work is intended as an initial exploration for the emerging use of fractal theory
in structural analysis. To our best knowledge, this paper represents the first exploration of
the fractal dimension (FD) and its relation to mechanical strength properties. Therefore,
we hypothesize that some fractal properties (e.g., fractal dimension [14]) can be compared
with topology results such as mechanical strength and mass fraction of the optimized part.
In this way, we intend to relate the geometric properties of the organic shapes obtained
by topology optimization with their mechanical strength properties. On the one hand,
the solutions obtained by topology optimization evoke organic shapes, and on the other,
the geometry of these optimized parts is distributed in space to minimize the amount of
material without compromising their mechanical strength. For both reasons, this work
suggests that the optimized parts could show an efficient spatial distribution of their
geometry, which can be related through the fractal dimension. First, fractal dimension
is used as a measure of the efficiency in the geometric distribution of pieces obtained
through topology optimization. Second, these solutions are assessed and compared with
mechanical resistance parameters, as well as with their mass and volume. The objectives
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of the work are to (i) demonstrate that the geometry of the pieces obtained from topology
optimization can be characterized by a fractal dimension, and (ii) evaluate whether there is
a relationship between the fractal dimension and the mechanical resistance parameters.

2. Materials and Methods
2.1. Fractal Dimension

Fractal dimension (FD) is a value that characterizes fractal objects [24] by assigning
them a non-integer value between two topological dimensions (0 in the case of a point, 1 for
a line, 2 for a plane and 3 for a volume). The so-called Hausdorff–Besicovitch dimension
(DHB) is applied for the analytical determination of an object’s fractal dimension:

DHB =
ln[L(δ)]

ln[δ]
(1)

where L[δ] represents the number of repetitions of the unit and δ is the observation scale.
Equation (1) is used when fractal objects have an infinite detail (i.e., they are theoretical
objects such as mathematical fractals). By contrast, real objects are limited by a finite range
of scales, and thus the iterations for generating them are finite. Therefore, estimation
procedures are frequently used for computing the fractal dimension of real objects. The
box-counting method is one of the most widely used procedures due to its simplicity
and the reliability of the results obtained. Hence, box-counting is chosen in this work for
calculating the fractal dimension of the beams.

Box-counting is one of the so-called counting methods [25]. In these methods, magni-
tudes are quantified by using successive partitions of different sizes and by counting the
amount of portions of the object that belong to the aforementioned partitions. In the case
of box-counting, the object is successively subdivided into boxes of equal size, varying the
size of these boxes so that they become smaller and smaller. Next, the number of boxes
containing portions of the fractal object are counted. When the relationship between the
box size (δ) and the number of boxes containing the object L(δ) follow a power law, fractal
properties are evinced (Figure 1a). When a double logarithmic plot represents the afore-
mentioned relationship, the power law is transformed into a linear function. According to
Equation (1), the fractal dimension can be estimated as the quotient between ln[L(δ)] versus
ln[δ]—that is, the slope of the linear fit (Figure 1b). As an example, the estimation of the
fractal dimension of the Sierpinski carpet is shown in Figure 1. The fractal dimension of the
Sierpinski carpet can be analytically calculated by means the quotient between ln(8) versus
ln(3), resulting around 1.893 (https://en.wikipedia.org/wiki/Sierpi%C5%84ski_carpet)
[accessed on 3 September 2021]. This fractal dimension between 1 and 2 indicates that
the Sierpinski carpet is a fractal object with a dimension greater than a line, but less than
a plane.

The third iteration of the Sierpinski carpet (Figure 2) is employed for this example,
obtaining an estimated fractal dimension of around 1.751. The estimated fractal dimension
by means of the box-counting method is close to the analytical result. The difference is
due to the use of a finite fractal (third iteration). The estimated fractal dimension should
become closer to the theoretical value as the iterations increase.

2.2. Beam Based on the Fractal Geometry of the Menger Sponge

In this work, the exploration of the fractal geometry in beams is based on the Menger
sponge. The Menger sponge is a three-dimensional generalization of the Sierpinski carpet,
and was developed in 1926 by Karl Menger.

