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A B S T R A C T

A new compact formulation for uncapacitated single-allocation hub location problems with fewer variables than
the previous Integer Linear Programming formulations in the literature is introduced. Our formulation works
even with costs not based on distances and not satisfying triangle inequality. Moreover, costs can be given
in aggregated or disaggregated way. Different families of valid inequalities that strengthen the formulation
are developed and a branch-and-cut algorithm based on a relaxed version of the formulation is designed,
whose restrictions are inserted in a cut generation procedure together with two sets of valid inequalities. The
performance of the proposed methodology is tested on well-known hub location data sets and compared to the
most recent and efficient exact algorithms for single-allocation hub location problems. Extensive computational
results prove the efficiency of our methodology, that solves large-scale instances in very competitive times.
1. Introduction

Hub location problems arise in various application settings, e.g.,
telecommunication and transportation systems where several
origin/destination sites send and receive some product. Instead of serv-
ing each origin–destination pair directly (because this sort of linkage is
too expensive to be carried out), transshipment points (hubs) collect
the product from the origin and distribute it to the destination. These
hubs centralize the product shipment, resulting in lower transportation
costs and potential savings in the overall design and operational costs
of the system. Therefore, the hubs systems are designed to exploit
the scale economies attainable through the shared use of high capac-
ity links between hubs. Alumur et al. (2021) include discussions of
modeling economies of scale and real-world examples of hub systems,
as passenger and freight airlines, less-than-truckload and truckload
transportation, postal operations, express shipment and cargo delivery,
liner shipping, public transit, and computer and telecommunication
networks. Moreover, new applications are appearing, as the green hubs
or hub systems for medical applications including in drone delivery
networks. This wide range of applications indicates the power of the
hubs location problems and the need for more and better models.

Many reviews about hub location problems, see Alumur and Kara
(2008), Campbell and O’Kelly (2012), Farahani et al. (2013), Contreras
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and O’Kelly (2019) and Alumur et al. (2021), show the very wide range
of activity in this field and the applications of these problems.

The hub location problem aims to locate hub facilities and to
allocate origin–destination sites to hubs in order to establish a route
between each origin and destination that goes only through located
hubs. Different variants of hub location problems have been inves-
tigated according to different allocation strategies. Single allocation,
where the product to be sent to and received from a given site must be
routed through a single hub (O’Kelly, 1987; Ernst and Krishnamoorthy,
1996, 1998; Kara and Tansel, 2000; Correia et al., 2010; Contreras
et al., 2010; Rostami et al., 2016, among others) or multiple allocation,
when these sites can send and receive the amount of product to and
from more than one hub (Ernst and Krishnamoorthy, 1998; Ebery et al.,
2000; Hamacher et al., 2004; Marín, 2005; Contreras et al., 2011;
García et al., 2012, among others). A strategy generalizing both single
and multiple allocation models is the 𝑟-allocation, where each site can
be connected to at most 𝑟 hubs (Yaman, 2011; Corberán et al., 2019).
When the number of hubs is set in advance, this problem is known as
the 𝑝-hub median problem. The problem is said capacitated if hubs have
finite capacities (Campbell, 1994; Ernst and Krishnamoorthy, 1999;
Ebery et al., 2000; Correia et al., 2010; Contreras et al., 2012; Meier and
Clausen, 2017). If no capacity is considered for each hub, the problems
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Table 1
Number of variables and constraints for different formulations of the USApHMP.
Formulation Binary variables Continuous variables Constraints

Campbell (1994) 𝑛2 + 𝑛 𝑛4 𝑛4 + 𝑛2 + 𝑛 + 1
Skorin-Kapov et al. (1996) 𝑛2 𝑛4 2𝑛3 + 𝑛2 + 𝑛 + 1
Ernst and Krishnamoorthy (1996) 𝑛2 𝑛3 2𝑛2 + 𝑛 + 1
Ebery (2001) 𝑛2 𝑛2 2𝑛2 + 𝑛 + 1
Meier and Clausen (2017) 𝑛2 𝑛2 𝑛4 + 𝑛2 + 𝑛 + 1
EMMRr in Section 3 𝑛2 𝑛 2𝑛2 + 𝑛 + 1
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are referred to as uncapacitated hub location problems. Several works
that propose different cost structures can be found in the literature,
e.g., Bryan (1998), O’Kelly and Bryan (1998), O’Kelly et al. (2015),
and Lüer-Villagra et al. (2019). Reviews, synthesis and classification on
different variants of the hub location problem can be found in Alumur
and Kara (2008), Campbell and O’Kelly (2012), Contreras and O’Kelly
(2019), Alumur et al. (2021), among others.

This paper deals with uncapacitated single-allocation hub location
problems. In the uncapacitated single-allocation 𝑝-hub median problem
(USApHMP), the aim is to choose 𝑝 hubs and assign every site to
them minimizing the overall transportation costs between origins and
destinations through the hubs. In the uncapacitated single-allocation
hub location problem (USAHLP) a cost for setting a hub is given
and the number of hubs is a decision variable. The aim is to locate
the hubs and to assign the remaining sites to the hubs minimizing
the overall installation and transportation costs. Both problems are
NP-hard. Moreover, even if the locations of the hubs are fixed, the
allocation part of the problem remains NP-hard (Kara, 1999).

We concentrate on the USApHMP. O’Kelly (1987) presented the
first mathematical formulation for this problem. Since then, different
linearization strategies have been used in the literature to handle
the quadratic term in the objective function of this model. Campbell
(1994) proposed the first linear integer programming formulation for
the USApHMP. After that, Skorin-Kapov et al. (1996) proposed a new
mixed integer formulation (which they referred to as the path-based
formulation) with fewer binary variables and constraints than the
previous one. This formulation has been widely used by decomposition
methods capable of handling its number of variables and constraints.
An alternative to handle the large number of variables is to project
them out from the path-based formulation (Labbé and Yaman, 2004;
Labbé et al., 2005; De Camargo et al., 2011; De Camargo and De
Miranda, 2012). Ernst and Krishnamoorthy (1996) proposed a different
linear integer programming formulation (flow-based formulation) that
reduces the size of the formulation of Skorin-Kapov et al. (1996), both
in terms of variables and constraints. This formulation has been used
to model many extensions of single-allocation hub location problems
such as capacitated and balanced problems (Correia et al., 2011).

Ebery (2001) introduced a formulation that uses fewer variables
than those of Ernst and Krishnamoorthy (1996) and Skorin-Kapov
et al. (1996). However, the formulation of Skorin-Kapov et al. (1996)
provides a better linear relaxation and the one introduced in Ernst and
Krishnamoorthy (1996) is the most effective in terms of computation
time requirement.

Alternative methods to linearize the binary quadratic terms in the
formulation by O’Kelly (1987) are given in Meier et al. (2016), Ghaf-
farinasab and Kara (2019) and Rostami et al. (2022). The method
described in Meier et al. (2016) uses a row generation procedure and
applies whenever Euclidean distances are used. Ghaffarinasab and Kara
(2019) proposed exact algorithms based on Benders decomposition for
solving large-scale instances. They assume that the transportation costs
between hubs are proportional to the distance between them. Rostami
et al. (2022) provided a convex reformulation and a branch-and-cut
algorithm based on outer approximation cuts.

Table 1 gives the number of variables and constraints of the afore-
mentioned formulations, where 𝑛 is the number of sites that represent
the origins and destinations. As shown in the table, our paper con-
2

stitutes a contribution to the existing literature of the USApHMP by d
providing a new formulation that uses fewer variables than the afore-
mentioned ones. Our formulation is valid even for costs not based
on distances and not satisfying triangle inequality. Moreover, costs
can be given in aggregated or disaggregated way. This allows us to
model more realistic cases in transportation systems where, for in-
stance, fares are not proportional to travel distances or longer trips
may have lower ticket prices than shorter trips. Moreover, some of
the existing formulations for the USApHMP need to have the overall
transportation cost from origin to destination disaggregated in the three
components: origin–hub, hub–hub, hub–destination. We develop for-
mulations for both cases, with aggregated/disaggregated transportation
costs. Different families of valid inequalities are obtained considering
extended formulations and later projecting out some of their variables
by applying the Farkas’ lemma. Moreover, separation procedures for
these inequalities are developed. A comparison of the performance of
the most recent and efficient solution methods existing in the literature
(Meier et al., 2016; Ghaffarinasab and Kara, 2019; Rostami et al., 2022)
shows the efficiency of our methodology, solving large-scale instances
in competitive times. Although we focus on USApHMP, the formulation
can be adapted to USAHLP. Furthermore, capacitated versions could
also benefit from our results, as could other variants of the problem.

The remainder of this paper is organized as follows. In the next
section, we describe the USApHMP. Section 3 introduces a new for-
mulation to solve these problems which is reinforced with families of
valid inequalities. Section 4 shows the procedure carried out to solve
the USApHMP using our formulation. Computational experiments as
well as the corresponding results are presented in Section 5. Finally,
some conclusions and outlooks for future research are presented.

2. Description of the problem

Let 𝑁 ∶= {1,… , 𝑛} be the set of sites representing the origins
and destinations of the product to be transported and also the set of
potential hub locations. Let 𝜔𝑖𝑗 ≥ 0 be the amount of product to be
sent from the origin 𝑖 to the destination 𝑗, for all 𝑖, 𝑗 ∈ 𝑁 . There is a
fixed number 𝑝 of sites of 𝑁 , 2 ≤ 𝑝 ≤ 𝑛 − 1 that must be chosen to be
ubs. We require the product to be sent from the origin 𝑖 to destination
through one or, at most, two hubs. Hence, there are three possibilities:

i) if neither the origin nor the destination are hubs, the product is sent
hrough one or two hubs; (ii) if either the origin or the destination (but
ot both of them) is a hub, then the product may be sent directly or it
ay go through one intermediate hub; (iii) if both the origin and the
estination are hubs, the product is sent directly.

Moreover, every site 𝑖 which is not a hub must be allocated to a
ingle hub, so that the amount of product sent from/to 𝑖 to/from any
ther site must pass through this hub.

Define 𝐶𝑖𝑗𝑘𝑚 as the cost of transporting one unit of product from 𝑖
o 𝑗 through hubs 𝑘 and 𝑚 in this order. These costs can sometimes
e disaggregated in three components (transportation costs between
rigin–hub, hub–hub, hub–destination) that consider some discount
actor between hubs. We do not require costs based on distances neither
atisfaction of the triangle inequality.

The USApHMP consists of determining a subset of 𝑝 sites to become
ubs and assign every site to them minimizing the overall transporta-
ion costs between origins and destinations through the hubs.

In the rest of this paper, 𝑖 and 𝑗 are used to index origins and

estinations respectively, and 𝑘 and 𝑚 are used to index hub locations.
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For the sake of simplicity, instead of considering costs 𝐶𝑖𝑗𝑘𝑚, ∀𝑖, 𝑗, 𝑘, 𝑚 ∈
𝑁 , let define �̂�𝑖𝑗𝑘𝑚 ∶= 𝜔𝑖𝑗𝐶𝑖𝑗𝑘𝑚 + 𝜔𝑗𝑖𝐶𝑗𝑖𝑚𝑘 for all 𝑖, 𝑗(𝑖 < 𝑗) ∈ 𝑁 and
𝑘, 𝑚 ∈ 𝑁 , as the cost of transporting the total amount of product
between sites 𝑖 and 𝑗 (from 𝑖 to 𝑗 and from 𝑗 to 𝑖) using 𝑘 as the hub
assigned to 𝑖 and 𝑚 as the one assigned to 𝑗.

3. New formulation for solving the USApHMP

The USApHMP was first formulated by O’Kelly (1987) using the
following variables for the location of hubs as well as the allocations
to hubs:

𝑥𝑖𝑘 =

{

1 if site 𝑖 is assigned to hub 𝑘,

0 otherwise,
∀𝑖, 𝑘(𝑖 ≠ 𝑘) = 1,… , 𝑛.

When 𝑖 = 𝑘, variable 𝑥𝑘𝑘 represents whether or not a hub is located
at site 𝑘. The 𝑥 variables are usually referred to as location/allocation
variables.

