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Abstract: This work is aimed to continue studying the packing sets of digraphs via the perspective of
partitioning the vertex set of a digraph into packing sets (which can be interpreted as a type of vertex
coloring of digraphs) and focused on finding the minimum cardinality among all packing partitions
for a given digraph D, called the packing partition number of D. Some lower and upper bounds on
this parameter are proven, and their exact values for directed trees are given in this paper. In the case
of directed trees, the proof results in a polynomial-time algorithm for finding a packing partition of
minimum cardinality. We also consider this parameter in digraph products. In particular, a complete
solution to this case is presented when dealing with the rooted products.
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1. Introduction and Preliminaries

Graph partitions are universally extended procedures for equilibrating a property of a
graph into smaller pieces of it. For instance, the graph partitioning problem is understood
as that of dividing the vertices of a graph into sets of specified sizes such that few edges
cross between sets. However, in our opinion, a graph partitioning problem should have
a surname since one can partition a (directed) graph by using many different manners.
Indeed, we can find countless ways of partitioning a (directed) graph according to features
concerning the vertices and/or (arcs) edges of the (directed) graph.

Problems regarding the coloring of graphs are typically the most common, since
finding a coloring of a (directed) graph consists of finding a partition of the graph into
sets of vertices with a same color (independently of the colorability condition required).
According to the wideness and popularity of a large number of the existent types of graph
partitions, we shall not enumerate examples of partitions of any kind. Instead, we directly
proceed to discuss the main goal of our exposition, which is aimed to develop some
combinatorial properties of partitioning a directed graph (a digraph from now on) into
packing sets, which, in fact, can be interpreted as a type of vertex coloring of the digraph.

Throughout this paper, we consider D =
(
V(D), A(D)

)
as a finite digraph with vertex

set V(D) and arc set A(D) with neither loops nor multiple arcs (although pairs of opposite
arcs are allowed). G =

(
V(G), E(G)

)
stands for a simple finite graph with vertex set V(G)

and edge set E(G). We use [1,2] as references for some basic terminology and notation in
digraphs and graphs, respectively, which are not explicitly defined here.

For any two vertices u, v ∈ V(D), we write uv as the arc with direction from u to v
and say u is adjacent to v (u dominates v) or v is adjacent from u (v is dominated by u). For a
vertex v ∈ V(D), the out-neighborhood of v (in-neighborhood of v) is N+

D (v) = {u ∈ V(D) |
vu ∈ A(D)} (N−D (v) = {u ∈ V(D) | uv ∈ A(D)}).

Moreover, N+
D [v] = N+

D (v)∪ {v} (N−D [v] = N−D (v)∪ {v}) is the closed out-neighborhood
(closed in-neighborhood) of v. The out-degree and in-degree of v ∈ V(D) are deg+

D(v) =
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|N+
D (v)| and deg−D(v) = |N

−
D (v)|, respectively. In addition, for a digraph D, ∆+(D) and

δ+(D) represent the maximum and minimum out-degrees, and ∆−(D) and δ−(D) represent
the maximum and minimum in-degrees of D. The vertex v is called a source (sink) if deg−D(v) =
0 (deg+

D(v) = 0). We say that a vertex v dominates all vertices in its closed out-neighborhood.
The complement D of a digraph D is a digraph with the vertex set V(D) in which uv ∈ A(D)
if and only if uv /∈ A(D).

The eccentricity of a vertex u in a graph G is εG(u) = maxv∈V(G) dG(u, v), where
dG(u, v) stands for the distance between u and v. A digraph D is connected if its underlying
graph is connected. A directed tree is an orientation of a tree (as a graph). A biorientation of a
graph G is a digraph D, which is obtained from G by replacing each edge with end-points
x and y by either the arcs xy or yx, or the pair of arcs xy and yx. A bipartite digraph is a
biorientation of a bipartite graph.

A set B ⊆ V(D) is a packing set, or simply a packing, in a digraph D if N−D [u]∩N−D [v] =
∅ for any two distinct vertices u, v ∈ B. An equivalent definition of a packing in a digraph,
and the one we prefer, is the following. A set B ⊆ V(D) is a packing in a digraph D if
|N+

D [v] ∩ B| ≤ 1 for all v ∈ V(D). Notice that, among other things, this means that if a
vertex v belongs to a packing set S in a digraph D, then none of its out-neighbors belongs
to S. The packing number ρ(D) is the largest possible number of vertices in a packing in D.

For all four standard products of digraphs D and F, the vertex set is V(D)× V(F).
Their arc sets are defined as follows.

• In the Cartesian product D�F, (x, y) is adjacent to (x′, y′) if “x = x′ and yy′ ∈ A(F)” or
“xx′ ∈ A(D) and y = y′”.

• In the direct product D× F, (x, y) is adjacent to (x′, y′) if xx′ ∈ A(D) and yy′ ∈ A(F).
• The arc set of the strong product G � H is the union of A(D�F) and A(D× F).
• (x, y) is adjacent to (x′, y′) in the lexicographic product D ◦ F if “xx′ ∈ A(D)” or “x = x′

and yy′ ∈ A(F)”.

Note also that all these four products are associative, and only the first three are
commutative. The map πD : V(D ∗ F) → V(D), defined by πD

(
(x, y)

)
= x, is called

a projection map onto D, for ∗ ∈ {�,×,�, ◦}. The projection map onto F can be similarly
defined. For a comprehensive treatment of the major topics in digraph products, we refer
the reader to the books [3,4].

In this paper, our main focus is given to the vertex partitioning of a digraph D into
packing sets. Such a vertex partition of any digraph D always exists, as {{x} | x ∈ V(D)}
is a trivial one. In fact, a challenging problem is to find a smallest partition of this type or
its cardinality. More formally, we have the following definition.

Definition 1. A packing partition, or P-partition for short, of a digraph D is a partition of V(D)
into packing sets. The packing partition number −→p (D) is the cardinality of a smallest possible
P-partition of D.

