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Abstract

In Yaari’s (1987) dual theory of choice under risk, risks preferences are based
on a functional that depends on a subjective function called distortion. In
the context of Wang’s (1996) premium principle, Wang and Young (1998)
considered a sequence of classes of partial orderings of risk distributions cha-
racterizing the preferences of groups of risk averse agents that base decisions
on this functional. Under this approach, if a distribution is perceived as less
risky than another, the mean of the former is smaller or equal to the latter’s,
making some risk distributions of interest non-comparable. In this paper, we
study a sequence of partial orders of risk distributions based on comparisons of
successive integrals of TVaR curves that characterize the preferences of groups
of agents exclusively concerned with large risks higher than the expected
values.

JEL: G22

Keywords: risk distribution, stochastic dominance, dual theory, distortion
function



1 Introduction

The dual theory of choice under risk proposed by Yaari (1987) is an alternative
to the classical expected utility theory obtained when the von Neumann and
Morgenstern (1944) independence axiom is replaced by a dual axiom that
induces a change in the structure of decision. Whereas expected utility assigns
a value to a prospect (gain or loss) by using a transformed expectation that
is linear in probabilities but nonlinear in wealth, the dual theory takes a
transformed expectation that is linear in wealth but nonlinear in probabilities.
In this framework, attitudes towards risk are characterized by a function
(called distortion) that modifies the underlying probabilities before calcula-
ting a transform (or distorted) expectation, which is the certainty equivalent
to the risk.

In actuarial, the dual theory has been applied to construct premium func-
tionals for insurance contracts (Denneberg 1990, Wang 1996). For concave
distortions, under suitable assumptions, these premiums (or Yaari function-
als) have a representation as mixtures of TVaRs (tail values at risk), which
are risk measures widely used in insurance. This representation suggests ex-
ploiting the TVaR curve (which is the curve defined by the tail value at risk at
probability p for all probabilities) for comparing risks in the dual framework.
Wang and Young (1998) show that non-intersecting TVaR curves induce a
partial ordering of risk distributions equivalent to the order based on Yaari
functionals with concave distortions. When the TVaR curves intersect, Wang
and Young (1998) restrict attention to a nested family of appropriate concave
distortions giving rise to a sequence of successively weaker orderings of risks.
However, under Wang and Young’s approach, if a distribution is perceived
as less risky than another, the mean of the former is smaller or equal to
the latter’s, making some risk distributions of interest non-comparable. This
limitation can also be explained in terms of risk preferences: the approach
is inadequate to compare the shared preferences of strong risk averse agents
who always use premiums strictly higher than the net premium to value their
risks. To overcome this limitation, we consider a sequence of partial orderings
of risks based on successive integrals of TVaR curves and provide an interpre-
tation of these orderings in terms of Yaari functionals with distortions that
describe higher degrees of risk aversion, compared to those based on any con-
cave distortion. This task requires considering the dual counterpart of some
concepts of risk aversion developed so far within the expected utility model,
a topic that is interesting in its own right.

2 Motivation and previous notions

Let X be a risk (or non-negative random variable) with distribution function
F (x) and tail function F̄ (x) = 1− F (x). In Yaari’s framework an agent uses
a distortion g (that is, a non-decreasing function g from [0, 1] to [0, 1] such
that g(0) = 0 and g(1) = 1) that transforms F̄ (x) into g(F̄ (x)) and values
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the risk X at its certainty equivalent or distorted expectation, given by

Hg(X) =

∫ ∞

0
g(F̄ (x))dx. (1)

In the context of the premium principle of Wang (1996), Hg(X) represents
the market price for transferring the risk X, that is, the sum of money which,
when received with certainty, is considered by the agent equally as good as
the risk X. In this setting, Wang (1996) shows that g is concave when the
agent is risk averse. In such a case, Hg(X) ≥ E(X) and (1) is a coherent
risk measure in the sense of Artzner et al. (1999). Moreover, it follows from
Yaari axioms1 that an agent with distortion g prefers X to Y (or is indifferent
between them) if, and only if, Hg(X) ≤ Hg(Y ), which reflects preference for
less risky distributions.

An example of distorted expectation with concave distortion is the tail
value at risk (or TVaR), defined by

TVaRp(X) =
1

1− p

∫ 1

p
F−1(t)dt, p ∈ [0, 1),

where F−1(p) = inf{x : F (x) ≥ p}, 0 ≤ p ≤ 1, obtained by taking g(t) =
min{ t

1−p , 1} in (1). The tail value at risk induces the following partial order
of risks: given two risks X and Y, we say that X is smaller than Y in the stop-
loss order (denoted X ≤sl Y ) if TVaRp(X) ≤TVaRp(Y ) for all p ∈ [0, 1). The
stop-loss order characterizes the behavior of agents that use Yaari functionals
with concave distortions (Wang and Young, 1998).

Observe that if X ≤sl Y, then necessarily E[X] ≤ E[Y ], where E[X] and
E[Y ] denote the respective expectations of X and Y. As a consequence, the
stop-loss order does not always capture the preferences of those agents who are
more concerned about the extreme tail behavior of the risk distributions than
mean values. There are many examples where X is considered less risky than
Y when comparing their means and more risky when comparing their right-
tails. To give one example, let X and Y be two Pareto risks with parameters
α1 = 2.4, β1 = 3 and α2 = 2, β2 = 2, respectively (where the tail function of
a Pareto random variable with parameters (α, β) is F̄ (x) = βα (x+ β)−α for
x > 0, α > 1, β > 0). Figure 1 plots the tail value at risk of X and Y as a
function of p and shows that TVaRp(Y ) ≥ TVaRp(X) for all p > 0.8530. For
someone interested in avoiding large losses, the risk Y likely will be perceived
as being more risky than X. The Yaari functional

H1(X) =

∫ ∞

0
g1(F̄ (x))dx, (2)

1In the original Yaari setting, (1) is the valuation of a random economic prospect and g
is convex when the agent is risk averse. In the context of the premium principle of Wang
(1996), (1) is the valuation of a random loss and g is concave when the agent is risk averse,
see Section 8.2 in Wang (1996).

2



with concave distortion

g1(t) =

{
t(1− log t), for 0 < t ≤ 1

0, for t = 0,
(3)

supports this perception (H1(X) = 5.8163 < 6 = H1(Y )). However, X ≰sl Y,
because E(X) = 2.143 > 2 = E(Y ). It is natural, therefore, to investigate an
order weaker than the order ≤sl to explain the behavior of the collective of
individuals who perceives Y as being more risky than X.