The quadratic integer program for the USApHMP with aggregated
costs proposed by O’Kelly (1987) is given by

min
∑

𝑖∈𝑁

∑

𝑗∈𝑁∶
𝑗>𝑖

∑

𝑘∈𝑁

∑

𝑚∈𝑁
�̂�𝑖𝑗𝑘𝑚𝑥𝑖𝑘𝑥𝑗𝑚, (1)

s.t.
∑

𝑘∈𝑁
𝑥𝑘𝑘 = 𝑝, (2)

𝑥𝑖𝑘 ≤ 𝑥𝑘𝑘, ∀𝑖, 𝑘(𝑖 ≠ 𝑘) ∈ 𝑁, (3)
∑

𝑘∈𝑁
𝑥𝑖𝑘 = 1, ∀𝑖 ∈ 𝑁, (4)

𝑥𝑖𝑘 ∈ {0, 1}, ∀𝑖, 𝑘 ∈ 𝑁. (5)

The objective function (1) is quadratic due to the product of the
𝑥-variables. The number of hubs to be located is set by (2). Constraints
(3) ensure that a site 𝑖 is not assigned to a site 𝑘 unless a hub is opened
at 𝑘. Constraints (4) ensure that each site is assigned to exactly one
other site and (5) give the binary condition of 𝑥-variables.

Different linearization strategies have been proposed to handle
the quadratic term in (1). In this paper, we present a new linear
integer programming formulation with fewer variables than the formu-
lations found in the literature for solving the USApHMP. Unlike other
works such as (Meier et al., 2016), that requires Euclidean distances,
or (Ghaffarinasab and Kara, 2019), that also assume that the costs
are proportional to the distances, this formulation holds for costs that
do not require any of the following assumptions: (i) costs are given
by distances among sites, (ii) costs need to be symmetrical, (iii) costs
satisfy the triangle inequality and (iv) costs are necessarily given in a
disaggregated way (cost from origin to the first hub, cost between hubs
and cost from the last hub to the destination).

For 𝑖 ∈ 𝑁 , we define

𝑆𝑖 = overall transportation cost with origin/destination at
𝑖 to/from any site 𝑗 ∈ 𝑁 with 𝑗 > 𝑖.

That is, 𝑆𝑖 =
∑

𝑗∈𝑁
𝑗>𝑖

∑

𝑚∈𝑁
∑

𝑘∈𝑁 �̂�𝑖𝑗𝑘𝑚𝑥𝑖𝑘𝑥𝑗𝑚.
We propose a formulation based on the variables 𝑆𝑖 as follows:

(EMMR) min
∑

𝑖∈𝑁
𝑆𝑖 (6)

s.t. (2)–(5),

𝑆𝑖 ≥
∑

𝑗∈𝑁∶
𝑗>𝑖

∑

𝑚∈𝑁
�̂�𝑖𝑗𝑘𝑚(𝑥𝑖𝑘 + 𝑥𝑗𝑚 − 1), ∀𝑖, 𝑘 ∈ 𝑁, (7)

𝑆𝑖 ≥ 0, ∀𝑖 ∈ 𝑁.

The meaning of constraints (7) is the following. If 𝑥𝑖𝑘 = 1 for some
𝑖, 𝑘 ∈ 𝑁 , then 𝑆𝑖 ≥

∑

𝑗∈𝑁∶
𝑗>𝑖

∑

𝑚∈𝑁 �̂�𝑖𝑗𝑘𝑚𝑥𝑗𝑚. That is, if site 𝑖 is allocated
to hub 𝑘, then 𝑆𝑖 is at least the cost of transporting the total amount of
3

product from/to site 𝑖 using hub 𝑘 to/from any site 𝑗 ∈ 𝑁 with 𝑗 > 𝑖.
Since (EMMR) is a minimization problem and considering constraints
(4), 𝑆𝑖 is exactly that overall transportation cost. Otherwise, if 𝑥𝑖𝑘 = 0
then 𝑆𝑖 ≥

∑

𝑗∈𝑁∶
𝑗>𝑖

∑

𝑚∈𝑁 �̂�𝑖𝑗𝑘𝑚(𝑥𝑗𝑚 − 1), which is a redundant constraint
ince the right hand side of this inequality is non-positive. Therefore,
n (6) we are minimizing the sum of the transportation costs between
rigins and destinations through the hubs. Thus, this formulation solves
he USApHMP.

To the best of our knowledge, this is the first formulation using
nly 𝑛 continuous variables to solve the USApHMP (see Table 1). This
ormulation has 𝑛2 + 𝑛 (𝑛2 binary and 𝑛 continuous) variables and
𝑛2 + 𝑛 + 1 linear constraints.

Clearly a small variation of formulation (EMMR) will yield a formu-
ation for USAHLP by removing constraint (2) and including a term in
he objective function which provides the costs of locating the hubs.

Let (EMMRr) be the formulation obtained by replacing (7) in
EMMR) with

𝑖 ≥
∑

𝑗∈𝑁
𝑗>𝑖

(

∑

𝑚∈𝑁
�̂�𝑖𝑗𝑘𝑚𝑥𝑗𝑚 + (𝑥𝑖𝑘 − 1)max

𝑚∈𝑁
{�̂�𝑖𝑗𝑘𝑚}

)

, ∀𝑖, 𝑘 ∈ 𝑁. (8)

roposition 3.1 (EMMRr). is a formulation for the USApHMP and rein-
orces (EMMR).

roof. First we prove that (EMMRr) is a formulation for the USApHMP.
or any 𝑖, 𝑘 ∈ 𝑁 such that 𝑥𝑖𝑘 = 0, the right hand side of (8) is non-
ositive. Moreover, by (4), for any 𝑖 ∈ 𝑁 there exists 𝑘 ∈ 𝑁 such that
𝑖𝑘 = 1. Then for these 𝑖 and 𝑘 the right hand side of the corresponding
onstraint (8) will represent the overall transportation cost of the
roduct from/to 𝑖 to/from 𝑗 with 𝑗 > 𝑖. Since we are minimizing in
he 𝑆-variables and constraints (4) are fulfilled, we obtain that the sum
f 𝑆-variables represent the overall transportation cost between origins
nd destinations. Now, we prove that (EMMRr) reinforces (EMMR). To
o that, we need to prove that the right hand side of (8) is greater
han or equal to the one of (7). But it is straightforward because
𝑚∈𝑁 �̂�𝑖𝑗𝑘𝑚 ≥ max𝑚∈𝑁 �̂�𝑖𝑗𝑘𝑚 and 𝑥𝑖𝑘 ≤ 1. □

.1. Valid inequalities for (EMMR)

We have provided two formulations for USApHMP. However, a
reliminary computational experience shows that (EMMRr) still has a
eak linear relaxation. For this reason, we focus on developing new
alid inequalities to strengthen this formulation. Our approach consists
f considering extended formulations of (EMMRr) and obtaining valid
nequalities from the projection of some variables of these formulations
sing Farkas’ Lemma (Mangasarian, 1969). The version of the lemma
sed in this paper is the following:

emma 3.1. Farkas’ Lemma. Let 𝐴 be an 𝑛 × 𝑟 dimensional matrix. A
ector 𝑏 ∈ R𝑛 verifies 𝐴𝑥 ≤ 𝑏 for 𝑥 ∈ R𝑛 with 𝑥 ≥ 𝟎 if and only if for any
≥ 𝟎 verifying 𝐴𝑇 𝑦 ≥ 𝟎, it is satisfied that 𝑏𝑇 𝑦 ≥ 0.

.1.1. First family of inequalities
The first family of valid inequalities is obtained by the linearization

f the product of 𝑥-variables. To do that, for all 𝑖, 𝑗 (𝑖 < 𝑗), 𝑘, 𝑚 ∈ 𝑁 ,
et us define 𝑋𝑖𝑗𝑘𝑚 = 𝑥𝑖𝑘𝑥𝑗𝑚 (these variables were also used in the
ormulation by Skorin-Kapov et al., 1996) and consider the following
nequalities:

∑

𝑚∈𝑁
𝑋𝑖𝑗𝑘𝑚 = 𝑥𝑖𝑘, ∀𝑖, 𝑗(> 𝑖), 𝑘 ∈ 𝑁, (9)

𝑋𝑖𝑗𝑘𝑚 ≥ 𝑥𝑖𝑘 + 𝑥𝑗𝑚 − 1, ∀𝑖, 𝑗(> 𝑖), 𝑘, 𝑚 ∈ 𝑁, (10)

𝑆𝑖 ≥
∑

𝑗∈𝑁
𝑗>𝑖

∑

𝑚∈𝑁
�̂�𝑖𝑗𝑘𝑚𝑋𝑖𝑗𝑘𝑚, ∀𝑖, 𝑘 ∈ 𝑁, (11)

𝑋𝑖𝑗𝑘𝑚 ≥ 0, ∀𝑖, 𝑗(> 𝑖), 𝑘, 𝑚 ∈ 𝑁. (12)
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It is straightforward that the above inequalities are valid for the
formulation (EMMRr). Hence, the following result provides valid in-
qualities to (EMMRr) from the projection of the 𝑋-variables applying

Farkas’ Lemma to the resulting extended formulation obtained adding
(9)–(12) to (EMMRr).

Proposition 3.2. Given (𝒙, 𝑺), there exists 𝑋 that satisfies (9)–(12) if
nd only if for any 𝑖, 𝑘 ∈ 𝑁 ,

𝑖 ≥
∑

𝑗∈𝑁

∑

𝑚∈𝑁
𝛽𝑗𝑚(𝑥𝑖𝑘 + 𝑥𝑗𝑚 − 1) +

∑

𝑗∈𝑁
𝑗>𝑖

𝛾𝑗𝑥𝑖𝑘, (13)

for all (𝜷, 𝜸) such that

�̂�𝑖𝑗𝑘𝑚 − 𝛽𝑗𝑚 − 𝛾𝑗 ≥ 0, ∀𝑗(> 𝑖), 𝑚 ∈ 𝑁, (14)

𝛽𝑗𝑚 ≥ 0, ∀𝑗(> 𝑖), 𝑚 ∈ 𝑁. (15)

Any inequality of the form (13) defined by (𝜷, 𝜸) which satisfies
inequalities (14) and (15) is called a projection inequality. Observe that
constraints (7) are particular cases of (13) by considering 𝛽𝑗𝑚 = �̂�𝑖𝑗𝑘𝑚
nd 𝛾𝑗 = 0, for all 𝑖, 𝑘, 𝑗(> 𝑖), 𝑚 ∈ 𝑁 . Our goal is to find those values of
arameters (𝜷, 𝜸) satisfying (14)–(15) and providing the most violated
alid inequality of the type (13). The following result provides these
alid inequalities.

roposition 3.3. Given (�̄�, �̄�) a fractional solution of (EMMRr), the
ollowing set of inequalities are the most violated within the family (13).

𝑆𝑖 ≥
∑

𝑗∈𝑁
𝑗>𝑖

𝐻𝑖𝑗𝑘𝑥𝑖𝑘 +
∑

𝑗∈𝑁
𝑗>𝑖

∑

𝑚∈𝑁
�̄�𝑖𝑘+�̄�𝑗𝑚>1

(�̂�𝑖𝑗𝑘𝑚 −𝐻𝑖𝑗𝑘)(𝑥𝑖𝑘 + 𝑥𝑗𝑚 − 1), ∀𝑖, 𝑘 ∈ 𝑁

(16)

where 𝐻𝑖𝑗𝑘 ∶= min
𝑚∈𝑁

�̄�𝑖𝑘+�̄�𝑗𝑚>1

�̂�𝑖𝑗𝑘𝑚. (In case 𝑚 does not exist, such that �̄�𝑖𝑘 +

̄ 𝑗𝑚 > 1 for some 𝑖, 𝑘 ∈ 𝑁 , 𝐻𝑖𝑗𝑘 will be defined as 0).