Assume now that we have a system with a given number of radio stations. We need to
assign a frequency to each station. Due to interference, the stations that are “close” to each
other might need to receive different frequencies. Such problems are commonly arising
while managing frequency assignments of base stations in cellular phone networks for
instance. In a digraph model D of such a system, the vertices represent the radio stations,
and an arc xy indicates that the station x sends signals to the station y and that they are
“near” to each other by using some kind of established “distance” framework.

For the sake of readability/realizability, any station might require receiving signals
with different frequencies from its in-neighbors. This means that the vertices/stations in
N−D (v) receive different frequencies (labels that can be understood as positive integers) for
each radio station (vertex) v. The set of all frequencies assigned to the whole set of radio
stations clearly forms a partition of the set of radio stations by putting together in a same
set of such partition those radio stations with the same frequency.
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In this digraph model, and requiring a system with the smallest possible number
of assigned frequencies, we can now readily observe that −→p (D−1) equals the minimum
number of frequencies, which must be assigned to the stations in order to satisfy the
above-mentioned conditions (here D−1 is the digraph obtained by reversing the direction
of every arc of D).

An equivalent definition for the parameter −→p (D) can be stated by using functions.
Given a function f : V(D)→ {1, . . . , k} of a digraph D, we set U f

i = {v ∈ V(D) | f (v) = i}
for each 1 ≤ i ≤ k. We usually omit the superscript f if there is no ambiguity with respect
to the function and write f = (U1, . . . , Uk).

Definition 2. A function f : V(D) → {1, . . . , k} is a packing partitioning function, or PP-
function for short, if it satisfies the following properties:

(a) f (x) 6= f (x′) for any arc xx′, and
(b) no vertex x is adjacent to two vertices x′ and x′′ with f (x′) = f (x′′).
The minimum k for which a digraph D admits a PP-function f : V(D) → {1, . . . , k}

represents the packing partition number of D and is denoted −→p (D).

Note that any PP-function f : V(D)→ {1, . . . , k} gives a P-partition {U f
1 , . . . , U f

k } of
the digraph D. Throughout this paper, by a ρ(D)-set and a −→p (D)-partition, we mean a
packing in D of maximum cardinality and a P-partition of D of minimum cardinality, respec-
tively. A −→p (D)-function will be a PP-function of D with f

(
V(D)

)
of minimum cardinality.

2. Packing Partition Number of Digraphs

The packing partition problem can be considered as a digraph counterpart of 2-
distance coloring in graphs. The study of distance coloring was initiated by Kramer and
Kramer ([5,6]) in 1969. A 2-distance coloring (or, 2DC for short) of a graph G is a mapping
of V(G) to a set of colors (nonnegative integers for convenience) in such a way that any
two vertices of distance at most two have different colors. The minimum number of colors
(nonnegative integers) k for which there is a 2DC is called the 2-distance chromatic number
χ2(G) of G.

Heggernes and Telle [7] showed that determining if a cubic graph can be 2-distance
colored with four colors or less is NP-complete. We reduce this problem to its directed
counterpart as follows. Recall first that, for a graph G, the complete biorientation cb(G) of G
is a digraph D obtained from G by replacing each edge xy ∈ E(G) by the pair of arcs xy
and yx. Now, let G be a graph and let f : V(G)→ {1, . . . , k} be a 2DC of G.

It is easy to see that {V f
1 , . . . , V f

k } is a P-partition of cb(G), where V f
i = {v ∈ V(G) |

f (v) = i} for each 1 ≤ i ≤ k. Conversely, any P-partition {B1, . . . , Bk} of cb(G) results
in a 2DC f : V(G) → {1, . . . , k} assigning i to all vertices x in Bi, for each 1 ≤ i ≤ k.
This implies that χ2(G) ≤ k if and only if −→p

(
cb(G)

)
≤ k. Therefore, determining if a

digraph whose underlying graph is cubic can be partitioned into at most four packing sets
is NP-complete as well.

As a consequence, the problem of computing the packing partition number is NP-hard
even when restricted to those digraphs whose underlying graphs are cubic. In this sense, it
might be desirable to bound −→p with respect to several different invariants of the digraph
or to give its exact value when dealing with some well-known families of digraphs.

We begin with some lower and upper bounds on the packing partition number of a
digraph, which can directly be proved by its conceptual properties.

Proposition 1. For any digraph D of order n, the following statements hold.
(i) −→p (D) ≥ ∆+(D) + 1.
(ii) n/ρ(D) ≤ −→p (D) ≤ n− ρ(D) + 1.
These bounds are sharp.
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Proof. (i) Let P be a −→p (D)-partition and let B ∈ P, and assume w.l.g. that v ∈ B is a vertex
of maximum out-degree. Hence, this means that none of the out-neighbors of v belongs
to B, as well as, that each of these out-neighbors belongs to a different set of P. That is,
since P is a P-partition of D, there are B1, . . . , B∆+(D) ∈ P \ {B} such that v has precisely
one out-neighbor in any of them. Therefore, −→p (D) = |P| ≥ ∆+(D) + 1.

(ii) Assume P = {B1, . . . , B−→p (D)} is the −→p (D)-partition. Since every Bi is a packing

in D for 1 ≤ i ≤ −→p (D), it follows that n = ∑
−→p (D)
i=1 |Bi| ≤ −→p (D)ρ(D). Hence, −→p (D) ≥

n/ρ(D).
On the other hand, let B be a ρ(D)-set. Then, P = {B} ∪ {{x} | x ∈ V(D) \ B} is a

P-partition of D. Thus, −→p (D) ≤ |P| = n− ρ(D) + 1.
The first bound is sharp for any digraph D having a vertex adjacent to every other

vertex of D. The bounds given in (ii) are sharp for any biorientation b(Kn) of the complete
graph Kn with −→p

(
b(Kn)

)
= n.

The following theorem shows that the lower bound given in Proposition 1 (i) always
gives the exact values for the packing partition number of directed trees (as the extension
of trees to digraphs). First, let ChT(v) be the set of children of a vertex v in a rooted tree T
(as a graph).

Theorem 1. For any directed tree T, −→p (T) = ∆+(T) + 1.

