
Talanta Open 6 (2022) 100125

Available online 9 June 2022
2666-8319/© 2022 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-
nc-nd/4.0/).

Machine learning approaches over ion mobility spectra for the 
discrimination of ignitable liquids residues from interfering substrates☆ 
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A B S T R A C T   

In arson fires, ignitable liquids (ILs) are frequently used to start combustion. For this reason, detecting IL residues 
(ILRs) at the fire scene is a key factor in fire investigation to determine whether a crime has been committed as 
well as to establish the modus operandi of the perpetrator. In the present study, the application of headspace-gas 
chromatography-ion mobility spectrometry (HS-GC-IMS) for the detection of ILRs in fire debris from complex 
matrices in combination with machine learning (ML) tools is proposed as an alternative to the traditional 
method, based on gas chromatography–mass spectrometry (GC-MS), described by the ASTM E1618 standard 
method. For this purpose, petroleum-derived substrates (vinyl, nylon, and polyester) and natural substrates 
(cotton, cork and linoleum) burned alone and with different ILs (gasoline, diesel, ethanol and charcoal starter 
with kerosene) were used. In addition, samples were taken at different times (0, 1, 6, 12, 24 and 48 h) after the 
fire was finished. The ion mobility sum spectrum (IMSS) of each sample was obtained and different ML algo-
rithms were applied. The first derivative was performed at the IMSS, as well as a Savitzky-Golay filter. Hierar-
chical cluster analysis (HCA) revealed a clustering trend as a function of substrate and ILs used, where the studied 
sampling times did not affect the resulting clusters. The classification models for the detection of the presence of 
ILRs have high performance with an accuracy of 100% for support vector machines (SVM) and random forest 
model (RF), followed by linear discriminant analysis (LDA) with an accuracy of 86.67%. When discriminating the 
type of ILs used, the RF model obtained an accuracy of 100%, followed by the LDA with 97.22% and finally the 
SVM model with an accuracy of 93.06%. In addition, a simple web application has been developed where the 
trained models can be used, so any researcher can apply the method to detect ILRs in fire debris.   

1. Introduction 

Fire investigation is a discipline within Forensic Science and Crimi-
nalistics whose objective is to determine the origin and cause of a fire. 
When arson is suspected, the determination of the presence of a trace of 
ignitable liquids (ILs) or ignitable liquids residues (ILRs) at the fire scene 
is a key factor to establish the intentionality of the fire. 

However, the detection of ILs at the fire scene, as well as the data 
interpretation, is still a challenging task that depends on numerous 
factors such as the destructive nature of the fire itself, the type of burned 
material, the type of ILs used, the firefighters’ actions, the sampling 
time, or the weathering phenomena among others [1–3]. In recent years, 

new ILs and household furnishing, especially those derived from pe-
troleum, have appeared, resulting in more complex interferences since 
they share many signals with the ILs. Besides, the composition of the 
substrate may change during the combustion process due to pyrolysis of 
the compounds present in substrates, and also may be due to presence of 
ILRs. On the other hand, ILs might also result in different signals because 
the difference in calorific power causes different pyrolysis products [4]. 
All these factors highlight the difficulty of detecting and identifying the 
type of ILs used, especially when there are interfering substrates such as 
petroleum-derived products that may hinder the correct interpretation 
of data [5]. 

For these reasons, it is necessary to have robust analytical methods to 
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detect the presence of ILs accurately. Up to now, the method par 
excellence is based on Gas Chromatography-Mass Spectrometry (GC- 
MS). In this sense, the American Society of Testing and Material (ASTM) 
has established a protocol for ILs analysis and classification into one of 
the eight classes established by GC-MS (E1618) [6]. This standard is 
usually coupled with a preconcentration method based commonly on 
the use of active carbon strips (ACS) established in ATSM - E1412 [7]. 
However, there are other methods of preconcentration that have been 
proposed such as solid phase microextraction [8], static headspace 
adsorption with tenax [9] or headspace sorptive extraction [10]. 
Regardless of the preconcentration method, the ASTM E1618 states that 
the identification of ILs is performed by visual comparison of the chro-
matogram, extracted ion profiling, and target compound with a refer-
ence database. Normally, each laboratory has its own library although 
they also use IL data collection libraries available online [11–13]. This 
methodology is somewhat subjective, time-consuming and requires a 
specialized operator. Therefore, more and more studies are proposing 
the use of chemometric tools to process the large amount of information 
obtained and automatically identify the presence of ILs with evidential 
strength (class belonging) [14]. Sigman et al. proposed the use of the TIS 
(total ion spectrum) where the identification of individual compounds in 
the sample is not carried out, and it has been successfully applied to 
determine the clustering tendency and to classify different ILs on 
different substrates, including petroleum-based products [15–18]. 
Moreover, it has been successfully applied even when different ILs 
altered by weathering and microbial degradation phenomena were used 
[19]. 