Some orders weaker than the stop-loss order have been studied before. For
example, Wang and Young (1998) considered a sequence of progressively more
risk averse distortions to increase the number of comparable risks, giving rise
to a sequence of stochastic orders2 (denoted by ≤n, n = 1, 2, ...) weaker than
the stop-loss order for n ≥ 3. However, X ≤n Y also implies E(X) ≤ E(Y )
and this sequence of orders also does not help to explain the behavior of agents
who perceive Y as being more risky than X in the above example.
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Figure 1: Tail value at risk of X and Y as a function of p

The choice of the distortion g1(t) in the above example is not arbitrary
but motivated by its central role in this paper. Given a risk X, the Yaari
functional H1(X) with distortion g1 possesses appealing interpretations for
actuaries. The first one comes from the representation

H1(X) =

∫ 1

0
TVaRp(X)dp, (4)

(see Sordo et al., 2016), which offers a geometric interpretation of H1(X)
as the area under the curve defined by TVaRp(X). Another interpretation
is in the analysis of the time series of insurance claims. Given a sequence
of independent claims having the same distribution as X, a claim Xj is an
upper record claim if it is larger than all the previous claims of the sequence.
In this context, H1(X) represents the first nontrivial expected upper record

2The formal definition of the order ≤n is given in Section 3 below.
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claim (see Section 3.3 in Castaño-Mart́ınez et al., 2020). It can also be shown
(see Theorem 4 in Sordo et al., 2016) that

H1(X) = E [X] + ϵ(X), (5)

where

ϵ(X) = −
∫ ∞

0
F (x) logF (x)dx

is a measure of variability called cumulative residual entropy (Rao et al.,
2004) that has received growing interest among insurance researchers (see, for
example, Sordo and Psarrakos 2017, Psarrakos and Sordo 2019, Hu and Chen
2020, Sun et al. 2022). In particular, the more variable the risk distribution,
the further to the right from the mean is H1(X).

The rest of the paper is organized as follows. To overcome the draw-
back aforementioned, in this paper we define a sequence of stochastic orders,
weaker than the stop-loss order, based on comparisons of successive integrals
of the TVaR curve. The economic interpretation of these orders in the dual
framework is given in terms of a nested sequence of classes {D̂n, n ≥ 3} of
distortions that are progressively more risk averse than the distortion g1 given
by (3), where the meaning of “g being progressively more risk averse than g1”
is explained in terms of coefficients of the form g(n+1)/g(n) for n = 1, 2, ....
While the role of these coefficients as measures of higher-order risk attitudes
in the utility framework (when g is a utility function) has received consider-
able attention (see, for example, Caballé and Pomansky 1996, Jindapon and
Neilson 2007 and Denuit and Eeckhoudt 2010), their role in the dual frame-
work, except for n = 1 (Yaari 1986, Eeckhoudt and Laeven 2021), has not
been explored so far. Consequently, we face in Section 3 the interpretation of
these coefficients within the dual theory. This task requires interpreting some
notions and theorems taken from the expected utility framework in the dual
setting. In light of the new dual concepts, we study and interpret in Section
4 the sequence {D̂n, n ≥ 3} and provide several examples of risk measures of
the form (1) with g ∈ D̂n.

At this point, we recall that any risk measure of the form (1) associated
with a concave distortion can be written as a mixture of TVaRs (Rockafellar
et al. 2006, Pflug and Römisch 2007) as follows3

Ih(X) =

∫ 1

0
TVaRp(X)dh(p), (6)

with h being a weight function4 (that is, a non-decreasing function from [0, 1]
to [0, 1] with h(0) = 0 and h(1) = 1). Using this representation, we show
in Section 5 that there is a one-to-one correspondence between the sequence
of orderings by the classes {D̂n, n ≥ 3} and a sequence of orderings based

3See also Sordo et al. (2016) and Castaño-Mart́ınez et al. (2019).
4Although h is formally defined as a distortion function, we prefer not to call it distortion

in this context, because h is not directly distorting F̄ .
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on evaluation measures of the form (6) by certain classes of weight functions.
We use this one-to-one correspondence in Section 6, where we characterize the
risk attitudes of agents with distortions in D̂n by the announced distortion-
free ordering of distributions based on successive integrals of TVaR curves.
Conclusions are in Section 7.

Throughout the paper, given a function f, f (k) denotes the kth deriva-
tive of f , k = 1, 2, . . . , f (0) = f . Sometimes, we write f ′, f ′′, ... instead of
f (1), f (2), .... The notation f(t) ↑ means that f(t) is non-decreasing in t.

3 Some notions of risk aversion in the dual framework

In this section, we reinterpret in our dual framework some notions and the-
orems5 about risk aversion taken from the expected utility setting. Recall
that, in the context of the premium principle of Wang (1995, 1996), the
Yaari functional Hg defined by (1) is the valuation of a random loss, and an
agent with distortion g prefers X to Y (or is indifferent between them) if
Hg(X) ≤ Hg(Y ).

First, we translate to our context the two concepts of one random variable
Y having more nth degree risk than random variable X and a person being
nth degree risk averse. Given a random variable X with distribution function
F , we denote F−1

1 (p) = F−1 (p) and

F−1
n+1 (p) =

∫ 1

p
F−1
n (t) dt, for n = 1, 2, ..., 0 ≤ p ≤ 1.

The following notion is the dual counterpart of a concept introduced by
Ekern (1980) in the expected utility framework.

Definition 1 Given two risks X and Y with respective distribution functions
F and G and n ≥ 1, we say that Y has more nth degree dual risk than X if
(a) F−1

k (0) = G−1
k (0), for k = 1, ..., n.

(b) F−1
n (p) ≤ G−1

n (p) for all p ∈ [0, 1], with strict inequality for some p.

To interpret this definition, note that F−1
k (0) = 1

(k−1)!E[max(X1, ..., Xk−1)],

where k ≥ 2 andX1, ..., Xk−1 are independent copies ofX. Similarly, G−1
k (0) =

1
(k−1)!E[max(Y1, ..., Yk−1)], where Y1, ..., Yk−1 are independent copies of Y. As

in Wang and Young (1998), we refer to these expectations as the kth “dual
moments” of X and Y, respectively6. When (a) in Definition 1 is satisfied,
the (n − 1) first dual moments of X and Y are equal. Condition (b) implies
E[max(X1, ..., Xn)] < E[max(Y1, ..., Yn)].

In words, for n = 1, Definition 1 says that Y has more first degree dual
risk than X if and only if X is smaller than Y in the usual stochastic order

5The proofs of the results in this section follow the same pattern as those in the expected
utility framework with convenient modifications. They have been included in Appendix A
for the sake of completeness.

6In insurance, the kth dual moment of X can be thought as the expected higher claim
in a set of k independent claims with the same distribution as X.
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(which implies, in particular, that the mean of X is less than or equal to the
mean of Y ). For n = 2, Definition 1 says that Y has more second degree dual
risk than X if and only if X is smaller than Y in the convex order7 (denoted
by X ≤cx Y ). The latter can be equivalently rewritten (see Theorem 3.A.1
in Shaked and Shanthikumar, 2007) as∫ x

−∞
F (u)du ≤

∫ x

−∞
G(u)du, for all x,

which is equivalent to saying that G can be obtained from F by a sequence of
one or more mean-preserving spreads in the sense of Rothschild and Stiglitz
(1970).