Proof. By Proposition 1 (i), it only suffices to construct a P-partition of T of cardinality
∆+(T) + 1. To do so, let r be a vertex in T of maximum out-degree. We consider the
underlying tree T̂ of T and root it at r. Note that in T̂, any vertex at distance p = ε T̂(r) is
a leaf (when p ≥ 1). The result is trivial when p = 0. Thus, we may assume that p ≥ 1,
and we construct a partitioning function f for T as follows. Let Ui be the set of vertices at
distance i from r in the tree T̂, with 1 ≤ i ≤ p.

In the directed tree T, we assign 0 to the vertex r and 1, . . . , ∆+(T) to its out-neighbors,
so that all of them have a unique label. We also assign 1 to all the in-neighbors of r (if any).
If p = 1, then such an assignment clearly generates our required function. Hence, let p ≥ 2.
This means there exists a child of r in T̂, say u, that has at least one child. We consider two
cases.

Case 1. ru ∈ A(T). Then, ChT̂(u) = N+
T (u) ∪

(
N−T (u) \ {r}

)
. Suppose that i ∈

{1, . . . , ∆+(T)} has been assigned to u. We now assign deg+
T (u) labels among

{0, . . . , ∆+(T)} \ {i} to the vertices in N+
T (u), so that any vertex in N+

T (u) has a unique
label. Moreover, we assign one of these labels to all vertices in N−T (u) \ {r}.

Case 2. ur ∈ A(T). Then, ChT̂(u) =
(

N+
T (u) \ {r}

)
∪ N−T (u). We assign deg+

T (u)− 1
labels among the set {1, . . . , ∆+(T)} \ {i} to the vertices in N+

T (u) \ {r}, so that any of
them has a unique label. We also assign 0 to all vertices in N−T (u).

Iterating the process above for any other vertex in ChT̂(r) that has at least one child, we
obtain an assignment of ∆+(T) + 1 labels {0, . . . , ∆+(T)} to the vertices in {r} ∪U1 ∪U2.
Repeating this process, we finally obtain such an assignment for all vertices of T. Note that

(i) no two adjacent vertices have the same label, and
(ii) no vertex is adjacent to at least two vertices with the same label.

Consequently, the partition {W0, . . . , W∆+(T)} generated by f is a P-partition of T, in which
Wi is the set of vertices having the label 0 ≤ i ≤ ∆+(T). Thus, −→p (T) ≤ ∆+(T) + 1. This
completes the proof.

Let S be a vertex subset of a digraph D in which any two vertices are dominated by a
vertex in S. It is easily checked that each PP-function of D must assign |S| different labels
to the vertices in S. Consequently, we find

−→p (D) ≥ max{|S| : any two vertices in S are dominated by some vertex in S}. (1)
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That this lower bound is tight may be seen as follows. Let D be any digraph with
V(D) = {v1, . . . , v|V(D)|} in which any two vertices are dominated by some vertex of D.
We add |V(D)| digraphs D1, . . . , D|V(D)| such that |V(D1)|, . . . , |V(D|V(D)|)| ≤ |V(D)|. Let
ui be one vertex of Di, for each 1 ≤ i ≤ |V(D)|. Assume D′ is obtained from D and the
digraphs Di, by adding the arcs uivi, for each 1 ≤ i ≤ |V(D)|.

Then, the function f assigning the labels 1, . . . , |V(D)| to the vertices of D and
1, . . . , |V(Di)| to the vertices of Di so that f (ui) 6= f (vi), for each 1 ≤ i ≤ |V(D)|, is a
−→p (D′)-function, which assigns |V(D)| labels to the vertices of D′. Moreover, it is easily
observed that

|V(D)| = max{|S| : any two vertices in S ⊆ V(D′) are dominated by some vertex in S}.

The lower bound given in (1) is also tight for some well-known families of digraphs,
such as directed trees T, as it can be readily checked that this bound equals ∆+(T) + 1 by
Theorem 1. Moreover, it serves as the exact value of −→p for some other well-known families
of digraphs.

Theorem 2. If D is a bipartite digraph, then −→p (D) equals the maximum size of a vertex set S for
which any two vertices in S are dominated by some vertex in S.

Proof. Let S be a set of vertices of maximum cardinality having the property that any
two vertices of D[S] are dominated by some vertex in S. As we already mentioned, any
−→p (D)-function assigns |S| different labels to the vertices in S. In particular, we have
−→p (D) ≥ |S|.

Let X and Y be the partite sets of D. If D is a complete bipartite digraph (that is, the
complete biorientation of a complete bipartite graph), then D ∼= cb(K|X|) + cb(K|Y|). There-
fore, −→p (D) = max{|X|, |Y|} = |S|. Thus, we may assume that D is not complete bipartite.
This shows that there are some arcs in D from X to Y or vice versa. If any two vertices of D
are simultaneously dominated by some vertex of D, then −→p (D) = |S| = |V(D)| and we
are done.

Therefore, we assume that there exist two vertices x∗ and y∗ that are not dominated
by any vertex of D. As the subdigraphs of D induced by X and Y are, respectively, the
complete biorientations of the complete graphs K|X| and K|Y|, it follows that x∗ and y∗ do
not belong to a single partite set. Without loss of generality, x∗ ∈ X and y∗ ∈ Y. Moreover,
N−D (x∗) ∩ Y = N−D (y∗) ∩ X = ∅. We now set X∗ = {x∗ ∈ X | N−D (x∗) ∩ Y = ∅} and
Y∗ = {y∗ ∈ Y | N−D (y∗) ∩ X = ∅}. Without loss of generality, we may assume that
|Y∗| ≥ |X∗|.

Since any two vertices in S are dominated by some vertex in S, it follows that
S ∩ X∗ = ∅ or S ∩Y∗ = ∅. Choose any vertex y∗ ∈ Y∗. If there exists a vertex x ∈ X \ X∗

such that x and y∗ are not dominated by any vertex in S, then x does not have any in-
neighbor in Y. Hence, x ∈ X∗. This is a contradiction.