Let us consider a regular hexahedron. The Menger sponge is obtained by subdivid-
ing each face of the hexahedron into nine identical squares. Thus, 27 identical regular
sub-hexahedra are obtained. Subsequently, the 7 central sub-hexahedra are subtracted,
maintaining 20 regular sub-hexahedra (https://en.wikipedia.org/wiki/Menger_sponge#
/media/File:Menger_sponge_(Level_0-3).jpg) [accessed on 3 September 2021]. When this
process is carried out infinitely, the volume of the sponge is null, whereas the surface is

https://en.wikipedia.org/wiki/Sierpi%C5%84ski_carpet
https://en.wikipedia.org/wiki/Menger_sponge#/media/File:Menger_sponge_(Level_0-3).jpg
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infinite. Thus, in the nth iteration the fractal dimension of the object can be determined
analytically from Equation (1) as FD = ln(20)/ln(3) = 2.727. The fractal dimension of the
Menger sponge is between 2 and 3—that is, it is an object with a dimension greater than a
plane, but less than a three-dimensional volume.

Appl. Sci. 2021, 11, x FOR PEER REVIEW 4 of 13 
 

 
Figure 1. Estimation of the fractal dimension of the third iteration of the Sierpinski carpet. (a) Power-
law and (b) double logarithmic representations. 

  
Figure 2. Third iteration of the Sierpinski carpet. 

2.2. Beam Based on the Fractal Geometry of the Menger Sponge 
In this work, the exploration of the fractal geometry in beams is based on the Menger 

sponge. The Menger sponge is a three-dimensional generalization of the Sierpinski carpet, 
and was developed in 1926 by Karl Menger.  

Let us consider a regular hexahedron. The Menger sponge is obtained by subdividing 
each face of the hexahedron into nine identical squares. Thus, 27 identical regular sub-
hexahedra are obtained. Subsequently, the 7 central sub-hexahedra are subtracted, 
maintaining 20 regular sub-hexahedra 
(https://en.wikipedia.org/wiki/Menger_sponge#/media/File:Menger_sponge_(Level_0-
3).jpg) [accessed on 3 September 2021]. When this process is carried out infinitely, the 
volume of the sponge is null, whereas the surface is infinite. Thus, in the nth iteration the 
fractal dimension of the object can be determined analytically from Equation (1) as FD = 
ln(20)/ln(3) = 2.727. The fractal dimension of the Menger sponge is between 2 and 3—that 
is, it is an object with a dimension greater than a plane, but less than a three-dimensional 
volume. 

A beam based on this geometry is generated as follows: initially, a beam is 
constructed by means of an ordered point cloud in Matlab, following the geometry of a 
prismatic shape. As seen in Figure 3, a total of 70,785 points are obtained from a prism 
with length 256 and a square section 128 × 128, with a resolution r = 4 × 4. 

Figure 1. Estimation of the fractal dimension of the third iteration of the Sierpinski carpet. (a) Power-
law and (b) double logarithmic representations.

Appl. Sci. 2021, 11, x FOR PEER REVIEW 4 of 13 
 

 
Figure 1. Estimation of the fractal dimension of the third iteration of the Sierpinski carpet. (a) Power-
law and (b) double logarithmic representations. 

  
Figure 2. Third iteration of the Sierpinski carpet. 

2.2. Beam Based on the Fractal Geometry of the Menger Sponge 
In this work, the exploration of the fractal geometry in beams is based on the Menger 

sponge. The Menger sponge is a three-dimensional generalization of the Sierpinski carpet, 
and was developed in 1926 by Karl Menger.  

Let us consider a regular hexahedron. The Menger sponge is obtained by subdividing 
each face of the hexahedron into nine identical squares. Thus, 27 identical regular sub-
hexahedra are obtained. Subsequently, the 7 central sub-hexahedra are subtracted, 
maintaining 20 regular sub-hexahedra 
(https://en.wikipedia.org/wiki/Menger_sponge#/media/File:Menger_sponge_(Level_0-
3).jpg) [accessed on 3 September 2021]. When this process is carried out infinitely, the 
volume of the sponge is null, whereas the surface is infinite. Thus, in the nth iteration the 
fractal dimension of the object can be determined analytically from Equation (1) as FD = 
ln(20)/ln(3) = 2.727. The fractal dimension of the Menger sponge is between 2 and 3—that 
is, it is an object with a dimension greater than a plane, but less than a three-dimensional 
volume. 

A beam based on this geometry is generated as follows: initially, a beam is 
constructed by means of an ordered point cloud in Matlab, following the geometry of a 
prismatic shape. As seen in Figure 3, a total of 70,785 points are obtained from a prism 
with length 256 and a square section 128 × 128, with a resolution r = 4 × 4. 

Figure 2. Third iteration of the Sierpinski carpet.