Roughly speaking, for n ≥ 2, the idea of Definition 1 is as follows: Y
has more nth degree dual risk than X if Y is more variable (about the same
mean) than X in a stochastic sense that depends on n in such a way that the
extreme values in the right-tails of their distributions are given more weight
as n increases. Let denote GIn(X) = E[max(X1, ..., Xn)]−E[X]. In general,
the assumption that Y has more nth degree dual risk than X implies that
E[X] = E[Y ], GI2(X) = GI2(Y ), ..., GIn−1(X) = GIn−1(Y ) and GIn(X) <
GIn(Y ), where GIn(X) is an extended Gini variability index that gives more
weight to the extreme right-tails than the usual Gini mean difference (given
by GI2).

Many papers in the expected utility framework have been devoted to in-
terpreting the signs of successive derivatives of the utility functions, including
the key papers by Menezes et al. (1980), Ekern (1980), Kimball (1990) and
Eeckhoudt and Schlesinger (2006). Although less attention has been paid to
the interpretation of successive derivatives of distortions in the dual context,
some research has also been conducted (including the papers by Muliere and
Scarsini 1989, Wang and Young 1998, Chateauneuf et al. 2002 and Eeck-
houdt et al. 2020). Some results in Muliere and Scarsini (1989) suggest a link
between the sign of nth derivative of the distortion and the stochastic order
given by Definition 1. In order to formalize this fact, let g be a distortion
differentiable at least n times, with n ≥ 1. The following definition is the dual
analogous in our setting of the nth degree risk aversion notion considered in
the expected utility framework by Ekern (1980).

Definition 2 An agent with a distortion g is nth degree dual risk averse8 if
g is at least n times differentiable, with n ≥ 1 and (−1)n+1g(n)(x) ≥ 0, for all
x ∈ (0, 1).

Observe that risk aversion in the sense of a concave distortion is indicated by
n = 2 in the above definition. Note also that an agent with the distortion

7X is smaller than Y in the convex order if E[X] = E[Y ] and X ≤sl Y (see Section 3.4
in Denuit et al., 2005)

8We sometimes use the phrase “distortion g is nth degree dual risk averse” instead of
the longer phrase “an agent with a distortion g is nth degree dual risk averse”.
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g1(t) defined by (3) exhibits nth degree dual risk aversion for any positive
integer n.

The following result is the analogous counterpart of a result given by Ekern
(1980). It shows the equivalence of Y having more nth degree dual risk than
X and of X being preferred by every nth degree dual risk averter. The proof
is in Appendix A.

Theorem 3 For n ≥ 1, Y has more nth degree dual risk than X if and only
if every nth degree dual risk averter prefers X to Y.

For n = 2, n = 3 and n ≥ 4, respectively, Theorem 3 is the equivalent
in our dual framework to the results given by Rothschild and Stiglitz (1970),
Menezes et al. (1980) and Ekern (1980) in the expected utility context. For
other interpretations of the sign of the kth derivative of a distortion, see
Eeckhoudt et al. (2020). These authors provide an interpretation in terms of
preferences between classes of lottery pairs with equal k − 1 dual moments.

Wang and Young (1998) consider a sequence of progressively more risk
averse classes of distortions to increase the number of comparable risks.

Definition 4 Let Dn, n ≥ 1, be the class of agents with a distortion g such
that g is kth degree dual risk averse for k = 1, 2, ..., n− 1 and (−1)ng(n−1) is
non-increasing9.

An example of distortion g ∈ Dn, for n = 1, 2, ... is the distortion g1 given
by (3). Observe that Dn+1 ⊂ Dn for n = 1, 2, .... According to Definition 2,
an agent with a distortion g ∈ Dn reaches higher degrees of risk aversion as
n increases10. The risk attitudes of agents in Dn can be characterized by the
following distortion-free ordering of distributions.

Definition 5 Given two risks X and Y with distribution functions F and G,
respectively, X is said to be smaller than Y in the nth dual stochastic order
(denoted by X ≤n Y ) if
(a) F−1

k (0) ≤ G−1
k (0), for k = 1, ..., n.

(b) F−1
n (p) ≤ G−1

n (p) for all p ∈ [0, 1].

The nth dual stochastic order was first studied by Muliere and Scarsini
(1989). For n = 1, 2, it reduces to the usual stochastic order and the stop-loss
order, respectively. The following result is due to Wang and Young (1998)
(see Theorem 4.4).

Theorem 6 X ≤n Y if and only if Hg(X) ≤ Hg(Y ), for all g ∈ Dn.

9Wang and Young (1998) also include in Dn, n ≥ 2 the distortion function gp(t) =
1− ( p−t

p
)n−1
+ , 0 < p ≤ 1, which has piecewise continuous (n− 1)th derivative.

10Wang and Young (1998) provide their own interpretation about how the degree of risk
aversion of g ∈ Dn becomes higher as n increases.

7



Theorem 6 provides motivation, both from the economic and statistical
approaches, for the sequence of the distortion-free partial ordering of risks
given in Definition 5. However, X ≤n Y implies E(X) ≤ E(Y ), for n =
1, 2, .... Therefore, the nth dual stochastic order suffers, for n ≥ 3, from the
same shortcoming as the stop-loss order when the interest is in capturing
the preferences of those agents that base their decisions on the right-tail risk
rather than on the mean of a distribution. To overcome this shortcoming, in
the next section, we will focus on “the most risk averse” agents in Dn, for
n ≥ 3. Let us first introduce a dual notion of risk aversion to explain what
we mean when we say “the most risk averse” agents in Dn.

Whereas the signs of successive derivatives of a distortion inform us about
risk preferences, they do not give any information about their intensity. The
strength of risk aversion in the expected utility model is locally evaluated in
terms of a quotient of derivatives of the utility function. In the dual context,
Yaari (1986) has proposed to measure risk aversion by the quotient g′′/g′

(where g is a twice differentiable strictly increasing distortion), which is the
analog of the Arrow-Pratt index of absolute risk aversion used in the expected
utility model, see Pratt (1964) and Arrow (1970). This coefficient can be
generalized as follows.

Definition 7 Let g be a distortion n + 1 times differentiable, n ≥ 1. We
define the nth degree coefficient of dual risk aversion as

rg,n(t) =
−g(n+1)(t)

g(n)(t)
, t ∈ (0, 1). (7)

This coefficient can be used to define a distortion h as being more nth degree
dual risk averse than a distortion g.

Definition 8 Given two distortions h and g, we say that h is more nth degree
dual risk averse than g if rh,n(t) ≥ rg,n(t) for all t ∈ (0, 1).

