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Abstract
This paper studies the efficiency assessment of Decision Making Units (DMUs) when their
inputs and outputs are fuzzy sets. An axiomatic derivation of the fuzzy production possibility
set is presented and a fuzzy enhanced Russell graph measure is formulated using a fuzzy
arithmetic approach. The proposed approach uses polygonal fuzzy sets and LU-fuzzy partial
orders, and provides crisp efficiency measures (and associated efficiency ranking) as well
as fuzzy efficient targets. The proposed approach has been compared with other fuzzy DEA
approaches on different datasets from the literature, and the results show that it has more
discriminant power and more flexibility in modelling the input and output data.

Keyword Efficiency · Fuzzy data · Fuzzy production possibility set · Fuzzy enhanced
Russell graph measure · Fuzzy efficient targets

Mathematics Subject Classification 90C05 · 90C29 · 90C70 · 90C90

1 Introduction

Assessing and improving efficiency is a widespread and important problem in today’s com-
petitivemarketplace.But not only firms but all types of organizations, including public bodies,
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need to make an efficient use of the limited resources available. And not only the benefits
involve reduced costs and increased revenue but also reduced natural resources depletion,
reduced pollution, and increased sustainability. Hence, the need to develop efficiency assess-
ment models and tools that can be used in practical settings where uncertainty may be present
in the data.

Data envelopment analysis (DEA) is the methodology most commonly used for assessing
the relative efficiency of a set of Decision Making Units (DMUs). The first step in DEA is
deriving a Production Possibility Set (PPS) from the input and output data of the observed
DMUs and using certain axioms (such as envelopment, free disposability, and convexity).
The non-dominated subset of the PPS corresponds to the efficient frontier. If a DMU lies on
the efficient frontier it is said to be efficient. Otherwise, it is inefficient and the distance to
the efficient frontier, which is a function of the potential input and output improvements (i.e.,
the input and output slacks), is used to compute an efficiency score. There are different ways
to define the PPS (e.g., Constant Returns to Scale, CRS, Variable Returns to Scale, VRS) as
well as different ways to compute the efficiency score. In this paper, we will use the enhanced
Russell graph measure (ERM) proposed in Pastor et al. (1999), which, in the case of crisp
data, is equivalent to the slacks-based measure of efficiency (SBM) of Tone (2001).

Although still a very active research field, the DEA methodology is very well developed
in the case of crisp data. There are however situations in which there is uncertainty in the
data. Dyson and Shale (2010) discusses possible sources of uncertainty in DEA and reviews
different approaches for handling this uncertainty. A classic approach for handling data
uncertainty is stochastic DEA methods, such as Chance Constrained DEA (Cooper et al.
2002, 2004) or Monte Carlo simulation (e.g., Kao and Liu 2009, 2019). These approaches
assume that the input and output data are random variables whose joint distribution function
is known (generally a multivariate normal) or can be fitted from historical data (e.g., a beta
distribution). The resulting efficient frontier is random and so are the efficiency scores. Olesen
and Petersen (2016) present a thorough review of stochastic DEA approaches, including
Stochastic Frontier Analysis and Chance-constrained DEA. The reader is also referred to
Salahi et al. (2019) and Izadikhah (2021) for examples of Robust optimization and Chance-
constrained DEA approaches, respectively, that also use the ERM efficiency considered in
this paper.

An alternative to considering random data is modelling data uncertainty using fuzzy sets.
Thus, often, the data variability is not due to randomness. There can be multiple factors such
as inherent data variability, effectiveness of measurement instruments, multiplicity of data
sources, etc. data can lead to uncertainty in the input and output data. Take, for example, a
typical input variable such as the number of employees of a certain company or business unit.
That variable is not random, but can fluctuate from 1 month to another (or even from 1 week
to another) along the year and it may not be easy to reach a single, crisp number to represent
that variable. The same happens with typical output variables like the number of customers
attended or the number of transactions processed in cases in which a strict and exhaustive
counting of all inquiries and requests attended may not exist and the corresponding numbers
are only known approximately. Fuzzy sets have proved very helpful to model these type of
uncertainties. Hence, applying DEA to fuzzy data has been the subject of many studies [see
Hatami-Marbini et al. (2011) and Emrouznejad et al. (2014) for a survey and a taxonomy],
although many of the existing approaches have drawbacks (Soleimani-damaneh et al. 2006).
A number of FuzzyDEA (FDEA) approaches are based on theα-level set (i.e.,α-cut) concept
[e.g., Kao and Liu (2000), Saati et al. (2002)]. Another large group of FDEA studies use a
fuzzy ranking approach [e.g., Guo and Tanaka (2001), León et al. (2003)], Ghasemi et al.
(2015)]. Other researchers use a possibility [e.g., Lertworasirikul et al. (2003), or a fuzzy

123



Efficiency assessment using fuzzy production possibility set... Page 3 of 31 79

arithmetic approach [e.g., Wang et al. (2005)] or consider fuzzy random/type-2 fuzzy sets
[e.g., Tavana et al. (2013)]. Another category of FDEA approaches, and which has been
thoroughly reviewed in Peykani et al. (2021), is Fuzzy Chance-constrained DEA. Thus, it
can be said that FDEA is a fruitful and growing area of efficiency analysis under uncertainty,
with many new approaches and applications being reported [e.g., Kachouei et al. (2020),
Ebrahimnejad and Amani (2021)]. And not only can FDEA be applied in efficiency analysis,
but also it can be used to solve multiobjective fuzzy optimization problems (e.g., Bagheri
et al. 2020, 2021a, b).

Most existing FDEA approaches use a radial metric and an input or an output orien-
tation. There are many situations, however, in which both inputs and outputs should be
improved and not necessarily in the same proportions. In those cases, a non-radial and non-
oriented approach, like the proposed fuzzy ERM (FERM) model, is adequate. In this paper,
an axiomatic approach to derive a Fuzzy PPS (FPPS) is presented and an FERM model is
proposed. Only a few researchers have attempted to explicitly build a FPPS from the observa-
tions. Thus, Allahviranloo et al. (2007) use the Extension principle to define an FPPS, while
Raei Nojehdehi et al. (2012) use a geometrical approach based on t-norms.

Table 1 summarizes the existing fuzzy ERM/SBM approaches together with other fuzzy
DEA methods for comparison. As regards FERM approaches, note that a fuzzy ranking
approach is used in Jahanshahloo et al. (2004), Ahmady et al. (2015) and Izadikhah et al.
(2017). Hsiao et al. (2011) and Puri and Yadav (2013) use the α-level set approach of Kao
and Liu (2000), while Saati and Memariani (2009) use the α-level set approach of Saati et al.
(2002). Chen et al. (2013) also use α-cuts and the Extension Principle. Both Hsiao et al.
(2011) and Chen et al. (2013) also formulate a Fuzzy Super SBM model. Wu et al. (2015)
proposed the α-level set FERM approach with undesirable outputs. Izadikhah and Khoshroo
(2018) also considered undesirable outputs and proposed a possibility approach to solve a
super-efficiency FERM model. Finally, Azadi et al. (2015) proposed a possibility approach
based on a multiplier ERM formulation.

As it can be seen in Table 1, the FERM approach proposed in this paper uses polygonal
fuzzy numbers, an LU-fuzzy partial order, and an axiomatic derivation of the fuzzy PPS.
With respect to polygonal fuzzy numbers, Stefanini et al. (2006) proposed using a uniform
subdivision of the interval [0, 1] to get a finite number of α-cuts. Báez-Sánchez et al. (2012)
study the polygonal fuzzy numbers as a particular case of parametric representation of fuzzy
numbers with linear interpolation. As an application of polygonal fuzzy numbers, Chen and
Adam (2018) has recently proposed a new transformation-basedweighted fuzzy interpolative
reasoning method. In this paper, we consider polygonal fuzzy number to model or approx-
imate inputs and outputs. No ranking functions or expected values on the polygonal fuzzy
numbers are needed to formulate the corresponding crisp model.

Another difference between the existing and the proposed FERM approach is that we
compute a crisp efficiency score instead of a fuzzy efficiency score. Fuzzy efficiency scores
are more consistent with the fuzzy nature of the data, but the crisp efficiency scores are
simpler to understand and apply for practitioners. In this paper, we have opted for crisp
efficiency scores. Computing fuzzy efficiency scores using a fully fuzzy approach and LU-
fuzzy partial orders is also possible (e.g., Arana-Jiménez et al. 2020), but the process is
necessarily much more involved. In this paper, we have searched for a compromise between
fuzziness/information loss and simplicity.

Therefore, the contributions of the proposed approach are several. One of them is the
use of polygonal fuzzy numbers and a LU-fuzzy partial order. Another is the axiomatic
derivation of the fuzzy production possibility set that contains all the fuzzy operating points
that are deemed feasible. Using this fuzzy DEA technology, a simple fuzzy optimization
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model allows computing a crisp efficiency score and a fuzzy target for each production unit.
To solve the proposed FERMmodel, a crisp optimization model is formulated that, although
in principle is non-linear, can be appropriately linearized. In the end, we have a simple
and effective FDEA approach for assessing the efficiency and projecting the production
units.

