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Abstract

The semantics of a multi-adjoint logic program is usually defined through the immediate consequences operator TP . However, 
the definition of the immediate consequences operator as the supremum of a set of values can provide some problem when imprecise 
datasets are considered, due to the strict feature of the supremum operator. Hence, based on the flexibility of generalized quantifiers 
to weaken the existential feature of the supremum operator, this paper presents a generalization of the immediate consequences 
operator with interesting properties for solving the aforementioned problem.
© 2022 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license 
(http://creativecommons.org/licenses/by-nc-nd/4.0/).
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1. Introduction

Logic is the field of mathematics that is responsible for studying valid schemes of human reasoning. Since the 
advent of computers, one of the greatest applications of logic has been in the field of computing as a programming 
language and as a model of computing [19]. From the studies of different authors in these research areas, logic 
programming arose as a revolutionary idea for using logic as a programming language.

Semantics of a logic program has been characterized through the post-fixed points of the immediate consequences 
operator TP [16,20–22,26–28]. Specifically, it is proved that the meaning of a logic program P is obtained as the 
least fixed point of the operator TP . By the definition of this operator as the supremum of a set of values in diverse 
fuzzy frameworks [7,16,21,22,26], the presence of some (small) errors in the data (noise) can disrupt the final result. 
Consequently, the main goal of this paper is to provide a further generalization of the framework given in [21] so that 
it is possible to solve this problem. To proceed in this way, we will use generalized quantifiers [3,4,10,25] in order to 
relieve the possible presence of this noise in the data. These quantifiers are particular cases of fuzzy quantifiers [1,2,
14,15], which are mathematical tools with the ability to model a diverse class of natural language such as “Many”, 
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“At least”, “A few” or “Most”. Moreover, generalized quantifiers are very versatile and can be adapted to a big range 
of situations [8,12,24].

Taking into account that standard immediate consequences operator implicitly employs the existential quantifier in 
fuzzy logic programming, it can be generalized using other quantifiers determined by other fuzzy measures that can 
be useful in dealing with other sort of situations in order to create a more flexible and softer framework, where the 
possible noise presented in the data does not affect so much the final computations.

Thus, this paper will use generalized quantifiers weaker than the supremum in the immediate consequences operator 
and so, decrease the impact of imprecise data (noise) in computations. Specifically, two alternatives will be analyzed 
and the main properties will be studied. Since generalized quantifiers range from the existential to the universal 
quantifiers, an orness measure will be considered to be sure that the considered measure provides quantifiers closer to 
the existential quantifiers (as the supremum is) than the universal one.

The organization of the paper is as follows: preliminary notions and results of fixed points theory, generalized quan-
tifiers, multi-adjoint structures, and multi-adjoint logic programming are introduced in Section 2; Section 3 presents 
the first approach of the immediate consequences operator using generalized quantifiers. With the objective of evaluat-
ing the different generalizations of the immediate consequences operator, we introduce a generalization of the concept 
of orness measure in Section 4. Finally, Section 5 introduces several conclusions and pointers for further research.

2. Preliminaries

This section recalls some important results which will be useful in the following sections of the paper. For more 
details see [21,22].

2.1. Multi-adjoint algebra structure

In the initial work on multi-adjoint logic programming [21], adjoint pairs were considered as basic operators.

Definition 1. (Adjoint pair). Let 〈P,�〉 be a poset and (←, &) a pair of binary operators in P such that

1. The operator & is increasing in both arguments.
2. The operator ← is increasing in the first argument (consequent) and decreasing in the second one (antecedent).
3. The adjoint property holds, that is, x � (y ← z) if and only if (x&z) � y, for all x, y, z ∈ P .

Under these conditions, we say that (←, &) is an adjoint pair in 〈P,�〉.

These operators are used in the fuzzy logic programming framework of this paper on complete lattices.

Definition 2. (Multi-adjoint lattice). Let 〈L,�〉 be a complete lattice. A multi-adjoint lattice L is a tuple (L, �,

←1, &1, . . . , ←n, &n) satisfying

1. 〈L,�〉 is bounded, i.e., it has a bottom ⊥ and a top 	 elements.
2. (←i , &i ) is an adjoint pair in 〈L,�〉, for all i ∈ {1, . . . , n}.
3. 	&iϑ = ϑ&i	 = ϑ , for all ϑ ∈ L and i ∈ {1, . . . , n}.

Moreover, other general increasing operators can be considered in multi-adjoint logic programming, such as ag-
gregator operators.

Definition 3. (Aggregation function). A mapping @ : [0, 1]n → [0, 1] is said to be an aggregation function if:

1. @ satisfies the boundary conditions @ (0, . . . ,0) = 0 and @(1, . . . , 1) = 1.
2. @ is increasing, that is, for each i ∈ {1, . . . , n}, if xi ≤ y, then @ (x1, . . . , xn) ≤ @ (x1, . . . , xi−1, y, xi+1, . . . , xn), 

for all y, x1, . . . , xn ∈ [0, 1].
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2.2. Multi-adjoint logic programming

The algebraic structure considered in this framework is recalled next. The notions of �-algebra, graded set, alpha-
bet, and other basic definitions can be seen in [20,21].

Definition 4. (Multi-adjoint �-algebra). Let � be a graded set containing operators ←i and &i , for i ∈ {1, . . . , n}, 
and possibly some extra operators, and let L = 〈L,I 〉 be an �-algebra whose carrier set L is a complete lattice under 
�. We say that L is a multi-adjoint �-algebra with respect to the pairs (←i , &i ), for i ∈ {1, . . . , n}, if L = (L,

�, I (←1) , I (&1) , . . . , I (←n) , I (&n)) is a multi-adjoint lattice. I (←i) can also be denoted as ←̇i and I (&i ) as 
&̇i .

Example 1. 〈[0,1], I 〉 is a multi-adjoint �-algebra with respect to the graded set � = {←P,&P,←G,&G,∧Ł,@}, 
where &P and &G are the product and Gödel t-norms respectively, together with their residuated implications, ∧Ł is 
the Łukasiewicz t-norm and @ is an aggregation operator. These operators are defined for all x, y, z ∈ [0, 1] as follows

&G(x, y) = min {x, y} z ←G y =
{

1 if y ≤ z

z otherwise

&P(x, y) = x · y z ←P y =
{

1 if y ≤ z
z
y

otherwise

∧Ł(x, y) = max {0, x + y − 1} @(x, y) = 2x + y

3
�

2.2.1. Syntax of multi-adjoint logic programming
Multi-adjoint logic programs will be constructed from the abstract syntax induced by a multi-adjoint algebra on 

a set of propositional symbols. Specifically, we will consider a multi-adjoint �-algebra L whose extra operators 
are either conjunctions, denoted by ∧1, . . . , ∧k , or disjunctions, denoted by ∨1, . . . , ∨l or aggregators, denoted by 
@1, . . . , @m. Furthermore, let � be a set of propositional symbols and the corresponding algebra of formulas F
freely generated from � by the operators in � [21]. This algebra will be used to define the syntax of a propositional 
language.

