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Abstract
The design of optimal Magnetic Resonance Imaging (MRI) coils is modeled as a
minimum-norm problem (MNP), that is, as an optimization problem of the form
minx∈R ‖x‖, whereR is a closed and convex subset of a normed space X . This
manuscript is aimed at revisiting MNPs from the perspective of Functional Analysis,
Operator Theory, and Banach Space Geometry in order to provide an analytic solution
to the following MRI problem: minψ∈R ‖ψ‖2, whereR := {ψ ∈R

n : ‖Aψ–b‖∞
‖b‖∞ ≤ D},

with A ∈ Mm×n(R), D > 0, and b ∈ R
m \ {0}.
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1 Introduction
There is a specific type of optimization problem that arises very often in Bioengineering
[22, 23]. This problem can be generally formulated as follows:

⎧
⎨

⎩

min‖x‖,

x ∈R,
(1)

where R is a closed and convex subset of a normed space X. The optimization problem
given in (1) is known as a minimum-norm problem (MNP) since its solutions, sol(1), are
the elements of R of minimum norm. All the literature on MNPs from the context of
Functional Analysis can be reduced to the following facts [24]:

• If sol(1) �= ∅ and 0 /∈R, then sol(1) is a bounded, closed, and convex subset of the
boundary of R.

• If X is strictly convex, then sol(1) is either empty or a singleton.
• If X is reflexive, then sol(1) is non-empty.

In particular, if X is a Hilbert space, then sol(1) is a singleton. We refer the reader to [1]
for a wider perspective on these geometrical concepts. Observe that (1) has the trivial
solution 0 if and only if 0 ∈ R. This is trivially equivalent to dist(R, 0) = infx∈R ‖x‖ = 0
due to the closedness of R. As a consequence, we will be assuming throughout the rest
of this manuscript that 0 /∈R. Also, note that if sol(1) �= ∅, then minx∈R ‖x‖ = infx∈R ‖x‖ =
dist(R, 0) and sol(1) = arg minx∈R ‖x‖.
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Given a vector space X and a convex subset M of X with at least two points, the set of
inner points of M is defined as

inn(M) :=
{

x ∈ X : ∀m ∈ M \ {x} ∃n ∈ M \ {m, x} such that x ∈ (m, n)
}

.

The previous set was originally posed in [17] for non-convex sets. However, in [4, 10], the
notion of the inner point has been already coined implicitly for convex sets. A geometrical
and topological study of inner structure can be found in [11, 12, 15]. In particular, in [17],
it is shown that every non-singleton convex subset of any finite-dimensional vector space
has inner points. Nevertheless, in [17], it was also proved that every infinite dimensional
vector space possesses a non-singleton convex subset lacking inner points. Notice that
inn(M) ⊆ M. According to [11], if x ∈ inn(M), then [x, m) ⊆ inn(M) for all m ∈ M. As a
consequence, inn(M) is convex and cl(inn(M)) = cl(M). Finally, when M is a singleton, we
agree by definition that inn(M) = ∅.

The optimal design of MRI coils is modeled as an MNP [5, 22, 23], more particularly, as

⎧
⎨

⎩

min‖ψ‖2,
‖Aψ–b‖∞

‖b‖∞ ≤ D,
(2)

where ψ ∈ R
n, A ∈ Mm×n(R) is a matrix, D > 0, and b ∈ R

m \ {0}. The purpose of this
manuscript is to revisit MNPs from the perspective of Functional Analysis, Operator The-
ory, and Banach Space Geometry in order to provide an analytic solution to (2).

2 Results
Throughout this manuscript, we will only work with real vector spaces. Standard notation
from Metric Space Theory will be employed, such as BX(x, t), UX(x, t), and SX(x, t), which
stand for the closed ball, the open ball, and the sphere of center x and radius t, respectively,
where x ∈ X, t > 0, and X is a metric space. Also, BX , UX , and SX denote the closed unit ball,
the open unit ball, and the unit sphere, respectively, in case X is a vector space endowed
with a norm.

2.1 Elements of minimum norm
When formulating MNPs, the constraint set R is often asked to be bounded. However,
this is not a necessary requirement as shown in the following lemma.

Lemma 1 Let X be a normed space and R ⊆ X closed and convex. Consider the MNPs
given by (1) and by

⎧
⎨

⎩

min‖x‖,

x ∈R∩ BX(0, τ ),
(3)

where τ > infx∈R ‖x‖. Then sol(1) = sol(3).