The paper is organized as follows. In Sect. 2, the crisp DEA PPS and ERM model are
reviewed. To consider and model the uncertainty in the data, in Sect. 3, polygonal fuzzy
numbers are presented. Suitable notations and rules to deal with arithmetic operations and
LU-fuzzy partial orders are also derived. Then, in Sect. 4, assuming that inputs and out-
puts are given by polygonal fuzzy numbers, the corresponding fuzzy PPS is derived, a
fuzzy ERM model is formulated and a method to solve it is presented. Section 5 illus-
trates the proposed approach and compares it with existing approaches using different
datasets from the literature. Finally, in Sect. 6, conclusions are drawn and further research
outlined.

2 Crisp production possibility set and ERMmodel

Let us consider a set of n DMUs. For j ∈ J = {1, . . . , n}, each DMUj has m inputs
X j = (x1 j , . . . , xmj ) ∈ R

m , produces s outputs Y j = (y1 j , . . . , ys j ) ∈ R
s . In the classic

Charnes et al. (1978) DEAmodel, the production possibility set (PPS) or technology, denoted
by T , satisfies the following axioms:

(A1) Envelopment (X j , Y j ) ∈ T , for all j ∈ J .
(A2) Free disposability (x, y) ∈ T , (x ′, y′) ∈ R

m+s , x ′ � x , y′ � y ⇒ (x ′, y′) ∈ T .
(A3) Convexity (x, y), (x ′, y′) ∈ T , then λ(x, y) + (1 − λ)(x ′, y′) ∈ T , for all λ ∈ [0, 1].
(A4) Scalability (x, y) ∈ T ⇒ (λx, λy) ∈ T , for all λ ∈ R+.

Following theminimumextrapolation principle (see Banker et al. 1984), theDEAPPS,which
contains all the feasible input-output bundles, is the intersection of all the sets that satisfy
axioms (A1)–(A4), and can be expressed as

TDEA =
⎧
⎨

⎩
(x, y) ∈ R

m+s+ : x ≥
n∑

j=1

λ j X j , y ≤
n∑

j=1

λ j Y j , λ j ≥ 0

⎫
⎬

⎭
.

In radial DEA models, see Charnes et al. (1978), the efficiency of a DMUp is
measured in two ways. One way is reducing all the inputs equi-proportionally without
decreasing the outputs (input-oriented model), and then, the problem is formulated as
min{θp ∈ R+|(θpxp, yp) ∈ T }. The second one consists in expanding all the outputs
equi-proportionally without increasing the inputs (output-oriented model), i.e., max{θp ∈
R+|(xp, θp yP ) ∈ T }.

There exist other DEA approaches in which the reductions of inputs and outputs are not
equi-proportional. In particular, Pastor et al. (1999) proposed the following Enhanced Russell
Graph Efficiency Measure (ERM):
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(ERM) R
(
X p, Yp

) = Min

1

m

∑m

i=1
θi

1

s

∑s

r=1
γr

s.t.
n∑

j=1

λ j xi j ≤ θi xip, i = 1, . . . ,m,

n∑

j=1

λ j yr j ≥ γr yrp, r = 1, . . . , s,

θi ≤ 1, γr ≥ 1, ∀i, r ,
λ j ≥ 0, j = 1, . . . , n,

(1)

where λ j , j = 1, . . . , n, are the intensity variable of each DMU j for defining the corre-
sponding efficient target of DMUp . R is interpreted as the the ratio between the average
input reduction and the average output increase. Pastor et al. (1999) showed some interesting
properties of ERM. Thus, 0 < R ≤ 1, R is units invariant and a DMU j is efficient if and
only if R = 1.

3 Polygonal fuzzy numbers

In this paper, we model the uncertainty in the data, and hence on the production possibility
set, by means of polygonal fuzzy numbers. In this regard, in this section, we present the
definition of polygonal fuzzy numbers, corresponding arithmetic operations, and inequality
relationships using LU-partial orders on fuzzy sets. Furthermore, we derive certain properties
that facilitate the modelling of the corresponding PPS which we propose in Sect. 4. To this
end, it is necessary to establish the following notation and results.

We denote by KC = {[
a, a

] | a, a ∈ R and a ≤ a
}
the family of all bounded closed

intervals in R. A fuzzy set on R
n is a mapping u : Rn → [0, 1]. For each fuzzy set u, we

denote its α-level set as [u]α = {x ∈ R
n | u(x) ≥ α} for any α ∈ (0, 1], and its support

as supp(u) = {x ∈ R
n | u(x) > 0}. The closure of supp(u) defines the 0-level of u, i.e.,

[u]0 = cl(supp(u))where cl(M)means the closure of the subsetM ⊂ R
n . FollowingDubois

and Prade (1978, 1980), a fuzzy set u on R is said to be a fuzzy number if (i) u is normal,
this is there exists x0 ∈ R, such that u(x0) = 1, (ii) upper semi-continuous function, (iii)
convex, and (iv) [u]0 is compact. FC denotes the family of all fuzzy numbers. The α-levels
of a fuzzy number can be represented as [u]α = [

uα, uα

] ∈ KC , uα, uα ∈ R. Although
there are many parametrical families of fuzzy numbers [see Báez-Sánchez et al. (2012) and
Hanss (2005) for a complete description of these families], two of the most used families of
fuzzy numbers are triangular and trapezoidal fuzzy numbers, because of their easy modeling
and interpretation [see, for instance, Dubois and Prade (1978, 1980), Kaufmann and Gupta
(1985), Khan et al. (2013), Lotfi et al. (2009), Stefanini et al. (2006)]. As an extension of
these two families of fuzzy numbers, and inspired in other definitions of parametric fuzzy
numbers [see, for instance, Stefanini et al. (2006), Stefanini and Bede (2014), Hanss (2005),
Báez-Sánchez et al. (2012)], below we review the concept of polygonal fuzzy numbers,
introduced by Báez-Sánchez et al. (2012) as a particular case of polygonal fuzzy sets.

Definition 1 Given a partition of the interval [0, 1], Pk = {αi : i = 0, 1 . . . , k}, with
0 = α0 < α1 <, . . . , < αk = 1, a fuzzy number ã is said to be a k-polygonal fuzzy
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number with respect to Pk if its α-levels satisfy [ã]α = (1 − λ)[ã]αi−1 + λ[ã]αi , where
0 ≤ αi−1 < α ≤ αi ≤ 1 for some i = 0, . . . , k−1 and λ = λ(α) = (α−αi−1)/(αi −αi−1).

In terms of their membership function instead of their α-levels, a polygonal fuzzy number
can alternatively be defined as follows.

Proposition 1 Given a partition of the interval [0, 1], Pk = {αi : i = 0, 1 . . . , k}, with
0 = α0 < α1 <, . . . , < αk = 1, for k ∈ N, a fuzzy number ã is a k-polygonal fuzzy
number with respect to Pk if and only if there exist a−

0 , a−
1 , . . . , a−

k , a+
k , . . . , a+

1 , a+
0 ∈ R

with a−
0 ≤ a−

1 ≤ · · · ≤ a−
k ≤ a+

k ≤ · · · ≤ a+
1 ≤ a+

0 , such that its membership function is

ã(x) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

x − a−
i−1

a−
i − a−

i−1

(αi − αi−1) + αi−1, if i ∈ {1, . . . , k} and a−
i−1 ≤ x < a−

i ,

1, if a−
k ≤ x ≤ a+

k ,

a+
i−1 − x

a+
i−1 − a+

i

(αi − αi−1) + αi−1, if i ∈ {1, . . . , k} and a+
i < x ≤ a+

i−1,

0, otherwise.

(2)

A proof of Proposition 1 can be found in Appendix A. As a result of Proposition 1, we
can denote a k-polygonal fuzzy number with respect to Pk = {αi : i = 0, 1 . . . , k} as
ã = (a−

0 , a−
1 , . . . , a−

k , a+
k , . . . , a+

1 , a+
0 ). For the sake of simplicity, in the sequel, we will

assume that αi = i
k , and then ã is said to be a regular k-polygonal fuzzy number. We denote

the set of all regular k-polygonal fuzzy numbers as RPFNk . Thus, ã = (a−
0 , a−

1 , a+
1 , a+

0 )

corresponds to a trapezoidal fuzzy number. And, if a−
1 = a+

1 , then ã is a triangular fuzzy
number, and it can be noted as ã = (a−, a, a+). Finally, we denote 0̃ and 1̃ as the regular
polygonal fuzzy numbers whose components are all 0 and 1, respectively. Figure 1 illustrates
examples of both, a general k-polygonal fuzzy number, on the top, and regular 1-polygonal
and 2-polygonal fuzzy numbers, on the bottom.