Definition 5. (Multi-adjoint logic program). A multi-adjoint logic program is a set P of weighted rules of the form 

〈(A ←i B) ,ϑ〉, also denoted A 
ϑ← B, such that:

1. (A ←i B) is a formula of F, which is simply called rule (of the program).
2. The confidence factor ϑ is an element (a truth-value) of L.
3. The head of the rule A is a propositional symbol of �.
4. The body formula B is a formula of F built from propositional symbols B1, . . . , Bn (n ≥ 0) by the use of conjunc-

tions &1, . . . , &n and ∧1, . . . , ∧k , disjunctions ∨1, . . . , ∨l and aggregators @1, . . . , @m.

The particular case of a weighted rule where the body B is 	 is called a fact. Notice that the top element of the 
lattice is considered as a constant in the �-graded set used for computing the well-formed formulas set F�.

Sometimes, we will represent a rule A ←i B as A ← @ [B1, . . . ,Bn], where @ is the aggregator obtained as the 
composition of all operational symbols in B, and B1, . . . , Bn are propositional symbols which appear in B and so, 
B = @ [B1, . . . ,Bn].

Example 2. In Example 1, identifying the operator symbols in � with their interpretations, we can consider the multi-
adjoint �-algebra

〈[0,1],≤,←G,&G,←P,&P,∧Ł,@〉
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where &G and &P are the Gödel and the product conjunctions respectively, with ←G and ←P being their respective 
adjoint implications. Moreover, we use the extra operator ∧Ł, the Łukasiewicz conjunction and the aggregator @
given in Example 1. We define the set of propositional symbols � as

� = {covid,diarrhoea,headache,moderate fever,cough,waist pain}
We can consider, in an specific situation, the multi-adjoint logic program P1 defined through the rules

covid
0.8←G @ (diarrhoea∧Ł headache,waist pain)

covid
0.9←P moderate fever

covid
0.7←P cough

These rules are completed with observations about each particular person, in the form of facts. For example, a partic-
ular individual may have the symptoms represented by the following facts.

moderate fever
0.6←P 1

cough
0.8←P 1

diarrhoea
0.6←P 1

headache
0.7←P 1

waist pain
0.3←P 1 �

2.2.2. Semantics of multi-adjoint logic programming
Semantics of a multi-adjoint logic program allows us to give meaning to formulas through its syntactic structure. 

Let � be a graded set, � a set of propositional symbols, F the �-algebra of well-formed formulas with carrier F�

and L an arbitrary multi-adjoint �-algebra with carrier L.

Definition 6. (Interpretation). An interpretation is a mapping I : � −→ L which assigns values of the complete lattice 
L to the set of propositional symbols. The set of all interpretations is denoted as IL.

The set of interpretations IL together with the point-wise ordering forms a complete lattice [21], denoted by 
〈IL,�〉. The least interpretation � maps every propositional symbol to the least element ⊥ of L.

From the unique homomorphic extension [21], each interpretation uniquely extends to the set of formulas F�, i.e., 
Î : F� −→ L. The ordering ≤ defined in the set of truth-values L can be extended to the set of interpretations.

Definition 7. (Satisfaction and model). Given an interpretation I ∈ IL, a weighted rule 〈A ←i B, ϑ〉 is satisfied by I
if and only if ϑ � Î (A ←i B). An interpretation I ∈ IL is a model of a multi-adjoint logic program P if and only if 
all weighted rules in P are satisfied by I .

It is possible to generalize the immediate consequences operator, given by van Emden and Kowalski [13], to the 
framework of multi-adjoint logic programming as follows:

Definition 8. (Immediate consequences operator). Let P be a multi-adjoint logic program. The immediate conse-
quences operator T L

P : IL −→ IL, mapping interpretations to interpretations, is defined by considering

T L
P (I )(A) = sup

{
ϑ

.

&i Î (B) |A ϑ←i B ∈ P
}

From now on, we will simply refer to it as TP . Notice that it makes sense to consider the suprema due to the fact 
that L is assumed to be a complete lattice. Next, we are going to characterize the semantics of a multi-adjoint logic 
program as the post-fixed points of the operator TP .

Theorem 1 ([21]). An interpretation I ∈ IL is a model of a multi-adjoint logic program P if and only if it is a 
post-fixed point of TP , that is TP (I ) � I .
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In addition, the following result for the immediate consequences operator holds.

Theorem 2 ([21]). The operator TP is monotonic.

From Theorems 1 and 2, if I is a model, then TP (I ) is a model. Once we have proved the monotonicity of TP , the 
following result shows that it has a least fixed point.

Proposition 1 ([27]). The operator TP : IL −→ IL has a least fixed point lfp(TP ) verifying that

lfp(TP ) = inf {I ∈ IL |TP (I ) � I }

Next, we are going to relate the least fixed point of TP with a particular model. From Theorem 1, we can charac-
terize the least model MP as the least fixed point of the operator TP , allowing us to define the semantics of P in this 
way. In addition, the least model can be obtained by iterating an ordinal number of times α the operator TP , starting 
from the least interpretation �.

Theorem 3 ([21]). Let L be a complete lattice and P a multi-adjoint logic program. Then, for some ordinal α it is 
satisfied that MP = lfp (TP ) = T α

P (�).

Example 3. Taking into account Example 2, we are going to show how to calculate the value of the immediate 
consequences operator and the least model of the program P1. From Theorem 3, the least model of P1 is obtained 
through iterating the TP1 starting from the least interpretation �. From the unique homomorphic extension, we can 
obtain

TP1(�)(covid) = sup
{
0.9&̇P�̂(moderate fever),0.7&̇P�̂(cough),

0.8&̇G@
(
�̂(diarrhoea∧Ł headache), �̂ (waist pain)

)}
= sup {0,0,0}
= 0

T 2
P1

(�)(covid) = sup
{
0.9&̇PT̂P1(�)(moderate fever),0.7&̇PT̂P1(�)(cough),

0.8&̇G@
(
T̂P1(�)(diarrhoea∧Ł headache), T̂P1(�) (waist pain)

)}
= sup {0.54,0.56,0.3}
= 0.56

In the following table we show the iteration of the TP1 . Remark that the least fixed point is reached in the second 
iteration; hence Theorem 3 holds that the least model of P1 corresponds to T 2

P1
(�).

� TP1 (�) T 2
P1

(�) T 3
P1

(�)

moderate fever 0 0.6 0.6 0.6
cough 0 0.8 0.8 0.8
diarrhoea 0 0.6 0.6 0.6
headache 0 0.7 0.7 0.7
waist pain 0 0.3 0.3 0.3
covid 0 0 0.56 0.56

Notice that any interpretation I ∈ IL greater than the least fixed point of TP , that is lfp(TP ) � I , does not need to 
be a model of the program P . We will present a counterexample. For this we consider Example 2 and the interpretation 
I : � −→ [0, 1] defined as I (covid) = 0.6 and 0.9 for the rest.

As I (covid) = 0.6 ≤ 0.81 = TP1(I )(covid) then it is not verified that TP1(I ) � I , indeed, TP1(I ) and I are 
incomparable. Consequently, we have found an interpretation I such that lfp(TP ) � I , but I is not a model of P . �
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2.3. Generalized quantifiers

In order to understand the generalization proposed in this paper, it is inevitable to introduce some basic aspects 
related to generalized quantifier [3,4,10,25]. First of all, we need to present the definitions of fuzzy measure and the 
invariance of fuzzy measure with respect to the cardinality.