Taking into account the fact that the subdigraph of D induced by Y is the complete
biorientation of a complete graph, we observe that each two vertices in S ∪Y∗ are domi-
nated by some vertex in S∪Y∗. We also have that any two vertices in S∪X∗ are dominated
by some vertex in S ∪ X∗ by a similar argument. This implies that exactly one of the
inclusions X∗ ⊆ S and Y∗ ⊆ S happens due to the maximality of S. This results in Y∗ ⊆ S
since |Y∗| ≥ |X∗|.

Let f be a function that assigns the labels 1, . . . , |Y∗| to the vertices in Y∗, |Y∗| +
1, . . . , |S| to the other vertices of S, and 1, . . . , |X∗| to the vertices in X∗. We observe that
f is a PP-function of D assigning |S| labels to the vertices of D. Therefore, −→p (D) ≤ |S|.
Consequently, −→p (D) = |S|.
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3. Digraph Products

In this section, we study the packing partition number with respect to the four standard
digraph products (Cartesian, direct, strong, and lexicographic). We also give an exact
formula for this parameter when dealing with the rooted product of digraphs.

3.1. Cartesian and Strong Products

Let Λ be the family of all digraphs D in which any two vertices are dominated by a
vertex, simultaneously. It is readily seen that ρ(D) = 1 (−→p (D) = n) if and only if D ∈ Λ.

Theorem 3. For any digraphs D and F,

max{−→p (D),−→p (F)} ≤ −→p (D�F) ≤ −→p (D � F) ≤ −→p (D)−→p (F).

The equality −→p (D � F) = −→p (D)−→p (F) holds when D ∈ Λ or F ∈ Λ.

Proof. The first inequality follows from the fact that the restriction of any −→p (D�F)-
function to any copy of the digraphs D or F is a PP-function of D or F, respectively. The
second inequality holds because any P-partition of D � F is a P-partition of D�F, as well.

For the third inequality, let I = {I1, . . . , I−→p (D)} and J = {J1, . . . , J−→p (F)} be a −→p (D)-
partition and a −→p (F)-partition, respectively. Clearly, P = {Ii × Jj | 1 ≤ i ≤ −→p (D), 1 ≤
j ≤ −→p (F)} is a partition of V(D � F). Suppose that |N+

D�F[(x, y)] ∩ (Ii × Jj)| ≥ 2 for
some (x, y) ∈ V(D � F), 1 ≤ i ≤ −→p (D) and 1 ≤ j ≤ −→p (F). Therefore, there are two
distinct vertices (x′, y′), (x′′, y′′) ∈ N+

D�F[(x, y)] ∩ (Ii × Jj) = (N+
D [x] ∩ Ii)× (N+

F [y] ∩ Jj).
Therefore, |N+

D [x] ∩ Ii| ≥ 2 or |N+
F [y] ∩ Jj| ≥ 2, a contradiction. This shows that, P is a

P-partition of D � F, and thus −→p (D � F) ≤ |P| = −→p (D)−→p (F).
We next assume that F ∈ Λ, and the case D ∈ Λ can be symmetrically deduced.

Suppose that f = (U1, . . . , U−→p (D�F)) is a −→p (D � F)-function. Suppose that there exists
1 ≤ i ≤ −→p (D � F) such that Ui contains two distinct vertices (x, y) and (x, y′), for some
x ∈ V(D). With F ∈ Λ, it follows that y, y′ ∈ N+

F [y′′] for some y′′ ∈ V(F). This shows that
(x, y), (x, y′) ∈ N+

D�F[(x, y′′)] ∩Ui, in contradiction to the fact that Ui is a packing in D � F.
Therefore, |Ui ∩

(
{x} ×V(F)

)
| ≤ 1 for each x ∈ V(D) and 1 ≤ i ≤ −→p (D � F). This shows

that f assigns precisely |V(F)| labels to the vertices in {x} ×V(F), for each x ∈ V(D).
Choose two sets Ii and Ij, for any 1 ≤ i 6= j ≤ −→p (D). Since I is a −→p (D)-partition, it

follows that
(i) there are some vertices x′ ∈ Ii and x′′ ∈ Ij such that x′x′′ ∈ A(D), or
(ii) some vertex x ∈ V(D) is adjacent to at least two vertices x′ ∈ Ii and x′′ ∈ Ij.
Note that f assigns |V(F)| labels to the vertices in {x′} × V(F), as well as, to the

vertices in {x′′} × V(F). Suppose that f
(
{x′} × V(F)

)
and f

(
{x′′} × V(F)

)
are the sets

of labels assigned to the vertices in {x′} ×V(F) and {x′′} ×V(F), respectively. Assume
that there exists a label k ∈ f

(
{x′} × V(F)

)
∩ f
(
{x′′} × V(F)

)
. Therefore, f

(
(x′, y′)

)
=

f
(
(x′′, y′′)

)
= k for some y′, y′′ ∈ V(F). Note that each one of the items (i) and (ii) implies

that x′, x′′ ∈ N+
D [x] for some x ∈ V(D).

On the other hand, there exists a vertex y ∈ V(F) such that y′, y′′ ∈ N+
F [y] because

F ∈ Λ. Consequently, (x′, y′), (x′′, y′′) ∈ N+
D�F[(x, y)] ∩Uk. This contradicts the fact that

f is a PP-function of D � F. The argument above guarantees that Ui ∩Uj = ∅, for every
1 ≤ i 6= j ≤ −→p (D � F). Therefore, −→p (D � F) ≥ −→p (D)|V(F)| = −→p (D)−→p (F). This
completes the proof.

We next see that the bounds above are tight. To this end, we consider the Cartesian
product of two directed cycles

−→
Cr and

−→
Ct , with r, t ≥ 3 (that is, directed cycles in which

every vertex has in-degree and out-degree equal to 1. It can be easily noted that

−→p (
−→
Cn) =

{
2, if n is even,
3, if n is odd.

(2)
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By using this fact, we obtain the next results.

Proposition 2. For any r, t ≥ 2, −→p (
−→
C2r�

−→
C2t) =

{
3, if r, t ≡ 0 (mod 3),
4, otherwise.

Proof. Since ∆+(
−→
C2r�

−→
C2t) = 2, by Proposition 1 (i), we have that −→p (

−→
C2r�

−→
C2t) ≥ 3.