Let us give the following definitions for two arithmetic operations, namely sum and mul-
tiplication by scalar, necessary for the derivation of the fuzzy PPS.

Definition 2 Given two regular k-polygonal fuzzy numbers ã =
(a−

0 , a−
1 , . . . , a−

k , a+
k , . . . , a+

1 , a+
0 ) and b̃ = (b−

0 , b−
1 , . . . , b−

k , b+
k , . . . , b+

1 , b+
0 ), the follow-

ing basic arithmetical operations can be defined:

(i) Addition

ã + b̃ = (
a−
0 + b−

0 , a−
1 + b−

1 , . . . , a−
k + b−

k , a+
k + b+

k , . . . , a+
1 + b+

1 , a+
0 + b+

0

)
. (3)

(ii) Multiplication by a scalar λ ∈ R

rClλã =
{ (

λa−
0 , λa−

1 , . . . , λa−
k , a+

k , . . . , λa+
1 , λa+

0

)
if λ ≥ 0;

(
λa+

0 , . . . , λa+
k−1, λa

+
k , λa−

k , λa−
k−1, . . . , λa

−
0

)
if λ < 0.

(4)

Let us recall the LU-fuzzy partial orders, which are well known in the literature [see, e.g.,
Wu (2009), Stefanini and Arana-Jiménez (2019) and the references therein].

Definition 3 Given two fuzzy numbers μ, ν, we say that

(i) μ � ν if and only if μ
α

≤ να and μα ≤ να , for all α ∈ [0, 1],
(ii) μ ≺ ν if and only if μ

α
< να and μα < να , for all α ∈ [0, 1].

123



Efficiency assessment using fuzzy production possibility set... Page 9 of 31 79

●

●

●

●

● ●

●

●

●

●

k−polygonal Fuzzy number

a−α a+α

a−0 a−1 a−2 a−k−1 a−k a+k a+k−1 a+2 a+1 a+0

α0

α1

α2

αk−1

αk

α

k−polygonal regular Fuzzy number

α

●

●

● ●

●

● ●

●

●

●●

●

●

●●

● ●

●

a−
0 a−

1a+
1 a+

0 b−
0b

−
1 b−

2 b+
2b

+
1b

+
0 c−0 c

−
1 c−2 c−3 = c+3 c+2 c+1 c+0

0

1/3
1/2
2/3

1

Fig. 1 Representation for a general k-polygonal Fuzzy number ã = (a−
0 , a−

1 , . . . , a−
k , a+

k , . . . , a+
1 , a+

0 ),
with respect to a partition α0 = 0 < α1 ≤ · · · ≤ αk = 1 (top) and some examples of k = 1, k = 2 and k = 3
regular polygonal fuzzy numbers (bottom)

The relationships μ � ν and μ � ν mean ν � μ and ν ≺ μ, respectively. In Arana-
Jiménez (2018), a reformulation of the previous definition for triangular fuzzy numbers by
means of the relationship between their parameters is presented. The following extends this
result to regular k-polygonal fuzzy numbers.

Proposition 2 Given two regular k-polygonal fuzzy numbers ã = (a−
0 , a−

1 , . . . , a−
k , a+

k , . . . ,

a+
1 , a+

0 ) and b̃ = (b−
0 , b−

1 , . . . , b−
k , b+

k , . . . , b+
1 , b+

0 ) with respect to {αi : i = 0, 1 . . . , k}, it
follows that:

(i) ã � b̃ if and only if a−
i ≤ b−

i , and a
+
i ≤ b+

i , for all i = 0, 1, . . . , k.
(ii) ã ≺ b̃ if and only if a−

i < b−
i , and a

+
i < b+

i , for all i = 0, 1, . . . , k.

Proof The proof is similar to that given in Arana-Jiménez (2018). �

We can also consider a natural extension of Definition 3 to vectors of fuzzy numbers. Thus,
given two vectors of fuzzy numbers μ = (μ1, . . . , μH ) and ν = (ν1, . . . , νH ), we say that
μ � (≺)ν if μh � (≺)νh for all h.

4 Proposed fuzzy PPS and fuzzy ERMmodel

Let us consider a set of n DMUs, j ∈ J = {1, . . . , n}, each DMU j has m inputs
X̃ j = (x̃1 j , . . . , x̃m j ) ∈ RPFNk × · · · × RPFNk = (RPFNk)

m+, produces s outputs
Ỹ j = (ỹ1 j , . . . , ỹs j ) ∈ (RPFNk)

s+. Let us consider the following axioms, which are anal-
ogous to (A1)–(A4) in Section 2 but considering fuzzy inputs and outputs and using the
corresponding partial order introduced in Definition 3:

(B1) Envelopment (X̃ j , Ỹ j ) ∈ T , for all j ∈ J .
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(B2) Free disposability (x̃, ỹ) ∈ T , x̃ ′ � x̃ , ỹ′ � ỹ, (x̃ ′, ỹ′) ∈ (RPFNk)
m+s+ ⇒ (x̃ ′, ỹ′) ∈ T .

(B3) Convexity (x̃, ỹ), (x̃ ′, ỹ′) ∈ T , then α(x̃, ỹ) + (1 − α)(x̃ ′, ỹ′) ∈ T , for all α ∈ [0, 1].
(B4) Scalability (x̃, ỹ) ∈ T ⇒ (αx̃, α ỹ) ∈ T , for all α ∈ R+.

Following the minimum extrapolation principle, the fuzzy production possibility set is the
intersection of all sets that satisfy axioms (B1)–(B4):

TFDEA =
⎧
⎨

⎩
(x̃, ỹ) ∈ (RPFNk)

m+s+ : x̃ �
n∑

j=1

λ j X̃ j , ỹ �
n∑

j=1

λ j Ỹ j , λ j ≥ 0,∀ j

⎫
⎬

⎭
.

Theorem 1 Under axioms (B1), (B2), (B3), and (B4), TFDEA is the fuzzy production possibility
set that results from the minimum extrapolation principle.

Proof See Appendix B. �


Given the above fuzzy production possibility set, we can present the following definition
of efficiency.

Definition 4 (x̃, ỹ) ∈ TFDEA is said to be efficient if x̃ ′ � x̃ , ỹ′ � ỹ �⇒ (x̃ ′, ỹ′) = (x̃, ỹ),
for all (x̃ ′, ỹ′) ∈ TFDEA.

After the characterization result for the fuzzy PPS, given in Theorem 1, and to provide a
measure for the efficiency of eachDMU,we can formulate the following fuzzy ERM (FERM)
model, as an extension of the corresponding crisp ERM model:

(FERM) RF
(
X̃ p, Ỹp

)
= Min

1

m

∑m

i=1
θi

1

s

s∑

r=1

γr

s.t.
∑n

j=1
λ j x̃i j � θi x̃i p, i = 1, . . . ,m,

n∑

j=1

λ j ỹr j � γr ỹrp, r = 1, . . . , s,

θi ≤ 1, γr ≥ 1, ∀i, r ,
λ j ≥ 0, j = 1, . . . , n,

(5)

where the different inputs x̃i j and outputs ỹr j belong to (RPFNk)+, that is

x̃i j =
(
x−
i j0, x

−
i j1, . . . , x

−
i jk, x

+
i jk, . . . , x

+
i j1, x

+
i j0

)
, i = 1, . . . , M, j = 1, . . . , N

ỹr j =
(
y−
r j0, y

−
r j1, . . . , y

−
r jk, y

+
r jk, . . . , y

+
r j1, y

+
r j0

)
, r = 1, . . . , S, j = 1, . . . , N .

Note that one of the advantages of using k-polygonal fuzzy numbers is that you can have
all the flexibility you need for modeling the fuzzy input and output data and yet be able to
describe the whole membership function using a finite set of alpha values. Since the linear
combination of the observed inputs and outputs is also k-polygonal fuzzy numbers, the above
feature also applies to the constraints of the proposed model (5). That is why, according to
Proposition 2, the following crisp model, which only considers a finite number of alpha
values, is equivalent to model which considers all alpha values.
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The above model above can be written in parameterized form as follows:

RF
(
X̃ p, Ỹp

)
= Min

1

m

∑m

i=1
θi

1

s

∑s

r=1
γr

s.t.
n∑

j=1

λ j x
+
i jl ≤ θi x

+
i pl , i = 1, . . . ,m, l = 0, . . . , k,

n∑

j=1

λ j x
−
i jl ≤ θi x

−
i pl , i = 1, . . . ,m, l = 0, . . . , k,

n∑

j=1

λ j y
+
r jl ≥ γr y

+
rpl , r = 1, . . . , s, l = 0, . . . , k,

n∑

j=1

λ j y
−
r jl ≥ γr y

−
rpl , r = 1, . . . , s, l = 0, . . . , k,

θi ≤ 1, γr ≥ 1, ∀i, r ,
λ j ≥ 0, j = 1, . . . , n.