Definition 9 ([18]). (Fuzzy measure). Given a non-empty finite set U and a σ -algebra A of subsets of U , we say that 
μ : A −→ [0, ∞) is a fuzzy measure if it holds the following two conditions:

1. μ (∅) = 0.
2. For all A, B ∈ A such that A ⊆ B , μ(A) ≤ μ(B).

The general definition of fuzzy measures involves a fourth axiom (about continuity) which does not apply in the 
framework of this paper (since we consider a finite and discrete set U ). Moreover, although the definition given in 
[18] contemplates μ(U) = 1, this property is considered as a separated one, as it is used in [3]. We say that μ is a 
normalized fuzzy measure if μ(U) = 1. From now on, we will call it simply a fuzzy measure.

Definition 10 ([18]). (Invariance with respect to the cardinality). Let U be a non-empty finite universe, P(U) the 
powerset of U and μ : P(U) −→ [0, 1] a fuzzy measure. We will say that μ is invariant with respect to the cardinality, 
if the following condition holds

If |A| = |B|, thenμ(A) = μ(B), for allA,B ∈ P(U)

where | · | denotes the cardinality of a set.

From this definition, we can introduce the notion of generalized quantifier.

Definition 11 ([3,25]). (Generalized quantifier determined by a fuzzy measure μ). Let U be a non-empty finite uni-
verse, P(U) the powerset of U , μ : P(U) → [0, 1] a fuzzy measure invariant with respect to the cardinality and ⊗ an 
operator which is increasing on the first argument and satisfies the following boundary conditions: x ⊗ 1 = x, x ⊗ 0 =
0 ⊗ x = 0, for all x ∈ [0, 1]. A mapping Qμ : F(U) → [0, 1] defined, for all C ∈ F(U) = {C |C : U → [0,1]}, as

Qμ(C) =
∨

D∈P(U)\{∅}

((∧
u∈D

C(u)

)
⊗ μ(D)

)

is called generalized quantifier determined by the fuzzy measure μ, where 
∨

and 
∧

represent the supremum and 
infimum operators in the unit interval.

Note that in Definition 11 we have not considered the empty set as in the definition of generalized quantifiers given 
in [3,25]. Indeed, we cannot consider it because the operator ⊗ does not need to satisfy the boundary conditions with 
the bottom element due to, although it satisfies the boundary conditions with the top element in the right side, it could 
not be increasing on the right side. It is clear that if ⊗ is left-continuous on the right side then the empty set could be 
considered and the definition be simplified as in [6].

Furthermore, notice that this definition of generalized quantifiers is a particular case of the Sugeno integral consid-
ering ∧ as the operator ⊗. The definition of the Sugeno-like integral on L, where L is a complete residuated lattice, 
was provided independently in [9,11].

Next, we present two important examples of generalized quantifiers, which remark that this definition is a proper 
generalization of the existential and universal quantifiers, and also show the great versatility of the definition of 
generalized quantifier and its dependence on the considered fuzzy measure.

Example 4. The universal and existential quantifiers can be obtained from Definition 11 considering the minimum 
and maximum fuzzy measures μ∀ and μ∃ respectively, which are defined as follows:
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μ∀(D) =
{

1 if D = U

0 if D �= U
μ∃(D) =

{
0 if D = ∅

1 if D �= ∅

Furthermore, it can be proved that the following equations are satisfied [5]:

Q∀(C) =
∧
u∈U

C(u) Q∃(C) =
∨
u∈U

C(u) �

The following result will provide a characterization of generalized quantifiers that will be very useful for the 
generalization of the immediate consequences operator, which will be studied in the next sections.

Theorem 4 ([25]). Let Qμ be a generalized quantifier in the non-empty finite universe U = {u1, . . . , un} determined 
by a fuzzy measure μ invariant with respect to the cardinality. Then, for all C ∈ F(U),

Qμ(C) =
n∨

i=1

C
(
uπ(i)

)⊗ μ({u1, . . . , ui})

where π is a permutation on {1,2, . . . , n − 1, n} such that

C
(
uπ(n)

)≤ C
(
uπ(n−1)

)≤ . . . ≤ C
(
uπ(2)

)≤ C
(
uπ(1)

)
3. Immediate consequences operator generalized through generalized quantifiers

In this section we are going to generalize the immediate consequences operator with the use of generalized quanti-
fiers. First of all, we need to introduce the problem related to the definition of the TP given through the supremum of 
a set of values.

Example 5. Consider Example 2, with the interpretation I defined as I (headache) = 0.7, I (moderate fever) =
0.9, I (diarrhoea) = 0.8, I (cough) = 0.7 and I (waist pain) = 0.5. Then, we obtain that

TP1(I )(covid) = sup
{

0.9&̇PÎ (moderate fever),0.7&̇PÎ (cough),

0.8&̇G@
(
Î (diarrhoea∧Ł headache), Î (waist pain)

)}
= sup {0.81,0.49,0.5}
= 0.81

With this example we can see that not all of the information is considered in the computation of the immediate 
consequences operator, being very sensitive to possible errors in the values of the observed variables. For instance, in 
this case, we have considered 0.81, which is considerably greater than the other two values. �

The main goal of this section is to provide a more general definition of the immediate consequences operator which 
provides a possible solution to the problem of the existence of possible noise in the dataset. The first approach will be 
consider other data different from the supremum one. For that, we are going to use generalized quantifiers. From now 
on, we will use a multi-adjoint logic program P over a set of propositional symbols � and a multi-adjoint �-algebra 
L with [0, 1] as lattice and with respect to the adjoint pairs (←i, &i ), for all i ∈ {1, . . . , n}.

3.1. Definition of the TP through the existential quantifier

First of all, we introduce the definition of the mapping CA
I , associated with a propositional symbol A and an 

interpretation I , which will facilitate the achievement of the stated goal.

Definition 12. (Mapping CA
I ). Let P be a multi-adjoint logic program and I an interpretation of P . We define the 

mapping CA : P −→ [0, 1], for each 〈C ←i B, ϑ〉 ∈ P , as follows
I
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CA
I (〈C ←i B, ϑ〉) =

{
ϑ&̇i Î (B) if C = A

0 otherwise

From this definition, we can present the following result, in which we make a comparison that will allow us to 
generalize the immediate consequences operator with the use of generalized quantifiers.

Proposition 2. Let P be a multi-adjoint logic program. Then, it is satisfied that

Q∃ (CA
I

)
= TP (I )(A)

where P is the considered universe, Q∃ is the existential quantifier defined on P in Example 4, and CA
I is the mapping 

given by Definition 12.

Proof. Considering the mapping CA
I given by Definition 12, the definition of immediate consequences operator and 

the characterization of the existential quantifier given by Example 4, we have the following chain of equalities.

