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Abstract: The increasing oceanic uptake is a direct response to the increasing atmospheric burden
of CO2. Oceans are experiencing both physical and biogeochemical changes. This increase in CO2

hosts in oceans promotes changes in pH and seawater chemistry that can modify the speciation of
compounds, largely due to dependent element speciation on physicochemical parameters (salinity,
pH, and redox potential). So, ocean acidification can trigger enhanced toxicity of illicit drugs to non-
target marine organisms due to the combined effects of crack cocaine and low pH (from 8.3 to 7.0 pH
values) on the reproduction of the marine mussel Perna perna. Fertilization rate and embryo–larval
development were used as endpoints to assess the effects of crack-cocaine concentrations (6.25, 12.5,
25, 50, and 100 mg L−1) and its association with pH values variation (8.3, 8.0, 7.5, and 7.0). The IC50

was calculated from the results of an embryo–larval assay in different methods of acidification (CO2

and HCl), which evidenced that HCl treatment was more toxic than CO2 treatment for the same drug
concentrations. Results showed that the gametes of P. perna react to acidification when exposed to
crack-cocaine concentration and pH reductions.

Keywords: CO2 enrichment; crack cocaine; early life stages; climate change effects; Perna perna

1. Introduction

Mauna Loa observatory [1] observed a peak in atmospheric CO2 in May 2021 (monthly
average 419 ppm). This and other greenhouse gases are causing global environmental
change [2]. However, the exchange of CO2 between the atmosphere and the hydrosphere
promotes ocean acidification (OA) by decreasing the pH of average surface seawater [3].
We estimate a decrease of 0.67 units of pH in seawater by 2300 with respect to preindustrial
pH levels [4].

The increase in CO2 atmospheric burden promotes the increasing oceanic uptake, so
that oceans experience both physical and biogeochemical changes: surface and deep water
warming, reduced subsurface oxygen, and a reduction in CaCO3 saturation levels and
pH [5]. The oceanic biogeochemical dynamics are increasingly relevant in the assessment of
the ecosystem health, climate impacts, mitigation strategies, and planetary sustainability [4].
Some previous studies have indicated that OA over-calcifies marine organisms [6–9], marine
bacteria [10–12], amphipods [13], macro-algae [14,15], or macro-fauna [16,17].

OA interacts with local stressors, such as xenobiotics and other emerging compounds.
Nevertheless, nowadays, these interactions between OA, environmental changes, and
contaminants require greater scientific knowledge [18]. The seawater pH decrease caused
by increasing CO2 can modify the speciation of compounds, due to largely dependent
elements’ speciation on physicochemical parameters (salinity, pH, potential redox) [19,20],
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and therefore their bioavailability for organisms [21]. Previous studies have shown the
effect of OA on the speciation of metals [7,20,22]; however, this is still poorly investigated
for contaminants acting as emerging compounds, and as pharmaceuticals.

The occurrence of pharmaceuticals and personal care products (PPCPs) in the environ-
ment is increasingly recognized as an important issue [23–26]. This includes illicit drugs;
emerging pollutants are also considered [27,28]. Pharmaceuticals and illicit drugs, once
ingested, are partially metabolized due to their particular solubility, and enter the sewage
stream [29], but the inefficient or incomplete treatment causes marine pollution. Once in
the environment, illicit drugs promote adverse effects in non-target organisms, as demon-
strated by some studies with cocaine byproducts [30–34]. The marine mussels Perna perna
exposed to 0.5 and 5 ng L−1 exhibited cytotoxicity linked to the instability of the lysosomal
membrane [31], biomarker responses (EROD, DBF, GST, GPx) [23], and how detoxification,
oxidative stress, and cytogenotoxicity are caused [32]. However, CC metabolites [33] also
promoted sublethal effects in D. polymorpha. Additionally, crustaceans exposed to CC showed
an increase in motility [23]. CC effects in mammals, such as mice, display genotoxicity and
mutagenicity induced by acute crack cocaine exposure [34]. However, the effects in mollusks
under acidified environments with illicit drug presence required further research.