(6)

Note that FERM inherits some ERM properties such as that 0 < RF ≤ 1, and that
RF is units invariant. Furthermore, it is not difficult to show that if DMUp is efficient, then
RF (X̃ p, Ỹp) = 1.However, as shown inExample 1, unlike in the crisp case, RF (X̃ p, Ỹp) = 1
is not a sufficient condition for efficiency. Hence, model (6) needs to be modified to correct
this, as argued below.

Example 1 This small and simple example aims to illustrate that RF (X̃ p, Ỹp) = 1 does not
imply the efficiency of DMUp in the fuzzy case, as it occurs for the crisp model (1). Let
us assume that there are only two DMUs that consume a single input and produce a single
output and that the two same output value but different inputs. Specifically, let X̃1 = (x̃1),
where x̃1 = (1, 1.75, 2.5, 3.5, 4.75, 6), X̃2 = (x̃2), where x̃2 = (2, 3, 3, 3.5, 4.75, 6) and
Ỹ1 = Ỹ2 = (ỹ). DMU1 is efficient, but DMU2 is not efficient, since it is clear that X̃1 � X̃2,
Ỹ2 = Ỹ1, as it is directly derived fromFig. 2, see left plot.However, according tomodel (6), not
only θ and γ are equal to one for both DMUs, but RF (X̃1, Ỹ1) = 1, and RF (X̃2, Ỹ2) = 1.
In fact, all convex combinations of the two DMUs have RF (X̃ p, Ỹp) = 1, for p = 1, 2.
Therefore, an optimal value of unity for model (6) does not imply the efficiency of the DMU.
Moreover, among all the alternative optimal targets for DMU2, X̃

target
2 = λ1 X̃1 +λ2 X̃2, only

one is truly efficient, namely X̃ target
2 = X̃1, which corresponds to λ1 = 1 and λ2 = 0. Hence,

model (6) is not an adequate extension of the crisp case.

An initial attempt to solve this discrepancy between a ratio value RF (X̃ p, Ỹp) = 1 and
the DMU’s efficiency characterization, as discussed in Example 1, might be to consider a
different variable θil and γrl , for each level l = 0, . . . , k, that is
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Fig. 2 Consider two DMUs that consume a single input and produce a single and unit output. The inputs of
DMU1 and DMU2 are X̃1 = (1, 1.75, 2.5, 3.5, 4.75, 6), and X̃2 = (2, 3, 3, 3.5, 4.75, 6), respectively. Left:
DMU2 is clearly inefficient, X̃1 � X̃2, X̃1 �= X̃2 and they have the same output, but when (6) is solved,
we get that θ = 1 and hence RF (X̃2, Ỹ2) = 1. This is in contrast with the crisp case, where only efficient
DMUs have an ERM efficiency score equal to unity. Center: If the variables θl and γl are let free for each
l-level, the issue remains. Since the right limits of both X̃1 and X̃2 coincide, the solution of model (7) would
be θ0 = θ0.5 = θ1 = 1 and RF

m (X̃2, Ỹ2) = 1. Right: Using separate left and right variables θ Ll and θ Rl , the

modified (MFERM) model (8) computes RF
M (X̃2, Ỹ2) < 1 and thus indicates that DMU2 is inefficient

RF
m

(
X̃ p, Ỹp

)
= Min

1

m(k + 1)

m∑

i=1

k∑

l=0

θil

1

s(k + 1)

s∑

r=1

k∑

l=0

γrl

s.t.
n∑

j=1

λ j x
+
i jl ≤ θil x

+
i pl , i = 1, . . . ,m, l = 0, . . . , k,

n∑

j=1

λ j x
−
i jl ≤ θil x

−
i pl , i = 1, . . . ,m, l = 0, . . . , k,

n∑

j=1

λ j y
+
r jl ≥ γrl y

+
rpl , r = 1, . . . , s, l = 0, . . . , k,

n∑

j=1

λ j y
−
r jl ≥ γrl y

−
rpl , r = 1, . . . , s, l = 0, . . . , k,

θil ≤ 1, γrl ≥ 1, ∀i, r , l,
λ j ≥ 0, j = 1, . . . , n.

(7)

However, coming back to Example 1, the solution of model (7) for DMU2 input would
be θ0 = θ0.5 = θ1 = 1, i.e., since the right limits for both X̃1 and X̃2 coincide, this leads to
all three θl (and γl ) variables being equal to unity, and therefore to a modified (FERM) value
RF
m (X̃2, Ỹ2) = 1, which would be misleading as DMU2 is not efficient. See central plot of

Fig. 2.
We have checked that in a fuzzy framework, both efficient and inefficient DMUs could

have the same objective value of 1 for the straightforward extension of ERM model (6), or
the modified (7). For example, if the upper/lower limits of the l-levels coincide, may lead to
this case. This motivates the inclusion of left and right variables {θ L

l ; θ
R
l ; γ L

l ; γ R
l }, for each

l-level
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(MFERM) RF
M

(
X̃ p, Ỹp

)
= Min

1

2m(k + 1)

m∑

i=1

k∑

l=0

(
θ L
il + θ R

il

)

1

2s(k + 1)

s∑

r=1

k∑

l=0

(
γ L
rl + γ R

rl

)

s.t.
n∑

j=1

λ j x
−
i jl ≤ θ L

il x
−
i pl , i = 1, . . . ,m, l = 0, . . . , k,

n∑

j=1

λ j x
+
i jl ≤ θ R

il x
+
i pl , i = 1, . . . ,m, l = 0, . . . , k,

n∑

j=1

λ j y
−
r jl ≥ γ L

rl y
−
rpl , r = 1, . . . , s, l = 0, . . . , k,

n∑

j=1

λ j y
+
r jl ≥ γ R

rl y
+
rpl , r = 1, . . . , s, l = 1, . . . , k,

θ L
il , θ R

il ≤ 1, i = 1, . . . ,m, l = 0, . . . , k,

γ L
rl , γ R

rl ≥ 1, r = 1, . . . , s, l = 0, . . . , k,

λ j ≥ 0, j = 1, . . . , n.

(8)

The advantage of model (8) over (5) is that, as shown below in Theorem 2, it has the
efficiency indication property, i.e., RF

M (X̃ p, Ỹp)=1 if and only if the DMUp is efficient.
Note that, using separate left and right input reduction factors for each input and left

and right output expansion factors for each output, all feasible input reductions and output
increases are exhausted. Back to Example 1, not all the above variables θ L

l and θ R
l are equal

to one for the inefficient DMU2, and RF
M (X̃2, Ỹ2) < 1. This can be seen in the right panel of

Fig. 2, which shows the optimal left and right values of the input reduction variables for the
different alpha values.

Despite the objective function of (8) is non-linear, it is possible, following a similar
procedure to that proposed by Pastor et al. (1999), to reformulate the problem and get an
equivalent problem with a linear objective function as follows:

1

β
= 1

2s(k + 1)

s∑

r=1

k∑

l=0

(
γ L
rl + γ R

rl

)
, λ′

j = βλ j ,

θ
′L
il = βθ L

il , θ
′R
il = βθ R

il , γ
′L
rl = βγ L

rl , γ
′R
rl = βγ R

rl , ∀ j, i, r , l. (9)

Reformulating (8) using (9), we have
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(LMFERM) RF
M

(
X̃ p, Ỹp

)
= Min

1

2m(k + 1)

m∑

i=1

k∑

l=0

(
θ

′L
il + θ

′R
il

)

s.t.
1

2s(k + 1)

s∑

r=1

k∑

l=0

(
γ

′L
rl + γ

′R
rl

)
= 1,

n∑

j=1

λ′
j x

−
i jl ≤ θ

′L
il x

−
i pl , i = 1, . . . ,m, l = 0, . . . , k,

n∑

j=1

λ′
j x

+
i jl ≤ θ

′R
il x

+
i pl , i = 1, . . . ,m, l = 0, . . . , k,

n∑

j=1

λ′
j y

−
r jl ≥ γ

′L
rl y

−
rpl , r = 1, . . . , s, l = 0, . . . , k,

n∑

j=1

λ′
j y

+
r jl ≥ γ

′R
rl y

+
rpl , r = 1, . . . , s, l = 1, . . . , k,

θ
′L
il , θ

′R
il ≤ β, i = 1, . . . ,m, l = 0, . . . , k,

γ
′L
rl , γ

′R
rl ≥ β, r = 1, . . . , s, l = 0, . . . , k,

β > 0, λ′
j ≥ 0, j = 1, . . . , n.

(10)

The above optimization problem (LMFERM) is now a linear program whose feasibility
region and objective function are equivalent to those given in (8), with the change of variables
given in (9).

Theorem 2 (x̃, ỹ) ∈ TFDEA is efficient if and only if RF
M (x̃, ỹ)=1.