Q∃ (CA
I

)
=

∨
〈C←iB,ϑ〉∈P

CA
I (〈C ←i B, ϑ〉)

=
∨

〈A←iB,ϑ〉∈P
CA

I (〈A ←i B, ϑ〉)

=
∨

〈A←iB,ϑ〉∈P

(
ϑ&̇i Î (B)

)
= sup

{
ϑ&̇i Î (B) | 〈A ←i B, ϑ〉 ∈ P

}
= T L

P (I )(A) �
Notice that in the case of a propositional symbol A that is not the head of any rule, TP (I )(A) = 0 and Q∃(CA

I ) = 0, 
for any interpretation I .

Once we have established the characterization of TP with the existential quantifier, in the next section we will use 
it to introduce a generalization of the immediate consequences operator in terms of generalized quantifiers.

3.2. Definition of the TP through an arbitrary generalized quantifier

To generalize the immediate consequences operator through a generalized quantifier, we are going to use the same 
mapping CA

I given in Definition 12, together with the definition of generalized quantifier determined by a fuzzy 
measure μ (Definition 11).

Definition 13. (Quantified immediate consequences operator). Let P be a non-empty multi-adjoint logic program, 
μ : P(P ) −→ [0, 1] a fuzzy measure invariant with respect to the cardinality and ⊗ an operator which is increasing in 
the first argument and satisfies the following boundary conditions: x ⊗ 1 = x, x ⊗ 0 = 0 ⊗ x = 0, for all x ∈ [0, 1]. We 
define the quantified immediate consequences operator obtained from the generalized quantifier Qμ as the mapping 

T
Qμ

P : IL −→ IL given by

T
Qμ

P (I )(A) = Qμ

(
CA

I

)
=

∨
D∈P(P )

⎛⎝⎛⎝ ∧
〈C←iB,ϑ〉∈D

CA
I (〈C ←i B, ϑ〉)

⎞⎠⊗ μ(D)

⎞⎠
for all I ∈ IL and A ∈ �.

The section above introduced the trivial example in which the existential quantifier is considered, which actually 
coincides with the classical definition of TP . Next, we will take into account another example in which the generalized 
quantifier selects the second greatest element in the computation of TP instead of the supremum.
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Example 6. Consider a finite multi-adjoint logic program P with rules {u1, . . . , un}, an interpretation I , the mapping 
CA

I given by Definition 12 and the fuzzy measure μ1 : P (P ) −→ [0, 1] defined as

μ1(D) =
{

0 if D = ∅ or D = {ui} for all i ∈ {1, . . . , n}
1 otherwise

(1)

for all D ∈ P (P ). Although we have already mentioned it, notice that the measure rejects the highest value. Taking 
into account that the fuzzy measure stops being null when the cardinality of the set is equal or greater than 2, the 
quantifier associated to this fuzzy measure will only take these sets into account. For this reason, the quantifier selects 
the second highest value.

We can order the elements CA
I (ui) for each i ∈ {1, . . . , n} through the permutation π of the set of rules {u1, . . . , un}

satisfying that

CA
I

(
uπ(n)

)≤ CA
I

(
uπ(n−1)

)≤ . . . ≤ CA
I

(
uπ(2)

)≤ CA
I

(
uπ(1)

)
Taking into account this permutation, Definition 13, and the characterization of the generalized quantifiers given 

by Theorem 4, we have that

T
Q

μ1

P (I )(A) = Qμ1(C
A
I ) =

n∨
i=1

CA
I

(
uπ(i)

)⊗ μ1 ({u1, . . . , ui}) = CA
I

(
uπ(2)

) �

Now, we are going to prove the monotonicity of the operator T
Qμ

P through the following results. The first one 
shows that generalized quantifiers given in Definition 11 are increasing.

Proposition 3. The quantifier Qμ is increasing in F (U) for each fuzzy measure μ invariant with respect to the 
cardinality.

Proof. Consider two mappings C1, C2 ∈ F (U) = {C |C : U −→ [0,1]} verifying that C1 ≤ C2. We need to prove 
that Qμ(C1) ≤ Qμ(C2).

As C1 ≤ C2 then, for each u ∈ U , it holds that C1(u) ≤ C2(u). Thus, for each i ∈ {1, . . . , n}, due to the monotonic-
ity of the operator ⊗ on the first argument, it is verified that

C1(uπ(i)) ⊗ μ({u1, . . . , ui}) ≤ C2(uπ(i)) ⊗ μ({u1, . . . , ui})
where π is a permutation in {1,2, . . . , n − 1, n} such that C

(
uπ(n)

)≤ C
(
uπ(n−1)

)≤ . . . ≤ C
(
uπ(2)

)≤ C
(
uπ(1)

)
.

Taking suprema in the previous expression and taking into account the characterization of quantifiers given in 
Theorem 4 we can write

Qμ(C1) =
n∨

i=1

C1(uπ(i)) ⊗ μ({u1, . . . , ui})

≤
n∨

i=1

C2(uπ(i)) ⊗ μ({u1, . . . , ui})

= Qμ(C2)

We conclude that the operator Qμ is increasing for each μ. �
The following result proves that the mapping defined in Definition 12 is increasing.

Proposition 4. The mapping CA
I is increasing in the lattice of interpretations 〈IL,�〉.

Proof. Consider the interpretations I1, I2 ∈ IL, such that it is verified that I1 � I2, i.e., I1(p) ≤ I2(p), for all p ∈ �. 
Let 〈C ←i B, ϑ〉 be a rule of the program P ; we have to prove that CA

I1
(〈C ←i B, ϑ〉) ≤ CA

I2
(〈C ←i B, ϑ〉).

If C �= A, then it is obvious because in both cases it would be 0.
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If C = A, if we have that Î1 (B) ≤ Î2 (B), for the monotonicity of the operators &̇i , it holds that ϑ&̇i Î1 (B) ≤
ϑ&̇i Î2 (B) and we could conclude that C is increasing in IL.

Therefore, we need to prove that Î1(B) ≤ Î2(B) for all B. First of all, assume that B is an atom. From the homo-
morphic extension theorem, it is verified that Î1 (B) = I1 (B) ≤ I2 (B) = Î2 (B).

Consider the body B = @ [B1, . . . ,Bn], where @ is the aggregator obtained as the composition of all operational 
symbols in B and B1, . . . , Bn are propositional symbols which appear in B (see Page 74).

By the comment above, since each Bi is an atom, we have that I1(Bi) ≤ I2(Bi) for all i ∈ {1, . . . , n}. Consequently, 
it is satisfied that Î (B) = Î (@ [B1, . . . ,Bn]). Hence, by the unique homomorphic extension and the monotonicity of 
@, we have that

Î1(B) = Î1 (@ [B1, . . . ,Bn])

= @̇
[
Î1(B1), . . . , Î1(Bn)

]
≤ @̇

[
Î2(B1), . . . , Î2(Bn)

]
= Î2 (@ [B1, . . . ,Bn])

= Î2(B) �
From Propositions 3 and 4, and taking into account that T

Qμ

P (I )(A) = Qμ

(
CA

I

)
, we obtained the following result.

Corollary 1. The immediate consequences operator T
Qμ

P is increasing in 〈IL,�〉.

In this subsection, we have introduced a generalization of the immediate consequences operator through general-
ized quantifiers, which preserves the monotonicity property.