Proof Take x0 ∈ sol(1). Then ‖x0‖ = minx∈R ‖x‖ = infx∈R ‖x‖ < τ . Thus, x0 ∈ sol(3). Con-
versely, let x0 ∈ sol(3) and suppose that there exists x ∈ R with ‖x‖ < ‖x0‖. Then ‖x‖ <
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‖x0‖ ≤ τ , which means that x ∈ R ∩ BX(0, τ ). As a consequence, ‖x0‖ ≤ ‖x‖ because
x0 ∈ sol(RN). This is a contradiction. �

The following shows that the fact that sol(1) ∩ int(R) = ∅ does not hold if we replace
int(R) by inn(R).

Example 1 Let X be a normed space with dim(X) ≥ 2. Let x ∈ SX and x∗ ∈ SX with
x∗(x) = 1. Consider R := (x∗)–1({1}). According to [17], inn(R) = R. On the other hand,
x is trivially a minimum-norm element of R. As a consequence, x is an inner point of R
and a minimum-norm element of R.

The next technical lemma will serve to characterize minimum-norm elements as sup-
porting vectors.

Lemma 2 Let X be a normed space. Let R be a closed and convex subset of X such that
0 /∈R. There exists f ∈ SX∗ such that

sup
x∈UX (0,infx∈R ‖x‖)

f (x) ≤ inf
x∈R

f (x). (4)

Proof Notice that infx∈R ‖x‖ > 0 since R is closed and 0 /∈R. Then the existence of f ∈ SX∗

satisfying (4) follows directly from the Hahn-Banach Separation Theorem applied to the
non-empty open convex set UX(0, infx∈R ‖x‖) and to the non-empty convex set R due to
the fact that UX(0, infx∈R ‖x‖) ∩R = ∅. �

Definition 1 Let X be a normed space. Let R be a closed and convex subset of X such that
0 /∈R. Any functional f ∈ SX∗ satisfying (4) will be called a minimum functional for R.

Our next result in this subsection assures that all the minimum-norm elements of a
closed and convex subset of a normed space are always supporting vectors of a certain
functional. Recall that if X, Y are normed spaces and T : X → Y is a continuous linear
operator, then the set of supporting vectors of T is defined as

suppv(T) :=
{

x ∈ SX :
∥
∥T(x)

∥
∥ = ‖T‖}.

Supporting vectors appear implicitly in the literature of Operator Theory and Banach
Space Geometry [1–3, 18–21]. However, they are formerly introduced very recently. We
refer the reader to [8, 13, 16, 26] for a topological and geometrical study of the above set.
On the other hand, X∗ stands for the normed space of linear and continuous functionals
from X to K (R or C). If x∗ ∈ X∗ \ {0}, then the exposed face determined by x∗ is defined
as

suppv1
(
x∗) =

{
x ∈ SX : x∗(x) =

∥
∥x∗∥∥}

.

Successful real-life applications of supporting vectors to multioptimization in Bioengi-
neering can be found in [6, 7, 9, 14, 25].
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Theorem 3 Let X be a normed space. Let R be a closed and convex subset of X such that
0 /∈R. Let f ∈ SX∗ be a minimum functional for R. The following conditions are equivalent
for an element x0 ∈R:

1. x0 is an element of the minimum norm of R.
2. x0

‖x0‖ ∈ suppv1(f ) and x0 ∈ sol(5), where

⎧
⎨

⎩

min f (x),

x ∈R.
(5)

Proof Suppose first that x0 is an element of the minimum norm of R. Since ‖x0‖ =
minx∈R ‖x‖ = infx∈R ‖x‖, from Equation (4), we obtain that

‖x0‖ = sup
x∈UX (0,‖x0‖)

f (x) ≤ inf
x∈R

f (x) ≤ f (x0) ≤ ‖x0‖.

This shows that f (x0) = ‖x0‖, meaning that x0 ∈ suppv1(f ), and that infx∈R f (x) = f (x0),
implying that x0 ∈ sol(5). Conversely, suppose that Simply observe that x0

‖x0‖ ∈ suppv1(f )
and x0 ∈ sol(5). Note that it only suffices to observe that ‖x0‖ = f (x0) ≤ f (x) ≤ ‖x‖ for all
x ∈R. �

2.2 The operator minimum-norm problem (OMNP)
We now take care of the operator minimum-norm problem (OMNP):

⎧
⎨

⎩

min‖T(x)‖,

x ∈R,
(6)

where T : X → Y is a continuous linear operator between normed spaces X, Y , and R is
a bounded, closed, and convex subset of X. Under not excessively restrictive conditions,
this optimization problem can be reduced to an MNP.