Proof See Appendix C. �

Besides, this model provides the targets (X̃ target

p , Ỹ target
p ) associated with a DMUp , given

as

X̃ target
p =

n∑

j=1

λ∗
j X̃ j (11)

Ỹ target
p =

n∑

j=1

λ∗
j Ỹ j . (12)

Note that above (MFERM) model, and equivalently model (LMFERM), computes the
efficiency score of a DMUp and this is indicated in the arguments of RF (X̃ p, Ỹp). It can,
however, be used to project any feasible operating point (x̃, ỹ) to compute its efficiency
RF
M (x̃, ỹ). This will be useful for proving the following result.

Theorem 3 RF
M (X̃ target

p , Ỹ target
p ) = 1.

Proof See Appendix D �

In summary, extending the conventional ERM efficiency, the proposedMFERM approach

uses a linearizable, non-oriented, non-radial optimization model that exhausts all feasible
input reductions and output expansions at all l-levels, providing crisp efficiency scores (and
corresponding efficiency ranking) as well as fuzzy efficient targets.
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5 Numerical examples

5.1 Triangular fuzzy numbers dataset

To illustrate the proposed fuzzy ERM model, consider the dataset from Arya and Yadav
(2017) shown in Table 2 and which correspond to 12 Community Health Centers (CHCs)
in Meerut district of Uttar Pradesh, India. The table shows the fuzzy input and output of
each DMU. The first input is the total sum of doctors and staff nurses, while the second one
is the number of pharmacists. The two outputs correspond to the number of inpatients and
outpatients, respectively. All the inputs and outputs are given as triangular fuzzy numbers,
which correspond to k = 1 regular polygonal fuzzy numbers.

The efficiency RF
M (X̃ p, Ỹp) of each DMUp , p = 1, . . . , 12, has been computed using

(10), and is shown in the second column of Tables 2 and 3. It can be seen that DMUs H1,
H2, H3, H8, and H12 are labelled efficient. In Table 3, we also add a ranking, based on this
efficiency measurement, so that this ranking can be compared with those of other methods.
Efficient DMUs are all ranked equal.

Table 2 shows the fuzzy targets computed for each DMU using (11) and (12). Due to
horizontal space constraints, the structure of the table is unusual in the sense that for each
DMU, there are two rows, each showing the data and the results for each of the two inputs and
two outputs. Note that the target coincides with the observed data in the case of the efficient
DMUs and dominate it, in the sense of the partial order introduced in Definition 3, in the
case of inefficient DMUs.

For comparison purposes, Table 3 also shows the efficiency scores computed by other
approaches from the literature. The fourth column shows the SBMEp efficiency score com-
puted by the fuzzy SBM model of Arya and Yadav (2017). Note that their method labelled
all DMUs as efficient except one, namely H11. Thus, it seems that the proposed FERM
approach has, at least for this dataset, more discriminant power than this method. The fifth
and sixth columns of Table 3 correspond to the results of the Fuzzy SBMmodel of Chen et al.
(2013) and Hsiao et al. (2011). Since they use fuzzy slack variables, their efficiency scores
are fuzzy. The corresponding α-cuts for α = 0, 1 levels are shown. Note that the FERM
efficiency scores are within the corresponding α = 0 cut for all DMUs.

Finally, the two last columns of Table 3 correspond to the fuzzy ERM approach of
Izadikhah et al. (2017), where a pair of models are used to generate upper and lower lim-
its of interval efficiency score, based on the enhanced Russell model applied to interval
data. The whole dataset is converted into intervals for applying this methodology, computing
the nearest weighted interval approximation of fuzzy numbers, with the weighting function
(4a3, 4a3). We use a preference degree measurement ρ j , see Izadikhah et al. (2017) for
more details, to establish some partial order between intervals and ranking the DMUs. In this
case, although at first sight, it appears that this method has more discriminant power from
Izadikhah et al. (2017), we also remark the different efficiency interpretations. Izadikhah
et al. (2017) approach computes an efficiency score interval (converting or approximating
all data to intervals). Whereas the proposed method is based on technical efficiency within a
fuzzy technology framework. According to the latter, the efficient DMUs are characterized
by RF

M (X̃ p, Ỹp) = 1 (see Theorem 2). In this regard, we found in some cases that efficient
DMUs are ranked after inefficient ones by Izadikhah et al. (2017) approach. However, despite
these differences, we see agreement between the results of both methods. Thus, except for
DMU 12, RF

M (X̃ p, Ỹp) always lies within the corresponding efficiency score interval. The
level of agreement between the results of our approach and Izadikhah et al. (2017) has been
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Ỹ r

j
Ỹ
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Fig. 3 Observed and target 2-polygonal fuzzy inputs and outputs for DMU H4 for example in Sect. 5.2.
The black circles and solid lines show the observed inputs, x̃14 and x̃24, and outputs, ỹ14 and ỹ24. The

corresponding targets, x̃ targeti4 and ỹ
target
r4 , are represented with black squares and dashed lines. To compute the

MFERM input and output targets, the observed data x̃i4 and ỹr4 are multiplied by the corresponding variables
{θ Lil ; θ Ril ; γ L

rl ; γ R
rl }, at levels l = 0, 1, 2, thus exhausting all possible input and output improvements. In the

case of output 1, the support of the observed data and the MFERM target differ significantly, and hence, the
x-axis has been broken (the gap is marked with two vertical lines)

tested using a Wilcoxon signed-rank test, which is a non-parametric paired difference test
for matched pairs or dependent samples. With a p-value= 0.2146, we cannot reject the null
hypothesis of homogeneity, i.e., that the median difference is zero.

5.2 Modified dataset with 2-polygonal fuzzy numbers

In this section,we illustrate the proposed approachwith fuzzydata that are not triangular fuzzy
numbers. Actually, polygonal fuzzy numbers allow a great deal of flexibility in modelling
the uncertainty in the input and output data. To keep things simple, however, we will just
consider 2-polygonal fuzzy numbers, instead of triangular (1-polygonal). We have modified
the inputs and outputs of the DMUs for getting RPFN2 data. The modifications have been
randomly generated keeping the same closure; see Table 4.

As an example, Fig. 3 shows the input/output data for DMU H4, as well as the cor-
responding input and output targets. The black circles and solid lines show the observed
2-polygonal fuzzy inputs and outputs. The MFERM targets are represented with dashed
lines and black squares. For example, for input 2, the corresponding variables are
{θ L

2,0; θ L
2,1; θ L

2,2; θ R
2,2; θ R

2,1; θ R
2,0} = {0.525; 0.849; 1.000; 1.000; 0.683; 0.445}. In the case

of output 1, the target support is significantly to the right of the observed data, implying
a large inefficiency as regards that output. For the other inefficient DMUs, this separation
between the targets and observed data values is even greater and happens mainly for output
2.
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In addition to the fuzzy input and output for the example in Sect. 5.2, Table 4 shows the
correspondingMFERMefficiency scores. In general, they show an improvement with respect
to those of Example 5.1. The efficient or inefficient character of the DMUs remains the same,
but the inefficient DMUs have improved their efficiency. This is not guaranteed to happen
necessarily, although it is not strange. That is, because the use of a higher k-polygonal fuzzy
numbers leads to an increased number of constraints (and hence a smaller feasibility region)
in (PLFERM) model, which is a minimization problem.

The lower part of Table 4 also shows the computed MFERM targets. The efficient DMUs
are projected onto themselves. For the inefficient DMUs, as graphically shown in Fig. 2 for
DMUH4, the fuzzy targets always dominate the observed inputs and outputs and sometimes
by a large amount.

The interpretation of the fuzzy targets is similar to that of the fuzzy data from which
they derive. Thus, for each α-level, the corresponding α-cuts of the observed input and the
corresponding target can be compared, and the same occurs with the observed output and
the target output. The proposed approach guarantees that, for each α-level, the lower limit
of the target input is less than the lower limit of the observed input and that the upper limit
of the target input is less than the upper limit of the observed input. Moreover, the relative
difference between the two lower limits and between the upper limits must be at least the
value of the corresponding θ L

il , θ
R
il , γ

L
rl or γ R

rl variable computed by the model (LMFERM)
(10), and Eq. (9), which represents the maximum margin for improvement for that input or
output.