Understanding factors affecting the survivorship and growth of juvenile mussels
through vulnerable early life stages is critical both for aquaculture efforts and ecology
equilibrium. This work aims to assess how acidification can trigger enhanced toxicity of
illicit drugs to non-target marine organisms due to the combined effects of crack cocaine
(CC) and low pH (from 8.3 to 7.0 pH values) on the reproduction of the marine mussel
Perna perna. To achieve this, two acidification methodologies were applied (HCl and CO2
injection). Additionally, the toxicity test endpoints for mussels were survival, fertility, and
embryo–larval development.

2. Material and Methods
2.1. Experimental Set Up

The seawater used in the experiment was artificially prepared in the laboratory by
dissolving natural salt (Red Sea salt®) in deionized water up to 35 ppm, which is the
optimum value for the target species as described by [35]. Filtered reconstituted seawater
was used as control (N), but was also used to dilute the different CC treatments. For the
experiments, the pH was modified as acidified scenarios (8.3-Control-, 8.0, 7.5, and 7.0) with
two different methods (CO2 injection and HCl addition) and different CC concentrations
(Figure 1).

The CO2 injection system used was an adaptation of the experimental setup described
by [14], pH was continuously monitored. Experiments conducted with the strong acid
HCl to modify the total alkalinity used the methodology adapted from [36]. Thus, the
different pH values were achieved by adding 2M HCl (37%), and the pH measurements
were recorded every 5 h.

2.2. Chemical Determination

The CC concentration selection criteria for the experiments with marine mussels were
based on previous experiments of [31,37,38]. Concentrations of CC were detected in Santos
Bay between 12.60–537 ng L−1, and up to 5896 ng L−1 in Igarapé (Manaus, Brazil) [23]. Five
different concentrations (6.25, 12.5, 25, 50, and 100 mg L−1) of the illicit spiked CC were
used to determine the toxic effects in different acidification scenarios. The drug was donned
for research purposes as a courtesy by the Criminal Department of Limeira city (Sao Paulo
State-Brazil). Measured concentrations and solvent extraction are further detailed in the
Supplementary Materials (Table S1). Briefly, crack-cocaine concentrations were analyzed
by LC-MS/MS and HPLC Agilent 1260 (Agilent Technologies, Santa Clara, CA, USA)
combined with a 3200 QTRAP hybrid triple quadrupole/LIT mass spectrometer ABSciex
(Vaughan, ON, Canada), according to the procedure described by [38] and employed
by [39]. The cocaine primary standard was purchased from Cerilliant–Sigma Aldrich (Lot
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FE07271503, St. Louis, MO, USA). Further detailed information about CC content can be
found in the Supplementary Materials.

Figure 1. Schematic design of toxicity tests carried out in the study: HCl (left) and CO2 (right)
injection acidification. Simplified parameters selected for experiment 1 and 2 with acidification
sources (CO2 and HCl), crack concentrations (6.25, 12.5, 25, 50 and 100 mg L−1) and the targeted
endpoints for mussels (fertilization rate and embryo larval development).

Total alkalinity (TA) was determined (in triplicate) by the potentiometric titration
system (Metrohm 794 Basic Titrino, Herisau, Switzerland) with a glass electrode (Metrohm,
ref. 6.0210.100) calibrated in NBS scale. Carbonate chemistry parameters were calculated
based on the pH and the TA with the CO2SYS software [40] using the dissociation constants
from [41] refit by [42], and KSO4 according to [43].

2.3. Toxicity Tests

Specimens of marine mussel (Perna perna) were purchased from an aquaculture facility
(Cocanha beach at Caraguatatuba, SP/Brazil) and held in a 500 L tank filled with clean
aerated seawater for 24 h before toxicity tests. The gametes were obtained according
to [44], with minor adaptations proposed by [35]. Four replicates were used for each CC
concentration with different pH values (Figure 1). The pH value of 8.3 was used as a control,
where no CO2 or HCl was added (natural pH of the reconstitute water) (Table 1).