Most of the alternative methods to the ASTM E1618 are still based on 
GC-MS. In this sense, two-dimensional gas chromatography coupled to 
time-of-flight mass spectrometry have given excellent results [20] and 
has been tested on 19 different substrates with different ILs [21]. 
However, all these GC-MS methods also present some major disadvan-
tages: long analysis times, higher cost, the use of contaminating solvents, 
sample preparation, or complexity of the technique among others. 
Therefore, other authors have evaluated several spectroscopic tech-
niques as alternatives for the detection of ILs to reduce time, complexity 
and/or the use of solvents. In this case, González-Rodríguez et al. [4] 
and Kerr et al. [22] have obtained good results with Raman spectroscopy 
whereas Martín-Alberca et al. used Fourier Transform Infrared Spec-
troscopy [23] and Choi et al. applied laser-induced breakdown spec-
troscopy [24]. Ferreiro-González et al. have proposed the use of 
headspace-mass spectrometry electronic nose (HS-MS eNose), doing a 
direct analysis of the sample since there is no chromatographic separa-
tion nor identification of individual compounds [25]. With HS-MS 
eNose, the TIS is readily obtained and, in combination with the che-
mometrics used for the discrimination of samples, it is also obtained in a 
fast, eco-friendly and easy way. This methodology has been first suc-
cessfully applied to thermally desorbed the ACS [26], and then for direct 
analysis of fire debris samples without the use of any adsorbent [25,27], 
including complex matrices samples [28] containing different fire sup-
pression agents or that were subjected to weathering phenomena [29]. 

Recently, the potential of headspace analysis by headspace gas 
chromatography-ion mobility spectrometry (HS-GC-IMS) to detect the 
presence of ILs in fire debris has also been demonstrated [30,31]. 
Furthermore, it has been applied to study the biodegradation phenom-
ena of different neat ILs [32]. This technique, in addition to being fast, 
cheap, eco-friendly and not requiring a specialized technician, has great 
portability because it works at atmospheric pressure, making it possible 
to perform in-situ analysis at the fire scene itself. However, this tech-
nique generates a large amount of data and, similar to TIS, the ion 
mobility sum spectrum (IMSS) is obtained. This has never been used for 
the identification of ILs in complex matrices such as burned 
petroleum-derived substrates or samples taken at different times, so the 
interpretation of the data requires advanced machine learning (ML) 
techniques that allow automating and simplifying the process. 

Focusing on data analysis, the most commonly used chemometric 

tools in most studies are principal component analysis (PCA), hierar-
chical cluster analysis (HCA) and linear discriminant analysis (LDA). 
However, the use of other techniques such as support vector machines 
(SVM) or random forest models (RF) is less commonly employed [33]. In 
addition, these techniques have never been evaluated in combination 
with IMSS to identify ILs. Nevertheless, a recent study has used SVM and 
RF models to determine the octane number in gasoline samples analyzed 
by HS-MS and NIR [34]. Furthermore, there are studies where the SVM 
model offers better results than the LDA in the identification of ILs in 
neat and ILs in fire debris, using the information corresponding to the 
TIS [18,35]. 

As it was previously mentioned, there is a Fire Debris Databases 
developed by the National Center for Forensic Science (NCFS) at the 
University of Central Florida (https://ncfs.ucf.edu/databases) [11–13] 
that contain characterization data used in the analysis of fire debris 
samples including neat ILs, ILRs and substrates, which have been 
analyzed following the ATSM E1618. These databases are very useful 
since they help forensic analysts to search for references samples to 
determine the presence and type of ILs in a test sample by visual com-
parison of the chromatogram. However, as previously discussed, the 
visual comparison established by ASTM 1618 has limitations. For this 
reason, many researchers are currently studying the possibility of 
applying mathematical algorithms (ML models) to assist the analyst in 
the interpretation of fire debris data [16]. So far, these models created 
by the researchers are not shared and therefore, other users are unable to 
automatically determine the presence of ILs in the sample. This makes 
the characterization of the samples challenging for the rest of the users, 
in addition to making interlaboratory validation difficult. 