3.3. Towards the quantified fixed point semantics. The particular case of T
Q

μ1

P

Once the new definition of immediate consequences operator has been introduced, the next step would be to study 
the semantics associated with the new immediate consequences operator T

Qμ

P . Before that, for a better understanding 
in this section, the particular operator associated with the μ1 measure (defined in Example 6) will be analyzed. This 
simple measure is related to the generalized quantifier that removes the greatest value of the given set, which is one of 
the simplest approaches for removing a possible noise or wrong recorded data.

First of all, the main goal now is to characterize the least fixed point of the operator T
Q

μ1

P as the least model of the 
program. Clearly, the definition of model must be changed in order to capture the philosophy of eliminating possible 
noise in the data.

Definition 14. (μ1-weak model). An interpretation I ∈ IL is said to be a μ1-weak model of a multi-adjoint logic 
program P if, for each A ∈ �, all the rules with head A are satisfied by I , except possibly one of them, i.e., there can 
exist a rule 〈A ←i B, ϑ〉 ∈ P such that ϑ � Î (A ←i B).

The first property introduces the characterization of the μ1-weak model of a program P as the post-fixed points of 
the generalized definition of immediate consequences operator through the fuzzy measure μ1.

Theorem 5. Let P be a multi-adjoint logic program and I an interpretation of P . Then, I is a μ1-weak model of P if 

and only if T
Q

μ1

P (I ) � I .

Proof. Let {u1, u2, . . . , un} be the set of rules of P with head the propositional symbol A ∈ �. We can consider a 
permutation π in this set in such a way that it is verified the following chain of inequalities

CA
I

(
uπ(n)

)≤ CA
I

(
uπ(n−1)

)≤ . . . ≤ CA
I

(
uπ(2)

)≤ CA
I

(
uπ(1)

)
(2)
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Let I be a μ1-weak model of P . We are going to prove that T
Q

μ1

P (I ) � I . As the interpretation I is a μ1-weak 
model, then all the rules of the program, except possibly one of them, are satisfied by I . Suppose that I does not 
satisfy the rule uπ(i), for some i ∈ {2, . . . , n}. It is verified that ϑ � Î

(
A ←i Bπ(i)

)
or equivalently using the adjoint 

property and the definition of Î , ϑ&̇i Î
(
Bπ(i)

)
� I (A) and it is equivalent to CA

I

(
uπ(i)

)
� I (A).

On the other hand, the rule uπ(i−1) must be satisfied by I . Therefore, it must be verified that ϑ ≤ Î
(
A ←i Bπ(i−1)

)
, 

or equivalently, ϑ&̇i Î
(
Bπ(i−1)

)≤ I (A), which is equivalent to CA
I

(
uπ(i−1)

)≤ I (A).
Consequently, by the order given in Expression (2) we have obtained that CA

I

(
uπ(i)

)≤ CA
I

(
uπ(i−1)

)≤ I (A) and 
we have reached a contradiction with CA

I

(
uπ(i)

)
� I (A).

We can conclude that the only rule that might not be satisfied by the interpretation I is uπ(1). In particular, uπ(2) is 
verified by the interpretation I , i.e., we reach the following chain of equivalent inequalities

ϑ ≤ Î
(
A ←i Bπ(2)

)
ϑ&̇i Î

(
Bπ(2)

)≤ I (A)

CA
I

(
uπ(2)

)≤ I (A)

Taking into account the order aforementioned and the choice of the fuzzy measure μ1, we can obtain that

T
Q

μ1

P (I )(A) = Qμ1

(
CA

I

)
=

n∨
i=1

CA
I

(
uπ(i)

)⊗ μ1 ({u1, . . . , ui})

=
n∨

i=2

CA
I

(
uπ(i)

)⊗ μ1 ({u1, . . . , ui})

= CA
I

(
uπ(2)

)≤ I (A)

Therefore, we have proved that T
Q

μ1

P (I )(A) ≤ I (A), for all A ∈ �, i.e., T
Q

μ1

P (I ) � I .

Now, we prove the opposite implication. For this, consider an interpretation I satisfying T
Q

μ1

P (I ) � I . First of all, 

T
Q

μ1

P (I )(A) = CA
I

(
uπ(2)

)≤ I (A). By the order given by π , it is verified for all i ∈ {2, . . . , n}, that CA
I

(
uπ(i)

)≤ I (A)

and this expression is equivalent to ϑ ≤ Î
(
A ←i Bπ(i)

)
. Therefore, all the rules except possibly one of them, which 

is the associate with π(1), are satisfied by I . Consequently, I is a μ1-weak model of the program P . �
The following result focuses the attention to a particular μ1-weak model and fixed point.

Proposition 5. The interpretation MP : � −→ [0, 1] given by

MP = inf
{
I ∈ IL | I is aμ1-weak model of P

}
is a μ1-weak model of the program P , which is the least μ1-weak model of P and is such that MP = lfp

(
T

Q
μ1

P

)
.

Proof. Notice that the infimum of the set {I ∈ IL | I is aμ1-weak model of P
}

exists because 〈IL,�〉 is a complete 
lattice.

Taking into account that T
Q

μ1

P is a monotonic mapping, similar to Proposition 1, it has a least fixed point that 
verifies the following expression [27]

lfp

(
T

Q
μ1

P

)
= inf

{
I ∈ IL |T Q

μ1

P (I ) � I

}
Moreover, by Theorem 5 we obtain that

inf

{
I ∈ IL |T Q

μ1

P (I ) � I

}
= inf

{
I ∈ IL | I is aμ1-weak model of P

}
= MP
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In addition, by the definition of fixed point, we have that T
Q

μ1

P

(
lfp

(
T

Q
μ1

P

))
= lfp

(
T

Q
μ1

P

)
. Therefore, 

lfp

(
T

Q
μ1

P

)
is a μ1-weak model of P from Theorem 5. Thus, MP is a μ1-weak model of P , which is the least 

μ1-weak model of P . �
Finally, we reach the following generalization of Theorem 3.

Theorem 6. Let P be a non-empty multi-adjoint logic program. Then, for some ordinal α, it is verified that MP =
lfp

(
T

Q
μ1

P

)
= T α

P (�).

Proof. The proof of this result follows directly from Theorem 5 and Corollary 1. �
We conclude that this new definition of the immediate consequences operator, through generalized quantifiers, 

helps to discard possible noise in the data (as we show in Example 5) and consider other values in the computation of 
TP , besides the supremum, which makes it a beneficial advantage in different noisy data sets. However, it also presents 
a disadvantage related to those propositional symbols that are the head of a single rule. In this case, if we want to 

determine the value of T
Q

μ1

P , we will reach the null value because of the non-existence of a second greatest value. 
With the aim of solving this problem, diverse possible solutions exist. One of them consists in trying to determine 
more rules with head the propositional symbol in question. Another possible solution is based on the consideration in 
Example 6 of a different fuzzy measure, such as the measure μ2, defined as

μ2(D) =

⎧⎪⎨⎪⎩
0 if D = ∅

0.8 if D = {ui} for all i ∈ {1, . . . , n}
1 otherwise

(3)

The aim of considering this new fuzzy measure is to slightly impair the rule with the greatest value CA
I (u).