Proof. Let (�̄�, �̄�) be a fractional solution of (EMMRr). By maximizing
the right hand side of (13) for this solution, we will obtain the most
violated version of these inequalities. Hence, for each 𝑖, 𝑘 ∈ 𝑁 , we solve
the following linear optimization problem:

max
𝜷, 𝜸

∑

𝑗∈𝑁
𝑗>𝑖

∑

𝑚∈𝑁
𝛽𝑗𝑚(�̄�𝑖𝑘 + �̄�𝑗𝑚 − 1) +

∑

𝑗∈𝑁
𝑗>𝑖

𝛾𝑗 �̄�𝑖𝑘,

s.t. 𝛽𝑗𝑚 + 𝛾𝑗 ≤ �̂�𝑖𝑗𝑘𝑚, ∀𝑗(> 𝑖), 𝑚 ∈ 𝑁,

𝛽𝑗𝑚 ≥ 0, ∀𝑗(> 𝑖), 𝑚 ∈ 𝑁.

The problem above can be separated for any 𝑖, 𝑗(> 𝑖), 𝑘 ∈ 𝑁 by
considering for each 𝑗(> 𝑖) ∈ 𝑁 , the variables 𝛽𝑚 ∶= 𝛽𝑗𝑚 and �̂� ∶= 𝛾𝑗 , as
follows:

max
𝜷, �̂�

∑

𝑚∈𝑁
𝛽𝑚(�̄�𝑖𝑘 + �̄�𝑗𝑚 − 1) + �̂� �̄�𝑖𝑘,

s.t. 𝛽𝑚 + �̂� ≤ �̂�𝑖𝑗𝑘𝑚, ∀𝑚 ∈ 𝑁,

𝛽𝑚 ≥ 0, ∀𝑚 ∈ 𝑁.

Hence, since �̂� ≤ �̂�𝑖𝑗𝑘𝑚−𝛽𝑚, then �̂� = min𝑚∈𝑁{�̂�𝑖𝑗𝑘𝑚−𝛽𝑚}. Moreover,
taking into account the objective function of the problem above we
have that:

- If �̄�𝑖𝑘 + �̄�𝑗𝑚0
− 1 ≤ 0 for some 𝑚0 ∈ 𝑁 then 𝛽𝑚0

= 0 and
�̂� ≤ min𝑚∈𝑁 �̂�𝑖𝑗𝑘𝑚.

- If �̄�𝑖𝑘 + �̄�𝑗𝑚0
− 1 > 0 and

∑

𝑚∈𝑁
�̄�𝑖𝑘+�̄�𝑗𝑚>1

(�̄�𝑖𝑘 + �̄�𝑗𝑚 − 1) ≤ �̄�𝑖𝑘, (17)

then we have that �̂� ≤ min𝑚∈𝑁 �̂�𝑖𝑗𝑘𝑚 and 𝛽𝑚0
= �̂�𝑖𝑗𝑘𝑚0

−
̂

4

min𝑚∈𝑁 𝐶𝑖𝑗𝑘𝑚.
Therefore, since we are maximizing and �̄�𝑖𝑘 ≥ 0 then �̂� = min𝑚∈𝑁 �̂�𝑖𝑗𝑘𝑚.
Now, we prove that (17) always holds, i.e., it is not a condition. Let

us define 𝛺𝑖𝑗 ∶= {𝑚 ∈ 𝑁 ∶ �̄�𝑖𝑘 + �̄�𝑗𝑚 > 1}. Hence,
∑

𝑚∈𝑁
�̄�𝑖𝑘+�̄�𝑗𝑚>1

(�̄�𝑖𝑘 + �̄�𝑗𝑚 − 1) = |𝛺𝑖𝑗 |(�̄�𝑖𝑘 − 1) +
∑

𝑚∈𝑁
�̄�𝑖𝑘+�̄�𝑗𝑚>1

�̄�𝑗𝑚.

Therefore, we have that (17) is fulfilled if and only if
∑

𝑚∈𝑁
�̄�𝑖𝑘+�̄�𝑗𝑚>1

�̄�𝑗𝑚 ≤ �̄�𝑖𝑘 + (1 − �̄�𝑖𝑘)|𝛺𝑖𝑗 |.

The right term of the above inequality is a convex combination of 1
and |𝛺𝑖𝑗 |, then it will take values in the interval [1, |𝛺𝑖𝑗 |]. Hence, this
inequality is fulfilled since the left term is less than or equal to 1. □

A reinforcement of valid inequalities (16) is provided in the follow-
ing proposition.

Proposition 3.4. Given (�̄�, �̄�) a fractional solution of (EMMRr), the
following inequalities

𝑆𝑖 ≥
∑

𝑗∈𝑁
𝑗>𝑖

𝐻𝑖𝑗𝑘

+
∑

𝑗∈𝑁
𝑗>𝑖

(

∑

𝑚∈𝑁
�̄�𝑖𝑘+�̄�𝑗𝑚>1

(�̂�𝑖𝑗𝑘𝑚 −𝐻𝑖𝑗𝑘)𝑥𝑗𝑚 + max
𝑚∈𝑁

�̄�𝑖𝑘+�̄�𝑗𝑚>1

{�̂�𝑖𝑗𝑘𝑚}(𝑥𝑖𝑘 − 1)
)

, ∀𝑖, 𝑘 ∈ 𝑁

(18)

are valid for (EMMRr) and reinforce constraints (16).

Proof. First, we prove that inequalities (18) are valid. (Observe that
�̄� fractional values are only used to define the summation indices
conditions, but the validity of these inequalities should be shown for
binary 𝑥-variables). We distinguish two cases.

- If ∑ 𝑚∈𝑁
�̄�𝑖𝑘+�̄�𝑗𝑚>1

𝑥𝑗𝑚 = 0, then (18) can be rewritten as

𝑆𝑖 ≥
∑

𝑗∈𝑁
𝑗>𝑖

(

𝐻𝑖𝑗𝑘 + max
𝑚∈𝑁

�̄�𝑖𝑘+�̄�𝑗𝑚>1

{�̂�𝑖𝑗𝑘𝑚}(𝑥𝑖𝑘 − 1)
)

, ∀𝑖, 𝑘 ∈ 𝑁. (19)

– Case 𝑥𝑖𝑘 = 0; the right hand side of these constraints is non-
positive and the corresponding constraints are meaningless.

– Case 𝑥𝑖𝑘 = 1; (19) is rewritten as

𝑆𝑖 ≥
∑

𝑗∈𝑁
𝑗>𝑖

𝐻𝑖𝑗𝑘, ∀𝑖, 𝑘 ∈ 𝑁.

These constraints are valid since 𝑆𝑖 is at least the sum of the
minimum costs of the flow from/to site 𝑖 to/from another
site 𝑗 via a hub with 𝑗 > 𝑖.

- If ∑ 𝑚∈𝑁
�̄�𝑖𝑘+�̄�𝑗𝑚>1

𝑥𝑗𝑚 = 1,

– Case 𝑥𝑖𝑘 = 1; then 𝑆𝑖 is at least the transportation cost
from/to 𝑖 of the overall flow to/from 𝑗 with 𝑖 < 𝑗 and since
we are minimizing, 𝑆𝑖 represents that transportation cost for
each 𝑖 ∈ 𝑁 .

– Case 𝑥𝑖𝑘 = 0; again the right hand side of (18) becomes a
non-positive amount and then (18) is meaningless.

Now, we prove that constraints (18) reinforce (16):

𝑗∈𝑁
𝑗>𝑖

(

𝐻𝑖𝑗𝑘𝑥𝑖𝑘 +
∑

𝑚∈𝑁
�̄�𝑖𝑘+�̄�𝑗𝑚>1

(�̂�𝑖𝑗𝑘𝑚 −𝐻𝑖𝑗𝑘)(𝑥𝑖𝑘 + 𝑥𝑗𝑚 − 1)
)

=

𝑗∈𝑁

(

𝐻𝑖𝑗𝑘𝑥𝑖𝑘 +
∑

𝑚∈𝑁

(�̂�𝑖𝑗𝑘𝑚 −𝐻𝑖𝑗𝑘)𝑥𝑗𝑚 +
∑

𝑚∈𝑁

(�̂�𝑖𝑗𝑘𝑚 −𝐻𝑖𝑗𝑘)(𝑥𝑖𝑘 − 1)
)

≤

𝑗>𝑖 �̄�𝑖𝑘+�̄�𝑗𝑚>1 �̄�𝑖𝑘+�̄�𝑗𝑚>1
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∑

𝑗∈𝑁
𝑗>𝑖

(

𝐻𝑖𝑗𝑘𝑥𝑖𝑘 +
∑

𝑚∈𝑁
�̄�𝑖𝑘+�̄�𝑗𝑚>1

(�̂�𝑖𝑗𝑘𝑚 −𝐻𝑖𝑗𝑘)𝑥𝑗𝑚 + (𝑥𝑖𝑘 − 1)( max
𝑚∈𝑁

�̄�𝑖𝑘+�̄�𝑗𝑚>1

{�̂�𝑖𝑗𝑘𝑚} −𝐻𝑖𝑗𝑘)
)

=

𝑗∈𝑁
𝑗>𝑖

(

𝐻𝑖𝑗𝑘 +
∑

𝑚∈𝑁
�̄�𝑖𝑘+�̄�𝑗𝑚>1

(�̂�𝑖𝑗𝑘𝑚 −𝐻𝑖𝑗𝑘)𝑥𝑗𝑚 + max
𝑚∈𝑁

�̄�𝑖𝑘+�̄�𝑗𝑚>1

{�̂�𝑖𝑗𝑘𝑚}(𝑥𝑖𝑘 − 1)
)

.

Hence, the result follows. □

.1.2. Second family of inequalities
A second family of valid inequalities is obtained by considering the

amilies of inequalities (9), (11), (12) and
∑

𝑘∈𝑁
𝑋𝑖𝑗𝑘𝑚 = 𝑥𝑗𝑚, ∀𝑖, 𝑗(> 𝑖), 𝑚 ∈ 𝑁. (20)

bserve that it is straightforward that (20) are valid inequalities for
he formulation (EMMRr). Hence, the following result provides valid
nequalities to (EMMRr) by projecting out the 𝑋-variables using Farkas’
emma to the resulting extended formulation obtained when (9), (11),
12) and (20) are added to (EMMRr).

roposition 3.5. Given (𝒙, 𝑺), there exists 𝑋 that satisfies (9), (11), (12),
20) if and only if for any 𝑖 ∈ 𝑁

𝑖 ≥
∑

𝑗∈𝑁
𝑗>𝑖

∑

𝑘∈𝑁
𝛾𝑗𝑘𝑥𝑖𝑘 +

∑

𝑗∈𝑁
𝑗>𝑖

∑

𝑚∈𝑁
𝜇𝑗𝑚𝑥𝑗𝑚, (21)

or all (𝜸, 𝝁) such that

̂𝑖𝑗𝑘𝑚 − 𝛾𝑗𝑘 − 𝜇𝑗𝑚 ≥ 0, ∀𝑗(> 𝑖), 𝑘, 𝑚 ∈ 𝑁. (22)

Now, our goal is to consider values of parameters 𝛾𝑗𝑘 and 𝜇𝑗𝑚 for all
(>𝑖), 𝑚, 𝑘 ∈ 𝑁 sastisfying (22) and providing the most violated valid
nequalities of the type (21). The following result provides these valid
nequalities.

roposition 3.6. Given (�̄�, �̄�) a fractional solution of (EMMRr), the
ollowing set of inequalities is the most violated within the family (21):

𝑖 ≥
∑

𝑗∈𝑁
𝑗>𝑖

∑

𝑘∈𝑁
𝛾∗𝑗𝑘𝑥𝑖𝑘 +

∑

𝑗∈𝑁
𝑗>𝑖

∑

𝑚∈𝑁
𝜇∗
𝑗𝑚𝑥𝑗𝑚, ∀𝑖 ∈ 𝑁, (23)

here (𝜸∗, 𝝁∗) are the optimal values of dual variables of a transportation
roblem with 𝑛 origins and destinations where the supply of origin 𝑘 is �̄�𝑖𝑘,
or any 𝑘 ∈ 𝑁 , and the demand of destination 𝑚 is �̄�𝑗𝑚, for any 𝑚 ∈ 𝑁 .
he transportation cost from origin 𝑘 to destination 𝑚 is �̂�𝑖𝑗𝑘𝑚.