2.4. Fertilization Bioassay

The fertilization rate was conducted according to [35] in 10 mL test tubes with CC
solution at different pH values, besides a control with reconstituted seawater and without
CC to ensure the quality of the experiment. Then, 50 µL sperm solution was added to each
test tube; after 1 h of sperm solution exposure to different treatments, oocytes were added.
After 40 min, 40% formaldehyde at pH 7.0 was added to finalize the assay. By using a light
microscope with 100× magnification, the presence of the polar body of the fertilization
membrane or the first cell divisions in 100 eggs was evaluated. The test was considered
valid, with ≥80% of the eggs successfully fertilized in the control [45].

2.5. Embryo–Larval Development Bioassay

The following assay was performed as described by [44,46]. Briefly, adults were
induced to spawn by thermal stimulation, and fertilization was achieved by adding 1.5 mL
of sperm solution into 250 mL of the eggs suspension for 60 min (RT). Then, approximately
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25,000 embryos were introduced into 1.3 L glass chambers containing 500 mL of filtered
(0.22 µm) reconstituted seawater (25 ◦C, S of 35 ± 1, 7.5 mg L−1 DO, 12 h photoperiod),
with the desired pH and CC concentration for each treatment (Figure 1). After exposure
time (42 h), 40% formaldehyde was added and larvae counted. The test was considered
valid for ≥80% larvae successfully developed in the control.

Table 1. Physicochemical water parameters (nominal cocaine–crack CC, pH in seawater, salinity—S,
dissolved oxygen—DO, temperature—T) monitored in the different assay treatments (control as
reconstituted seawater, CO2 injection and HCl treatment). pH average ± SD values were calculated
from 30 min period measurements taken during a 48 h period.

pH CC (µg L−1) pH Seawater S (PSU) DO (mg L−1) T (◦C)

Reconstituted
seawater

8.30 ± 0.03 34 5.14 25
6.25 8.30 ± 0.02 34 5.78 25
12.5 8.30 ± 0.01 34 5.78 25
25 8.30 ± 0.04 34 5.35 25
50 8.30 ± 0.03 34 5.14 25

CO2 treatment

8.0

Control 8.00 ± 0.05 34 5.80 25
6.25 8.00 ± 0.03 34 5.82 25
12.5 8.00 ± 0.02 34 6.60 25
25 8.00 ± 0.03 34 5.91 25
50 8.00 ± 0.05 34 5.80 25

7.5

Control 7.50 ± 0.01 34 5.99 25
6.25 7.50 ± 0.06 34 5.74 25
12.5 7.50 ± 0.03 34 5.32 25
25 7.50 ± 0.08 34 5.66 25
50 7.50 ± 0.01 34 5.99 25

7.0

Control 7.00 ± 0.03 33 5.67 25
6.25 7.00 ± 0.06 34 6.03 25
12.5 7.00 ± 0.03 34 6.00 25
25 7.00 ± 0.01 33 5.91 25
50 7.00 ± 0.03 33 5.67 25

HCl treatment

8.0

Control 8.00 ± 0.04 35 5.49 24
6.25 8.00 ± 0.03 35 5.19 24
12.5 8.00 ± 0.03 35 6.34 24
25 8.00 ± 0.02 35 5.09 24
50 8.00 ± 0.04 35 5.49 24

7.5

Control 7.50 ± 0.02 35 5.64 25
6.25 7.50 ± 0.04 35 5.59 25
12.5 7.50 ± 0.03 35 5.79 25
25 7.50 ± 0.04 35 5.45 25
50 7.50 ± 0.02 35 5.64 25

7.0

Control 7.00 ± 0.05 35 5.23 26
6.25 7.00 ± 0.02 35 6.09 26
12.5 7.00 ± 0.03 35 5.99 26
25 7.00 ± 0.06 35 6.01 26
50 7.00 ± 0.05 35 5.23 26

2.6. Statistical Analysis

Regarding the effects caused by the variation in the pH values, the term EpH50 was
used. The IC50 and EpH50 were calculated through the polynomial interpolation method.
Normality and homogeneity of variances were tested using Shapiro–Wilke’s and Levene’s
tests, respectively. Two-way ANOVA with Tukey’s post hoc test was performed to compare
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results of the different acidification levels and CC concentrations with the control using the
statistical software SPSS 15.0 for Windows.