The coefficient rg,1 is the dual counterpart of the classical Arrow- Pratt
index of absolute risk aversion, whereas rg,2 is the dual of the Kimball index
of prudence. For n ≥ 3, rg,n is the dual version of the index of absolute
risk aversion introduced by Caballé and Pomansky (1996) and studied, in
the expected utility model, by Chiu (2005), Jindapon and Neilson (2007),
Denuit and Eeckhoudt (2010) and Wei (2017). To interpret this index in
the dual context, we follow the same comparative statics approach used in
the expected utility model by Jindapon and Neilson (2007). We need the
following definition.

Definition 9 We say that Y differs from X by a simple increase in nth degree
dual risk if
(a) Y has more nth degree dual risk than X.
(b) There exists p0 ∈ [0, 1] such that G−1

n−1(p) ≤ F−1
n−1(p) for all p ≤ p0 and

G−1
n−1(p) ≥ F−1

n−1(p) for all p ≥ p0.
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Observe that the property of Y differing from X by a simple increase in
nth degree dual risk is a bit stronger than the property of Y having more
nth degree dual risk than X (condition (b) in Definition 9, together with
F−1
n (0) ≤ G−1

n (0), implies condition (b) in Definition 1). This property can
be interpreted in terms of (dual) precedence relations as in Chiu (2005). We
can now address the interpretation of the local coefficient rg,n(t) given by (7).
Consider two Yaari risk averse agents with distortions i and j facing a risk Y.
Let X be another risk which both agents strictly prefer to Y , with X and Y
being comonotonic11. From Yaari’s dual independence axiom it follows that,
for any t ∈ (0, 1], the agents prefer the risk Zt = tX + (1 − t)Y to the risk
Y and that Zt1 is preferred to Zt2 whenever t1 > t2. Now suppose that the
agents can improve their risk positions from Y to Zt for a cost of c(t), where
c is assumed to be increasing and convex, with c(0) = 0 and c(1) = 1. If M̄t

is the tail function of Zt, it seems reasonable that the first and the second
agents choose t to minimize

Ui(t) =

∫ 1

0
i(M̄t(p))dp+ c(t) (8)

and

Uj(t) =

∫ 1

0
j(M̄t(p))dp+ c(t), (9)

respectively.
The distortions i and j are assumed to be strictly increasing, concave and

twice continuously differentiable. We also assume that U ′′
i ≥ 0 and U ′′

j ≥ 0
so that the first-order conditions identify the optimal values ti and tj , respec-
tively. Intuition suggests that if the agent with distortion j is more risk averse
than the agent with distortion i, then tj ≥ ti (which means that the first one
is willing to spend more to improve the distribution12).

The following result shows that the more nth degree dual risk averse agent
chooses a less risky but more costly distribution. The proof follows the same
steps as the proof of Theorem 3 in Jindapon and Neilson (2007). We include
it in Appendix A.

Theorem 10 Consider two agents nth and (n− 1)th degree dual risk averse,
for n ≥ 2, with distortions i and j strictly increasing and infinitely contin-
uously differentiable. Let ti and tj minimize (8) and (9), respectively. For
any risk Y which differs from X by a simple increase in nth degree dual risk,
ti ≤ tj if and only if j is more nth degree dual risk averse than i.

4 Some classes of risk averse agents

We introduce in this section a sequence of classes {D̂n, n ≥ 3} of risk averse
agents (or risk averse distortions). By construction, D̂n ⊂ Dn, where {Dn, n ≥

11X and Y are comonotonic if there exists a risk W and two non-decreasing functions f
and g such that X = f(W ) and Y = g(W ).

12This comparative problem is the adaptation to our dual context of the original problem
considered in the expected utility framework by Jindapon and Neilson (2007).
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1} is the sequence considered by Wang and Young (1998) (see Definition 4
above). The distortion g1(t) given by (3) plays a key role in the construction
of the new sequence. Since g1(t) ∈ Dn for all positive integer n, the idea
is that an agent with distortion g in Dn belongs to D̂n if they are more risk
averse than an agent with the distortion g1(t), where risk aversion is measured
by the coefficient of dual risk aversion (7).

Definition 11 For n ≥ 3, let D̂n be the class of distortions g such that g is
at least n− 1 times differentiable, g′(1) = 0,

−tg(k+1)(t)

g(k)(t)
≥ k − 1, t ∈ (0, 1), k = 1, ..., n− 2, (10)

and (−1)n(tg(n−1)(t) + (n− 3)g(n−2)(t)) is non-increasing in t.

It can be checked that D̂n ⊂ Dn for n ≥ 3. To interpret the succession
{D̂n, n ≥ 3} we first focus on D̂3, the class of distortions g such that g is at
least 2 times differentiable and such that g′(1) = 0, g′′(t) ≤ 0 for all t ∈ (0, 1)
and tg′′(t) ↑ . An agent using a distortion in D̂3 overweights large losses (in
the sense that the relative loading g(F (x))/F (x) increases faster as x goes to
0 if g′(1) = 0). Since the identity function does not belong to D̂3, an agent
with a distortion in D̂3 does not use the mean value as a basis for evaluating
risks. To interpret the meaning of tg′′(t) ↑, assume that the third derivative
of g exists and observe that rg1,2(t) =

1
t , where g1(t) is the distortion given

by (3). Then, tg′′(t) ↑ if and only if rg,2(t) ≥ rg1,2(t) for all t ∈ (0, 1). This
means, according to Definition 8, that g is more 2nd degree dual risk averse
than g1. Since D̂3 ⊂ D3 (where D3 is the class of concave distortions that
also have increasing second derivatives, see Definition 4 above), we can think
that agents with distortions in D̂3 are among the most risk averse agents with
distortions in D3, in the sense that they do not use mean values for evaluating
risks, overweight large losses and are more 2nd degree dual risk averse with
respect to g1 than other agents that are not in the same class.

For n ≥ 4, condition (10) means that g is more kth degree dual risk averse
than g1 for k = 1, ..., n − 2. Moreover, if g is n times differentiable, the last
condition in the statement means that g is more (n − 1)th degree dual risk
averse than g1. Since the classes are nested (that is, D̂n+1 ⊂ D̂n for n ≥ 3)
this implies that an agent with a distortion g ∈ D̂n+1 is more dual risk averse
with respect to g1 than an agent with a distortion in D̂n (but not in D̂n+1)
in the sense of Definition 8. Since g1 belongs trivially to D̂n for n ≥ 4, we
can think that agents with distortions in D̂n are among the most risk averse
agents with distortions in Dn, in the sense that they do not use mean values
for evaluating risks, overweight large losses and are more kth degree dual risk
averse with respect to g1, for k = 1, ..., n−2, than other agents that are not in
the same class. Obviously, for agents with distortions in D̂n, right-tail risks
matter more than small risks.

Next, we provide several examples of risk measures of the form Hg(X)

with g ∈ D̂n.