On the other hand, together −→p (D�F) ≤ −→p (D)−→p (F) and the Equation (2) imply that
−→p (
−→
C2r�

−→
C2t) ≤ 4. Assume that −→p (

−→
C2r�

−→
C2t) = 3, and let f : V(

−→
C2r�

−→
C2t) → {1, 2, 3} be a

−→p (
−→
C2r�

−→
C2t)-function. Also, let

−→
C2r = u0u1 · · · u2r−1u0 and

−→
C2t = v0v1 · · · v2t−1v0.

Since
−→
C2r�

−→
C2t is vertex transitive, we may assume that f (u0, v0) = 1. It must

clearly happen (without loss of generality) that f (u0, v1) = 2 and f (u1, v0) = 3, and
so f (u1, v1) = 1. Now, f (u2, v0) 6= 3, which means either f (u2, v0) = 1 or f (u2, v0) = 2.
If f (u2, v0) = 1, then N−D [(u2, v0)] ∩ N−D [(u1, v1)] 6= ∅, which is not possible. Thus,
f (u2, v0) = 2, which (together with f (u1, v1) = 1) leads to f (u2, v1) = 3. By a symmetric
argument, we also obtain that f (u0, v2) = 3, f (u1, v2) = 2 and f (u2, v2) = 1.

Consequently, it can be deduced that, in order to have a realization of the−→p (
−→
C2r�

−→
C2t)-

function f , the process described above must be consecutively repeated for each such 3× 3
pattern of C2r�C2t. This means that, for the digraph

−→
C2r�

−→
C2t to have a packing partition of

cardinality 3, it is necessary that both r and t will be congruent to 0 modulo 3. Therefore,
−→p (
−→
C2r�

−→
C2t) = 3 if r, t ≡ 0 (mod 3). Otherwise, −→p (

−→
C2r�

−→
C2t) > 3. In this latter case, we

deduce that −→p (
−→
C2r�

−→
C2t) = 4 for the other values of r and t.

The proposition above shows the tightness of the second and third inequalities in
Theorem 3, simultaneously. Here we observed that the third inequality in this theorem is
sharp for an infinite family of digraphs different from those in Λ. Furthermore, we believe
that the inequality usually gives the exact result.

By using similar arguments to the above ones, we can also prove the next result, which
shows the tightness of the first inequality in Theorem 3.

Proposition 3. For any r, t ≥ 1, −→p (
−→
C3r�

−→
C3t) = 3.

3.2. Direct Product

The direct product is a natural environment for the open neighborhoods as
N+

D×F
(
(x, y)

)
= N+

D (x) × N+
F (y) and N−D×F

(
(x, y)

)
= N−D (x) × N−F (y), for all (x, y) ∈

V(D × F). Thus, the presence of an open version of the concept of packing (packing
partition) can be expected. Brešar et al. [8] defined the open packing number in digraphs
as follows. A subset B of V(D) is an open packing of D if N−D (u) ∩ N−D (v) = ∅, for every
pair of distinct vertices u and v in B.

The open packing number ρo(D) is the maximum cardinality of an open packing in D.
In this sense, regarding the concept of open packing, partitioning the vertex set of a digraph
into open packing sets can be interpreted as the open version of the problem discussed in
this paper, which could be an interesting topic to be developed in its own. More formally,
an open packing partition (OP-partition for short) of a digraph D is a vertex partition of D
into open packing sets.

We call the minimum cardinality taken over all OP-partitions of D the open packing
partition number of D and denote it by −→po (D). A −→po (D)-partition is an OP-partition of D of
cardinality −→po (D).

Clearly, −→po (D) ≤ −→p (D) as any P-partition is an OP-partition of any digraph D. On
the other hand, it can be noticed that there are digraphs whose open packing numbers
equal the order of the digraphs. For instance, consider the directed cycle

−→
Cn. It clearly

happens that for any two vertices u, v ∈ V(
−→
Cn), N−−→

Cn
(u) ∩ N−−→

Cn
(v) = ∅. Thus, the whole

set of vertices of any directed cycle forms an open packing, and thus −→po (
−→
Cn) = 1. In
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general, we observe that the statements “−→po (D) = 1”, “ρo(D) = |V(D)|” and “∆+(D) ≤ 1”
are equivalent.

We observe that the direct product D× F is empty (that is, A(D× F) = ∅) if at least
one of the factors D and F is empty. Therefore, −→p (D× F) = 1 in such a situation. Thus,
we may assume that both D and F are nonempty.

Theorem 4. For any nonempty digraphs D and F,

max{−→po (D),−→po (F)} ≤ −→po (D× F) ≤ −→p (D× F) ≤ min{−→p (D)−→po (F),−→po (D)−→p (F)}.

Moreover, these bounds are sharp.

Proof. To prove the last inequality, let I = {I1, . . . , I−→p (D)} and J = {J1, . . . , J−→po (F)} be a
−→p (D)-partition and a −→po (F)-partition of D, respectively. Clearly, K = {Ii × Jj | 1 ≤ i ≤
−→p (D), 1 ≤ j ≤ −→po (F)} is a partition of V(D × F). Note that N+

D×F
(
(x, y)

)
= N+

D (x)×
N+

F (y), for all (x, y) ∈ V(D× F).
Suppose that (x′, y′) and (x′′, y′′) are distinct vertices belonging to N+

D×F[(x, y)] ∩
(Ii × Jj), for some (x, y) ∈ V(D × F), 1 ≤ i ≤ −→p (D) and 1 ≤ j ≤ −→po (F). Assume that
both (x′, y′) and (x′′, y′′) belong to the open neighborhood of (x, y). This implies that
|N+

D [x] ∩ Ii| ≥ 2 or y ∈ N−F (y′) ∩ N−F (y′′), which are contradictions to the facts that Ii is a
packing in D and that Jj is an open packing in F.

Hence, we may assume that (x′, y′) = (x, y) and (x′′, y′′) ∈ N+
D×F

(
(x, y)

)
. This

implies that x′x′′ ∈ A(D), contradicting the independence of Ii in D. This shows that K
is a P-partition of D× F. Therefore, −→p (D× F) ≤ |K| = −→p (D)−→po (F). Interchanging the
roles of D and F yields to −→p (D× F) ≤ −→po (D)−→p (F). This results in the desired bound.