A beam based on this geometry is generated as follows: initially, a beam is constructed
by means of an ordered point cloud in Matlab, following the geometry of a prismatic shape.
As seen in Figure 3, a total of 70,785 points are obtained from a prism with length 256 and
a square section 128 × 128, with a resolution r = 4 × 4.

Iterative subtractions of material are carried out on the original prismatic beam.
This procedure is made by incorporating through-holes of square sections in one of the
rectangular faces of the original beam. The objective is to obtain a pattern similar to the one
described in the Menger sponge. Finally, a beam based on a fractal geometry is obtained
using N = 1, 2 and 3 iterations. In Figure 4 the fractal beam for the second iteration is shown.

The estimation of the fractal dimension of the beams is carried out by means of a
box-counting code developed in Matlab using a sequence of box sizes (scales) δ = 4, 8,
16, 32, 64 and 128. Note that whereas the minimum scale is limited by the resolution of
the beam (r = 4), the maximum is limited by the side of the square section of the beam
(h = a = 128).
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2.3. Mechanical Resistance Study by Means of Static Simulation

Inspire software is employed for the mechanical resistance calculation and topology
optimization of the beams. For this purpose, an initial prismatic beam with square section
is obtained with identical dimensions to those generated in Matlab (256 × 128 × 128).
Likewise, based on the dimensions of the prismatic beam, an identical beam is modeled
with the Menger sponge pattern until iteration N = 3.

Boundary conditions for resistance simulations were established according to Figure 5.
First, a cantilever beam is simulated with a single support on one of its square faces. This
square face is understood to be completely embedded in the wall (fixed restriction to
movement). The rest of the beam is defined as the design domain, which will be the
volume in which the software can lighten material. Second, AISI 304 steel is selected from
Inspire’s library as material (elastic limit = 200 MPa; E = 195,000 MPa; ρ = 8000 kg m−3).
Third, based on the Michell’s beam, a single and vertical force of 500,000 N is established
along the entire upper edge of the face opposite to the fixed face. For comparison purposes,
boundary conditions are identical in all the simulations. A set of parameters related to
the mechanical behavior of the beams are selected as a result: maximum von Mises effort,
minimum safety factor and maximum displacement.
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Figure 5. Display of boundary conditions in Inspire software.

2.4. Topology Optimization

Topology optimization is also conducted using Inspire software. The optimization
function is defined in two different ways: maximizing stiffness, and minimizing mass.
In order to obtain realistic solutions, a shape controller is established for obtaining sym-
metrical pieces with respect to the longitudinal plane of the beams. Although the software
allows it, no restrictions on frequencies were considered.

Inspire allows the use of two variables for maximizing stiffness: the percentage
of maintained mass and the minimum thickness. In this context, thickness indicates
the thinness of the structure supports in the design region of the beam. Therefore, two
experiments are established with the objective of maximizing stiffness: OT1, which sets
the minimum thickness at 300 mm and defines a range of maintained mass from 90% to
10% at 10% intervals. Likewise, OT2 sets the percentage of maintained mass at 50% and
uses the minimum thickness as a variable, which is established in the range from 200 to
500 mm, at 100 mm intervals. For the experiments whose objective is to minimize the mass,
the minimum thickness of the solutions is set 300 mm and the factor of safety (FOS) is used
as a variable, using values from 1 to 3 at 0.25 intervals (OT3). OT4 establishes a constant
FOS of 1.2 and uses the minimum thickness as a variable, which is established in the range
of 200 to 500 mm, at 100 mm intervals. In Figure 6, optimization experiments, constants
and variables are summarized.
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Finally, the mechanical resistance of the optimized beams is evaluated using the Inspire
software according to Section 2.3. Additionally, their fractal dimensions are also estimated.
Since the estimation of the fractal dimension is carried out using a box-counting algorithm
in Matlab, it is necessary to export the optimized beams from Inspire to a compatible
Matlab file. Lightweight solutions are exported using OBJ format. From this format, the
XYZ coordinates of the point cloud comprised by the meshing nodes of the optimized
beam can be extracted. This file of coordinates XYZ is employed as input for determining
the fractal dimension by means of the box-counting algorithm in Matlab.

3. Results and Discussion
3.1. Beam Based on the Menger Sponge

In order to evaluate the fractal generation and static analysis of beams, a prismatic
solid beam was first studied. Next, the box-counting algorithm was also used to estimate
the fractal dimension of the set of beams based on the Menger sponge. The estimation was
carried out for iterations N = 1, 2 and 3 (Table 1). The original solid beam was represented
for iteration N = 0. As expected, the fractal dimension of this solid beam was equal to 3,
which is in agreement with the topological dimension of a 3D volume.