10



4.1 The class Hm(X),m ≥ 1

For m ≥ 1 the distortion

gm (t) = mt

∫ 1

t

(1− u)m−1

u
du+ 1− (1− t)m , 0 < t ≤ 1, (11)

belongs to D̂n for n ≥ 3. The corresponding distortion risk measure (Sordo
et al., 2016) is13

Hm(X) =

∫ 1

0
gm(F (t))dt

=m

H1(X)−
m∑
j=2

E[max(X1, ..., Xj)]

j(j − 1)


=E[X|X > max{X1, ..., Xm}], m ≥ 2, (12)

where H1(X) is given by (2) and X1, ..., Xm are independent copies of X. For
m ≥ 1 and 0 < t ≤ 1 it is shown in Sordo et al. (2016) that

gm+1(t) = gm(t) + t
∞∑

j=m+1

(1− t)j

j
,

which implies that Hm(X) ≤ Hm+1(X) (an insurer with risk averison to
higher risks may use Hm+1(X) instead of Hm(X) to evaluate X).

4.2 Record claims

Given j ≥ 1, the distortion

gj(t) = t

j∑
k=0

(−log t)k

k!
, 0 < t ≤ 1, (13)

where gj(0) = 0 is defined by continuity. In particular, for j = 1, (13)

reduces to (3). It can be checked that gj ∈ D̂n for all n ≥ 3 and j ≥ 1.
The corresponding distortion risk measure can be interpreted in terms of
the upper record claims14 {Rj(X)}j≥1 of a sequence of independent claims,
{Xi}i≥1, having the same distribution as X. Specifically,

Hgj (X) = E[Rj+1(X)]

is the expected (j + 1)th record claim, with j ≥ 1. In particular, the risk
measure (4) can be interpreted as the expected first nontrivial record claim
(for details, see Section 3.3 in Castaño-Mart́ınez et al., 2020).

13More formally written, Hm(X) = E[YX ] where

[YX | max{X1, ..., Xm} = x]
d
= [X | X > x] for all x ≥ 0.

14Given a sequence of independent claims having the same distribution as X, we say that
Xj is an upper record claim if it is larger than all the previous claims of the sequence.
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4.3 Modified PH-transform risk measure

Let m ≥ 2. The distortion

gm(t) =
mt1/m − t

m− 1
, 0 ≤ t ≤ 1, (14)

belongs to D̂n, for n ≥ 3. It is not difficult to see from (14) that gm(t) ≤
gm+1(t) for m ≥ 2, which implies that Hgm+1(X) gives a higher premium
than Hgm(X). One of the alternative representations for the distortion risk
measure is

Hgm(X) =

∫ ∞

0

(
F̄ (x)

)1/m
dx+

1

m− 1

∫ ∞

0

((
F̄ (x)

)1/m − F̄ (x)
)
dx,

which decomposesHgm(X) as a sum of the PH-transform risk measure (Wang,
1995) plus a deviation measure from the mean

1

m− 1

∫ ∞

0

((
F̄ (x)

)1/m − F̄ (x)
)
dx

(if m = 2, this is the right-tail deviation proposed by Wang 1998). For
m ≥ 2, Hgm(X) has a simple analytical form in several parametric families of
distributions:
a) If X is exponentially distributed with mean λ then Hgm(X) = λ(1 +m).

b) If X is uniformly distributed over (0, a), then Hgm(X) = a
2

[
1 + m

m+1

]
.

c) If X is a Pareto random variable with parameters (α, β), then Hgm(X) =
β

α−1

[
1 + mα

α−m

]
, for α > m.

5 Two sequences of ordering of risks

The purpose of this section is to show that a risk ordering based on Yaari
functionals of the form (1) with distortions in D̂n is equivalent to a risk
ordering based on mixtures of TVaRs of the form (6) with mixing weight
functions that belong to a class Cn defined below. This result will be helpful
in Section 6 to characterize the risk attitudes of agents with distortions in D̂n

by a distortion-free ordering of distributions.

Definition 12 Given n ≥ 1, Cn is the class of weight functions h such that
h is at least n−1 times differentiable, h(k) ≥ 0 for k = 1, . . . , n−1 and h(n−1)

is non-decreasing 15.

15Given 0 ≤ p < 1, we also include in Cn+1, n ≥ 1, the function

hp,n(t) =
(t− p)n+
(1− p)n

, (15)

which has piecewise continuous n-th derivative.

12



It is well-known that a risk measure of the form (1) associated with a con-
cave distortion can be written as a mixture of TVaRs of the form (6) (see16

Rockafellar et al. 2006 and Pflug and Römisch 2007). Here we are interested
in higher order relationships between the distortion g in (1) and the mixing
weight function h in (6).

Theorem 13 Let X and Y be two non-negative random variables and let
n ≥ 2. Then, Ih(X) ≤ Ih(Y ) for all h ∈ Cn if and only if Hg(X) ≤ Hg(Y )

for all g ∈ D̂n+1.

Proof. The proof consists of showing that every functional of the form (6),
with h ∈ Cn, n ≥ 2, can be written in the form (1), with g ∈ D̂n+1 and vice
versa. For n ≥ 2, every Ih(X) with h ∈ Cn can be written as

Ih(X) =

∫ 1

0

1

1− p

∫ 1

p
F−1(t)dtdh(p)

=

∫ 1

0

∫ t

0

1

1− p
dh(p)F−1(t)dt

=

∫ 1

0
g′h(1− t)F−1(t)dt

=

∫ ∞

0
gh(F̄ (x))dx,

where

g′h(t) =

∫ 1−t

0

1

1− p
dh(p). (16)

Clearly g′h(1) = 0. Since h is a weight function, g′h(t) is not increasing and
g′h(t) ≥ 0 for all t ∈ (0, 1). Moreover, if we set gh(0) = 0,

gh(t) =

∫ t

0
g′h(u)du

=

∫ t

0

∫ 1−u

0

1

1− p
dh(p)du

=

∫ 1

0

∫ min{1−p,t}

0
du

1

1− p
dh(p)

= t

∫ 1−t

0

1

1− p
dh(p) +

∫ 1

1−t
dh(p)

= 1− h(1− t) + t

∫ 1−t

0

1

1− p
dh(p). (17)

16Rockafellar et al. (2006, Prop. 5) and Pflug and Römisch (2007, Prop. 2.64) study
the conditions under which the functional

∫ 1

0
F−1(t)dλ(t) with λ concave can be written

as a mixture of the form
∫ 1

0
CVaRp(X)dµ(p), where CVaRp(X) = 1

p

∫ p

0
F−1(t)dt (and con-

versely).

13



It is easy to see that gh(t) is a distortion function. Now assume that h ∈ Cn,
with n ≥ 2. Hence, it can be shown inductively from (16) for k = 2, ..., n, that

g
(k)
h (t) = (−1)k+1

[
h(k−1)(1− t)

t
+

(k − 2)h(k−2)(1− t)

t2

+
(k − 2)(k − 3)h(k−3)(1− t)

t3
+ ...+

(k − 2)!h′(1− t)

t(k−1)

]
.