The middle inequality is an immediate consequence of the definitions. In order to
prove the first inequality, we let O = {O1, . . . , O−→po (D×F)} be a −→po (D× F)-partition and let
yy∗ ∈ A(F). For each 1 ≤ i ≤ −→po (D× F), we define Ai = {x ∈ V(D) | (x, y∗) ∈ Oi}. It is
easily observed that A = {A1, . . . , A−→po (D×F)} \ {∅} is a partition of V(D× F) of cardinality
at most −→po (D× F). Suppose now that x ∈ V(D) is adjacent to two vertices x1, x2 ∈ V(D).

In particular, this implies that (x, y) is adjacent to both (x1, y∗) and (x2, y∗) in D× F.
Therefore, (x1, y∗) and (x2, y∗) do not belong to a single member of O. This shows that x1
and x2 belong to different members of A. Thus, A is an OP-partition of D× F. Therefore,
−→po (D) ≤ |A| ≤ −→po (D× F). A similar argument shows that −→po (F) ≤ −→po (D× F), leading to
the first inequality.

That the third inequality is sharp may be seen by considering the direct product
−→
Cr ×

−→
Cs when at least one of the integers r and s is even. Since −→po (

−→
Cr ) =

−→po (
−→
Cs) = 1, and

−→p (
−→
Cr ) = 2 or −→p (

−→
Cs) = 2, by also using Proposition 1 (i), we have that

2 = ∆+(
−→
Cr ×

−→
Cs) + 1 ≤ −→p (

−→
Cr ×

−→
Cs) ≤ min{−→p (

−→
Cr )
−→po (
−→
Cs),
−→po (
−→
Cr )
−→p (
−→
Cs)} = 2,

which indicates the sharpness of the inequality.
We now consider the digraphs cb(Kr) and cb(Ks) for r, s ≥ 3. It is easy to see that any

two vertices of cb(Kr)× cb(Ks) are dominated by a third vertex. Consequently,−→po
(
cb(Kr)×

cb(Ks)
)
= rs = −→p

(
cb(Kr)× cb(Ks)

)
. To see the sharpness of the first inequality, consider

the digraphs cb(K2) and cb(Ks) for s ≥ 3. We notice that −→po
(
cb(K2)× cb(Ks)

)
≤ s. On the

other hand, max{−→po (cb(K2)),
−→po (cb(Ks))} = s. This completes the proof.

We next obtain some other values for the packing partition number of direct product
graphs that also show the tightness of the third inequality above.

Proposition 4. Let r, s be two integers.

(i) If r, s ≥ 2, then −→p (
−→
Pr ×

−→
Ps ) = 2.
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(ii) If r, s ≥ 3, then −→p (
−→
Cr ×

−→
Cs) =

{
3, if r, s are odd,
2, otherwise.

Proof. (i) Since −→po (
−→
Pr ) =

−→po (
−→
Ps ) = 1 and −→p (

−→
Pr ) =

−→p (
−→
Ps ) = 2, by using Proposition 1 (i)

and Theorem 4, we obtain

2 = ∆+(
−→
Pr ×

−→
Ps ) + 1 ≤ −→p (

−→
Pr ×

−→
Ps ) ≤ min{−→p (

−→
Pr )
−→po (
−→
Ps ),
−→po (
−→
Pr )
−→p (
−→
Ps )} = 2.

(ii) In view of the proof of Theorem 4, we only need to prove the case in which both
r, s are odd. In such a situation, a similar argument gives

−→p (
−→
Cr ×

−→
Cs) ≤ min{−→p (

−→
Cr )
−→po (
−→
Cs),
−→po (
−→
Cr )
−→p (
−→
Cs)} = 3.

However, it can be noted that
−→
Cr ×

−→
Cs has always at least one subgraph, which

is isomorphic to a cycle of odd order. Thus, towards constructing a packing partition
for
−→
Cr ×

−→
Cs , we need at least three sets for any packing partition of such cycle. As a

consequence, −→p (
−→
Cr ×

−→
Cs) ≥ 3, which gives the desired equality for this case.

3.3. Lexicographic Product

In what follows, we find the bounds of the packing partition number of the lexico-
graphic product of any two digraphs.

Theorem 5. For any digraphs D and F,

∆+(D)|V(F)|+−→p (F) ≤ −→p (D ◦ F) ≤ −→p (D)|V(F)|.

Moreover, these bounds are sharp.

Proof. If D is an empty digraph, then −→p (D ◦ F) = −→p (F). Hence, the lower and upper
bounds are satisfied as ∆+(D) = 0 and −→p (D) = 1 in this situation. Thus, we may assume
that D is not empty. Now, let V(F) = { f1, . . . , f|V(F)|}, let d be a vertex of maximum
out-degree in D and assume N+

D (d) = {d1, . . . , d∆+(D)}.
It clearly happens that every two vertices in S =

⋃∆+(D)
i=1 {(di, f1), . . . , (di, f|V(F)|)}

must belong to distinct sets in every P-partition for D ◦ F. On the other hand, the vertices
of the set {(d, f1), . . . , (d, f|V(F)|)} must belong to at least −→p (F) sets, which do not contain
any vertex in S, in every P-partition for D ◦ F. As a consequence, any P-partition for D ◦ F
must have cardinality at least |S|+−→p (F) = ∆+(D)|V(F)|+−→p (F), which is the desired
lower bound.

Assume D is a directed star
−→
Sn in which the central vertex is a sink and all the leaves are

sources. We can form a P-partition for D ◦ F as follows. Let x be the center of
−→
Sn and let VL

be the set of leaves of
−→
Sn . If V(F) = {y1, . . . , y|V(F)|} and Q = {Q1, . . . , Q|−→p (F)|} is a −→p (F)-

partition, then we can observe that Q′ = {{(x, y1)}, . . . , {(x, y|V(F)|)}, VL × Q1, . . . , VL ×
Q|−→p (F)|} is a P-partition for D ◦ F. Since |Q′| = |V(F)|+−→p (F) = ∆+(D)|V(F)|, in view
of the lower bound, we deduce that −→p (D ◦ F) = |V(F)|+−→p (F).