3. Results and Discussion
3.1. Chemical Analysis

Optimal water-quality conditions, which are essential to the success of a toxicity test,
were predetermined and maintained through a CO2 injection system. Water chemistry was
continuously monitored (Table 1).

The values for the carbonate species, calculated by CO2SYS software, are shown in
Table 2. A decrease in pH seawater resulted in a reduction in the concentration of OH− and
CO3

2−, as presented by our results, since we observed an increase in CO2 concentrations
and a decrease in CO3

2− rates. The higher the concentration of CO2, the lower the CO3
2−

stability, which decreased its capacity to connect with other chemical elements such as
calcium, since the carbonate (CO3

2−) has a higher chemical affinity for H+ ions than for
calcium (Ca2+).

Table 2. Carbonate system speciation in assays exposed to the different scenarios by CO2 enrichment
treatments for the mussel toxicity tests.

pH
Treatment

CC
(µg L−1)

TA
(µmol L−1)

TIC
(µmol
kg−1)

HCO3−

(µmol
kg−1)

CO32−

(µmol
kg−1)

CO2
(µmol
kg−1)

pCO2
(µatm) Ωcal Ωarag

8.0

Control 1641 1516 1413 85.6 18.1 655 2.06 1.36
6.25 1654 1525 1419 88.3 17.7 646 2.13 1.41
12.5 1312 1475 1291 7.5 176.2 6541 0.18 0.12
25 1754 1650 1547 79.2 23.8 880 1.91 1.27
50 1799 1794 1697 39.3 57.8 2152 0.95 0.63

100 1862 1883 1776 33.6 74.2 2767 0.81 0.54

7.5

Control 1685 1604 1511 65.9 27.5 1030 1.59 1.06
6.25 1672 1632 1545 48.1 39.1 1451 1.16 0.77
12.5 1744 1713 1622 47.1 44.1 1641 1.14 0.75
25 1717 1691 1600 44.6 45.6 1715 1.08 0.72
50 1855 1888 1776 30.7 81.9 3083 0.74 0.49

100 1874 1924 1803 27.5 93.3 3481 0.67 0.44

7.0

Control 1713 1707 1615 37.7 54.0 2007 0.92 0.61
6.25 934 911 863 22.9 25.3 952 0.56 0.37
12.5 1751 1800 1686 25.1 88.9 3333 0.61 0.41
25 1793 1736 1641 58.9 36.0 1355 1.44 0.95
50 1796 1846 1728 26.1 91.5 3473 0.63 0.42

100 1925 1910 1808 46.0 56.1 2117 1.12 0.74

On the other hand, after adding HCl, concentrations of H+ and H2CO3 in seawater
increased, and HCO3

− and CO3
2− decreased. However, few studies [14,47–49] focus

on and explain the main difference in the carbonate speciation between the HCl and
CO2 methodologies.

The decrease in CaCO3 saturation levels, confirmed in this study by an under-saturation
in the index for calcite (Ωcal) and aragonite (Ωarag), poses a major threat to marine or-
ganisms, particularly shell-forming and calcifying organisms [50]. As seen in the study
from [6], there was an alteration in the calcification process in Millepora alcicornis (calcareous
hydrozoan) triggered by CO2-driven acidification.

The aliquot of CC analyzed by LC-MS/MS contained 37.99% of cocaine. Determination
of the real concentrations of cocaine in the exposure aliquot was unmeasurable; however,
a low decrease in CC concentrations in the bioassays is expected, as [51] reported for
wastewater, as did [31] when referring to marine water.
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3.2. Toxicity Assays
3.2.1. Fertilization Rate Assay

Figure 2 shows results from fertilization assay under pH 8.3 with the different CC con-
centrations. The treatments did not present any significant difference (p < 0.05) compared
to N treatment considered negative control for this assay.