The objective of this study is to evaluate the suitability of different 
ML approaches (LDA, SVM and RF) applied on IMSS to automatically 
discriminate among different fire debris samples which contain inter-
fering substrates (such as vinyl, nylon and polyester among others) that 
may hinder the correct interpretation of data [36]. Additionally, the 
samples were taken at different times in order to include more vari-
ability to the data. Gasoline, diesel, charcoal starter with kerosene and 
ethanol were used as IL to burn the materials. 

2. Materials and methods 

2.1. Samples: substrates and ignitable liquids 

Six types of substrates were chosen for the fire debris preparation, 
three of them were petroleum-based products: vinyl flooring (43% 
ethylene and 57% chlorine), polyester carpet (100% polyester), nylon 
carpet (100% polyamide). The other three substrates, natural cork 
wood, 100% cotton sheets and linoleum flooring (limestone, wood 
powder, and linseed oil) were chosen for comparison purposes as they 
were natural. All of them are common to find in a residential home, so 
their analysis would be of great help to fire scene investigators and 
forensic scientists. 

The ILs used for burning were purchased from local stores and these 
were: gasoline (95 Research Octane Number, lead-free), diesel (cetane 
index > 45), ethanol (absolute, 99.8% pure) from Panreac (Barcelona, 
Spain), and charcoal starter with kerosene (naphtha petroleum, hydro-
treated heavy, kerosene). All the ILs were commonly found in arson fires 
due to their easy accessibility, availability and relatively low cost. 

2.2. Fire debris sample preparation 

The fire samples were obtained according to the protocol of the 
Destructive Distillation Method for Burning [37] with some modifica-
tions as it was previously reported [28]. Each substrate was burned in 
metal cans with each of the ILs described previously. Fire debris samples 
were taken from each can just after burning (10 min) and after 1, 6, 12, 
24 and 48 h. The samples were kept in closed cans in a room with a 
constant temperature of 25 ̊C. Fire debris samples are taken at different 
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times because, in a real fire, sampling usually cannot be taken imme-
diately, and it may require several days for the fire scene to be safe and 
examined. Therefore, the number of total samples was 360 (5 ILs/Alone 
x 6 substrates x 6 sampling times x 2 replicates). 

The samples were labeled with the abbreviated name of the substrate 
used which was as follows: V (vinyl), LIN (linoleum), N (nylon carpet), 
PO (polyester carpet), CS (cotton sheet) and CO (cork). Subsequently, 
the code of the IL used for burning is added: Gas for gasoline, Die for 
diesel, Et for ethanol and Ker for charcoal starter with kerosene. Finally, 
the time of sample collection is indicated, and the label R1, R2 or P refers 
to the first and second replicate and an average of both, respectively. 
Thus, a cork sample burned without ILs and taken at 10 min would be 
labeled CO_0H_R1 for the first replicate, CO_0H_R2 for the second 
replicate and CO_0H_P to refer to the average of both replicates. In the 
case of a first replicate of a cotton sheet sample burned with gasoline and 
taken 48 h after the fire, it would be labeled as CS+Gas_48H_R1. 

2.3. HS-GC-IMS analysis 

All the fire debris samples were directly analyzed by using the Fla-
vourSpec system (G.A.S., Dortmund, Germany). This unit consists of a 
headspace generator (HS) followed by a gas chromatography column 
(GC) coupled to an ion mobility spectrometry detector (IMS). The 
chromatographic column was very short being a multicapillary MCC 
OV-5 of 20 cm in length. Both the drift and carrier gas were nitrogen 
with a purity of 99.999%, and to create the headspace, a temperature of 
80 ºC and agitation for 20 min was applied. The rest of the analysis 
conditions for HS and GC-IMS can be found in the previously described 
literature for fire debris analysis [30]. Therefore, the total analysis time 
was 30 min. 

2.4. Data analysis and software 

Once all the samples were analyzed, the Ion Mobility Sum Spectrum 
(IMSS) was obtained using LAV HS-GC-IMS software (G.A.S., Dortmund, 
Germany). The IMSS is obtained by summing all the intensities for each 
drift time, independently of the chromatographic time. Therefore, the 
chromatographic information is eliminated. The range selected was 
from 1.029 to 1.92 relative to the Reaction Ion Peak (RIP) since this is 
the region where the characteristic signals of the samples appeared. The 
data was stored in 2D arrays represented by Dnxp where “n” refers to the 
number of samples and “p” to the number of variables (drift times). 
Thus, the final matrix will consist of 936 drift times (relative to RIP) and 
360 samples, i.e., D936x360. 