Thus, for example, as indicated in Table 4 and shown in Fig. 3, the 0.0-level interval of
input 1 of the observed DMU H4 is the interval [6, 11], while the 0.0-level interval for the
corresponding target is [2.19, 3.38]. Assuming that the units of that input refer to full-time
equivalents (FTE), the target indicates that, for thatα-level, theminimumvalue of the variable
can be reduced to 3.81 FTE and the maximum value can be reduced 7.62 FTE. The same rea-
sons that make the observed input uncertain and fuzzy apply to the corresponding target. The
proposed approach does neither ignore nor eliminate those reasons.What is clear is that, at the
0.0-level,DMUH4can reduce input 1 by at least 3.81FTE.Note also the feasible reduction for
the 0.5 level (from [6.7, 10.45] to [2.43, 3.22]), and for the 1.0 level (from [8, 8] to [2.9, 2.9]).
Overall, {θ L

1,0; θ L
1,1; θ L

1,2; θ R
1,2; θ R

1,1; θ R
1,0} = {0.365; 0.364; 0.363; 0.363; 0.308; 0.307} for

this input. As it can be seen in Fig. 3, something similar happens in the case of input 2, leading
in this case to {θ L

1,0; θ L
1,1; θ L

1,2; θ R
1,2; θ R

1,1; θ R
1,0} = {0.525; 0.849; 1.000; 1.000; 0.683; 0.445}.

In the case of the outputs, the interpretation is similar. Thus, for output 1, number of inpatients,
the 0.0-level, 0.5-level, and 1.0-level sets for corresponding observed and the target fuzzy
numbers are [485, 500] vs. [1000.68, 1005.18], [486.62, 496.94] vs. [1001.65, 1004.75], and
[492, 492] vs. [1003.05, 1003.05], respectively.

Therefore, for DMU H4, the increase in the number of inpatients is apparent and sig-
nificant, as the value of the corresponding variables {γ L

1,0; γ L
1,1; γ L

1,2; γ R
1,2; γ R

1,1; γ R
1,0} =

{2.063; 2.058; 2.039; 2.039; 2.022; 2.010} computed by model (10) and equations (9),
attests.

By contrast, for output 2, the number of outpatients, {γ L
2,0; γ L

2,0.5; γ L
2,1; γ R

2,1; γ R
2,0.5; γ R

2,0} =
{1.0005; 1.0005; 1.0002; 1.0002; 1.0001; 1.000} because the upper limit of one of the 0.0-
set cannot be increased, as it can be seen in Fig. 3. This leads to the corresponding MFERM
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Table 5 FERM efficiency scores
compared to interval efficiencies
and ranking from Izadikhah et al.
(2017), corresponding to the
numerical example 5.3

DMU Our approach Izadikhah et al. (2017)

RF
M (X̃ p, Ỹp) Rank Interval efficiency Rank

1 0.598 13 [0.5,0.72] 6

2 0.309 16 [0.24,0.51] 16

3 0.498 14 [0.32,0.80] 8

4 1 1 [0.84,0.99] 2

5 1 1 [0.29,0.59] 15

6 1 1 [0.45,0.69] 7

7 1 1 [0.57,1] 3

8 0.657 12 [0.32,0.76] 10

9 1 1 [0.28,0.82] 9

10 1 1 [0.24,0.75] 13

11 0.898 10 [0.33,0.74] 11

12 1 1 [0.84,1] 1

13 1 1 [0.34,0.61] 14

14 1 1 [0.46,1] 4

15 0.256 17 [0.20,0.42] 17

16 0.679 11 [0.47,0.99] 5

17 0.354 15 [0.27,0.74] 12

efficiency score shown in Table 4

RF
M

(
X̃ H4, ỸH4

)
= 1/12 (0.365 + 0.364 + 0.363 + 0.363 + 0.308 + 0.307+

1/12 (2.063 + 2.058 + 2.039 + 2.039 + 2.022 + 2.010++0.525 + 0.849 + 1.0 + 1.0 + 0.683 + 0.445)

+2.010 + 1.0005 + 1.0005 + 1.0002 + 1.0002 + 1.0001 + 1.0)
=

= 0.343.

In summary, what the example in Sect. 5.2 illustrates is that the use of k-polygonal fuzzy
numbers provides all the flexibility that be needed to represent the uncertainty in the data
and that the proposed FERM approach can handle all those situations providing appropriate
efficiency scores and the corresponding fuzzy targets.

5.3 Case study: electric power distribution company

This numerical example is taken from Izadikhah et al. (2017), where 17 Iranian suppliers of
self-supporting cable forMarkazi ProvinceElectric PowerDistributionCompany (MPEPDC)
in Iran are evaluated. There are 2 inputs, x1 = the overall suppliers ranking (ordinal variable)
and x2 = unit price by considering volume discount (interval type). Furthermore, there are
6 outputs: y1 = production capacity and y2 = financial potential, both of interval type, and
y3 = environmental standards and regulations, y4 = research and developments for eco-
design product, y5 = safety and health standards, and y6 = customer satisfaction. These
last four outputs are fuzzy triangular numbers (see cf. Tables 10–14 in Izadikak for more
details). Note that, since interval data [a1, a2] correspond with trapezoidal fuzzy numbers
(x−

0 , x−
1 , x+

1 , x+
0 ) = (a1, a1, a2, a2), we model such type of data as (RPFN1)+. Recall also

that the triangular fuzzy outputs are particular cases of the trapezoidal ones, where x−
1 = x+

1 .
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We adopt the same approximation of the ordinal input x1 as an interval as done in Izadikhah
et al. (2017).

Table 5 shows the results of applying the proposed (PLFERM) model to this dataset, and
the comparison with the interval efficiency scores obtained by Izadikhah et al. (2017). The
proposed approach identifies nine DMUs as efficient DMUs. This relatively high number is
not surprising for a fuzzy problemwith a such number ofDMUs and variables. As already dis-
cussed above in Sect. 5.2, obviating the differences between efficiency interpretations in both
methods, we find sufficient agreement, since most RF

M (X̃ p, Ỹp) fall within the corresponding
efficiency intervals. Moreover, if we apply a Wilcoxon signed-rank test of the results of our
approach and Izadikhah et al. (2017), we get a p-value= 0.285. This means that we cannot
reject the null hypothesis of homogeneity, i.e., that the median difference is equal to zero,
which supports the existence of sufficient agreement between both efficiency measurements.
As in Sect. 5.1, Izadikhah et al. (2017) provides a ranking even between the efficient DMUs
and, again, we find that in some cases, efficient DMUs are ranked after inefficient ones. The
proposed approach is not able to discriminate between the efficient DMUs, but can easily
rank the inefficient DMUs just sorting by their RF

M (X̃ p, Ỹp) value.

6 Conclusions

This paper presents a new approach for efficiency assessment and target setting when the
input and output data are fuzzy. It is based on polygonal fuzzy numbers and LU-fuzzy partial
orders. First, from the observed fuzzy data, and using simple axioms analogous to the ones
considered in the crisp case, the fuzzy PPS containing all feasible operating points is inferred.
Based on this PPS, a fuzzy ERMDEAmodel is proposed to compute, for each DMU, a crisp
efficiency score, and a fuzzy target. The use of polygonal fuzzy numbers provides ample
flexibility for modeling the uncertainty in the data. In addition, the non-radial approach used,
which exhausts all possible input and output slacks, provides increased discriminant power.

The proposed approach has two main limitations. One is that it computes crisp efficiency
scores. The second one is that it does not work (i.e., it leads to unbounded solutions) when
the left limit of any input or output of a DMU is zero.

As regards topics for continuing this research, one is formulating a super-efficiency
approach, so that the efficient DMUs can be classified into extreme efficient and non-extreme
efficient and the former can be ranked. Another topic is fully fuzzy approach for comput-
ing fuzzy efficiency scores. Other interesting extensions of the proposed approach include
handling negative data and undesirable outputs given as fuzzy sets. Finally, a meaningful
comparison between fuzzy DEA and stochastic DEA is also due (see, e.g., Wanke et al.
(2018)).
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Appendix A. Proof of Proposition 1

Proof Suppose that ã is a k-polygonal fuzzy number with respect to Pk . Then, define
[a−

i , a+
i ] = [ã]αi , for i = 0, . . . , k. Given x ∈ R, if x /∈ [ã]α0 , then ã(x) = 0; oth-

erwise, there exists i ∈ {1, . . . , k}, such that a−
i−1 ≤ x < a−

i or a−
k ≤ x ≤ a+

k or
a+
i < x ≤ a+

i−1. Consider the first case, that is, a−
i−1 ≤ x < a−

i . Following the reason-
ing given by Báez-Sánchez et al. (2012) with respect to the polygonal fuzzy numbers, we
have that the membership function between the points a−

i−1 and a−
i is linear. This means

that if α = ã(x), then x = (1 − λ)a−
i−1 + λa−

i , with λ = (α − αi−1)/(αi − αi−1). Now,
evaluate ã(x) by means of the expression (2), and it is derived that ã(x) = α. Therefore,
the expression (2) is correct for the considered first case. The same for the other two cases
a−
k ≤ x ≤ a+

k and a+
i < x ≤ a+

i−1. Now, let us prove the reverse, and so, suppose that
there exist a−

0 , a−
1 , . . . , a−

k , a+
k , . . . , a+

1 , a+
0 ∈ R with a−

0 ≤ a−
1 ≤ · · · ≤ a−

k ≤ a+
k ≤

· · · ≤ a+
1 ≤ a+

0 , such that the membership function of a fuzzy number ã is given by
(2). Given α ∈ [0, 1], there exists i ∈ {1, . . . , k}, such that 0 ≤ αi−1 < α ≤ αi ≤ 1.
Define [ã]α = [a−