Since h(i)(1−t) ≥ 0 for i = 1, ..., n−1, it follows that (−1)k+1g
(k)
h (t) ≥ 0 for all

t ∈ (0, 1] and k = 1, . . . , n.Moreover, using that h(n−i)(1−t)/ti, i = 1, ..., n−1,

is non-increasing, it follows that (−1)n+1g
(n)
h (t) is also non-increasing, which

shows that gh ∈ Dn+1. Now, it can be checked by taking successive derivatives
of (16) that

h(k)(t) = (−1)k((1−t)g
(k+1)
h (1−t)+(k−1)g

(k)
h (1−t)), k = 1, ..., n−1. (18)

Since h(k)(t) ≥ 0 for all t ∈ [0, 1) and k = 1, ..., n − 1, we see from (18)

that (−1)k(tg
(k+1)
h (t) + (k − 1)g

(k)
h (t)) ≥ 0 for all t ∈ (0, 1], k = 1, ..., n − 1,

which implies trg,k(t) ≥ k− 1 for k = 1, ..., n− 1. Finally, since h(n−1) is non-

decreasing, (−1)n−1((1− t)g
(n)
h (1− t)+(n−2)g

(n−1)
h (1− t)) is non-decreasing,

which means that gh ∈ D̂n+1.
To prove the converse, let g ∈ D̂n with n ≥ 3. Then,

Hg(X) =

∫ ∞

0
g(F̄ (x))dx

=

∫ 1

0
g′(p)F−1(1− p)dp

=−
∫ 1

0

(∫ 1

1−p
F−1(t)dt

)
dg′(p)

=

∫ 1

0
TVaRp(X)dhg(p)

where

hg(p) =

∫ p

0
(1− t)dg′(1− t) (19)

is a weight function. By taking successive derivatives in (19) we obtain

h(k)g (t) = (−1)k((1−t)g(k+1)(1−t)+(k−1)g(k)(1−t)), k = 1, ..., n−2. (20)

Using sequentially in (20) that g(k+1) and g(k) have opposite signs and that

trg,k(t) ≥ k− 1 for k = 1, ..., n− 2, it follows that h
(k)
g (t) ≥ 0 for all t ∈ (0, 1).

Moreover, it follows from (20) and the assumptions on g that h
(n−2)
g (t) is

non-decreasing, therefore hg ∈ Cn−1.
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The following corollary shows that an agent with distortion in D̂n always
uses a premium higher than H1(X). This, together with (5), suggests that
this agent is concerned about the right-tail risk and not about losses around
the mean value.

Corollary 14 Let g ∈ D̂n, n ≥ 3. Then, Hg(X) ≥ H1(X).

Proof. Let g ∈ D̂n, n ≥ 3. From the proof of Theorem 13 we know that
there exists hg ∈ C2 such that Hg(X) =

∫ 1
0 TVaRp(X)dhg(p). Since hg is a

convex weight function, hg(p) ≤ p for all p ∈ [0, 1]. Moreover, TVaRp(X) is
non-decreasing in p, therefore∫ 1

0
TVaRp(X)d(hg(p)− p) =

∫ 1

0
(p− hg(p))dTVaRp(X) ≥ 0,

that is, Hg(X) ≥ H1(X).

6 A new stochastic dominance rule

This section aims to characterize the risk attitudes of agents with distortions
in D̂n by a distortion-free ordering of distributions based on the following

sequence of functions. Denote T
[1]
X (p) = TVaRp(X) and define

T
[n]
X (p) =

∫ 1

p
T
[n−1]
X (t)dt, for n = 2, 3, . . . and 0 ≤ p ≤ 1.

By analogy with Definition 5, we define the following sequence of stochastic
orders.

Definition 15 Given X and Y two non-negative risks and n ≥ 2, we write
X ≤tvar[n] Y if

(a) T
[k]
X (0) ≤ T

[k]
Y (0) for k = 2, ..., n.

(b) T
[n]
X (p) ≤ T

[n]
Y (p) for all p ∈ [0, 1].

To interpret Definition 15, we rewrite T
[n]
X (0) using a more conventional

expression.

Lemma 16 Let X be a random variable and k ≥ 2. Then

T
[k]
X (0) =

1

(k − 1)!
E[X|X > max{X1, ..., Xk−1}]

where X1, ..., Xk−1 are independent copies of X.

Proof. By using induction on j, it is easy to prove that

j!

(1− p)j
T
[k]
X (p) =

∫ 1

0
T
[k−j]
X (t)dhp,j(t), j = 1, . . . , k − 1,

15



for all p ∈ [0, 1), where the functions hp,k−1 ∈ Ck, k ≥ 2, are given in (15).
By taking, in particular j = k − 1, we obtain

(k − 1)!

(1− p)k−1
T
[k]
X (p) = Ihp,k−1

(X), (21)

where Ih is given by (6). Now consider the case p = 0. Since h0,k−1(t) = tk−1,
it follows from (17) that Ih0,k−1

(X) = Hgk−1
(X), where gk−1(t) is given by

(11). The result follows from (12).

Thus, T
[k]
X (0) is, up to a scale factor, the distortion risk measure Hk−1(X)

considered in Section 4.1. Therefore, condition (a) in Definition 15 can be
equivalent rewritten as

E[X|X > max{X1, ..., Xk−1}] ≤ E[Y |Y > max{Y1, ..., Yk−1}], (22)

for k = 2, ..., n, whereX1, ..., Xk−1 are independent copies ofX and Y1, ..., Yk−1

are independent copies of Y. Condition (b) in Definition 15 implies, in partic-
ular, that (22) holds for k = n+ 1. Consequently, an agent will interpret the
order ≤tvar[n] as follows: if X ≤tvar[n] Y, the variability of the risk along the
right-tail distribution is smaller for X than for Y (and the higher n, the more
the agent is focused on extreme losses).

The following expansion formula for Ih(X) will be useful to prove the main
result in this section.

Lemma 17 Let Ih(X) be a risk measure of the form (6) with h ∈ Cn, n ≥ 2.
Then,

Ih(X) =
n−1∑
k=1

h(k)(0)T
[k+1]
X (0) +

∫ 1

0
T
[n]
X (t)dh(n−1)(t). (23)

Proof. The result will be proved inductively on n using that Cn+1 ⊂ Cn. Let
h ∈ C2, which means that h is differentiable, h′ ≥ 0 and h′ is non-decreasing.
Then,

Ih(X) =

∫ 1

0
TV aRt(X)dh(t)

=−
∫ 1

0
h′(t)dT

[2]
X (t)

= h′(0)T
[2]
X (0) +

∫ 1

0
T
[2]
X (t)dh′(t),

where we have used integration by parts in the third equality together with

the fact that T
[2]
X (1) = 0. Now suppose that (23) holds for all h ∈ Cn. Given

h ∈ Cn+1, we must show that

Ih(X) =
n∑

k=1

h(k)(0)T
[k+1]
X (0) +

∫ 1

0
T
[n+1]
X (t)dh(n)(t). (24)
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Since Cn+1 ⊂ Cn, h satisfies (23). Moreover, h is n times differentiable, so we
can write∫ 1

0
T
[n]
X (t)dh(n−1)(t) =−

∫ 1

0
h(n)(t)dT

[n+1]
X (t)

= h(n)(0)T
[n+1]
X (0) +

∫ 1

0
T
[n+1]
X (t)dh(n)(t), (25)

where we have used integration by parts again in the second equality together

with the fact that T
[n+1]
X (1) = 0. Replacing (25) in (23) we obtain (24).