The analysis was performed using RStudio version 4.0.2 (RStudio 
Team 2021, Boston, MA, USA) but different packages were used, the 
main ones were: prospectr [38] to apply the derivative and the 
Savitzky-Golay filter, factoextra [39] for the hierarchical cluster analysis 
representations, caret [40] to train the different machine learning 
models and shiny [41] for application development. 

The different machine learning models used are: I) Linear Discrimi-
nant Analysis (LDA) which is a supervised technique used for the clas-
sification of samples based on Fisher’s linear discriminator. 
Discriminant functions are created by linear combinations of the orig-
inal variables and are responsible for determining to which group each 
observation is assigned. II) random forest (RF) which is a supervised 
technique used in both regression and classification problems based on 
the generation of a multitude of individual trees. This algorithm includes 
hyperparameters that have to be previously chosen. These hyper-
parameters are the number of trees that make up the random forest 
model (known as ntree hyperparameter) and the number of variables 
evaluated before splitting in each individual tree (known as mtry 
hyperparameter). III) Support Vector Machine (SVM) with Gaussian 
Kernel, which is a supervised technique used in both regression and 
classification problems based on the hyperplane concept. There are 2 
hyperparameters whose value has to be previously chosen. One of them 

is called cost (C) and controls the number of misclassifications allowed 
by the hyperplane, i.e., the number of support vectors. The other is 
called gamma (γ) and is responsible for controlling the flexibility of the 
model. The hyperparameter γ appears due to the use of a radial basis 
function (Gaussian kernel), which allows the generation of nonlinear 
separation limits. 

3. Results and discussion 

3.1. Exploratory analysis 

All samples were analyzed by HS-GC-IMS, and spectra ranging from 
drift time 1.029 to 1.92 relative to the RIP were obtained. Throughout 
the exploratory analysis, the replicates were averaged to facilitate the 
visualization, therefore, the data matrix used is given by D936x180. 

The raw IMSS for all the fire debris samples are represented in 
Fig. 1A. Since the objective is to detect first the presence or not of ILRs, 
as well as the type of ILR if there is any, the samples have been colored 
according to the type of IL used for burning. In this way, the IMSS of all 
samples belonging to each of the classes are shown: Substrates burned 
without ILs (Alone), substrates burned with gasoline (Gas_ILR), diesel 
(Die_ILR), ethanol (Et_ILR) and charcoal starter with kerosene (Ker_ILR). 

As can be seen, the bands are wide and there is a baseline shift, 
especially large for the Ker_ILR samples. Focusing on the last region of 
the spectrum, for example, from drift time 1.769 to the end, it could 
easily distinguish the Ker_ILR samples from the rest since it presents a 
higher intensity. However, this is a consequence of the baseline shift due 
to the instrumental noise and slight variation in recording conditions 
and there may be no real differences between them. In order to develop 
robust predictive ML models and to avoid creating non-generalizable 
ILRs detection models, some data pretreatment was applied. The first 
derivative was calculated and a Savitzky-Golay smoothing filter (poly-
nomial degree 3 and window size 11) was applied. The resulting spectra 
after such pretreatment are represented in Fig. 1B. It should be noted 
that after applying the Savitzky-Golay filter, the information edges are 
eliminated too and, therefore, the resulting matrix is then reduced from 
936 to 882 variables ranging from drift time 1.034 to 1.915 (Relative to 
RIP). 

As previously discussed, in Fig. 1A the Ker_ILR samples can be 
differentiated from the rest by observing the final region of the spec-
trum, but this is not possible in Fig. 1B as these are not real differences. 

As can be seen, differentiating the samples visually based on their 
spectra is a difficult and subjective task. Besides, no clear differences are 
shown in all fire debris samples. In this case, the complexity of the 
matrix is too high and it is impossible to find clear generalizable pat-
terns. It is noteworthy that some of the burned substrates are petroleum- 
derived, which gives an extra complexity because they could share some 
signals with the ILs used. In addition, it must be noted that samples with 
different post-fire periods of time were included in this data set, spe-
cifically from 10 min up to 48 h were used and during this time some 
chemical modification could happen. 

For all these reasons, it is mandatory to use chemometric tools that 
help to obtain a better understanding of the structure and relationship of 
the data. In this case, a hierarchical cluster analysis (HCA) was carried 
out to assess whether there is any clustering tendency of the fire debris 
samples to be classified according to the presence /absence of the ILR 
and the type of ILR in case there is one. For this analysis, the matrix 
D882x180 corresponding to the average of the replicates and the use of the 
first derivative and Savitzky-Golay filter was used. In addition, the 
Ward’s method with Manhattan distance was chosen. The resulting 
dendrogram (Fig. 2) is plotted in a circular format to ease its 
visualization. 