Figure 2. Perna perna fertilization rate (in %) results obtained after exposure to different concentrations
of CC (6.25, 12.5, 25, 50, and 100 mg L−1) without acidification at pH 8.3 considered the negative
control. (N represents natural pH 8.3, with no acidification method applied).

Figure 3 shows the fertilization rate results for both acidification methodologies. The
CO2 acidification methodology at pH 7.5 with the highest CC concentration (50 mg L−1 and
100 mg L−1) presented a significant decrease in the fertilization success of the mussel when
compared with the control (N). In the case of the HCl acidification methodology, there was
a significant decrease in the fertilization rate for all pH treatment and CC concentrations
when compared to the control.

Figure 3. Perna perna fertilization rate results obtained after exposure to different concentrations
of CC and acidification at different pH values 8.0, 7.5, 7.0 promoted by CO2 and HCl supplies.
Concentration 0 means acidified but with no CC. A statistically significant difference (p < 0.05)
compared with N (reconstituted seawater considered as negative control) is shown with “a”; and
between CC concentrations in different acidified methods is shown with “b”.
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Agreeing with our results, ref [52] showed a reduction in the percentage of fertilized
eggs of C. gigas when the pH value was decreased by 0.7 from the original value compared
to the other treatments. This might support the hypothesis proposed by [53], who affirmed
that seawater acidification would affect the intracellular pH of sperm and alter sperm motil-
ity, fertilization, and embryo development. Similar species, such as the green-lipped mussel,
have demonstrably increased respiration rates and reduction in growth and reproductive
output at elevated pCO2 [54].

Regarding CC concentrations that the sperm was exposed to during a one-hour period,
our results showed that even the highest concentration of CC (100 mg L−1) was not able to
affect the sperm’s ability to fertilize the oocyte. On the other hand, [31] presented the effects
on the fertilization rate of P. perna mussel already in the CC concentration of 1.25 mg L−1.

3.2.2. Embryo–Larval Toxicity Test

The results of this toxicity assay using Perna perna in reconstituted seawater (N)
with different CC concentrations are presented in Figure 4. Significant differences were
observed in CC concentrations of 12.5, 25 and 50 mg L−1 when compared with N (no
CC concentration added). The authors of [31] found significant differences in P. perna
embryo–larval development when exposed to 1.25 mg L−1 CC.

Figure 4. Perna perna embryo–larval development results after exposure to the different CC concen-
trations in reconstituted seawater (pH 8.3) without acidification and considered as negative control.
Asterisks indicate significant differences (p < 0.05).

The results of embryo–larval successes applying the two different methods of acidifica-
tion (CO2 and HCl) are shown in Figure 5. It was demonstrated that the CO2 acidification
method promoted a significant decrease (with respect to control treatment) (p < 0.05) for
CC concentrations up to 12.5 mg L−1. Results obtained for HCl acidification methodology
showed significant differences for CC concentrations up to 6.25 mg L−1 at pH 7.7 compared
to control treatment. In the figure were pH values of 8.3 (N-control), and 8.0 and 7.7,
excluding pH 7.5 (and less), since this pH value was highly toxic and presented no normal
larval development for both acidification strategies.

The IC50 was calculated from the results of embryo–larval assay and presented in
Table 3. The different methods of acidification presented different values of IC50 associated
with CC, evidencing that HCl is more toxic than CO2 when associated with the same
concentrations of CC.
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Figure 5. P. perna larval development success results after exposure to CC and acidification at two
different pH values (8.0 on the (left) and 7.7 on the (right)). The letter “a” indicates a significant (p < 0.05)
difference compared to results at the N treatment (reconstituted seawater). Similarly, letter “b” indicates
a significant (p < 0.05) difference between CC concentrations in different acidified methods.