Table 1. Fractal dimension of the set of beams based on the Menger sponge.

Iteration FD Nodes Mass (%) σvon Mises (MPa) FOS Dispmax (mm)

0 3.000 70,785 100% 308 0.65 0.96
1 2.918 52,272 74% 286 0.70 1.76
2 2.874 37,728 53% 298 0.67 2.80
3 2.657 24,317 30% 409 0.49 4.66

According to Table 1, the greater the iteration, the closer the estimation to the fractal
dimension of the Menger sponge (FD = 2.727). Note that the analytical value cannot be
exactly estimated for two reasons. First, the largest iteration reached is N = 3, which is far
from the theoretical infinite iteration which fits with Equation (1). Second, the beam has a
prismatic shape and not a cubic geometry, as in the case of the Menger sponge. Therefore,
the obtained fractal dimension is accepted as a proper approximation. This also makes it
possible to validate the box-counting algorithm used in this work.

Table 1 shows the mechanical resistance parameters obtained from the static simula-
tion. The maximum displacement of the beam (Dispmax) increased with increasing number
of iterations. This was expected since the beam was being lightened as the construction of
the fractal geometry of the Menger sponge progressed. In order to link the results of the
static analysis with the fractal geometry of the beam, fractal dimension versus maximum
displacement is depicted in Figure 7. A decreasing relationship between both variables
was found, which fit fairly well to a linear fit (R2 > 0.95).

3.2. Beam Based on the Topology Optimization

According to the methodology described in Section 2.4, we evaluated the potential
relationship between the complex geometries obtained from topology optimization and the
factors derived from static simulation. Note that identical boundary conditions and design
parameters were applied in order to obtain comparable results among optimized beams.

A representation of some optimized beams of the OT1 experiment is depicted in
Figure 8. Notice that the objective in OT1 was to maximize the stiffness by varying the
percentage of maintained mass. Lightened solutions with a percentage of maintained mass
lower than 20% were rejected because the beams exhibited discontinuities and they would
not be a valid solution for realistic mechanical studies.

Figure 9 shows that the relationship between the maintained mass and the fractal
dimension was a convex parabola, which fit to a third-degree polynomial with a goodness
of fit (R2) greater than 0.96. The fractal dimension reached a maximum value when the
percentage of maintained mass was around 70%. Thus, percentages of maintained mass
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greater than 70% resulted in lower fractal dimensions. Thus, the relationship between the
maintained mass and the fractal dimension was not always direct. Lower fractal dimensions
were obtained for higher percentages of maintained mass—that is, inefficient geometric
configurations for filling the space were obtained when the percentage of maintained mass
was greater than 70%. In this case, fractal dimension might serve as an indicator of how
the geometry of the beam is distributed in space.
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This finding should be analyzed along with Figure 10. In Figure 10, an inversely
proportional relationship between the maximum displacement and the percentage of
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maintained mass can be observed. Thus, maintaining a low percentage of mass caused
very high displacements in the beam. This decreasing relationship tended towards an
asymptotic behavior above a percentage of maintained mass around 70%. Therefore,
maintaining masses greater than 70% led to constant maximum displacements (close to
1 mm). This relationship could be fit to a polynomial of degree three with a goodness
of R2 > 0.99.
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Therefore, to ensure reasonable displacements, percentages of maintained mass in the
range 80–90% are geometrically more inefficient than a maintained mass of 70%. Thus,
to ensure acceptable displacements, the fractal dimension can be used as an index of the
geometric efficiency of the distribution of a certain mass in space. Von Mises effort and
FOS remained practically independent from fractal dimension.