roof. Let (�̄�, �̄�) be a fractional solution of (EMMRr). The maximal
iolation of (21) is given by solving the following linear subproblem
or each 𝑖 ∈ 𝑁 :

max
𝜸, 𝝁

∑

𝑗∈𝑁
𝑗>𝑖

∑

𝑘∈𝑁
𝛾𝑗𝑘�̄�𝑖𝑘 +

∑

𝑗∈𝑁
𝑗>𝑖

∑

𝑚∈𝑁
𝜇𝑗𝑚�̄�𝑗𝑚,

𝑠.𝑡. 𝛾𝑗𝑘 + 𝜇𝑗𝑚 ≤ �̂�𝑖𝑗𝑘𝑚, ∀𝑗(> 𝑖), 𝑘, 𝑚 ∈ 𝑁.

n alternative is solving a linear subproblem for each 𝑖, 𝑗(> 𝑖) ∈ 𝑁 ,

max
𝜸, 𝝁

∑

𝑘∈𝑁
𝛾𝑗𝑘�̄�𝑖𝑘 +

∑

𝑚∈𝑁
𝜇𝑗𝑚�̄�𝑗𝑚,

𝑠.𝑡. 𝛾𝑗𝑘 + 𝜇𝑗𝑚 ≤ �̂�𝑖𝑗𝑘𝑚, ∀𝑘, 𝑚 ∈ 𝑁,

𝛾𝑗𝑘, 𝜇𝑗𝑚 unrestricted, ∀𝑘, 𝑚 ∈ 𝑁.

he problem above is the dual formulation of a transportation problem
ith the input data described in the statement of the proposition. □

Observe that the transportation problems considered in the above
esult usually have a small size, since only few values �̄�𝑖𝑘 and �̄�𝑗𝑚 are
ifferent to zero.

In Section 3.1.2 a family of valid inequalities has been obtained by
rojecting out the 𝑋-variables using Farkas’ Lemma to the resulting
xtended formulation. It is worth mentioning that other alternatives
5

o project them out have been studied in the literature. In particular,
sing Benders decomposition (Benders, 1962) for hub location prob-
ems (Contreras et al., 2011; De Camargo et al., 2011; Ghaffarinasab
nd Kara, 2019) provides valid inequalities with similar shape. How-
ver, these are included in a Benders scheme solution where the values
f �̄� are integer, unlike our procedure where these valid inequalities are
sed as cuts within a branch and bound and cut procedure and these
ariables could be fractional.

. Procedure for solving the USApHMP using (EMMR) with disag-
regated costs

In the next section, we will compare the formulations and rein-
orcements proposed in the previous section with four of the most
ffective ways of solving USApHMP in the literature, the ones proposed
y Ghaffarinasab and Kara (2019), Meier et al. (2016), Meier and
lausen (2017) and Rostami et al. (2022). Those models are only
alid for the case of disaggregated costs. For this reason, we adapt
he formulation (EMMR) and the valid inequalities introduced in the
revious section to use disaggregated costs. For all 𝑖, 𝑗 ∈ 𝑁 , let 𝐶𝑖𝑗𝑘𝑚 =

𝜒𝑐𝑖𝑘 + 𝛼𝑐𝑘𝑚 + 𝛿𝑐𝑚𝑗 , where 𝑐𝑖𝑗 denotes the transportation cost (per unit)
between 𝑖 and 𝑗, and 𝜒 , 𝛼 and 𝛿 are collection, transfer and distribution
factors, respectively. To simulate economies of scale, it is assumed that
𝛼 < 𝜒 and 𝛼 < 𝛿. Furthermore, let define 𝑂𝑖 ∶=

∑

𝑗∈𝑁 𝜔𝑖𝑗 as the units
of product which must be sent from site 𝑖, 𝐷𝑖 ∶=

∑

𝑗∈𝑁 𝜔𝑗𝑖 as the units
of product which must be sent to site 𝑖 and 𝑐𝑖𝑗𝑘𝑚 = 𝜔𝑖𝑗𝑐𝑘𝑚 + 𝜔𝑗𝑖𝑐𝑚𝑘 for
all 𝑖, 𝑗(𝑖 < 𝑗), 𝑘, 𝑚 ∈ 𝑁 . Now, for all 𝑖 ∈ 𝑁 , we define the variables 𝑠𝑖 as
follows

𝑠𝑖 = overall cost of transferring between hubs
(without the transfer factor) the product
sent/received from origin/destination at 𝑖 to/from any site
𝑗 ∈ 𝑁 with 𝑗 > 𝑖.

The formulation (EMMR) with disaggregated costs can be written
as follows:

(EMMR_D) min
∑

𝑖∈𝑁
𝛼𝑠𝑖 +

∑

𝑖∈𝑁

∑

𝑘∈𝑁
(𝜒𝑂𝑖 + 𝛿𝐷𝑖)𝑐𝑖𝑘𝑥𝑖𝑘, (24)

s.t. (2)–(5),
𝑠𝑖 ≥

∑

𝑗∈𝑁
𝑗>𝑖

∑

𝑚∈𝑁
𝑐𝑖𝑗𝑘𝑚(𝑥𝑖𝑘 + 𝑥𝑗𝑚 − 1), ∀𝑖, 𝑘 ∈ 𝑁,

(25)
𝑠𝑖 ≥ 0, ∀𝑖 ∈ 𝑁.

For the sake of a better understanding, the factor 𝛼 is considered in
the objective function instead of being included in the constraints (25).
The formulation is similar to (EMMR), but now the objective function
given in (24) has been decomposed in the cost between hubs and non-
hubs. Since 𝑠𝑖 represents the cost between hubs (without the transfer
actor 𝛼), constraints (7) have been adapted to consider only these
osts. Thus, constraints (25) mean that for 𝑖, 𝑘 ∈ 𝑁 , if 𝑥𝑖𝑘 = 1, then
𝑖 ≥

∑

𝑗∈𝑁
𝑗>𝑖

∑

𝑚∈𝑁 𝑐𝑖𝑗𝑘𝑚𝑥𝑗𝑚. That is, if site 𝑖 is allocated to hub 𝑘, then 𝑠𝑖
is at least the cost of transporting the total amount of product between
hubs 𝑘 and 𝑚 (without the transfer factor 𝛼) with origin at site 𝑖 and
destination any 𝑗 ∈ 𝑁 with 𝑗 > 𝑖. Therefore, since in the objective
function 𝑠𝑖 appears with non-negative coefficient, this is a formulation
for the USApHMP with disaggregated costs.

Analogously to Proposition 3.1, we obtain that constraints (25) are
reinforced by:

𝑠𝑖 ≥
∑

𝑗∈𝑁
𝑗>𝑖

(

∑

𝑚∈𝑁
𝑐𝑖𝑗𝑘𝑚𝑥𝑗𝑚 + (𝑥𝑖𝑘 − 1)max

𝑚∈𝑁
𝑐𝑖𝑗𝑘𝑚𝑥𝑗𝑚

)

, ∀𝑖, 𝑘 ∈ 𝑁. (26)

Let (EMMR_D𝑟) be the formulation obtained by replacing (25) by (26)

in (EMMR_D).
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All the valid inequalities provided in Section 3.1 can be adapted for
the case of disaggregated costs by replacing �̂�𝑖𝑗𝑘𝑚 with 𝑐𝑖𝑗𝑘𝑚, ∀𝑖, 𝑗(𝑖 <
𝑗), 𝑘, 𝑚 ∈ 𝑁 .

In spite that (EMMR_Dr) reinforces (EMMR_D), a preliminary com-
utational experience shows that it leads to a weak linear relaxation.
e develop a solution procedure that considers: (i) a restriction-relaxed

ormulation, (ii) the inclusion of cuts through a separation method and
iii) the computation of upper bounds.

.1. Feasibility cut procedure

Formulation (EMMR_Dr) has been relaxed by replacing constraints
(26) with aggregated constraints as follows:

(EMMR_D∗
r ) min

∑

𝑖∈𝑁
𝛼𝑠𝑖 +

∑

𝑖∈𝑁

∑

𝑘∈𝑁
(𝜒𝑂𝑖 + 𝛿𝐷𝑖)𝑐𝑖𝑘𝑥𝑖𝑘,

s.t. (2)–(5),

𝑠𝑖 ≥
∑

𝑘∈𝑁

∑

𝑗∈𝑁
𝑗>𝑖

(

∑

𝑚∈𝑁
𝑐𝑖𝑗𝑘𝑚𝑥𝑗𝑚 + (𝑥𝑖𝑘 − 1)max

𝑚∈𝑁
𝑐𝑖𝑗𝑘𝑚

)

, ∀𝑖 ∈ 𝑁,

(27)
𝑠𝑖 ≥ 0, ∀𝑖 ∈ 𝑁.

Observe that (EMMR_D∗
r ) is not a formulation for USApHMP. In-

eed, constraints (27) do not provide the transportation cost between
ubs of the product with origin/destination at site 𝑖. This is due to
he fact that the right hand side of (27) could be negative since (27)
ggregates (26) by summing over 𝑘. Therefore, to solve USApHMP
sing (EMMR_D∗

r ), we will add constraints (26) in a branch-and-cut
rocedure to obtain feasible solutions. In the following, this method
ill be called Feasibility Cut Procedure (FCP) that consists of solving

EMMR_D∗
r ) with a subset 𝐾 ⊂ 𝑁 of constraints (27). For each new

ncumbent integer solution found in the branch-and-bound tree, we add
he violated feasibility cuts of type (26), and continue with the solution
rocedure. Thus, we guarantee that the solutions found are feasible for
EMMR_Dr).

This algorithm is reinforced by adding some valid inequalities.

.2. Adding valid inequalities

The valid inequalities given in Section 3.1 can be adapted to con-
ider disaggregated costs and added to (EMMR_D∗

r ) in a branch and cut
rocedure.

Given (�̄�, �̄�) a fractional solution of (EMMR_D∗
r ), the cuts given

y (16) can be adapted to the disaggregated costs following similar
rguments to obtain these cuts:

𝑖 ≥
∑

𝑗∈𝑁
𝑗>𝑖

∑

𝑚∈𝑁
�̄�𝑖𝑘+�̄�𝑗𝑚>1

𝑐𝑖𝑗𝑘𝑚(𝑥𝑖𝑘 + 𝑥𝑗𝑚 − 1), ∀𝑖, 𝑘 ∈ 𝑁. (28)

Moreover, the cuts given by (18) can also be adapted to the disag-
regated costs to obtain the following cuts:

𝑖 ≥
∑

𝑗∈𝑁
𝑗>𝑖

(

∑

𝑚∈𝑁
�̄�𝑖𝑘+�̄�𝑗𝑚>1

𝑐𝑖𝑗𝑘𝑚𝑥𝑗𝑚 + max
𝑚∈𝑁

�̄�𝑖𝑘+�̄�𝑗𝑚>1

{𝑐𝑖𝑗𝑘𝑚}(𝑥𝑖𝑘 − 1)
)

, ∀𝑖, 𝑘 ∈ 𝑁. (29)

Both families of cuts have been analyzed in a preliminary compu-
ational study. Although (29) provided deeper cuts, (28) had better
erformance in terms of computing times (this preliminary study re-
orted an improvement of more than 20% on average). Therefore, the
omputational analyzes of this paper have been carried out using (28).