Finally, another possibility is to modify the given definition of T
Qμ

P (Definition 13). Next, a new definition of 
the immediate consequences operator through generalized quantifiers will be introduced with the goal of solving the 
problem generated by those propositional symbols which are head of a single rule. This new definition will offer more 
flexibility in the selection of the fuzzy measure. We will denote PA the subset of rules of a program P with head a 
propositional symbol A.

Definition 15. (M-quantified immediate consequences operator). Let P be a multi-adjoint logic program, M =
{μA : P(PA) → [0,1] |A ∈ �,PA �= ∅} a family of fuzzy measures invariant with respect to the cardinality. We de-
fine the M-quantified immediate consequences operator obtained from the family M as the mapping T M

P : IL → IL
given by

T M
P (I )(A) =

{
QμA(CA

I ) if PA �= ∅

0 if PA = ∅
(4)

for all A ∈ � and I ∈ IL.

Notice that the definition of T M
P has been given by cases because generalized quantifiers are defined on non-empty 

finite universes and in this case the universe associated with the generalized quantifiers QμA is PA. Moreover, with 
this definition if |PA| = 1, then we can take μ = μ∃ and we obtain that T M

P (I )(A) = QμA(CA
I ) = Q∃(CA

I ), which 
avoids the problem aforementioned.

Example 7. Let us consider a new program P2 from Example 2 with the extra rule

〈flu←G diarrhoea∧Ł moderate fever,0.6〉
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Clearly, if the main goal is to remove the possible noise presented in the data, we cannot consider the same fuzzy 
measure for rules whose head is covid and for those of flu. For example, if we consider the fuzzy measure μ1 for 

both propositional symbols, all information associated with flu is removed and we obtain that T
Qμ1
P2

(I )(flu) = 0. 
Hence, Definition 15 should be considered. In this example, we consider the interpretation I defined in Example 5
and the family of fuzzy measures M = {μcovid,μflu} given by μcovid = μ1 and μflu = μ∃ is taken into account. 
Therefore,

T M
P2

(I )(covid) = T
Qμcovid

P2
(I )(covid) = 0.5

T M
P2

(I )(flu) = T
Qμf lu

P2
(I )(flu) = 0.6 �

The next result is really important because it shows that in some sense this new operator generalizes the one given 
in Definition 13.

Theorem 7. Let P be a multi-adjoint logic program and μ a fuzzy measure invariant with respect to the cardinal-
ity. Then there exists a family M = {μA : P(PA) → [0,1] |A ∈ �} of fuzzy measures invariant with respect to the 
cardinality, such that T μ

P = T M
P .

Proof. Consider the family of fuzzy measures invariant with respect to the cardinality M = {μA : P(PA) → [0, 1] | 
A ∈ �, PA �= ∅}, where μA = μ|P(PA), for all A ∈ � and PA �= ∅. Then, denoting |PA| = nA and |P | = n, and πA

and π the corresponding permutations, the following equalities hold for those propositional symbols whose PA is not 
empty and for all interpretation I ∈ IL.

T M
P (I )(A) = QμA

(
CA

I

)
=

nA∨
i=1

CA
I

(
uπA(i)

)⊗ μA ({u1, . . . , ui})

=
nA∨
i=1

CA
I

(
uπA(i)

)⊗ μ|P(PA) ({u1, . . . , ui})

(1)=
n∨

i=1

CA
I

(
uπ(i)

)⊗ μ({u1, . . . , ui})

= T
Qμ

P (I )(A)

where (1) holds because CA
I

(
uπ(i)

) = 0 for all rule uπ(i) non-headed by A. If PA = ∅, then T M
P (I )(A) =∨

D∈P(P )

( ∧
u∈D

CA
I (u)

)
⊗ μ(D) = ∨

D∈P(P )

( ∧
u∈D

0

)
⊗ μ(D) = ∨

D∈P(P )

0 ⊗ μ(D) = 0 = T
Qμ

P (I )(A), for all interpre-

tation I ∈ IL. �
The following example shows how the family is obtained from a given measure.

Example 8. Returning to Example 7, we can consider the fuzzy measure τ : P(P ) → [0, 1] defined for all D ∈ P(P )

as

τ(D) =

⎧⎪⎪⎨⎪⎪⎩
0 if D = ∅
1

2
if D �= ∅, D �= P(P )

1 if D = P(P )

(5)

In this case, we obtain that T Qτ

P (I )(covid) = 0.405 and T Qτ

P (I )(flu) = 0.3.
From this measure, taking into account Proposition 7, we consider the restriction of τ to P(Pcovid) and P(Pflu), 

that is τcovid : P(Pcovid) → [0, 1], τflu : P(Pflu) → [0, 1], defined as
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τcovid(Dc) =
⎧⎨⎩

0 if Dc = ∅

1

2
if |Dc| ∈ {1,2,3} τflu(Df ) =

⎧⎨⎩
0 if Df = ∅

1

2
if |Df | = 1

for all Dc ∈ P(Pcovid), Df ∈ P(Pflu). Clearly, M = {τcovid, τflu} is a family of fuzzy measures which are not 
normalized, satisfying that

T M
P (I )(covid) = T

Qτcovid

P (I )(covid) = 0.405 = T
Qτ

P (I )(covid)

T M
P (I )(flu) = T

Qτf lu

P (I )(flu) = 0.3 = T
Qτ

P (I )(flu)

Due to restrictions of the original mapping that are considered, the main properties, such as the monotonicity, are 
preserved. �

The following result shows that this new operator is also increasing.

Proposition 6. Let M = {μA : P(PA) → [0,1] |A ∈ �, PA �= ∅} be a family of fuzzy measures invariant with respect 
to the cardinality. Then, the immediate consequences operator T M

P introduced in Definition 4 is increasing in IL.

Proof. Let I1, I2 ∈ IL be two interpretations such that I1 � I2, then for the monotonicity of the mapping CA
I given 

by Proposition 4 it is verified that CA
I1

≤ CA
I2

. Moreover, due to the fact that μA is a fuzzy measure invariant with 
respect to the cardinality for all A ∈ � with PA �= ∅, by Proposition 3, we have that QμA is increasing and so, 
T M
P (I1)(A) = QμA(CA

I1
) ≤ QμA(CA

I2
) = T M

P (I2)(A), for all A ∈ �, with PA �= ∅. Since T M
P (I1)(A) = T M

P (I2)(A)

trivially holds for all A ∈ �, with PA = ∅, we obtain that T M
P is increasing. �

Therefore, we have introduced a new definition of quantified immediate consequences operator, which generalizes 
the T

Qμ

P operator and solves the problem related to those propositional symbols head of a single rule. Furthermore, 
it provides an extra level of flexibility for considering one fuzzy measure for each propositional symbol. Clearly, 
by Proposition 6, all the results proved in the rest of the paper for T M

P will be true for T
Qμ

P , since the normaliza-
tion property is not fundamental for proving them. In the following subsection, we will study the semantics of this 
operator T M

P .

3.4. Semantics of the T M
P with a general family of fuzzy measures M

In this subsection, we are going to define the semantics of a multi-adjoint logic program from the immediate 
consequences operator obtained through generalized quantifiers with a family of fuzzy measures M (Definition 15).