In experiment OT2 the objective was to maximize the stiffness using the thickness
as a variable. The maintained mass was fixed at 50% and the thickness was evaluated
from 200 to 500 mm, with increments of 100 mm. The solution for a thickness of 200 mm
was discarded due to discontinuities in the beam. Figure 11 displays the dependence
of the fractal dimension on the thickness. For a fixed maintained mass, the influence of
thickness on the fractal dimension was negligible because the slope was close to zero in
the relationship between both variables. Therefore, fractal dimension cannot be related to
mechanical resistance parameters when the thickness of the optimized beams changes.
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The objective of experiment OT3 was to minimize the mass using FOS as the variable
(FOS values from 1 to 3 were tested, at 0.25 increments). In Figure 12 some optimized
solutions depending on FOS are shown. One of the main findings obtained from experi-
ment OT3 was the relationship between fractal dimension and FOS, which is depicted in
Figure 13. The fractal dimension exhibited a positive relationship with FOS, which was lin-
ear and could be fit with an R2 > 0.94 (see the filled circles and continuous line in Figure 13).
Analogously, the maintained mass followed a positive linear relationship with FOS (see
empty circles and dotted line in Figure 13). When the objective was to minimize the mass,
higher FOS values were obtained with higher percentages of maintained mass, which is
in accordance with the lightened solutions with higher fractal dimension. Therefore, in
experiment OT3, the fractal dimension increased simply because the optimized beams had
more mass.
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The second main result of experiment OT3 was the inverse relationship between the
maximum displacement and the fractal dimension (Figure 14). This decreasing relationship
could be adjusted to a polynomial of degree 2, with a goodness of fit R2 > 0.97. In this case,
the relationship did not show an asymptotic region as it did in OT1. The fractal dimension
increased along with the maintained mass, and thus the fractal dimension cannot be used
as a parameter for assessing the geometric efficiency of the solutions when the objective is
to minimize the mass.

In experiment OT4, the objective was to minimize the mass using the thickness as
a variable. Thickness was evaluated with values from 200 to 500 mm, with increments
of 100 mm. As in OT2, the results indicate that the fractal dimension is not related to
mechanical resistance parameters when the thickness of the optimized beams changes.
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4. Conclusions

Topology optimization focuses on the percentage of maintained mass to ensure com-
pliance with a set of objectives and restrictions due to the mechanical stress to which a
piece is subjected. If restrictions are met, the optimum lightweight solution maintains the
lowest percentage of mass, which is related to a reduction of the material cost. In these
cases, the material is efficiently distributed throughout the design space in order to sustain
and resist mechanical stresses. However, the parameter percentage of maintained mass
does not provide information on the efficiency of the material in distributing itself through
the geometric space. Furthermore, it is not possible to discern which optimized piece best
distributes its mass when several solutions with similar maintained mass are obtained.

In this work, fractal dimension was first tested as a parameter in a topology optimiza-
tion framework. It was evaluated for both characterizing complex geometries in structural
pieces and providing complementary information to the traditional maintained mass. A
cantilever beam with a single force applied at the end was employed as an example in
this work. Initially, a lightening based on a Menger sponge was carried out on the beam
to test the method for estimating the fractal dimension, as well as the procedure for cal-
culating the mechanical parameters of the study (von Mises stress, factor of safety, and
maximum displacement).

Regarding topology optimization, some findings were remarkable. When the objective
was to maximize the stiffness (OT1), a relationship among the geometry, fractal dimension
and maximum displacement was observed. The fractal dimension increased with the
percentage of maintained mass until around 70%, at which point the fractal dimension
began to decrease. This is because fractal dimension not only depends on the amount of
material but on how that material is distributed in space. Therefore, the percentage of
maintained mass for which the fractal dimension reached a maximum value was found.
This maximum was associated with an asymptotic behavior in the maximum displacement.
Thus, the results suggest that when the objective of the optimization is to maximize
stiffness, fractal dimension is a useful index for determining the optimum percentage of
maintained mass, which is also related to stable maximum displacement. However, when
the objective is to minimize the mass (OT3), the relationship between fractal dimension
and maximum displacement was a decreasing curve. Variations in the thickness of the
topology optimization solutions influenced neither the fractal dimension nor the maximum
displacement (OT2 and OT4).

In summary, our results indicate that when the objective of the topology optimization
is to maximize the stiffness, fractal dimension is related to the amount of maintained mass
as well as the geometric distribution of the material. Therefore, we suggest that fractal
dimension is a useful parameter for describing the geometric efficiency of the lightened
beam. By contrast, when minimizing mass is used as a design objective, our results indicate
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that fractal dimension is only a parameter linked to the amount of mass held in the piece.
Note that the main limitations of this study are conditioned by the typology of beam chosen
(a cantilever beam). In future work, it might be interesting to develop similar studies on
other types of beams (double-embedded, bi-supported, etc.), with different loads (point,
uniformly distributed, etc.), as well as different sections and geometries. Overall, the
results of this study suggest that it could be promising to add the fractal dimension as an
additional parameter for making decisions in topology optimization software.
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