Analogously, the cuts given by (23) can be adapted to this case, as
ollows:

𝑖 ≥
∑

𝑗∈𝑁

∑

𝑘∈𝑁
𝛾∗𝑗𝑘𝑥𝑖𝑘 +

∑

𝑗∈𝑁

∑

𝑚∈𝑁
𝜇∗
𝑗𝑚𝑥𝑗𝑚, ∀𝑖 ∈ 𝑁, (30)
6

𝑗>𝑖 𝑗>𝑖
here (𝜸∗, 𝝁∗) are obtained by solving, for all 𝑖, 𝑗(> 𝑖) ∈ 𝑁 , the
ollowing subproblems

𝑇𝑃 𝑑
𝑖𝑗 ) max

𝜸, 𝝁

∑

𝑘∈𝑁
𝛾𝑗𝑘�̄�𝑖𝑘 +

∑

𝑚∈𝑁
𝜇𝑗𝑚�̄�𝑗𝑚,

𝑠.𝑡 𝛾𝑗𝑘 + 𝜇𝑗𝑚 ≤ 𝑐𝑖𝑗𝑘𝑚, ∀𝑘, 𝑚 ∈ 𝑁,

𝛾𝑗𝑘, 𝜇𝑗𝑚 unrestricted, ∀𝑘, 𝑚 ∈ 𝑁.

Note that (TP𝑑
𝑖𝑗) is the dual of a transportation problem with 𝑛

rigins and destinations where the supply of origin 𝑘 is �̄�𝑖𝑘, for any
∈ 𝑁 , and the demand of destination 𝑚 is �̄�𝑗𝑚, for any 𝑚 ∈ 𝑁 . The

ransportation cost from origin 𝑘 to destination 𝑚 is 𝑐𝑖𝑗𝑘𝑚. Therefore, for
dding (30), we first solve the dual of different transportation problems
o obtain the parameters (𝜸∗, 𝝁∗) and then add to (EMMR_D∗

r ) each
onstraint of type (30) that is violated.

The algorithm for solving the transportation problem is based on the
rimal–dual algorithm with preprocessing described in Haddadi and
limani (2012).

Algorithm 1: Solution procedure for solving USApHMP
1 Input: dataset, depth_max, pass_max, pass2_max, tolerance.
2 pass:=1, pass2:=1;
3 repeat at each node of the branching tree
4 Solve the linear relaxation of (EMMR_D∗

r );
5 Let (�̄�, �̄�) be the optimal solution of the LP-relaxation;
6 if �̄� is integer then
7 for 𝑖, 𝑘 ∈ 𝑁 do

8 if �̄�𝑖 <
∑

𝑗∈𝑁
𝑗>𝑖

(

∑

𝑚∈𝑁
𝑐𝑖𝑗𝑘𝑚�̄�𝑗𝑚 + (�̄�𝑖𝑘 − 1)max

𝑚
𝑐𝑖𝑗𝑘𝑚

)

then

9 Add constraint 𝑠𝑖 ≥
∑

𝑗∈𝑁
𝑗>𝑖

(

∑

𝑚∈𝑁
𝑐𝑖𝑗𝑘𝑚𝑥𝑗𝑚 + (𝑥𝑖𝑘 − 1)max

𝑚
𝑐𝑖𝑗𝑘𝑚

)

10 get depth;
11 if depth<depth_max and pass <pass_max then
12 for 𝑖 ∈ 𝑉 do
13 for 𝑗(> 𝑖) ∈ 𝑁 do
14 Solve (TP𝑑

𝑖𝑗);
15 Let (𝜸∗𝒋 , 𝝁

∗
𝒋 ) the optimal solution;

16 if �̄�𝑖 <
∑

𝑗∈𝑁
𝑗>𝑖

∑

𝑘∈𝑁
𝛾∗𝑗𝑘�̄�𝑖𝑘 +

∑

𝑗∈𝑁
𝑗>𝑖

∑

𝑚∈𝑁
𝜇∗
𝑗𝑚�̄�𝑗𝑚 then

17 Add constraint
𝑠𝑖 ≥

∑

𝑗∈𝑁
𝑗>𝑖

∑

𝑘∈𝑁
𝛾∗𝑗𝑘𝑥𝑖𝑘 +

∑

𝑗∈𝑁
𝑗>𝑖

∑

𝑚∈𝑁
𝜇∗
𝑗𝑚𝑥𝑗𝑚

18 for 𝑘 ∈ 𝑁 do
19 if �̄�𝑖 <

∑

𝑗∈𝑁
𝑗>𝑖

∑

𝑚∈𝑁
�̄�𝑖𝑘+�̄�𝑗𝑚>1

𝑐𝑖𝑗𝑘𝑚(�̄�𝑖𝑘 + �̄�𝑗𝑚 − 1) then

20 Add constraint
𝑠𝑖 ≥

∑

𝑗∈𝑁
𝑗>𝑖

∑

𝑚∈𝑁
�̄�𝑖𝑘+�̄�𝑗𝑚>1

𝑐𝑖𝑗𝑘𝑚(𝑥𝑖𝑘 + 𝑥𝑗𝑚 − 1)

21 pass:=pass+1
22 if pass2<pass2_max then
23 Obtain 𝑃 ∶= {𝑘 ∈ 𝑁 ∶ �̄�𝑘𝑘 > 0};
24 Solve the USApHMP restricted to 𝑃 ;
25 Let 𝑈𝐵 be the optimal objective value;
26 Provide 𝑈𝐵 as upper bound of the USApHMP;
27 pass2:=pass2+1;

28 until optimal solution is found;
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4.3. Upper bound computation

After adding valid inequalities, another procedure to obtain upper
bounds and reduce the size of the branching tree is developed. This
procedure consists of two steps.

1. We solve the relaxation of (EMMR_D∗
r ). Let (�̄�, �̄�) be a fractional

solution and 𝑃 the set of 𝑘 ∈ 𝑁 such that �̄�𝑘𝑘 > 0.
2. We solve the USApHMP by using the Ernst and Krishnamoorthy

formulation (one of the most effective formulations in the litera-
ture) with the location of hubs and allocation to hubs restricted
to the set 𝑃 . This allows us to determine a primal solution that
gives an upper bound for the optimal solution of the USApHMP.

The complete solution procedure described above is summarized in
he Algorithm 1.

. Computational study

The procedure described in Section 4 has been tested in an extensive
omputational experiment, for solving the USApHMP and USAHLP.

Three commonly used data sets from the hub location literature are
sed for the test: the Civil Aeronautics Board (CAB), Australian Post
AP) and TR data set. CAB data set, introduced by O’Kelly (1987), is
ased on airline passenger interactions between 25 US cities. The sec-
nd data set we have used is the AP data set (Ernst and Krishnamoorthy,
996), which is based on a postal delivery in Sydney and consists of 200
ostal districts. The TR data set (Tan and Kara, 2007) is based on the
argo flows between 81 cities of Turkey.

For our tests we used an Intel Xeon W-2245 CPU of 3.90 GHz
ith the Microsoft Windows 10 operating system. All formulations
nd solution methods have been implemented in Xpress v8.10 with all
utomatic cuts and preprocessing disabled and the number of threads
as limited to four (this is due to the fact that the computer used

n Ghaffarinasab and Kara (2019) used a machine with four threads,
ee Appendix for more details).

We set the following parameters when generating our cuts of type
28) and (30). We limited the total number of iterations for gener-
ting cuts pass_max∶= 40, the maximum depth of the branching tree
epth_max∶= 2, and the cut tolerance (minimum violation for gener-

ating a cut) tolerance∶= 0.1. There is no limit for the number of cuts
dded in each iteration.

The first observation that comes after running the experiment is that
olving instances from data set CAB with 𝑛 = 25 and different values
f 𝑝 provides computational times below two seconds (see Appendix,
ables S.1 and S.2). Therefore, we concentrate on instances from AP
nd TR data sets.

.1. Performance analysis of our formulations and Algorithm 1

We first provide a computational analysis to compare (EMMR_Dr)
nd FCP to different compact formulations proposed in the litera-
ure (Ebery, 2001; Ernst and Krishnamoorthy, 1996; Skorin-Kapov
t al., 1996). Table 2 reports the results obtained by solving the
SApHMP for AP data set with 𝑛 = 75 and the time limit set to

7200 s. The first column shows the number of hubs. The second column
reports the formulation used to solve the USApHMP. The following
three columns provide the objective value of the best solution, the best
bound and the gap between both values, respectively. The next column
shows the number of nodes explored in the branching tree and the
last column reports the computational time. From this table we can
conclude that the formulation proposed by Ernst and Krishnamoorthy
(1996) provides the best computational times. As expected given their
reduced sizes, (EMMR_Dr) and FCP take long times. In what follows
we will show the crucial impact of considering feasibility cuts (26),
cuts (28) and (30), as well as an upper bound to build a much more
7

competitive solution method. m
Secondly, we will analyze the performance of Algorithm 1. We
only show the results for solving the USApHMP with AP data set.
Similar conclusions were obtained for TR data sets. Tables 3 and 4
show the impact in the performance of each part of Algorithm 1 for
solving USApHMP, using AP data set with 𝑛 = 100 ( Table 3) and
𝑛 = 200 ( Table 4). The first and second columns show the size of
the instances and the number of hubs, respectively. The third column
reports the procedures used to solve the USApHMP: (EMMR_Dr) or the
relaxed version where constraints (26) are inserted in a cut generation
procedure (FCP), with or without the valid inequalities (28) and (30),
and also the upper bound (UB) described in Section 4.3 or steps 22–
27 of Algorithm 1. The following three columns provide the objective
value of the best solution, the best bound and the gap between both
values, respectively. The next column shows the number of nodes
explored in the branching tree. The number of constraints added as
cuts of types (26), (28) and (30) are shown in columns labeled as
#(26), #(28) and #(30), respectively. Note that cuts of type (26) are
only added in (FCP) because (26) are constraints defining formulation
(EMMR_Dr). In this table, the time limit was set to 7200 s.

We can observe the importance of using the (FCP) with (28) and
(30), since the optimal solutions are obtained in lower computing
times than (EMMR_Dr)+(28)+(30), for 𝑛 = 100 (and consequently,
than the ones given using formulation of Ernst and Krishnamoorthy
(1996), since we have obtained times for 𝑛 = 100 similar to the ones
obtained by them for 𝑛 = 75). Moreover, instances with 𝑛 = 200 are not
solved whenever (FCP) is not used due to lack of memory. The upper
bound (UB) performs better for large values of 𝑛 and 𝑝, e.g. 𝑛 = 200
with 𝑝 = 5 and 𝑝 = 10, where the instances are only solved with
(EMMR_Dr)+UB+(28)+(30).

5.2. Comparison with alternative solution procedures

Our goal is to present a comparison between our branch-and-cut
algorithm and the most recent and efficient exact algorithms existing in
the literature for the USApHMP and UHLPSA: Meier et al. (2016), Ghaf-
farinasab and Kara (2019) and Rostami et al. (2022). To the best of
our knowledge, these constitute the state-of-the-art of exact algorithms
for solving theses problems. We use the same three data sets in our
computational experiments as (Ghaffarinasab and Kara, 2019). Meier
et al. (2016) provided a method that explicitly required the assumption
of Euclidean distances, and for this reason they can only use CAB and
AP data sets (they choose use only AP data set because CAB data
set consists of instances with up to 25 nodes). The TR data set is
based on the cargo flows between 81 cities of Turkey and uses travel
distances. Hence, the methodology of Meier et al. (2016) cannot be
applied to TR data set. Recently, Rostami et al. (2022) proposed a
convex reformulation and a branch-and-cut algorithm based on outer
approximation cuts for a large class of binary quadratic programs,
which include the USApHMP and UHLPSA as particular cases. They
only show results for the USApHMP with AP data.

Meier et al. (2016) use 𝐶# to call Gurobi 5.6 running on a processor
t 3.4 GHz and 16 GB of RAM (more details are not provided by
he authors) while Ghaffarinasab and Kara (2019) use Java to call
PLEX 12.6 on a machine running Windows 7 Intel (R) Core(TM) i3-
220 CPU of 3.30 GHz and 16 GB of RAM. Finally Rostami et al.
2022) use 𝐶++ to call Gurobi 6.5 on a machine running Linux Intel
eon(R) CPU E3-1270 (2 quad-core CPUs with 3.60 GHz) with 64 Gb
f RAM. Observe the different machines, RAM, Operating Systems,
rogramming languages and solvers with their versions. It is neither
asy nor straightforward to give a percentage that reflects the difference
etween the computational experiments performed using the differ-
nt methodologies aforementioned, since there are many factors that
nfluence the performance.