Due to the complexity of providing a semantics description of an arbitrary generalized quantifier, it is difficult 
to give a natural definition of model. Consequently and taking into account the results presented previously (the 

characterization of μ1-weak models as post-fixed points of the T
Q

μ1

P and the determination of the least μ1-weak 

model of the program as the least fixed point of the T
Q

μ1

P ), we can introduce the following definition of model 
associated with a family of fuzzy measures M .

Definition 16. (M-model). Let M = {μA : P(PA) → [0,1] |A ∈ �, PA �= ∅} be a family of fuzzy measures invariant 
with respect to the cardinality. An interpretation I ∈ IL is a M-model of a multi-adjoint logic program P if it is a 
post-fixed point of T M

P .

Taking into account Remark 3, we cannot define M-models as the interpretations greater or equal than the least 
fixed point of T M

P , but as the post-fixed points of T M
P , considering Theorem 1.

It is straightforwardly satisfied that the set of M-models with the order previously defined, is a complete lattice. By 
the monotonicity of T M

P given by Proposition 6, it has a least fixed point lfp
(
T M
P

)
by the general result of Proposition 1

given in [27]. Furthermore, it verifies that

lfp
(
T M
P

)
= inf{I ∈ IL |T M

P (I ) � I }
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We can characterize the least M-model as the least fixed point of the operator T M
P using Definition 16. With this 

goal, we present the following results.

Proposition 7. The interpretation MP : � −→ [0, 1] given by

MP = inf {I ∈ IL | I is a M-model of P }
is a M-model of P , which is the least M-model of P and MP = lfp

(
T M
P

)
.

Proof. The proof is analogous to the one given in Proposition 5. �
Finally, we reach the generalization of Theorem 3 to this new framework of the immediate consequences operator.

Theorem 8. Let P be a multi-adjoint logic program. Then, for some ordinal α, it is verified that MP = lfp
(
T M
P

) =(
T M
P

)α
(�).

Proof. The proof of this result follows directly from Definition 16 and Corollary 1. �
In the following example, we can see how the least M-model can be obtained in this particular case of T M1

P , where

M1 =
{
μcovid = μ1, μA = μ∃ for allA ∈ �, A �= covid

}
Example 9. Taking into account Example 2, we are going to show how to calculate the value of the immediate 
consequences operator and the least model of the program P1. From Theorem 8, the least model of P1 is obtained 
through iterating the T M1

P1
starting from the least interpretation �. From the unique homomorphic extension, we can 

obtain

T M1

P1
(�)(covid) =

3∨
i=1

Ccovid
�

(
uπ(i)

)⊗ μ1 ({u1, . . . , ui})

= sup {0,0,0}
= 0

(
T M1

P1

)2
(�)(covid) =

3∨
i=1

Ccovid

T M1
P1

(�)

(
uπ(i)

)⊗ μ1 ({u1, . . . , ui})

=
∨

{0.56 ⊗ 0,0.54 ⊗ 1,0.3 ⊗ 1}
=
∨

{0,0.54,0.3}
= 0.54

In the following table we show the iteration of T M1

P1
from the least interpretation �. Note that, in this simple 

example without loops (which is possible in general), the least fixed point is reached in the second iteration; hence 

Theorem 3 entails that the least model of P1 corresponds to 
(
T M1

P1

)2
(�).

� T M1

P1
(�)

(
T M1

P1

)2
(�)

(
T M1

P1

)3
(�)

moderate fever 0 0.6 0.6 0.6
cough 0 0.8 0.8 0.8
diarrhoea 0 0.6 0.6 0.6
headache 0 0.7 0.7 0.7
waist pain 0 0.3 0.3 0.3
covid 0 0 0.54 0.54

�
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In conclusion, the immediate consequences operator has been conveniently generalized through generalized quan-
tifiers, which will provide greater flexibility in mathematical modeling and resolution of different problems for 
obtaining information from databases and for data processing. It is important to bear in mind that the measure is 
fundamental to computing the results and that not every measure μ is good to generalize the TP . If we consider the 
minimum measure given at Example 4, we reach the dual definition of the immediate consequences operator. Regard-
ing the selection of the fuzzy measure and, therefore, the quantifier, the best is to consider those that can ensure us 
values close to the supremum, so as not to significantly distance ourselves from the original definition of the TP . This 
goal is studied in the following section.

4. Generalized orness measure

In the previous section we have modified the definition of the immediate consequences operator to solve the pos-
sible presence of noise in the data. However, we cannot lose sight of the definition of the immediate consequences 
operator, i.e., it is advisable to stay with quantifiers close to the existential one (modeled by the supremum), which is 
the one used by the immediate consequences operator.

With the aim of classifying different quantified immediate consequences operators, depending on the considered 
measure, we introduce an adaptation of the measure known as orness in the framework of ordered weighted averaging 
(OWA) operators [29,17].

Definition 17. (μ-orness). Given a fuzzy measure μ invariant with respect to the cardinality, we define the μ-orness 
measure associated with μ as the mapping orness : 	(U) −→ [0, 1] defined as

orness(μ) = 2

n(n − 1)

n∑
i=1

(n − i)μ ({u1, . . . , ui})

where U = {u1, . . . , un} is an ordered set verifying un ≤ un−1 ≤ . . . ≤ u2 ≤ u1 and 	(U) = {μ : U −→ [0,1] |μ is a
fuzzy measure invariant with respect to cardinality}.

The correspondent addition of the values (n − i)μ∃ ({u1, . . . , ui}), with i ∈ {1, . . . , n}, is n(n−1)
2 . Consequently, 

in order to obtain orness(μ∃) = 1, we must multiply it by 2
n(n−1)

. In addition, for other fuzzy measures μ, the sum 
(n − i)μ ({u1, . . . , ui}) will be always less than that obtained for the existential measure, which ensures that the orness 
value is less than 1. Next, we introduce an example in which we calculate the value of the orness associated with some 
important examples of fuzzy measures.

Example 10. The following conditions hold.

a) For μ = μ∀, given in Example 4, it is verified that orness
(
μ∀)= 0.

b) For μ = μ∃, given in Example 4, it is verified that orness
(
μ∃)= 1.

c) The fuzzy measure μ3 defined as

μ3(D) =

⎧⎪⎪⎨⎪⎪⎩
1 if D = U

1

2
if D �= U and D �= ∅

0 if D = ∅

verifies that orness(μ3) = 1/2.
d) Considering the fuzzy measure μ1, defined by Expression (1), it holds that orness(μ1) = n−2

n
. Clearly, 

1
2 ≤ orness(μ1), if 4 ≤ n and the orness of μ1 approaches 1, when the number of rules increase. Notice that 
in this case we are considering the universe U = P , due to the fact that the fuzzy measure μ1 is defined on a 
multi-adjoint logic program.

e) The fuzzy measure μ2, defined by Expression (3), verifies orness(μ2) = n−0.4
n

. Therefore, orness(μ2) ≥ 1
2 if 

and only if n ≥ 1. Consequently, the use of the fuzzy measure μ2 is a good generalization of the immediate 
consequences operator.
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As we have already commented, when we are generalizing the immediate consequences operator, we are interested 
in considering a great orness value. For this, we present some results that consider fuzzy measures with a great orness.