We can now prove the main result of this section.

Theorem 18 Let X and Y be two non-negative random variables and let
n ≥ 2. Then, X ≤tvar[n] Y if only if Hg(X) ≤ Hg(Y ) for all g ∈ D̂n+1.

Proof. By Theorem 13, we can prove equivalently that X ≤tvar[n] Y holds if
and only if

Ih(X) ≤ Ih(Y ) for all h ∈ Cn. (26)

Let Ih(X) and Ih(Y ) be two indices with h ∈ Cn, n ≥ 2, and assumeX ≤tvar[n]

Y. Then, T
[n]
X (p) ≤ T

[n]
Y (p) for all p ∈ [0, 1], T

[k]
X (0) ≤ T

[k]
Y (0) for k = 2, ..., n,

h(k)(0) ≥ 0 for k = 1, ..., n − 1 and h(n−1) is non-decreasing. Using (23), we
see that these conditions imply (26), which proves the sufficiency.

To prove the converse, we assume that (26) holds for some n ≥ 2. In
particular, we have Ihp,n−1(X) ≤ Ihp,n−1(Y ) for all p ∈ [0, 1) where hp,n−1 ∈ Cn

is given in (15). This, combined with (21), implies T
[n]
X (p) ≤ T

[n]
Y (p) for all

p ∈ [0, 1]. We also have from (26) that Ih0,k
(X) ≤ Ih0,k

(Y ) for k = 1, ..., n− 1,

where h0,k(p) = pk ∈ Cn, for all n ≥ 1. This, combined with (21), implies

T
[k]
X (0) ≤ T

[k]
Y (0) for k = 2, ..., n and X ≤tvar[n] Y holds.

Theorem 18 provides motivation, both from the economic and statistical
approaches, for the sequence of distortion-free partial ordering of risks given
in Definition 15: a risk X is smaller than Y in the order ≤tvar[n] if any agent

with a distortion g ∈ D̂n+1 perceives Y as being more risky than X.
The relationship between the nth dual stochastic order (Definition 5) and

the ordering ≤tvar[n] follows immediately from Theorem 6 and Theorem 18

using that D̂n ⊂ Dn for n ≥ 2.

Corollary 19 Let X and Y be two non-negative random variables. For n ≥
3, X ≤n Y implies X ≤tvar[n−1] Y.

The condition X ≤tvar[n] Y can be weakened if we restrict to a subclass

of distortions in D̂n+1. Let us define

D̂∗
n = {g ∈ D̂n such that g(k)(1) = 0, k = 2, ..., n− 1}, n ≥ 3.

To cite some examples, the distortion gm given by (11) belongs to D̂∗
n

whenever m + 1 ≥ n ≥ 3 and the distortion gj given by (13) belongs to

D̂∗
n if j ≥ n − 1, with n ≥ 3. If we restrict attention to the class D̂∗

n+1 the
characterization in Theorem 18 can be stated as follows.
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Corollary 20 Let X and Y be two non-negative random variables and let

n ≥ 2. Then T
[n]
X (p) ≤ T

[n]
Y (p) for all p ∈ [0, 1] if and only if Hg(X) ≤ Hg(Y )

for all g ∈ D̂∗
n+1.

Proof. Define C∗
n = {h ∈ Cn such that h(k)(0) = 0, k = 1, ..., n − 1}, n ≥ 2.

If follows directly from (18) and (20) that g ∈ D̂∗
n+1 if and only if hg ∈ C∗

n,
for n = 2, 3, ..... By following the same steps as in the proof of Theorem 18
and taking into account that h(k)(0) = 0, k = 1, ..., n− 1, for h ∈ C∗

n we can

prove that T
[n]
X (p) ≤ T

[n]
Y (p) for all p ∈ [0, 1] if and only if Ih(X) ≤ Ih(Y ),

which proves the result.
Of particular interest is the following corollary, which follows from Theo-

rem 18 by taking n = 2.

Corollary 21 Let X and Y be two non-negative random variables with dis-
tribution functions FX and FY , respectively. Then,∫ 1

p
TV aRt(X)dt ≤

∫ 1

p
TV aRt(Y )dt, 0 ≤ p ≤ 1,

if and only if ∫ ∞

0
g(F̄X(x))dx ≤

∫ ∞

0
g(F̄Y (x))dx,

for all distortions g such that g′(1) = 0, g′′(t) ≤ 0, tg′′(t) ↑ .

The following theorem shows that a “single-crossing property” on the
curves TVaRp(X) and TVaRp(Y ) implies the order ≤tvar[2] .

Theorem 22 Suppose H1(X) ≤ H1(Y ) and there is some p0 in [0, 1] such
that TVaRp(X) ≥ TVaRp(Y ) for p in [0, p0] and TVaRp(X) ≤ TVaRp(Y ) for
p in [p0, 1]. Then X ≤tvar[2] Y .

Proof. By the assumptions,∫ 1

p
TVaRt(X)dt ≤

∫ 1

p
TVaRt(Y )dt (27)

for all p in [p0, 1]. If
∫ 1
p TVaRt(X)dt >

∫ 1
p TVaRt(Y )dt for some p in (0, p0], we

must have H1(X) > H1(Y ), because TVaRt(X) ≥ TVaRt(Y ) for t in [0, p0].
This is a contradiction. Hence, (27) holds for all p in [0, 1] and, consequently,
X ≤tvar[2] Y .

Finally, we return to the example in Section 1 based on two Pareto random
variables X and Y with parameters α1 = 2.4, β1 = 3 and α2 = 2, β2 = 2,
respectively. Recall that X ≰n Y for n ≥ 1. Since H1(X) = 5.8163 < 6 =
H1(Y ) and the TVaR curves of X and Y satisfy the assumptions of Theorem
22 (see Figure 1), it follows X ≤tvar[2] Y (observe in Figure 2 that the curve
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T
[2]
X (p) lies everywhere below T

[2]
Y (p)). We conclude that an agent with a

distortion g ∈ D̂3 prefers X to Y.
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Figure 2: Curves T
[2]
X (p) and T