With the aim of providing more insights about the good perfor-

ance of Algorithm 1 in comparison with the results obtained by
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Table 2
Results with AP data set for USApHMP with 𝑛 = 75 using different compact formulations.
𝑝 Formulation Best solution Best bound Gap bb Nodes Time

2

Ebery (2001) 180118.91 180118.91 0 11481 816.1
Ernst and Krishnamoorthy (1996) 180118.91 180118.91 0 56 77.7
Skorin-Kapov et al. (1996) 180118.91 180118.91 0 1 1637.3
(EMMR_Dr) 180118.91 180118.91 0 229 79.7
FCP 180118.91 180118.91 0 291 7.2

3

Ebery (2001) 161322.52 157453.98 2.40 179833 7200
Ernst and Krishnamoorthy (1996) 161056.74 161056.74 0 97 179.3
Skorin-Kapov et al. (1996) 161056.74 161056.74 0 1 1729.2
(EMMR_Dr) 161056.74 161056.74 0 7245 307.6
FCP 161056.74 161056.74 0 9493 176.7

4

Ebery (2001) 145967.42 136980.27 6.16 176179 7200
Ernst and Krishnamoorthy (1996) 145734.20 145734.20 0 279 218.4
Skorin-Kapov et al. (1996) 145734.20 145734.20 0 1 1928.4
(EMMR_Dr) 145734.20 145734.20 0 109535 2852.4
FCP 145734.20 145734.20 0 132895 2330.0

5

Ebery (2001) 136238.53 123775.37 9.15 147532 7200
Ernst and Krishnamoorthy (1996) 136011.35 136011.35 0 1135 396.8
Skorin-Kapov et al. (1996) 136011.35 136011.35 0 3 3043.0
(EMMR_Dr) 136220.08 128825.12 5.43 207949 7200
FCP 136166.96 128471.55 5.65 256864 7200

10

Ebery (2001) 116206.27 86356.97 25.69 240113 7200
Ernst and Krishnamoorthy (1996) 106364.90 106364.90 0 781 394.1
Skorin-Kapov et al. (1996) 106364.90 106364.90 0 1 2080.4
(EMMR_Dr) 109345.71 87130.33 20.32 300689 7200
FCP 111892.72 85614.15 23.49 170678 7200
Table 3
Impact of each part in the performance of the Algorithm 1 with AP data set for USApHMP with 𝑛 = 100.
𝑛 𝑝 Formulation Best solution Best bound Gap bb Nodes #(26) #(28) #(30) Time

100

2

(EMMR_Dr) 180223.77 180223.77 0 1781 – – – 613.6
(FCP) 180223.77 180223.77 0 1663 1346 – – 61.2
(EMMR_Dr)+(28) 180223.77 180223.77 0 1575 – 99 – 528.4
(FCP)+(28) 180223.77 180223.77 0 1557 1890 99 – 65.8
(EMMR_Dr)+(28)+(30) 180223.77 180223.77 0 6 – 152 256 397.2
(FCP)+(28)+(30) 180223.77 180223.77 0 8 85 151 256 53.1
(EMMR_Dr)+UB+(28)+(30) 180223.77 180223.77 0 6 – 152 256 386.0
(FCP)+UB+(28)+(30) 180223.77 180223.77 0 10 85 152 256 51.8

3

(EMMR_Dr) 160847.00 160847.00 0 44261 – – – 4424.5
(FCP) 160847.00 160847.00 0 42009 34085 – – 1589.6
(EMMR_Dr)+(28) 160847.00 160847.00 0 27981 – 135 – 3001.5
(FCP)+(28) 160847.00 160847.00 0 48863 40931 135 – 1943.6
(EMMR_Dr)+(28)+(30) 160847.00 160847.00 0 8 – 269 412 394.8
(FCP)+(28)+(30) 160847.00 160847.00 0 5 156 269 412 42.9
(EMMR_Dr)+UB+(28)+(30) 160847.00 160847.00 0 6 – 269 412 397.0
(FCP)+UB+(28)+(30) 160847.00 160847.00 0 6 155 269 412 43.0

4

(EMMR_Dr) 146007.00 132084.54 9.54 19053 – – – 7200
(FCP) 146377.34 141545.13 3.30 92181 242789 – – 7200
(EMMR_Dr)+(28) 146168.62 139126.64 4.82 44639 – 217 – 7200
(FCP)+(28) 146529.10 141196.24 3.63 87979 230866 217 – 7200
(EMMR_Dr)+(28)+(30) 145896.58 145896.58 0 1 – 286 462 391.4
(FCP)+(28)+(30) 145896.58 145896.58 0 1 190 286 462 47.6
(EMMR_Dr)+UB+(28)+(30) 145896.58 145896.58 0 1 – 286 462 389.3
(FCP)+UB+(28)+(30) 145896.58 145896.58 0 1 190 286 462 47.2

5

(EMMR_Dr) 138759.71 120259.65 13.33 41942 – – – 7200
(FCP) 139715.91 121246.54 13.22 72227 226708 – – 7200
(EMMR_Dr)+(28) 138037.16 120414.84 12.76 43242 – 215 – 7200
(FCP)+(28) 138988.86 122325.28 11.99 72240 226403 215 – 7200
(EMMR_Dr)+(28)+(30) 136929.44 136929.44 0 68 – 251 675 533.8
(FCP)+(28)+(30) 136929.44 136929.44 0 78 290 251 675 96.1
(EMMR_Dr)+UB+(28)+(30) 136929.44 136929.44 0 165 – 251 675 603.8
(FCP)+UB+(28)+(30) 136929.44 136929.44 0 97 189 251 675 123.8

10

(EMMR_Dr) 114445.35 81505.41 28.78 70396 – – – 7200
(FCP) 118096.90 80954.53 31.45 60645 174315 – – 7200
(EMMR_Dr)+(28) 113482.51 82734.38 27.09 64804 – 205 – 7200
(FCP)+(28) 114765.33 81697.19 28.81 61074 169485 205 – 7200
(EMMR_Dr)+(28)+(30) 106469.57 106469.57 0 1 – 309 510 380.4
(FCP)+(28)+(30) 106469.57 106469.57 0 1 154 309 510 47.3
(EMMR_Dr)+UB+(28)+(30) 106469.57 106469.57 0 1 – 309 510 380.4
(FCP)+UB+(28)+(30) 106469.57 106469.57 0 1 154 309 510 47.1
8
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Table 4
Impact of each part in the performance of the Algorithm 1 with AP data set for USApHMP with 𝑛 = 200.
𝑛 𝑝 Formulation Best solution Best bound Gap bb Nodes #(26) #(28) #(30) Time

200

2

(EMMR_Dr) – – – – – – – –
(FCP) 182459.79 181840.02 0.34 22101 13633 – – 7200
(EMMR_Dr)+(28) – – – – – – – –
(FCP)+(28) 182459.88 182094.02 0.20 23484 15706 298 – 7200
(EMMR_Dr)+(28)+(30) – – – – – – – –
(FCP)+(28)+(30) 182459.25 182459.25 0 6 154 474 400 633.7
(EMMR_Dr)+UB+(28)+(30) – – – – – – – –
(FCP)+UB+(28)+(30) 182459.25 182459.25 0 6 154 474 400 630.2

3

(EMMR_Dr) – – – – – – – –
(FCP) 163233.36 141310.38 13.43 6173 25318 – – 7200
(EMMR_Dr)+(28) – – – – – – – –
(FCP)+(28) 163389.10 143762.50 12.01 5073 21092 282 – 7200
(EMMR_Dr)+(28)+(30) – – – – – – – –
(FCP)+(28)+(30) 162887.03 162887.03 0 1 283 561 1322 1222.1
(EMMR_Dr)+UB+(28)+(30) – – – – – – – –
(FCP)+UB+(28)+(30) 162887.03 162887.03 0 1 283 561 1322 1220.5

4

(EMMR_Dr) – – – – – – – –
(FCP) 150350.65 125512.11 16.52 5308 19452 – – 7200
(EMMR_Dr)+(28) – – – – – – – –
(FCP)+(28) 151755.20 125872.13 17.06 4574 19595 351 – 7200
(EMMR_Dr)+(28)+(30) – – – – – – – –
(FCP)+(28)+(30) 147767.30 147767.30 0 17 470 489 1578 1372.5
(EMMR_Dr)+UB+(28)+(30) – – – – – – – –
(FCP)+UB+(28)+(30) 147767.30 147767.30 0 17 470 489 1578 1413.5

5

(EMMR_Dr) – – – – – – – –
(FCP) 145572.43 111128.85 23.66 5262 19955 – – 7200
(EMMR_Dr)+(28) – – – – – – – –
(FCP)+(28) 144045.70 110855.15 23.04 4550 32012 285 – 7200
(EMMR_Dr)+(28)+(30) – – – – – – – –
(FCP)+(28)+(30) 140165.43 140019.49 0.10 1418 857 286 1686 7200
(EMMR_Dr)+UB+(28)+(30) – – – – – – – –
(FCP)+UB+(28)+(30) 140062.65 140062.65 0 429 380 286 1686 3934.7

10

(EMMR_Dr) – – – – – – – –
(FCP) 125808.52 74912.65 40.46 5869 20491 – – 7200
(EMMR_Dr)+(28) – – – – – – – –
(FCP)+(28) 128609.71 75023.11 41.66 4535 25308 432 – 7200
(EMMR_Dr)+(28)+(30) – – – – – – – –
(FCP)+(28)+(30) 110243.95 110146.36 0.09 1020 879 602 1598 7200
(EMMR_Dr)+UB+(28)+(30) – – – – – – – –
(FCP)+UB+(28)+(30) 110147.65 110147.65 0 280 318 602 1598 1780.5
Ghaffarinasab and Kara (2019), we have carried out a new computa-
tional analysis in an Intel Core i3 computer with 16 GB of RAM (a
similar computer to the one used in Ghaffarinasab and Kara, 2019).
Moreover, two different versions of solver have been used: Xpress
8.10 available since 2020 and Xpress 8.04 available since 2016 (see
Appendix B, Table S.3). We can observe that our methodology still im-
prove the computational experiments given in Ghaffarinasab and Kara
(2019) with the oldest version of the solver and the oldest processor.
Observe that this percentage of improvement is more than 80% for a
size of 200 with the oldest processor and version.

Since it is not always possible to perform computational experi-
ents on computers with similar characteristics and our experiments

onfirm that our algorithm performs well, improving the results ob-
ained by Ghaffarinasab and Kara (2019), a more extensive and in-
epth computational study is presented in the following.

.2.1. Results for the USApHMP
In this section, we compare the performance of our solution pro-

edure with the ones of Ghaffarinasab and Kara (2019), Meier et al.
2016) and Rostami et al. (2022) (denoted in our tables as GK(2019),
CRB(2016) and REL(2022), respectively) for solving the USApHMP

n AP and TR data sets using the same values of 𝑛 and 𝑝 considered in
these works.

In Appendix, Tables S.1 and S.2 show a comparison of our compu-
tational times and those obtained in Ghaffarinasab and Kara (2019) for
the CAB data set. Since they are very similar and below two seconds, we
9

concentrate on instances from AP and TR data sets. The collection and
distribution factors 𝜒 and 𝛿 are set to 3 and 2, respectively for AP data
set and set to 1 for CAB and TR data sets (like in the aforementioned
papers). The transfer factor 𝛼 is set to 0.75 for AP data set and it takes
different values from 0.2 to 1 for CAB and TR data sets.

Tables 5–7 show the numerical results obtained by solving the
USApHMP with AP data set. Tables 5 and 6 have the following struc-
ture: the first and second columns give the values of 𝑛 and 𝑝, re-
spectively. The next column reports the optimal objective values. The
number of nodes explored in the branching tree is given in column
labeled Nodes. The following three columns give the number of inequal-
ities added in the process as cuts, depending on the type, #(26), #(28)
and #(30). The total time in seconds to obtain the optimal solution with
Algorithm 1 is reported in Time.