To better understand the structure and relationships of the samples, 
in Fig. 2 the branches corresponding to the 8 main clusters have been 
colored and the two major clusters have been labeled with the letter "A" 
and "B". As can be seen, cluster A contains exclusively all samples from 
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the alone group (without IL), as well as all samples from the Et_ILRs 
group. In the case of cluster B, there are all the samples burned with the 
rest of the ILs. Therefore, there is a strong tendency of classification 
according to whether the sample has been burned using ILs or not. 

Focusing on cluster A, it can be seen that Et_ILR and Alone samples 
are mixed. Most of the ILs are complex mixtures of several compounds, 
however ethanol is a pure compound producing limited number of sig-
nals in the ion mobility spectra in the fire debris, regardless the sub-
strate. Therefore, samples burned with ethanol are showing larger 

similarities to samples burned without an IL than any other sample. 
Additionally, the substrate is very influential to the clustering results. 
The purple cluster contains the substrates LIN, V and PO. The brown 
cluster is made up of the N substrate samples, while dark green contains 
the CO and CS substrates. Therefore, the substrate itself as well as the 
combustion are the most important signals in the IMSS and are classified 
according to this. 

Focusing on cluster B, a strong tendency to classify according to ILRs 
type as well as substrate is observed. So much so, that the dark blue 

Fig. 1. (A) Representation of the raw spectra (IMSS) obtained for all the fire debris samples (D936x180) analyzed by HS-GC-IMS (B) IMSS for all the fire debris 
samples (D882x180) analyzed by HS-GC-IMS after the application of the first derivative and a Savitzky-Golay filter. All burned samples are colored according to the 
ILs used for burning: Alone for samples without IL (light green), Die_ILR for diesel (dark blue), Et_ILR for ethanol (light blue), Gas_ILR for gasoline (yellow) and 
Ker_ILR for kerosene (purple) 
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cluster is formed solely and exclusively by Ker_ILR samples. Further-
more, the different subclusters that are formed seem to differ mainly 
based on the substrate, for example, all Ker_ILR with CO substrate are in 
the same subgroup regardless of the sampling time. Subsequently, the 
group most similar to Ker_ILR is the orange cluster that contains the 
Nylon (N) samples burned with gasoline or diesel. In this case, the most 
important factor has been the substrate and the subcluster division is 
done according to the type of ILRs (gasoline or diesel). The sampling 
time does not seem to be relevant for this analysis. It should be noted 
that nylon is quite interfering when burned with gasoline [42], and at 

high temperatures, volatile compounds characteristic of nylon are 
released. Therefore, the greater similarity of the ion mobility spectra of 
this group and the spectra obtained from the fire debris produced using 
kerosene, must be due to the chemical composition of nylon that is really 
different than the chemical composition of the other substrates. 

It is observed that the violet cluster is formed by samples containing 
the LIN, V and PO substrates burned with both diesel and gasoline. 
However, the samples are divided into smaller groups depending on the 
type of ILs and substrate used, regardless of the sampling time. In 
addition, V and LIN substrates seem to be more similar to each other 

Fig. 2. Dendrogram resulting from the hierarchical cluster analysis (HCA) using Ward́s method with Manhattan distances. Samples are colored according to the type 
of IL used for burning: Alone without IL (light green), Die for diesel (orange), Et for ethanol (brown), Gas for gasoline (dark green) and Ker for charcoal started with 
kerosene (red). 
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than to PO, this could be due to the fact that vinyl and linoleum have a 
more similar chemical composition than polyester. Subsequently, the 
light green cluster contains the samples of the rest of the substrate (CO 
and CS) burned with gasoline, while the light blue cluster contains the 
same samples but burned with diesel. Once again, the trend of classifi-
cation according to ILs and substrate is corroborated. Moreover, it is 
interesting that these two substrates (CO and CS) are separated from the 
rest (LIN, V and PO) as they are wood and cotton respectively, i.e., non- 
interfering and natural substrates. This is not the case of linoleum, 
which, despite being natural, presents a more complex ion mobility 
spectrum and so, it appears closer to those substrates derived from 
petroleum. 

This data matrix was also analyzed by HS-MS and the result of the 
HCA analysis was similar [28]. In this case, the TIS was also influenced 
by the substrate and the type of ILRs while the sampling time did not 
seem to be as important. However, the subdivision as a function of 
substrate was not as remarkable as that obtained in IMSS. 