[2]
Y (p) as functions of p

7 Conclusions

In Yaari’s model, people base their preferences on distortion risk measures of
the form (1). In the context of the premium principle of Wang (1996), risk
averse agents use concave distortions and the stop loss order characterizes
their shared preferences. To increase the number of comparable risks, Wang
and Young (1998) consider a sequence {Dn, n ≥ 1} of classes of progres-
sively more risk averse agents using distortions whose successive derivatives
alternate in sign and characterize their preferences by a sequence of partial
orders introduced by Muliere and Scarsini (1989). Under Wang and Young’s
approach, if a risk X is preferred to a risk Y for a certain class Dn, then nec-
essarily E(X) ≤ E(Y ). In this paper, we have characterized, by a sequence of
distortion-free partial orders based on comparing successive integrals of TVaR
curves, the risk preferences of classes {D̂n ⊂ Dn, n ≥ 3} of agents exclusively
concerned with tail risks, irrespective of their mean values. Specifically, an
agent with distortion g ∈ D̂n is more risk averse than an agent with the dis-
tortion g1(t) given by (3), where risk aversion is measured by the nth degree
coefficient of dual risk aversion (7). As the main contributions, our approach
(1) increases the completeness of risk orderings by comparing risks that are
not comparable under Wang and Young’s approach and (2) provides a plau-
sible economic interpretation of the new orderings. Of course, our approach
also has limitations. One is that the choice of g1 as a benchmark to compare
risk aversion may be considered somewhat arbitrary. Naturally, the choice is
motivated by the role played by g1 in interpreting the area under the TVaR
curve. This suggests that another distortion g2 may similarly lead to another
sequence of partial orderings that can be a topic for future research.
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8 Appendix A. Some proofs.

Proof of Theorem 3. Let h be a nth degree dual risk averse distortion
function. First, note that∫ ∞

0
h(F̄ (x))dx =

∫ 1

0
F−1(t)dh̃(t), (28)

where h̃(t) = 1−h(1− t). The hypothesis of the dual theory in our context is
that agents will choose among random variables to minimize (28). Given X
and Y , we can write∫ ∞

0
h(Ḡ(x))dx−

∫ ∞

0
h(F̄ (x))dx

=

∫ 1

0
(G−1(t)− F−1(t))dh̃(t)

=

n−1∑
k=1

h̃(k)(0)(G−1
k+1(0)− F−1

k+1(0)) +

∫ 1

0
(G−1

n (t)− F−1
n (t))h̃(n)(t)dt

=
n−1∑
k=1

(−1)k+1h(k)(1)(G−1
k+1(0)− F−1

k+1(0))

+

∫ 1

0
(G−1

n (t)− F−1
n (t))(−1)n+1h(n)(1− t)dt.

A nth dual risk averter prefers X to Y if this difference is positive, which
happens whenever conditions (a) and (b) in Definition 1 hold. Conversely,
if every nth degree dual risk averter prefers X to Y, then necessarily Y has
more nth degree dual risk than X (otherwise, as h(k) has no restrictions for
k = 1, ..., n− 1, we can give examples that contradict the claim).

Proof of Theorem 10. The proof follows the same steps as the proof of
Theorem 3 of Jindapon and Neilson (2007). To prove the sufficient condition,
rescale the distortion i so that i(n−1)(p0) = j(n−1)(p0), where p0 is the same
as in Definition 9(b) and note that the solution of Ui(t) minimization is the

same as the solution from minimizing17
Ui(t)

ĩ(n−1)(p0)
, where ĩ(p) = 1− i(1− p)

for all p ∈ (0, 1). From the comonotonicity of X and Y we can write

Ui(t) =

∫ 1

0
M−1

t (p)dĩ(p) + c(t)

=

∫ 1

0
(tF−1(p) + (1− t)G−1(p))dĩ(p) + c(t).

17By assumptions, we have (−1)ni(n−1)(p0) ≥ 0. Therefore, ĩ(n−1)(p0) ≥ 0.
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The first order condition on
Ui(t)

ĩ(n−1)(p0)
yields

c′(ti)

ĩ(n−1)(p0)
=

∫ 1
0 (G

−1(p)− F−1(p))dĩ(p)

ĩ(n−1)(p0)
.

Define

θ =

∫ 1
0 (G

−1(p)− F−1(p))dĩ(p)

ĩ(n−1)(p0)
−

(∫ 1
0 (G

−1(p)− F−1(p))dj̃(p)

j̃(n−1)(p0)

)
.

Integration by parts yields

θ =

∫ 1

0

[
(F−1

n−1(p)−G−1
n−1(p))

] [ j̃(n−1)(p)

j̃(n−1)(p0)
− ĩ(n−1)(p)

ĩ(n−1)(p0)

]
dp.

From j is more nth degree dual risk averse than i, it follows

j̃(n)(p)

j̃(n−1)(p)
≥ ĩ(n)(p)

ĩ(n−1)(p)
, p ∈ (0, 1). (29)

Since j̃(n−1)(p) and ĩ(n−1)(p) have the same sign, we can write

d

dp
log

[
j̃(n−1)(p)

ĩ(n−1)(p)

]
=

j̃(n)(p)

j̃(n−1)(p)
− ĩ(n)(p)

ĩ(n−1)(p)
. (30)

Combining (29) and (30), we see that
j̃(n−1)(p)

ĩ(n−1)(p)
is non-decreasing. Then,

j̃(n−1)(p)

j̃(n−1)(p0)
≤ ĩ(n−1)(p)

ĩ(n−1)(p0)
for p ≤ p0 and

j̃(n−1)(p)

j̃(n−1)(p0)
≥ ĩ(n−1)(p)

ĩ(n−1)(p0)
for p ≥ p0.

Since G−1
n−1(p) and F−1

n−1(p) cross only once at p0, as indicated in Definition

9(b), then θ ≤ 0. Since i(n−1)(p0) = j(n−1)(p0), c′(ti) ≤ c′(tj) and hence
ti ≤ tj , because c is convex.

To prove the converse, suppose that there exists some p0 ∈ (0, 1) such that

j̃(n)(p0)

j̃(n−1)(p0)
<

ĩ(n)(p0)

ĩ(n−1)(p0)
. Because i and j are infinitely continuously differen-

tiable, there exists a neighborhood E0 of p0 such that
j̃(n)(p)

j̃(n−1)(p)
<

ĩ(n)(p)

ĩ(n−1)(p)

for all p ∈ E0. It follows from (30) that
j̃(n−1)(p)

ĩ(n−1)(p)
is non-increasing. Then,

j̃(n−1)(p)

j̃(n−1)(p0)
≥ ĩ(n−1)(p)

ĩ(n−1)(p0)
for p ≤ p0 and

j̃(n−1)(p)

j̃(n−1)(p0)
≤ ĩ(n−1)(p)

ĩ(n−1)(p0)
for p ≥ p0.

Now choose X and Y such that G−1
n−1(p)−F−1

n−1(p) is a function with support
in E0 and Y differs from X by a simple increase in nth degree dual risk with a
crossing at p = p0. Then, for all p ∈ E0 such that p ≤ p0, G

−1
n−1(p) ≤ F−1

n−1(p)

and G−1
n−1(p) ≥ F−1

n−1(p) for all p ≥ p0. Then θ ≥ 0. It follows that ti ≥ tj , a
contradiction.
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