In Table 5, the results for values of 𝑛 ranging from 50 up to 200,
𝑝 ∈ {2, 3, 4, 5} and 𝛼 = 0.75 are presented. This table includes the
solution times for solving the problem by the method of Rostami et al.
(2022). Results not reported in Rostami et al. (2022) are denoted by
‘-’. Regarding the times showed in Rostami et al. (2022), our procedure
is always faster than their method. Table 6 shows the results with
𝑝 ∈ {5, 10, 15, 20}. In this case, we compare the computational times
with the ones of Ghaffarinasab and Kara (2019). It can be observed
that Algorithm 1 gives the optimal solutions in much less computational
time than the results provided by Ghaffarinasab and Kara (2019) for all
the instances.
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Table 5
Results with AP data set for USApHMP.
𝑛 𝑝 Algorithm 1 REL(2022)

Objective Nodes #(26) #(28) #(30) Time Time

50

2 178484.29 1 35 71 56 1.3 7.6
3 158569.93 1 49 106 129 2.2 8.1
4 143378.05 1 82 128 150 2.3 9.0
5 132366.95 1 63 148 166 2.3 8.0

60

2 179920.21 1 37 113 90 3.5 15.0
3 160338.58 1 54 126 234 6.2 36.4
4 144719.69 1 104 145 252 5.5 23.4
5 132850.29 1 71 156 279 6.4 35.6

70

2 180093.19 1 52 125 66 4.8 20.5
3 160933.23 1 81 186 242 8.3 32.1
4 145619.65 1 111 175 304 10.1 39.3
5 135835.20 2 69 168 422 15.4 86.8

75

2 180118.91 1 55 132 71 6.2 26.6
3 161056.74 1 74 169 239 10.8 44.7
4 145734.20 1 117 189 424 17.5 56.5
5 136011.35 2 71 216 423 22.0 167.8

90

2 179821.61 4 73 176 229 30.3 76.6
3 160437.43 21 174 251 389 33.4 143.5
4 145133.69 1 173 240 457 31.0 215.6
5 135808.25 1 155 219 632 46.3 268.4

100

2 180223.77 10 85 151 256 51.6 103.6
3 160847.00 6 155 269 412 42.8 283.9
4 145896.58 1 190 286 462 47.1 191.4
5 136929.44 97 189 251 675 123.7 386.7

125

2 180372.18 1 73 326 356 123.3 220.6
3 161117.17 8 225 377 718 154.1 460.8
4 146173.22 2 223 335 730 149.0 431.2
5 137175.68 127 222 363 972 234.2 933.1

150

2 180898.84 1 82 378 514 320.7 487.5
3 161490.48 1 226 496 793 288.6 1578.4
4 146521.33 1 261 409 882 279.6 1191.8
5 137425.91 175 229 331 1042 704.7 3345.5

175

2 182120.64 1 121 364 325 361.8 –
3 162553.71 1 266 525 964 583.0 –
4 147316.45 32 368 399 1392 758.0 –
5 139354.51 205 425 94 1624 1284.2 –

200

2 182459.25 6 154 474 400 628.3 –
3 162887.03 1 283 561 1322 1219.8 –
4 147767.30 17 470 489 1578 1371.3 –
5 140062.65 429 380 286 1686 3954.1 –
The last experiment carried out with the AP data set is shown in
able 7, where we compare Algorithm 1 to the methodology proposed

n Meier et al. (2016) for solving the USApHMP. As mentioned, their
ethod is based on the assumption that the transportation costs are
roportional to the Euclidean distances, whereas our algorithm applies
o general cost structure that are not necessarily based in distances.
able 7 includes, for each value of 𝑛, the mean of instances with
∈ {5, 10, 15, 20}. Although the algorithms by Meier et al. (2016)

ook better for large values of 𝑝, we can observe that our procedure
rovides competitive computational times on average. Moreover, the
verall mean provides a general idea of the time improvement of our
rocedure, since it reports an average of 1406.33 s whereas the results
n Meier et al. (2016) reported 2560.39 s on average.

Table 8 reports the computational results for TR data set, where
represents the candidate sites for locating hubs and column 𝛼 gives

he different values of 𝛼 tested. We also include the times obtained
y Ghaffarinasab and Kara (2019). We can observe that our method-
logy improve the computational experiments given in Ghaffarinasab
nd Kara (2019).

.2.2. Results for the USAHLP
Algorithm 1 can be adapted for solving the USAHLP. Analogously

o the USApHMP models, we also include the performance of solution
10
procedures by Ghaffarinasab and Kara (2019) for solving the USAHLP
on AP and TR data sets. The results are reported in Tables 9 and 10.

There are two types of fixed hub establishment cost values and two
types of hub capacity values in the AP data set, tight and loose. These
instances are denoted as LT, TT, LL and TL. The first letter indicates
whether loose or tight fixed costs apply (loose fixed costs are low, being
dominated by transportation costs, while it is the other way around for
tight fixed costs). The second letter indicates if the capacities are loose
or tight. Since we do not consider the hub capacities in our work, we
use LT and TT instances, as in Ghaffarinasab and Kara (2019). Table 9
shows the results with different values of 𝑛 ranging from 10 to 200.
The solution times for solving the USAHLP with the method proposed
in Ghaffarinasab and Kara (2019) are included. It is observed that
our solution method provides better computational times than those
of Ghaffarinasab and Kara (2019) for all the instances.

The solution times for the TR data set are given in Table 10.
Column FCS corresponds to the fixed cost scaling factor considered
in Ghaffarinasab and Kara (2019). Results reported in this table indicate
that our procedure reduces the times respect to the method provided
in Ghaffarinasab and Kara (2019).



Computers and Operations Research 155 (2023) 106241I. Espejo et al.

b
g
f
d

Table 6
Results with AP data set for USApHMP.
𝑛 𝑝 Algorithm 1 GK(2019)

Objective Nodes #(26) #(28) #(30) Time Time

100

5 136929.44 97 189 251 675 123.7 313.80
10 106469.57 1 154 309 510 47.0 109.18
15 90533.52 7 108 304 617 93.3 144.40
20 80270.96 1 131 382 655 53.3 61.47

125

5 137175.68 127 222 363 972 234.2 1286.48
10 107092.09 38 255 330 456 162.0 414.08
15 91494.56 171 298 417 1091 769.4 1271.86
20 81471.65 3 172 486 1060 165.7 213.76

150

5 137425.91 175 229 331 1042 704.7 2989.83
10 107478.12 70 277 439 768 340.5 1148.01
15 92050.58 21 182 474 1063 419.6 1695.15
20 82229.39 4 201 535 934 302.6 531.99

175

5 139354.51 205 425 94 1624 1284.2 31347.15
10 109744.35 253 386 513 1085 2331.3 10551.64
15 94123.66 4851 2349 614 1961 11234.3 19602.93
20 83843.54 225 435 730 1328 1601.1 1778.11

200

5 140062.65 429 380 286 1686 3954.1 127546.79
10 110147.65 280 318 602 1598 1775.3 46706.90
15 94459.20 43 274 592 1366 1038.4 26640.56
20 84955.37 900 406 734 1485 1491.9 27224.48
Table 7
Results with AP data set for USApHMP.
𝑛 𝑝 Algorithm 1 MCRB(2016)

Objective Time Time

100

5 136929.44 123.7 356.39
10 106469.57 47.0 32.22
15 90533.52 93.3 85.95
20 80270.96 53.3 33.54

Mean 79.3 127.02

125

5 137175.68 234.2 1104.31
10 107092.09 162.0 184.62
15 91494.56 769.4 465.08
20 81471.65 165.7 111.03

Mean 332.8 466.26

150

5 137425.91 704.7 1474.76
10 107478.12 340.5 412.53
15 92050.58 419.6 405.57
20 82229.39 302.6 185.34

Mean 441.9 619.55

175

5 139354.51 1284.2 10699.58
10 109744.35 2331.3 3023.02
15 94123.66 11234.3 8143.73
20 83843.54 1601.1 271.02

Mean 4112.7 5534.33

200

5 140062.65 3954.1 17628.38
10 110147.65 1775.3 4957.31
15 94459.20 1038.4 1107.48
20 84955.37 1491.9 526.08

Mean 2064.9 6054.81
Total mean 1406.3 2560.39

6. Conclusions

We have presented a new formulation for uncapacitated single-
allocation hub location problems with fewer variables (𝑛2 assignment
inary variables and 𝑛 continuous variables) than the previous Inte-
er Linear Programming formulations known in the literature. The
ormulation holds for general cost structures that are not based on
istances and do not necessarily satisfy triangle inequality, and costs
11
could also be aggregated along the whole origin-hub-hub-destination
path, instead of being decomposed by arc. Different families of valid
inequalities are developed to strengthen the original formulation by
proposing extended formulations and projecting out some of their
variables using Farkas’ Lemma. Moreover, we have proposed a branch-
and-cut algorithm to solve these models based on a relaxed version of
the new formulation whose restrictions are inserted in a cut generation
procedure together with two sets of valid inequalities.

The performance of the proposed algorithm has been tested on
three well-known hub location data sets, namely the CAB, TR and
AP data sets. The numerical results clearly show the importance of
using the relaxed version of the new formulation instead of the original
formulation, together with (28) and (30), since the optimal solutions
are obtained in lower computing times.

The experiments were also compared to the most recent and effi-
cient exact algorithms known for single-allocation hub location prob-
lems. The reported results show that our algorithm outperforms the
previous ones in the standard benchmarks for hub location prob-
lems, providing competitive computing times for solving large-scale
instances.

An interesting avenue for future research is to adapt the new formu-
lation and modify the proposed algorithm to solve other variants of the
single allocation hubs location problems, which include hub capacities
or uncertainty by generating different scenarios of flows among sites.
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Data will be made available on request.
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Table 8
Results with TR data set for USApHMP.
𝛼 𝑝 |𝐻| Algorithm 1 GK(2019)

Objective Nodes #(26) #(28) #(30) Time Time

0.2

2 22 784.84 1 131 26 137 2.0 9.57
81 781.32 13 164 72 244 26.9 33.81

4 22 580.44 46 211 28 322 10.5 23.05
81 575.17 57 218 43 386 51.5 66.36

6 22 454.09 40 144 27 102 4.4 10.76
81 448.60 51 128 56 127 14.3 27.83

8 22 399.61 50 170 32 131 5.0 13.60
81 396.48 131 149 37 237 26.3 33.36

10 22 359.72 177 158 32 130 6.7 16.12
81 357.70 143 147 36 225 27.0 23.97

0.4

2 22 860.76 4 157 21 238 4.2 12.15
81 850.17 12 186 85 389 30.3 41.19

4 22 690.28 149 258 28 388 16.0 33.33
81 683.24 407 337 22 607 115.0 293.15

6 22 586.30 89 169 25 224 9.1 21.85
81 579.38 223 218 40 420 48.8 57.97

8 22 531.86 87 174 21 258 9.7 21.45
81 530.39 607 278 34 418 77.4 323.08

10 22 494.42 1543 260 36 258 18.6 20.18
81 493.30 1445 410 33 501 105.0 320.94

0.6

2 22 916.90 8 203 30 390 7.5 15.80
81 916.69 27 301 98 532 60.8 142.99

4 22 790.69 106 341 39 667 33.9 78.08
81 777.03 265 251 18 690 127.5 363.33

6 22 699.64 217 205 30 366 13.2 36.83
81 691.35 125 186 33 589 62.8 106.54

8 22 655.24 331 242 20 439 18.5 34.73
81 651.35 231 195 38 755 143.4 686.88

10 22 622.19 1861 248 42 523 30.6 50.77
81 619.08 359 230 38 736 132.1 797.82

0.8

2 22 961.83 61 275 45 472 15.7 31.75
81 961.83 137 175 118 665 103.2 180.57

4 22 871.59 456 348 42 838 44.0 112.19
81 861.99 229 282 46 724 142.0 1084.03

6 22 805.51 93 234 29 539 16.2 66.53
81 792.28 265 216 36 632 79.0 280.25

8 22 770.82 524 290 18 583 25.5 66.84
81 762.10 647 322 36 763 156.1 800.64

10 22 742.51 609 239 45 651 26.2 42.25
81 737.71 1641 447 28 809 190.0 2165.9

1

2 22 992.72 35 142 1 652 19.0 73.84
81 992.72 81 265 158 753 122.0 272.75

4 22 946.94 2225 543 56 994 76.5 365.88
81 932.56 433 317 48 855 230.5 508.60

6 22 904.83 2423 507 57 855 64.3 175.61
81 883.85 207 241 32 806 209.4 400.02

8 22 876.57 1477 351 33 985 61.6 226.93
81 862.10 811 286 38 973 229.6 1845.28

10 22 857.28 5055 798 63 974 80.3 150.02
81 843.38 673 270 44 1000 190.1 1476.57
12
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Table 9
Results with AP data set for USAHLP.
Instance 𝑛 Algorithm 1 GK(2019)