On the other hand, let V(F) = { f1, . . . , f|V(F)|} and let B = {B1, . . . , B−→p (D)} be a
−→p (D)-partition Let P = {Bi × { f j} | 1 ≤ i ≤ −→p (D), 1 ≤ j ≤ |V(F)|}. It is clear that P is
a partition of V(D ◦ F). Suppose to the contrary that |N+

D◦F[(x, y)] ∩
(

Bi × { f j}
)
| ≥ 2, for

some (x, y) ∈ V(D ◦ F), 1 ≤ i ≤ −→p (D) and 1 ≤ j ≤ |V(F)|. Therefore, (x′, f j), (x′′, f j) ∈
N+

D◦F[(x, y)] for some distinct vertices x′, x′′ ∈ Bi. This implies that x′, x′′ ∈ N+
D [x] ∩ Bi,

which contradicts the fact that Bi is a packing in D. Therefore, P is a P-partition of D ◦ F.
Thus, −→p (D ◦ F) ≤ |P| = −→p (D)|V(F)|.

That the upper bound is sharp may be seen as follows. We consider the directed cycle
−→
Cn on n ≡ 0 (mod 2) vertices. Let x, y, z be three vertices of

−→
Cn such that xy, yz ∈ A(

−→
Cn). Let
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P be a−→p (
−→
Cn ◦ F)-partition for any digraph F. Clearly, the vertices in {(z, f1), . . . , (z, f|V(F)|)}

must belong to |V(F)| sets in P (not containing any vertex in {(y, f1), . . . , (y, f|V(F)|)}). Fur-
thermore, the vertices in {(y, f1), . . . , (y, f|V(F)|)} necessarily belong to |V(F)| sets in P
because x is adjacent to y. Therefore, −→p (

−→
Cn ◦ F) ≥ 2|V(F)| = −→p (

−→
Cn)|V(F)|, resulting in

the equality in the upper bound for D =
−→
Cn.

The existence of more than one sink in the first factor would result in a required larger
number of sets in a P-partition for D ◦ F (when D is connected). To see this, let x and x′ be
two sinks of D. As D is connected, there is a path P connecting x to x′ in the underlying
graph of D. Since both x and x′ are sinks of D, there exists a vertex y ∈ V(P) with
deg+

D(y) ≥ 2. This shows that (y, f1) is adjacent to all vertices in {(y1, fi), (y2, fi)}
|V(F)|
i=1 , in

which y1, y2 ∈ N+
D (y). Thus, −→p (D ◦ F) ≥ 2|V(F)|+ 1 > |V(F)|+−→p (F).

3.4. Rooted Product

The rooted product graphs (see [9,10]) could be extended to digraphs as follows. A
rooted digraph is a digraph in which one vertex is labeled in a special way to distinguish it
from other vertices. The special vertex is called the root of the digraph. Let D be a labeled
digraph on n vertices. Let F be a sequence of n rooted digraphs F1, . . . , Fn. The rooted
product digraph D(F ) is the digraph obtained by identifying the root of Fi with the ith vertex
of D.

Let V(D) = {u1, . . . , un} and let F be a sequence of n rooted digraphs F1, . . . , Fn
rooted at v1, . . . , vn, respectively. We observe that D′ =

(
{(ui, vi)}n

i=1, {(ua, va)(ub, vb) |
uaub ∈ A(D)}

) ∼= D and F′i =
(
{ui} ×V(Fi), {(ui, vb)(ui, vc) | vbvc ∈ A(Fi)}

) ∼= Fi, for all
1 ≤ i ≤ n.

In what follows, we determine an exact formula for −→p
(

D(F )
)

in terms of the packing
partition number of the product factors and the maximum out-degree of the roots vi of
V(Fi) having the largest packing partition number among those of Fi’s. In fact, we have
the following theorem.

Theorem 6. Let D be a digraph with V(D) = {u1, . . . , un}. Let F be a sequence of n rooted
digraphs F1, . . . , Fn rooted at v1, . . . , vn, respectively. Then,

−→p
(

D(F )
)
= max{−→p (D),−→p (F1), . . . ,−→p (Fn), ∆∗ + 1},

where ∆∗ = maxt{deg+
D(F )(vt)} taken over all t for which −→p (Ft) = max1≤i≤n{−→p (Fi)}.

Proof. We let M = max{−→p (D),−→p (F1), . . . ,−→p (Fn), ∆∗ + 1} for the sake of convenience.
Let P = {B1, . . . , B|P|} be a −→p

(
D(F )

)
-partition. For any subdigraph K ∈ {D, F1, . . . , Fn}

of D(F ), it is easy to see that {B1 ∩ V(K), . . . , B|P| ∩ V(K)} \ {∅} is a P-partition of K
of cardinality at most |P|. Therefore, −→p (D),−→p (Fi) ≤ |P| = −→p

(
D(F )

)
for all 1 ≤ i ≤

n. Moreover, −→p
(

D(F )
)
≥ ∆+

(
D(F )

)
+ 1 ≥ ∆∗ + 1 by Proposition 1 (i). Therefore,

−→p
(

D(F )
)
≥ M.

From now on, we assume that f = (U0, . . . , U−→p (D)−1) and gi = (W0i , . . . , W(−→p (Fi)−1)i )

are a −→p (D)-function and a −→p (Fi)-function for 1 ≤ i ≤ n, respectively. Clearly,

gi = (W ′0i , . . . , W ′
(−→p (Fi)−1)i ) = ({ui} ×W0i , . . . , {ui} ×W(−→p (Fi)−1)i )

is a −→p (F′i )-function for each 1 ≤ i ≤ n, and f ′ = (U′0, . . . , U′−→p (D)−1) is a −→p (D′)-function

where U′j = {(ui, vi) | ui ∈ Uj} for each 1 ≤ j ≤ −→p (D)− 1.