α , a+
α ]. Since the α-levels of a fuzzy number are nested, it is derived

that [ã]αi−1 = [a−
i−1, a

+
i−1] ⊆ [ã]α = [a−

α , a+
α ] ⊆ [ã]αi = [a−

i , a+
i ]. This implies that

a−
i−1 ≤ a−

α ≤ a−
i and a+

i ≤ a+
α ≤ a−

i−1. The membership function is upper semi-continuous,
so, on one hand, from expression (2), it follows that α = u(a−

α ), that is:

α = a−
α − a−

i−1

a−
i − a−

i−1

(αi − αi−1) + αi−1, (A.1)

what is equivalent to

a−
α = (1 − λ)a−

i−1 + λa−
i , (A.2)

with λ = (α − αi−1)/(αi − αi−1). On the other hand, and proceeding in a similar way from
expression (2), it follows that α = u(a+

α ), and then:

α = a+
i−1 − x

a+
i−1 − a+

i

(αi − αi−1) + αi−1 (A.3)

what is equivalent to

a+
α = (1 − λ)a+

i−1 + λa+
i , (A.4)

with the same λ = (α −αi−1)/(αi −αi−1). Therefore, from (A.2) and (A.4), it follows that:

[ ã]α = [a−
α , a+

α ] = [(1 − λ)a−
i−1 + λa−

i , (1 − λ)a+
i−1 + λa+

i ] = (1 − λ)[ã]αi−1 + λ[ã]αi .
(A.5)

As a consequence of (A.5), we have that the α-levels of ã satisfy [ã]α = (1 − λ)[ã]αi−1 +
λ[ã]αi , where 0 ≤ αi−1 < α ≤ αi ≤ 1 for some i = 0, . . . , k − 1 and λ = λ(α) =
(α − αi−1)/(αi − αi−1). Then, the proof is complete. �
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Appendix B: Proof of Theorem 1

Proof Denote by Ttrue the result of the minimum extrapolation principle axioms (B1), (B2),
(B3), and (B4). To prove the theorem, it is necessary to show that TFDEA = Ttrue. To this end,
let us divide the proof into two parts.

(i) Ttrue ⊆ TFDEA.
It is sufficient to prove that TFDEA satisfies (B1), (B2), (B3), and (B4), since this implies
that TFDEA contains the intersection of all sets that satisfies the previous axioms, and,
consequently, contains Ttrue. Therefore, let us check the axioms (B1), (B2), (B3), and
(B4) by TFDEA.

• Check (B1). It is clear, since, given j ∈ J , then (X̃ j , Ỹ j ), with λ j = 1 and λ′
i = 0,

for all i ′ �= j , satisfies conditions in TFDEA.
• Check (B2). Given (x̃, ỹ) ∈ TFDEA, x̃ ′ � x̃ , ỹ′ � ỹ, (x̃ ′, ỹ′) ∈ (RPFNk)

m+s+ , we
have to prove that (x̃ ′, ỹ′) ∈ TFDEA. By hypothesis, there exists λ � 0, such that

x̃ �
n∑

j=1

λ j X̃ j , ỹ �
n∑

j=1

λ j Ỹ j . (B.1)

Combining (B.1) with x̃ ′ � x̃ , ỹ′ � ỹ, it follows that:

x̃ ′ � x̃ �
n∑

j=1

λ j X̃ j , ỹ′ � ỹ �
n∑

j=1

λ j Ỹ j . (B.2)

Therefore, (x̃ ′, ỹ′) ∈ TFDEA.
• Check (B4). Given (x̃, ỹ) ∈ TFDEA, there exists λ � 0, such that (B.1) holds.

Given α ∈ R+, define λ̄ = αλ = (αλ1, . . . , αλn) � 0. It follows that (αx̃, α ỹ) ∈
(RPFNk)

m+s+ and:

αx̃ �
n∑

j=1

αλ j X̃ j =
n∑

j=1

λ̄ j X̃ j , α ỹ �
n∑

j=1

αλ j Ỹ j =
n∑

j=1

λ̄ j Ỹ j .

Therefore, (αx̃, α ỹ) ∈ TFDEA.
• Check (B3). Let us consider (x̃, ỹ), (x̃ ′, ỹ′) ∈ TFDEA, and α ∈ [0, 1]. By hypothesis,

there exist λ, λ′ � 0, such that

x̃ �
n∑

j=1

λ j X̃ j , x̃ ′ �
n∑

j=1

λ′
j X̃ j , (B.3)

ỹ �
n∑

j=1

λ j Ỹ j , ỹ′ �
n∑

j=1

λ′
j Ỹ j . (B.4)

Multiplying by α each side in the first fuzzy inequality in (B.3), by (1−α) each side
in the second fuzzy inequality in (B.3), and then combining the fuzzy inequalities,
we get

αx̃ + (1 − α)x̃ ′ �
n∑

j=1

(
αλ j + (1 − α)λ′

j

)
X̃ j . (B.5)
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Proceeding in a similar way with ỹ and ỹ′ and inequalities (B.4), we have

α ỹ + (1 − α)ỹ′ �
n∑

j=1

(
αλ j + (1 − α)λ′

j

)
Ỹ j . (B.6)

Define λ′′ = (λ′′
1, . . . , λ

′′
n), with λ′′

j = αλ j +(1−α)λ′
j ≥ 0, for all j = 1, . . . , n, and

substitute them in expressions (B.5) and (B.6). It follows that (αx̃ + (1−α)x̃ ′, αx̃ +
(1 − α)ỹ′) = α(x̃, ỹ) + (1 − α)(x̃ ′, ỹ′) ∈ TFDEA.

(ii) TFDEA ⊆ Ttrue.
We need to prove that every element of TFDEA belongs to Ttrue. To this purpose, consider
(x̃, ỹ) ∈ TFDEA, which means that there exists λ � 0, λ ∈ R

n , such that

x̃ �
n∑

j=1

λ j X̃ j , ỹ �
n∑

j=1

λ j Ỹ j . (B.7)

We have that (X̃ j , Ỹ j ) ∈ Ttrue by (B1), for all j ∈ J . Then, by (B4), it follows that
(λ j X̃ j , λ j Ỹ j ) ∈ Ttrue, for all j ∈ J . Reasoning by induction, let us prove that

(

s∑

j=1

λ j X̃ j ,

s∑

j=1

λ j Ỹ j ) ∈ Ttrue, s = 1, . . . , n. (B.8)

• Check that in the case s = 1 it holds. This case is immediate, since (X̃1, Ỹ1) ∈ Ttrue,
and then, by (B3), (λ1 X̃1, λ1Ỹ1) ∈ Ttrue .

• Check that if cases s ≤ t are true, this implies that the case s = t + 1 is also true.
We can write (

∑t+1
j=1 λ j X̃ j ,

∑t+1
j=1 λ j Ỹ j ) as the convex sum of two elements of Ttrue,

multiplied by a scalar. Define α = 0.5 and α′ = 2, then

(∑t+1
j=1 λ j X̃ j ,

∑t+1
j=1 λ j Ỹ j

)
=

⎛

⎝
t∑

j=1

λ j X̃ j ,

t∑

j=1

λ j Ỹ j

⎞

⎠ +
(
λt+1 X̃t+1, λt+1Ỹt+1

)

= α′
⎛

⎝α

⎛

⎝
t∑

j=1

λ j X̃ j ,

t∑

j=1

λ j Ỹ j

⎞

⎠ + (1 − α)
(
λt+1 X̃t+1, λt+1Ỹt+1

)
⎞

⎠ .

Then, by (B3) and (B4), it follows that (
∑t+1

j=1 λ j X̃ j ,
∑t+1

j=1 λ j Ỹ j ) ∈ Ttrue, and
therefore, (B.8) holds.

As a consequence of (B.8), we have that (
∑n

j=1 λ j X̃ j ,
∑n

j=1 λ j Ỹ j ) ∈ Ttrue. Since (x̃, ỹ)
verifies (B.7), then by (B2), we conclude that (x̃, ỹ) ∈ Ttrue. Therefore, TFDEA ⊆ Ttrue
and the proof is complete.