Objective Nodes #(26) #(28) #(30) Time Time

LT

10 224250.05 1 16 18 9 0 0.69
20 234690.96 1 27 41 18 0.1 0.36
25 236650.63 1 28 55 32 0.2 0.48
40 240986.23 2 50 68 154 1.5 2.10
50 237421.99 1 75 95 94 1.9 4.42
60 228855.08 3 36 138 99 5.8 10.52
70 226188.20 1 93 164 100 5.2 21.76
75 235847.50 1 103 140 202 10.6 41.55
90 225475.48 2 130 259 244 27.1 98.92

100 238016.28 1 58 116 182 26.3 82.42
125 227949.00 1 167 418 447 115.9 411.56
150 225450.09 1 198 474 436 207.5 1259.22
175 227655.38 2 210 398 393 330.9 2044.77
200 233802.98 15 149 570 428 1816.7 5494.77

TT

10 263399.94 1 13 10 17 0 0.22
20 271128.18 1 16 20 53 0.1 0.32
25 295667.84 1 28 35 24 0.1 0.68
40 293164.84 1 32 32 38 0.4 0.67
50 300420.99 1 48 76 58 1.3 3.92
60 264742.11 1 81 141 81 4.3 10.62
70 261294.99 1 0 0 0 1.4 8.41
75 288778.29 1 48 77 66 4.2 15.38
90 257415.86 1 72 181 136 17.2 50.40

100 305097.95 1 58 57 33 12.7 60.23
125 258839.68 1 76 229 180 49.1 188.05
150 234778.74 12 120 273 139 132.5 478.38
175 247876.80 1 149 526 607 554.5 1639.21
200 272188.11 118 727 499 1210 16489.1 20292.35
Table 10
Results with TR data set for USAHLP.
FCS 𝛼 |𝐻| Algorithm 1 GK(2019)

Objective Nodes #(26) #(28) #(30) Time Time

0.05

0.2 22 549.96 144 196 96 135 6.1 14.10
81 547.57 83 207 51 110 18.2 28.76

0.4 22 682.84 337 208 26 199 9.8 13.04
81 678.60 172 196 51 189 31.7 42.59

0.6 22 808.93 303 223 31 409 14.3 43.17
81 803.24 319 216 55 386 55.5 97.51

0.8 22 925.87 875 356 38 755 33.4 85.90
81 918.64 129 252 66 603 83.1 247.77

1 22 1015.94 747 296 83 855 40.2 126.49
81 1015.94 286 253 77 867 166.8 975.20

0.1

0.2 22 683.10 43 175 115 149 4.7 11.29
81 681.66 71 170 64 221 23.6 31.20

0.4 22 806.02 154 177 33 182 8.3 16.43
81 806.02 257 261 62 323 39.6 48.93

0.6 22 920.28 145 180 41 345 12.7 29.88
81 920.28 138 231 82 459 46.2 144.50

0.8 22 1007.68 103 204 45 391 11.8 56.41
81 1007.68 106 222 102 435 49.5 159.45

1 22 1056.26 1 178 70 176 1.8 47.02
81 1056.26 1 187 127 376 24.9 54.94

0.15

0.2 22 772.66 61 213 29 174 6.4 17.09
81 765.28 28 110 65 99 11.5 32.26

0.4 22 884.34 49 171 40 199 6.5 20.09
81 884.34 231 211 88 236 34.5 55.45

0.6 22 983.63 30 203 60 284 7.0 18.03
81 983.63 69 232 96 276 28.6 42.32

0.8 22 1067.22 58 183 69 395 10.2 21.16
81 1067.22 85 194 108 429 57.3 156.06

1 22 1071.79 1 107 35 72 0.9 3.77
81 1071.79 1 99 67 72 6.3 14.56
13
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Table S.1
Results using CAB data set for USApHMP with 𝑛 = 25.
𝑝 𝛼 Algorithm 1 GK(2019)

Objective Nodes #(26) #(28) #(30) Time Time

2 0.2 1000.91 1 26 26 23 0.08 0.52
3 0.2 767.35 8 44 37 43 0.22 0.45
4 0.2 629.63 3 31 42 35 0.13 0.21
5 0.2 538.37 1 30 41 30 0.11 0.18
2 0.4 1101.63 1 26 26 23 0.08 0.11
3 0.4 901.70 6 45 41 75 0.34 0.33
4 0.4 787.52 2 36 42 54 0.24 0.28
5 0.4 707.69 29 33 31 39 0.28 0.20
2 0.6 1201.21 1 50 57 108 0.23 0.13
3 0.6 1033.56 19 47 36 130 0.78 0.40
4 0.6 939.21 2 40 41 92 0.28 0.47
5 0.6 876.59 30 28 29 85 0.67 0.34
2 0.8 1294.08 1 50 52 150 0.36 0.30
3 0.8 1158.83 1 59 46 158 0.44 0.45
4 0.8 1087.66 6 42 43 170 0.50 0.69
5 0.8 1034.10 2 34 38 166 0.52 0.49
2 1 1359.19 18 51 65 194 0.77 0.72
3 1 1256.63 1 60 50 156 0.53 0.58
4 1 1211.23 4 42 45 261 1.05 1.00
5 1 1173.24 51 50 31 263 1.47 1.04
Table S.2
Results using CAB data set for USAHLP with 𝑛 = 25.

FC 𝛼 Algorithm 1 GK(2019)

Objective Nodes #(26) #(28) #(30) Time Time

100 0.2 1029.63 1 32 49 43 0.12 0.59
150 0.2 1217.35 13 33 51 74 0.28 0.46
200 0.2 1367.35 11 44 37 43 0.20 0.33
250 0.2 1500.91 2 57 39 27 0.22 0.28
100 0.4 1187.52 1 37 45 69 0.19 0.38
150 0.4 1351.70 2 42 43 96 0.23 0.39
200 0.4 1501.63 2 39 41 71 0.31 0.47
250 0.4 1601.63 2 55 41 34 0.14 0.15
100 0.6 1333.56 1 33 37 131 0.38 0.48
150 0.6 1483.56 1 36 40 115 0.33 0.49
200 0.6 1601.21 1 62 50 62 0.16 0.23
250 0.6 1701.21 2 54 54 62 0.20 0.19
100 0.8 1458.83 1 33 40 145 0.41 0.80
150 0.8 1594.08 1 57 51 127 0.31 0.35
200 0.8 1690.58 1 62 49 84 0.19 0.37
250 0.8 1740.58 1 39 36 24 0.08 0.19
100 1 1556.63 4 37 40 181 0.70 0.54
150 1 1640.58 1 49 53 91 0.23 0.30
200 1 1690.58 1 58 50 47 0.13 0.13
250 1 1740.58 1 39 36 24 0.08 0.12
We thank S. Haddadi for providing us the code of the primal–dual
lgorithm used for solving the transportation problem.

ppendix A. Computational studies for the CAB data set

This section is devoted to show the performance of our algorithm
or solving instances from data set CAB with 𝑛 = 25 and different values

of 𝑝. Tables S.1 and S.2 report the results for solving the USApHMP and
USAHLP, respectively. Both tables include the solution times for solving
the problem by the method of Ghaffarinasab and Kara (2019).

The numerical tables have the following structure: the first column
gives the value of 𝑝 (for the USApHMP) or the value of fixed cost
for installing hubs (for the USAHLP). Second column gives the value
of discount factor 𝛼. The next column reports the optimal objective
values. The number of nodes explored in the branching tree is given in
column labeled Nodes. The following three columns give the number of
inequalities added in the process as cuts, depending on the type, #(26),
#(28) and #(30). The total time to obtain the optimal solution with
Algorithm 1 is reported in Time. The times obtained with the method
of Ghaffarinasab and Kara (2019) are given in the last column. It is
observed that both method (our method and the ones of Ghaffarinasab
and Kara, 2019) provide computational times below two seconds.
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Appendix B. Comparing experiments in different computers

This section is devoted to provide more insights about the good
performance of Algorithm 1 in comparison with the results obtained
by Ghaffarinasab and Kara (2019). We have carried out a new compu-
tational analysis in an Intel Core i3-6100 3.7 GHz computer with 16 GB
of RAM (a similar computer to the one used in Ghaffarinasab and Kara,
2019). Moreover, two different versions of the solver have been used:
Xpress 8.10 available since 2020 and Xpress 8.04 available since 2016.
We have even fixed the number of threads of our machine to four, as
in Ghaffarinasab and Kara (2019).

Table S.3 reports the computational results provided by Ghaffari-
nasab and Kara (2019) in first column and the Algorithm 1 imple-
mented in an Intel Xeon and Xpress 8.10 (second column), Intel Xeon
and Xpress 8.0.4 (third column), Intel Core i3 and Xpress 8.10 (fourth
column) and Intel Core i3 and Xpress 8.0.4 (fifth column). These
results correspond to the AP instances for the USApHMP with 𝑛 ∈
{100, 125, 150, 175, 200} and 𝑝 ∈ {5, 10, 15, 20}. Moreover, the percentage
of improvement respect to Ghaffarinasab and Kara (2019) obtained
with the two computers and the two versions of the solvers is given.
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Table S.3
Comparative computational results considering different computers and different versions of the solver.
𝑛 𝑝 Ghaffarinasab and Intel Xeon Intel Xeon Intel Core i3 Intel Core i3

Kara (2019) Xpress 8.10 Xpress 8.0.4 Xpress 8.10 Xpress 8.0.4

100

5 313.8 123.7 118.4 197.6 213.6
10 109.1 47.0 49.4 79.1 74.6
15 144.4 93.9 87.7 148.3 136.4
20 61.4 53.3 55.2 91.7 103.4

Mean 157.2 79.5(49.5%) 77.7(50.6%) 129.2(17.8%) 132.0(16.0%)

125

5 1286.5 234.2 462.9 403.7 615.9
10 414.0 162.0 135.2 251.9 231.2
15 1271.8 769.4 374.1 1042.2 658.0
20 213.7 165.7 178.2 345.9 372.2

Mean 796.5 332.8(58.2%) 287.6(63.9%) 510.9(35.9%) 469.3(41.1%)

150

5 2989.8 704.7 1208.7 1066.1 1447.7
10 1148.0 340.5 551.1 649.3 807.1
15 1695.1 419.6 502.5 842.4 967.4
20 531.9 302.6 323.0 617.2 663.0

Mean 1591.2 441.9(72.2%) 646.3(59.4%) 793.8(50.1%) 971.3(39.0%)

175

5 31347.1 1284.2 11106.5 2395.4 20183.5
10 10551.6 2331.3 1855.1 2091.2 2205.1
15 19602.9 11234.3 19442.4 19046.4 25652.2
20 1778.1 1601.1 887.8 2371.3 2003.0

Mean 15819.9 4112.7(74.0%) 8322.9(47.4%) 6476.1(59.1%) 12510.9(20.9%)

200

5 127546.7 3954.1 4542.9 6046.2 8400.4
10 46706.9 1775.3 8813.9 3385.1 22817.1
15 26640.5 1038.4 2253.5 2039.2 2156.7
20 27224.4 1491.4 3332.6 2960.9 4937.3

Mean 57029.7 2064.8(96.4%) 4735.7(91.7%) 3607.8(93.7%) 9577.9(83.2%)
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