Theorem 9. Let μ : P(U) → [0, 1] and μ′ : P(U) → [0, 1] two fuzzy measures, where U = {u1, . . . , un} such that

• μi = μ′
i , for i �= j and i �= k,

• μj = μ′
j + δ,

• μk = μ′
k − δ

where μi = μ ({u1, . . . , ui}) and δ > 0 and j < k. Then, orness
(
μ′)< orness (μ).

Proof. From Definition 17,

orness (μ) = 2

n(n − 1)

n∑
i=1

(n − i)μi

= 2

n(n − 1)

n∑
i=1

(n − i)μ′
i + 2

n(n − 1)
((n − j)δ − (n − k)δ)

Consequently, orness (μ) = orness
(
μ′)+ 2

n(n−1)
δ(k − j). As k > j , it holds that orness

(
μ′)< orness (μ). �

Example 11. Consider the fuzzy measure μ2, defined by Expression (3), and the measure defined as

μ4(D) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
0 if D = ∅

0.9 if D = {ui} for all i ∈ {1, . . . , n}
0.9 if D = {ui, uj

}
for all i, j ∈ {1, . . . , n}, i �= j

1 otherwise

From Theorem 9, orness(μ2) ≤ orness(μ4). It can be proved that the orness measure for this case is orness(μ4) =
1.8
n

+ (n−2)(n−1.2)
n(n−1)

. �
In the following result, we present a sufficient condition to ensure an orness value higher than 1

2 .

Proposition 8. Let μ : U → [0, 1] be a fuzzy measure defined as

μ(D) =

⎧⎪⎨⎪⎩
1 if D = U

α if D �= U and D �= ∅

0 if D = ∅

where α ∈ [0, 1]. If α > 1
2 , then orness(μ) > 1

2 .

Proof. From Definition 17,

orness (μ) = 2

n(n − 1)

n∑
i=1

(n − i)μi

= 2

n(n − 1)

n−1∑
i=1

α(n − i)

= α �
The following example will make a comparison among different measures used in the quantified immediate con-

sequences operator.
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Example 12. Given the multi-adjoint program given in Example 3 and the interpretation defined in Example 5, we 
obtain the following values for the quantified immediate consequences operator T

Qμ

P1
and the orness value, with respect 

to different measures.

covid μ∃ μ1 μ2 μ3 μ4 μ∀

n = 3 T
Qμ

P1
(I ) 0.81 0.5 0.648 0.405 0.729 0.49

orness 1 0.33 0.87 0.5 0.9 0

As we argued previously, the orness of the fuzzy measures depends on the number of rules for every propositional 
symbol. Consider now the multi-adjoint program given in Example 3 together with the following rules

covid
0.8←P loss of smell and taste

covid
0.4←G sore throat∧Ł muscle pain

covid
0.6←G stuffy and runny nose∧Ł shortness of breath

covid
0.6←P fatigue

and the interpretation defined in Example 5 extended on the new propositional symbols as follows: I (sore throat)

= 0.65, I (stuffy and runny nose) = 0.8, I (muscle pain) = 0.55, I (fatigue) = 0.55, I (loss of
smell and taste) = 0.75, I (shortness of breath) = 0.6. Then, we obtain

covid μ∃ μ1 μ2 μ3 μ4 μ∀

n = 7 T
Qμ

P3
(I ) 0.81 0.6 0.648 0.405 0.729 0.2

orness 1 0.71 0.94 0.5 0.95 0

As a consequence, the orness of the fuzzy measures increases and more proper measures arise to be considered 
instead of the existential one. Thus, it is important to have the possibility of considering a different measure for each 
propositional symbol, as Definition 15 allows. �

Hence, we are going now to adapt the new definition of orness measure to the case of T M
P (Definition 15). We are 

interested in choosing a family of fuzzy measures M with values close to the greatest one. For that, we present a new 
definition of orness measure adapted to this case.

Definition 18. (M-orness). Given a family of fuzzy measures invariant with respect to the cardinality M =
{μA : P(PA) → [0,1] |A ∈ �, PA �= ∅}, we define the M-orness measure associated with the family M as the map-
ping

orness : 	(PA1) × . . . × 	(PAn) −→ [0,1]
defined as follows

orness(M) = inf{orness(μA) |μA ∈ M}
where μA : P(PA) → [0, 1], orness(μA) is given by Definition 17 and 	(U) = {μ : U −→ [0,1] |μ is a fuzzy measure
invariant with respect to cardinality}. Notice that if |PA| < 2, then the fuzzy measure is the existential with orness 
value of 1, which does not affect the calculation of the infimum.

Example 13. Given a program P , if we consider the family of fuzzy measures M1 = {μA : P(PA) → [0, 1] | A ∈
�, PA �= ∅}, where μA are defined for each A ∈ P as

μA =
{

μ∃ if |PA| ∈ {1,2}
μ1 if |PA| > 2

(6)
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and μ1 is the fuzzy measure defined in Expression (1), we have in general that orness(μA) < 1/2. As we commented in 
Example 10(d), orness(μ1) = k−2

k
and so, if a propositional symbol is the head of three rules, then orness(μA) = 1/3. 

Hence, if there is any propositional symbol that has less than 5 rules associated with it, then the orness value will be 
less than 1

2 and so, the orness of the measure family M will be very different from the orness of the original TP , which 
is 1. Thus, this family is not appropriate for the generalization of the immediate consequences operator. In order to 
solve this drawback, we can adapt for instance the definition of μA given by Expression (6) to the following

μA =
{

μ∃ if |PA| ∈ {1,2,3,4}
μ1 if |PA| > 4

This new definition ensures that the orness value will be at least of 0.6, being closer to 1. In the future, a proper 
threshold of orness in a measure family will be studied. �
5. Conclusions and future work

This paper has been focused on improving the behaviour of the immediate consequences operator on datasets with 
imprecise data. We have presented the problematic generated by the definition of the TP through the supremum of 
a set of values and, consequently, we have given a generalization of this operator based on generalized quantifiers. 
Furthermore, interesting properties have been proved such as the monotonicity. The semantics has been analyzed in a 
particular case and it has been translated into the general case providing a new definition of model, called M-model. 
Moreover, we have shown that, as usual, the least M-model can be computed as the least fixed point of T QM

P .
We have also exposed that not every fuzzy measure is convenient in order to solve the problem of the possible 

presence of noise in the data nor to generalize the TP . Hence, the definition of orness measure given in the framework 
of OWA operators has been adapted to be applied to fuzzy measures. This new definition allows us to be sure that the 
considered fuzzy measures are close to the supremum operator and so, the new definition of immediate consequences 
operator is also close to the original one.

In the future, more properties of the new quantified immediate consequences operator will be studied. Among 
them, we will pay special attention to the continuity, since this property is fundamental for ensuring the reaching of 
the least fixpoint in countable iterations [7]. Moreover, the new definitions and results will be extended to complete 
lattices and the comparison with the use of alternative definitions, such as the one given in [23], will be studied.
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