Suppose that ∆∗ = deg+
D(F )(vt) = deg+

D(vt) + deg+
Ft
(vt) such that −→p (Ft) =

max1≤i≤n{−→p (Fi)}. In order to complete the proof, we shall need the following claim.
First, let

H = D(F )
[
V(D′) ∪V(F′t )

]
.
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Claim 1. If there is a P-partition of H of cardinality M = max{−→p (D),−→p (Ft), ∆∗ + 1}, then
there exists a P-partition of D(F ) of cardinality M.

Proof of Claim 1. Let h be a−→p (H)-function assigning the labels 0, . . . , M− 1 to the vertices
of H. By a relabeling of the indices of U′0, . . . , U′−→p (D)−1, we may assume that (ut, vt) ∈ U′0.

We now define h′ on V
(

D(F )
)

as follows. First we take h′ restricted to V(H) as h, that
is, h′ |V(H)= h. Also, for any (ut, vt) 6= (ui, vi) ∈ U′0, we make h′

(
(ui, v)

)
= h

(
(ut, v)

)
for

each w ∈ V(Fi). In addition, consider the vertex (uj, vj) ∈ U′r, in which 0 < r ≤ −→p (D)− 1.
We assume that (uj, vj) ∈ W ′kj , for some 0 ≤ k ≤ −→p (Fj)− 1. In such a case, we do the
following assignments under h′.

(a) h
(
(uj, vj)

)
to all vertices in W ′kj , and

(b) −→p (Fj)− 1 labels from the sets of labels {0t, . . . , (−→p (Ft)− 1)t} \ {h
(
(uj, vj)

)
} to the

vertices in the sets {W ′
0j , . . . , W ′

(−→p (Fj)−1)j} \ {W ′kj}, in such a way that all vertices in

each of these sets have a unique label.

It is not difficult to see that h′ gives us a P-partition of D(F ) of cardinality M.

By Claim 1, we only need to construct a P-partition of H of cardinality M. Notice that
H can be considered as the union of D and Ft having the vertex ut = vt in common. Without
loss of generality, we assume that vt ∈ U0 (as a vertex of D) and vt ∈W0t (as a vertex of Ft).
Moreover, we may assume that −→p (D) ≥ −→p (Ft). We shall deal with two possibilities.

Case 1. deg+
Ft
(vt) ≤ −→p (D)− deg+

D(vt)− 1 = k. Note that vt has no out-neighbor in
any k packing sets, say U1, . . . , Uk, in D. We now define h as follows. As before, we first
consider the restriction of h to V(D), and make h |V(D)= f . We may assume, without loss
of generality, that vt has exactly one out-neighbor in W1t , . . . , Wdeg+Ft

(vt)t .

We next consider that h assigns 0, 1, . . . , deg+
Ft
(vt) to vertices in W0t , W1t , . . . , Wdeg+Ft

(vt)t ,

respectively. If −→p (Ft) = deg+
F (vt) + 1, then h gives us a P-partition of H of cardi-

nality −→p (D) = M. Thus, we may assume that −→p (Ft) > deg+
Ft
(vt) + 1. In such a

situation, we consider that h assigns the labels deg+
Ft
(vt) + 1, . . . ,−→p (Ft) − 1 to the ver-

tices in W(deg+Ft
(vt)+1)t , . . . , W(−→p (Ft)−1)t , respectively. It is straightforward to check that

h : V(H)→ {0, . . . ,−→p (D)− 1} gives us a P-partition of H of cardinality −→p (D) = M.
Case 2. deg+

Ft
(vt) > −→p (D) − deg+

D(vt) − 1 = k. We define h′ as follows. Simi-
larly, we do h′ |V(D)= f . Assume that h′ assigns the labels 0, 1, . . . , k to all vertices
in W0t , W1t , . . . , Wkt , respectively. Moreover, h′ assigns deg+

Ft
(vt) − k new labels (k +

1)′′, . . . , deg+
Ft
(vt)′′ to all vertices in W(k+1)t , . . . , Wdeg+Ft

(vt)t , respectively. We now consider

two other possibilities.
Subcase 2.1. −→p (Ft) − deg+

Ft
(vt) − 1 ≤ deg+

D(vt). If −→p (Ft) = deg+
Ft
(vt) + 1, then h′

gives a P-partition of H of cardinality

−→p (D) + deg+
Ft
(vt)− k = deg+

Ft
(vt) + deg+

D(vt) + 1 = ∆∗ + 1 = M.

If−→p (Ft) > deg+
Ft
(vt) + 1, then we assume h′ assigns the labels deg+

Ft
(vt) + 1, . . . ,−→p (Ft)− 1

to the vertices in W(deg+Ft
(vt)+1)t , . . . , W(−→p (Ft)−1)t , respectively. Thus, h′ gives again a P-

partition of H of cardinality

−→p (D) + deg+
Ft
(vt)− k = deg+

Ft
(vt) + deg+

D(vt) + 1 = ∆∗ + 1 = M.

Subcase 2.2. −→p (Ft)− deg+
Ft
(vt)− 1 > deg+

D(vt). Now, let l = −→p (Ft)− deg+
Ft
(vt)−

1− deg+
D(vt). Assume h′ assigns k + 1, . . . , k + deg+

D(vt) = −→p (D)− 1 to the vertices in
W(deg+Ft

(vt)+1)t , . . . , W(deg+Ft
(vt)+deg+D(vt))t , respectively. Finally, we consider h′ assigns l new
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labels 1′′′, . . . , l′′′ to the vertices belonging to the remaining sets W(deg+Ft
(vt)+deg+D(vt)+1)t , . . . ,

W(−→p (Ft)−1)t , respectively. We observe that h′ gives a P-partition of H of cardinality

−→p (D) + deg+
Ft
(vt)− k + l = −→p (Ft) = M.

All in all, we constructed a P-partition of H of cardinality M. Therefore, −→p (D(F )) ≤
M by Claim 1. This completes the proof.

In view of the results above, since the rooted product graphs are special cases of the
hierarchical product of graphs, as defined in [11], it would be interesting to consider the
packing partitioning problem in such hierarchical product. Moreover, since those graphs
are indeed subgraphs of the Cartesian product, it would be desirable to analyze some
possible relationships (monotony for instance) among these three related operations.
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