�


Appendix C: Proof of Theorem 2

(i) Let us beginwith the first part of the proof, that is, suppose that (x̃, ỹ) ∈ TFDEA is efficient
and we have to prove that RF

M (x̃, ỹ)=1. By contradiction, suppose that the statement is
not true, i.e., RF

M (x̃, ỹ) < 1. Let (θ ′, γ ′, β, λ′) be the optimal solution for (LMFERM),
and then, let (θ, γ, λ) be the corresponding optimal solution of model (MFERM). There
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must exist l0 ∈ {0, . . . , k}, i0 ∈ {1, . . . ,m} and r0 ∈ {1, . . . , s} such that θ L
i0l0

< 1 or

θ R
i0l0

< 1 or γ L
r0l0

> 1 or γ R
r0l0

> 1. For the sake of simplicity, we continue the proof

for the case θ R
i0l0

< 1; the proof for the other cases is similar. From the constrains of

(MFERM), it follows that
∑n

j=1λ j x
−
i jl ≤ θ L

il x
−
il ≤ x−

il ,
∑n

j=1λ j x
+
i jl ≤ θ R

il x
+
il ≤ x+

il ,∑n
j=1λ j y

−
r jl ≥ γ L

rl y
−
rl ≥ y−

rl ,
∑n

j=1λ j y
+
r jl ≥ γ R

rl y
+
rl ≥ y+

rl for all i, l. In particu-

lar,
∑n

j=1λ j x
−
i0 jl0

< θ L
i0l0

x−
i0l0

≤ x−
i0l0

. Therefore,
∑n

j=1λ j X̃ j � x̃ ,
∑n

j=1λ j Ỹ j � ỹ,

(
∑n

j=1λ j X̃ j ,
∑n

j=1λ j Ỹ j ) �= (x̃, ỹ), with (
∑n

j=1λ j X̃ j ,
∑n

j=1
λ j Ỹ j ) ∈ TFDEA, contra-

dicting the assumption that (x̃, ỹ) is efficient.
(ii) For the second part of the proof, let us consider that RF

M (x̃, ỹ)=1 and we have to prove
that (x̃, ỹ) ∈ TFDEA is efficient. To this matter, suppose the contrary, that is, that (x̃, ỹ)
is not efficient. This means that there exists (x̃ ′, ỹ′) ∈ TFDEA, such that x̃ ′ � x̃ , ỹ′ � ỹ
and (x̃ ′, ỹ′) �= (x̃, ỹ). Then, there exist i0 ∈ {1, . . . ,m} or r0 ∈ {1, . . . , s}, such that
x̃ ′
i0
� x̃i0 and x̃ ′

i0
�= x̃i0 , or ỹ′

r0 � ỹr0 and ỹ′
r0 �= ỹr0 . For the sake of simplicity, we

continue the proof for the case x̃ ′
i0
� x̃i0 and x̃ ′

i0
�= x̃i0 ; the proof for the other case is

similar. It follows that there exists l0 ∈ {0, . . . , k}, such that [x̃ ′−
i0l0

, x̃
′+
i0l0

] � [x̃−
i0l0

, x̃+
i0l0

],
[x̃ ′−

i0l0
, x̃

′+
i0l0

] �= [x̃−
i0l0

, x̃+
i0l0

], and then x̃
′−
i0l0

< x̃−
i0l0

or x̃
′+
i0l0

< x̃+
i0l0

. Suppose that x̃
′−
i0l0

<

x̃−
i0l0

. Then, there exists δ < 1, δ ≥ 0, such that x̃
′−
i0l0

≤ δx̃−
i0l0

. Since (x̃ ′, ỹ′) ∈ TFDEA,

then there exists λ ∈ R
n+, with x̃ � x̃ ′ �

∑n
j=1 λ j X̃ j , ỹ � ỹ′ �

∑n
j=1 λ j Ỹ j , that is,

∑n
j=1 λ j x

−
i0 jl0

≤ x̃
′−
i0l0

≤ δx̃−
i0l0

, i = 1, . . . ,m, l = 0, . . . , k. Define θ
′L
i0l0

= δ < 1,
λ′ = λ, and the remaining variables equal to one in (LMFERM). Then, such (θ ′, γ ′, β, λ′)
is feasible for (LMFERM), with 1

2m(k+1)

∑m
i=1

∑k
l=0(θ

′L
il + θ

′R
il ) < 1, contradicting the

assumption that RF (x̃, ỹ) = 1.

Appendix D: Proof of Theorem 3

To prove the result, suppose the contrary, i.e., RF
M (X̃ target

p , Ỹ target
p ) < 1. Due to the way

(X̃ target
p , Ỹ target

p ) is computed, there must exist an optimal solution (θ∗′
, γ ∗′

, β∗′
, λ∗′

) for
(LMFERM), which derives an optimal solution (θ∗, γ ∗, λ∗) of model (MFERM) and an
optimal target of DMUp given by X̃ target

p = ∑n
j=1λ

∗
j X̃ j and Ỹ target

p = ∑n
j=1λ

∗
j Ỹ j . Anal-

ogously, let (θ∗∗, γ ∗∗, λ∗∗) be the optimal solution of the (MFERM) model that projects
(X̃ target

p , Ỹ target
p ). It follows that:

RF
M

(
X̃ target

p , Ỹ target
p

)
=

1

2m(k + 1)

∑m

i=1

∑k

l=0

(
θ∗∗L
il + θ∗∗R

il

)

1

2s(k + 1)

∑s

r=1

∑k

l=0

(
γ ∗∗L
rl + γ ∗∗R

rl

) . (D.1)

Since θ∗∗L
il , θ∗∗R

il ≤ 1, and γ ∗∗L
rl , γ ∗∗R

rl ≥ 1 for all i, r , l, it is clear that

RF
M (X̃ target

p , Ỹ target
p ) < 1 implies that there must exist l0 ∈ {0, . . . , k}, i0 ∈ {1, . . . ,m}

and r0 ∈ {1, . . . , s}, such that θ∗∗L
i0l0

< 1 or θ∗∗R
i0l0

< 1 or γ ∗∗L
r0l0

> 1 or γ ∗∗R
r0l0

> 1. For the sake

of simplicity of this proof, we only consider the first case θ∗∗L
i0l0

< 1; the proof for the other

cases is similar. Define θ
L
il = θ∗L

il θ∗∗L
il , θ

R
i = θ∗R

il θ∗∗R
il , γ L

rl = γ ∗L
rl γ ∗∗L

rl and γ R
rl = γ ∗R

rl γ ∗∗R
rl

123



Efficiency assessment using fuzzy production possibility set... Page 29 of 31 79

for all i ∈ {1, . . . ,m}, r ∈ {1, . . . , s} and l ∈ {1, . . . , k}. It is clear that
θ
L
il ≤ θ∗L

il ≤ 1, θ
R
il ≤ θ∗R

il ≤ 1, ∀i, l, θ
L
i0 < θ∗L

i0 ≤ 1, (D.2)

γ L
rl ≥ γ ∗L

rl ≥ 1, γ R
rl ≥ γ ∗R

rl ≥ 1 ∀r , l. (D.3)

Therefore, from definition of the target (11) and (12), and since (θ∗∗, γ ∗∗, λ∗∗) is an
optimal solution of (MFERM) for (X̃ target

p , Ỹ target
p ), and for all i , r , l

n∑

j=1

λ∗∗
j x−

i jl ≤ θ∗∗L
il x target−i pl = θ∗∗L

il

n∑

j=1

λ∗
j x

−
i jl ≤ θ∗∗L

il θ∗L
il x−

i pl = θ
L
il x

−
i pl , (D.4)

n∑

j=1

λ∗∗
j x−

i jl ≤ θ∗∗R
il x target−i pl = θ∗∗R

il

n∑

j=1

λ∗
j x

−
i jl ≤ θ∗∗R

il θ∗R
il x−

i pl = θ
R
il x

−
i pl , (D.5)

n∑

j=1

λ∗∗
j y−

r jl ≥ γ ∗∗L
rl ytarget−rpl = γ ∗∗L

rl

n∑

j=1

λ∗
j y

−
r jl ≥ γ ∗∗L

rl γ ∗L
rl y−

rpl = γ L
rl y

−
rpl , (D.6)

n∑

j=1

λ∗∗
j y−

r jl ≥ γ ∗∗R
rl ytarget−rpl = γ ∗∗R

rl

n∑

j=1

λ∗
j y

−
r jl ≥ γ ∗∗R

rl γ ∗R
rl y−

rpl = γ R
rl y

−
rpl . (D.7)

This implies that (θ, γ , λ∗∗) is a feasible solution of model (MFERM) for DMUp , which
combined with (D.2) and (D.3) implies that

1

2m(k + 1)

∑m

i=1

∑k

l=0

(
θ
L
il + θ

R
il

)

1

2s(k + 1)

∑s

r=1

∑k

l=0

(
γ L
rl + γ R

rl

) <

1

2m(k + 1)

∑m

i=1

∑k

l=0

(
θ∗L
il + θ∗R

il

)

1

2s(k + 1)

∑s

r=1

∑k

l=0

(
γ ∗L
rl + γ ∗R

rl

)

= RF
M

(
X̃ p, Ỹp

)
, (D.8)

contradicting the assumption that (θ∗, γ ∗, λ∗) is an optimal solution of (MFERM). This
completes the proof.
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