These results suggest that the type of ILs for the ignition is an 
important factor that affects the IMSS and, in the case of use ethanol, 
there are no great differences with the samples burned without ILs, so in 
this case false negatives could be easily obtained. The substrate has a 
common signal with IMSS from ILs neat. In addition, clear differences 
between interfering substrates and natural ones (CO and CS) were 
observed. In the case of the studied sampling time, this does not seem to 
interfere with the classification of ILRs based on IMSS. This is a very 
useful aspect because sometimes in real fire scenes immediate sampling 
is usually not possible. In some cases, the actions may take several days, 
and this does not seem to be a problem when analyzed by the HS-GC-IMS 
technique. However, all these situations add extra complexity in iden-
tifying the presence of ILRs and the type used, but this complexity is 
necessary because samples need to reflect more accurately those taken 
in a real fire. 

3.2. Supervised models for ILs detection 

It has been shown that there is a tendency to classify according to the 
type of ILRs, but the variability due to the substrate burned makes it 
impossible to distinguish the presence of ILRs and its type perfectly. For 
this reason and, in order to have mathematical models to predict future 
samples, supervised models have been tested. Since in a real fire scene 
the first step is to determine whether an ILs is present or not, the models 
were created by establishing two classes a priori: "Alone" which includes 
the samples of the different substrates burned without ILs and "ILs" 
composed by the rest of the samples burned with the different ILs and 
substrates. Therefore, in this case, the "Alone" group is made up of 72 
samples, which represents 20% of the total samples, while the "ILs" 
group has the remaining 288 samples, which represents the 80% of the 
total samples. 

Different algorithms have been evaluated, including linear discrim-
inant analysis (LDA), which is the most widely used technique in this 
type of research, as well as other non-parametric approaches based on 
support vector machines (SVM) with Gaussian kernel and random forest 
(RF). The full data matrix (with first derivative and Savitzky-Golay filter 
- D882x360) was randomly split into two subsets with a ratio of 75% and 
25% of the observations. In addition, it was ensured that class propor-
tionality was kept in both subsets. The first one is the training set used to 
create the models and, the second one is the test set used to evaluate the 
performance of the models created. A summary of the accuracy obtained 
for the different trained models is shown in Table 1. 

3.2.1. Linear discriminant analysis (LDA) 
The LDA model was created with the training set, consisting of 75% 

of the total samples and using all the variables (882 drift times), as 
explained above. This LDA model was used to predict the samples used 
in its own creation (training set) and was able to correctly classify 100% 
of them. However, when the test set is predicted, 12 samples out of 90 

were misclassified. This represents an accuracy of 86.67%, with a 
decrease in the performance of sample prediction never seen before by 
the model. In this case, the model suffers from overfitting, predicting the 
training set excellently but not being as generalizable to new observa-
tions. It should be noted that the groups are unbalanced and the "ILs" 
group constitutes the 80% of the data. Therefore, if the majority class is 
predicted, the accuracy will be 80% and the performance of this model 
should be considered quite low. In this case, it is better to use the kappa 
statistic to evaluate performance as it takes into account the probability 
that a prediction is correct simply by chance. The kappa value was 
0.667, and according to the existing literature, values between 0.6 and 
0.8 are considered substantial performance [43]. However, previous 
studies have obtained good performance of the LDA model in combi-
nation with IMSS when having less complex ILRs matrices [31]. Also, 
other studies using TIS from HS-MS analysis have reported good results 
when using the LDA model in complex matrices [18,28]. 

3.2.2. Random forest (RF) 
The RF model was trained with the same training set as the LDA, but 

unlike this algorithm, the values for both hyperparameters explained 
above must be chosen beforehand. In this case, the ntree was kept at 500 
because it is a sufficiently large number to stabilize the error. The value 
of mtry was 30 because for classification problems it is recommended to 
use the square root of the total number of variables [44]. 

Finally, the RF model was trained, leading to 100% of accuracy in the 
training set and 100% in the test set, therefore, the kappa statistic is 1. 
The 90 observations that constitute the test set were correctly classified 
and the probability of belonging to each class can be found in Table S1 
(Supplementary material). It is observed that when the samples are 
burned without ILs the probability of correct classification is high, above 
90% in most cases, and in samples burned with an IL the model always 
has a probability greater than 90% of identifying the presence of the ILs. 
Furthermore, the performance of the model is excellent (100% of sam-
ples classified correctly) and far superior to the LDA model. 