Table 3. Values of IC50 derived from CC concentrations at the different pH values promoted by HCl
and CO2 acidification methodologies.

pH Values
IC50 (mg L−1)

CO2 HCl

8.3 14.08 (12.66–15.30) 8.85 (8.64–9.01)
8.0 13.85 (12.50–14.60) 8.72 (8.44–8.95)
7.7 9.37 (4.66–16.15) 3.92 (3.73–4.14)
7.5 - -

Regarding pH effects, Table 4 shows the EpH50 and E[H+]50 derived from the different
treatments; that is, acidification causes effects in more than 50% of the embryos after
44 h exposure. The HCl acidification method presented a greater effect on the organisms
(including control groups) when compared to the CO2 method. In addition, CC showed
more severe toxic effects when associated with acidification by HCl (Tables 3 and 4). This
increase in toxicity may be related to the chemical reaction of the HCl acid, which released
protons H+ and ions of Cl−, against the bicarbonate (HCO3

−) released from CO2.

Table 4. Values of EpH50 and E[H+]50 for the experimental treatments.

CC (mg L−1)
CO2 HCl

EpH50 E[H+]50 (mol kg−1) EpH50 E[H+]50 (mol kg−1)

Control 7.34 4.56 × 10−8 7.53 2.95 × 10−8

6.25 7.55 2.81 × 10−8 7.65 2.21 × 10−8

12.5 7.61 2.41 × 10−8 8.18 0.66 × 10−8

25 7.58 2.61 × 10−8 - -
50 8.18 0.66 × 10−8 - -

According to [52], two reasons might be promoting the morphological abnormalities
of the larvae: (a) damage to the embryonic ectodermic cells rendering them unable to
produce sufficient amorphous calcium carbonate, avoiding the proper development of the
shell, or (b) shell dilution due to corrosion caused by acidified seawater. However, these
factors are the result of an incomplete calcification process, which would not be enough to
cover the entire mantle of the larva [55]. This feature would also promote a swimming skill
decrease in the larvae, i.e., a fitness decrease [55,56].
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Larval physiology components are affected by the carbonate speciation (and probably
life stage). Any failure to embryo–larval develop represents a significant bottleneck in the
population dynamics; however, other carbonate system parameters may act as stressors.
For example, the saturation state (Ωarag) appears to matter most for the rapid shell building
of prodissoconch I phase in bivalve larvae [57]. Our results prove that the gametes of P.
perna react to acidification when exposed to expected realistic pH reductions.

Besides the carbonate system parameters, according to [58], the destabilization of the
lysosomal membrane may cause a nutrient imbalance during embryogenesis, leading to
disturbances in larval development in bivalves. A growth delay or abnormal shapes from
early stages indicate intense morphogenetic activity. The authors of [31,32] demonstrated
that the lysosomal membrane stability of mussels is affected by the different CC concentra-
tions. This could mean larval starvation affecting not only embryonal development, but
also population growth inhibition.

Regarding the combined cocaine with different acidification scenarios, toxicity was
also tested for the reproduction (fertilization and embryo development) of the sea urchin
Echinometra lucunter [37]. However, further research is required to understand possible
ecological scenarios with other species, as the CC have become a common compound
in urban sewage. Even more, the role of other illicit drugs (and their metabolites) [58]
and new emerging compounds in warming and acidifying environments might have a
dramatic combined effect on other species and other life stages, even algae (irgarol and
Ulva lactuca [59]) and mussels (cocaine, benzoylecgonine and Mytilus galloprovincialis [60]).

4. Conclusions

The HCl acidification method was found to be more toxic than CO2 enrichment to
early life stages of P. perna mussel. Our results demonstrate the combined effects of a
psychoactive substance (crack cocaine) in the first life stages of P. perna exposed to ocean
acidification scenarios. Considering the taxonomic position of the species, it is quite
possible that early development of other bivalve species might be similarly affected by
strong acidified seawater (CO2), although further verification might be necessary for other
species, drugs, and life stages.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/app122111204/s1, Table S1: Measured concentrations of crack
cocaine.
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