3.2.3. Support Vector Machine (SVM) with Gaussian kernel 
The SVM model was trained with the same training set as the pre-

vious models, and the hyperparameters C and γ were optimized. This 
optimization was performed in parallel and checked the accuracy by 5- 
folds cross-validation on the training set. Thus, models were created 
testing values of C and γ that grow exponentially, i.e., values every 0.5 in 
the range [-10,10] were taken for log2γ and log2C. This optimization 
approach has been used previously in numerous studies [45–47]. The 
accuracy obtained for the different combinations of hyperparameters is 
represented in 2D using a color map (Fig. 3). On the y-axis, the log2γ is 
represented, while on the x-axis, the log2C and the accuracy are repre-
sented by a color scale where red represents the maximum value and 
blue the minimum. 

As can be seen, the best results are obtained for low values of γ 
(approximately less than log2γ = -6, i.e., γ = 0.0156) and values of C 
greater than 0.5 (log2C = -1). In this case, the best combination was for 
C = 4 and γ = 1.953 • 10− 3, leading to 100% accuracy in both the 5-fold 
cross-validation and the training set itself. In the case of the test set, the 
accuracy was 100%. 

The probabilities of belonging for the test set samples in each class 

Table 1 
Summary of the accuracy obtained by the classification models tested for 
detection of ILRs.  

Model Hyperparameter Training set accuracy Test set accuracy 

LDA - 100% 86.67% 
SVM C = 2.828 100% 100% 

Y = 0.0098 
RF mtry = 30 100% 100% 

ntree = 500  
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are shown in Table S2 (supplementary material). Focusing on burned 
samples without ILs the probability of correct classification is in all cases 
higher than 93% (and mostly higher than 99%). Likewise, the proba-
bility of the correct classification of burned samples with ILs is very high, 
above 98% in all the samples. 

In summary, both the RF and SVM models are excellent for detecting 
ILs, with 100% of accuracy for highly interfering samples such as 
petroleum-derived substrates. However, the LDA model is discarded, so 
both SVM and RF are appropriate to compare results. There are previous 
studies in the literature showing better results with the SVM or RF model 
than with the LDA model when analyzing fire residues using the infor-
mation provided by the TIS [18,35]. 

3.3. Supervised models for ILRs identification 

Once the models for detecting the presence of ILs in burned substrate 
have been created, the next step is to identify the type of ILs used. For 
this purpose, 4 classes must be established a priori corresponding to each 
type of ILs used: “gasoline”, “diesel”, “kerosene” and “ethanol”. In this 
case, each of the groups is made up of 72 samples, which represents a 
proportion of 25% of the total samples for each of the groups. The data 
matrix used is made up of all the ILRs samples (with first derivative and 
Savitzky-Golay filter - D882x288) which are divided into two subsets in 
the same way as described previously. The first subset is the training set 
consisting of 75% of the samples, and the second is the test set consisting 
of 25% of the remaining samples. Again, the models trained are the LDA, 
SVM with Gaussian kernel and RF. A summary of the accuracy is shown 
in Table 2. 

3.3.1. Linear discriminant analysis (LDA) 
The LDA model created with the training set obtained an accuracy of 

100% in the training set and 97.22% in the test set. Therefore, 70 out of 
72 observations were correctly classified. The 2 misclassified samples 
were as follows: Cs+Gas_24H_R1 predicted as diesel, Lin+Gas_6H_R1 

predicted as diesel. The LDA model has obtained a good performance for 
the identification of the type of ILs used with a kappa statistic of 0.963. 
In addition, as can be seen the LDA model has only failed to predict the 
gasoline class as diesel. Furthermore, in Table S3 (supplementary ma-
terial), other indices have been included, such as specificity, sensitivity, 
detection rate, detection prevalence and balance accuracy for each class. 

3.3.2. Random forest (RF) 
The RF model was created with the training set using the same 

hyperparameter values as in the previous model, i.e., a value of ntree of 
500 and mtry of 30. This model obtained an accuracy of 100% for both 
the training set and the test set. Therefore, the value of the kappa sta-
tistic as well as the sensitivity, specificity and balance accuracy are 1. 
Table S4 (Supplementary material) shows the probabilities of belonging 
to each class. In all cases, these probabilities are high and generally 
greater than 80%. This indicates that the RF model obtains an excellent 
result for the identification of the type of ILRs. 

3.3.3. Support vector machine (SVM) 
Before training the SVM model, the hyperparameters were optimized 

in the same way as before. Fig. S1 (Supplementary material) shows the 
accuracy reached for each hyperparameter combination, obtaining the 
best value for a γ of 1.381 • 10− 3 (log2γ=-9.5) and a C of 1.414 (log2C =

Fig. 3. Search for the best combination of hyperparameters (C and γ) for the Gaussian SVM model obtained by the CV of 5 folds using the IMSS of all the samples for 
the detection of ILs (D882×360). 

Table 2 
Summary of the accuracy obtained by the classification models tested for 
identification of different ILRs.  

Model Hyperparameter Training set accuracy Test set accuracy 

LDA - 100% 97.22% 
SVM C = 1.414 100% 93.06% 

Y = 1.381 • 10− 3 

RF mtry = 30 100% 100% 
ntree = 500  

J.L.P. Calle et al.                                                                                                                                                                                                                                



Talanta Open 6 (2022) 100125

8

-0.5). This combination of hyperparameters led to an accuracy of 100% 
in the training set and 93.06% in the test set. Therefore, the kappa 
statistic was 0.931 and other indices such as specificity, sensitivity, 
detection rate, detection prevalence and balance accuracy for each class 
can be found in Table S5 (supplementary material). In this case, there 
are 5 misclassified samples as follows: N+Die_0H_R1 which was pre-
dicted as kerosene, Cs+Ker_24H_R1 predicted as diesel, Lin+Ker_6H_R1 
predicted as ethanol, Lin+Ker_12H_R1 predicted as ethanol and 
Lin+Ker_12H_R2 predicted as diesel. Misclassified samples burned with 
charcoal starter with kerosene predicted as diesel and vice versa are not 
so critical, since the ATSM - E1618 [5] considers these two ILs in the 
same class and even in the same subgroup, i.e., both are petroleum 
distilled and heavy (C9-C20+). In addition, Table S6 (supplementary 
material) shows the probabilities of belonging to each class. These 
probabilities are not as high as in the RF model. It is observed that 
although this model performs well, it suffers from some overfitting. 
Therefore, this model is not ideal for predicting the type of ILs used in 
fire debris analyzed by HS-GC-IMS. 

3.4. Web application development 

The models in combination with the IMSS have obtained excellent 
performance for the determination of the presence of ILs in fire debris as 
well as the type of ILRs. For this reason, a simple application containing 
the SVM and RF models has been created to share the algorithm, as well 
as to facilitate the automatic identification of ILs for the rest of the users. 
This is very important since generally samples must be analyzed by GC- 
MS and the presence of ILs determined by visual comparison. In addi-
tion, the models are not usually shared so the use of the previously 
generated model would save time and cost, and can be accessed at the 
following link: 

https://joseluispcalle.shinyapps.io/App_Fuegos_IMS/? 
_ga=2.47529639.1254510689.1641336025-1946327045.1641166303 

This application is a prototype and automatically performs the first 
derivative and the Savitzky-Golay filter to subsequently make the pre-
diction using the SVM model for the detection of ILs in fire debris. If the 
presence of ILs is detected, the prediction of the type (gasoline, diesel, 
ethanol and kerosene) is performed using the RF model. These two 
models have been used since they obtained an accuracy of 100%. 
Therefore, for its use, it is only necessary to upload the Excel file with the 
spectrum (IMSS) obtained from the analysis of the samples by HS-GC- 
IMS. In addition, an example file has been introduced that can be 
downloaded for free. The result is a table with the name of the sample 
and the prediction made by the models. 

Although it is a very simple application, it allows to share the created 
algorithms and facilitate the analysis of fire debris samples to other 
users. It should be noted that both the application and the model can be 
improved with the analysis of more samples. In this way, the database 
will become progressively larger and will reflect better the scene of a 
real fire. 

4. Conclusions 

The potential of the HS-GC-IMS in combination with machine 
learning techniques for the detection and classification of ILRs in fire 
debris in complex matrices has been demonstrated. The SVM and RF 
models have obtained the best results for the detection of ILs with an 
accuracy of 100% in the test set. However, in the identification of the 
type of ILs only the RF model obtained 100% of correct classification. In 
addition, the HCA analysis revealed that the substrate and type of ILs 
used greatly affect the IMSS, while sampling time does not affect it even 
two days after the fire. The HS-GC-IMS technique offers several advan-
tages over traditional methods, such as short analysis time, low cost, 
simplicity and being environment friendly, as well as allowing in-situ 
analysis at the fire scene. An in-situ analysis is very important as it allows 
less manipulation of the sample and facilitates decision making at the 

earliest possible time. 
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[25] M. Ferreiro-González, G.F. Barbero, M. Palma, J. Ayuso, J.A. Álvarez, C.G. Barroso, 
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