Theorem 4 Let T : X → Y be a continuous linear operator between normed spaces X, Y
and R a bounded, closed, and convex subset of X. Consider the optimization problem

⎧
⎨

⎩

min‖y‖,

y ∈ T(R),
(7)

Then:
1. T(sol(6)) = sol(7).
2. sol(6) = T–1(sol(7)) ∩R.
3. If ker(T) = {0}, then sol(6) = T–1(sol(7)).
4. If X is reflexive, then T(R) is closed in Y , hence (7) is an MNP.

Proof
1. We will prove first that T(sol(6)) ⊆ sol(7). Indeed, let x0 ∈ sol(6). Note that

T(x0) ∈ T(R). If y ∈ T(R), then there exists x ∈R such that T(x) = y. Then
‖T(x0)‖ ≤ ‖T(x)‖ = ‖y‖. This shows that T(x0) ∈ sol(7). Now the reverse inclusion. If
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y0 ∈ sol(7), then y0 ∈ T(R), and there exists x0 ∈R such that T(x0) = y0. For every
x ∈R, we have that ‖T(x0)‖ = ‖y0‖ ≤ ‖T(x)‖, which shows that x0 ∈ sol(6).

2. By Theorem 4(3), sol(6) ⊆ T–1(sol(7)). It is clear by definition that sol(6) ⊆R. Next,
if x0 ∈ T–1(sol(7)) ∩R, then following a similar argument as above, we deduce that
x0 ∈ sol(6).

3. By Theorem 4(3), sol(6) ⊆ T–1(sol(7)). Since T is injective, we deduce that
sol(6) = T–1(sol(7)).

4. If X is reflexive, then James Theorem [20] assures that BX is weakly compact. Since R
is bounded, there exists K > 0 such that R⊆ BX(0, K). Then BX(0, K) is also weakly
compact. Next, R is closed and convex, so it is weakly closed. Therefore, R is weakly
compact. Since T : X → Y is weakly continuous, we have that T(R) is also weakly
compact and thus closed in Y . �

2.3 Minimum-norm problems for closed balls
A specific type of MNP will be treated here in this subsection. These results will be later
applied to solve (2). We will first need the following remark and the next technical lemma.

Remark 1 Let X be a topological vector space, and let M be a convex subset of X. If m ∈
int(M) and x ∈ cl(M), then [m, x) ⊆ int(M).

Lemma 5 Let X be a normed space. Let R be a closed and convex subset of X such that
0 /∈ R. If a ∈ int(R), then there exists a unique 0 < λ < 1 such that λa is in the boundary
of R.

Proof Consider the continuous function

[0, 1] → X

t �→ ta.

Notice that for t = 1, ta ∈ int(R), and for t = 0, ta ∈ X \R. The image of the above function
is a connected subset of X (it is, in fact, the segment [0, a]). If [0, a] does not intersect the
boundary of R, then

[0, a] =
(
[0, a] ∩ int(R)

) ∪ (
[0, a] ∩ X \ R

)

which contradicts the connectedness of [0, a]. Thus, there must exist λ ∈ (0, 1) such that λa
is in the boundary of R. Finally, if γ ∈ (0, 1) \ {λ} also verifies that γ a is in the boundary of
R, then we may assume without any loss of generality that γ < λ to reach the contradiction
that λa ∈ (γ a, a] ⊆ int(R) in view of Remark 1. �

Lemma 6 Let X be a normed space. Let a ∈ X and 0 < r < ‖a‖. Then

min
x∈BX (a,r)

‖x‖ = ‖a‖ – r and
‖a‖ – r

‖a‖ a ∈ arg min
x∈BX (a,r)

‖x‖.

Proof Fix an arbitrary x ∈ BX(a, r). Then

‖x‖ =
∥
∥a – (a – x)

∥
∥ ≥ ∣

∣‖a‖ – ‖a – x‖∣∣ ≥ ‖a‖ – ‖a – x‖ ≥ ‖a‖ – r.
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This proves that

min
x∈BX (a,r)

‖x‖ ≥ ‖a‖ – r.

Notice that
∥
∥
∥
∥
‖a‖ – r

‖a‖ a – a
∥
∥
∥
∥ =

1
‖a‖

∥
∥
(‖a‖ – r

)
a–

∥
∥a‖a‖ = r,

which implies that ‖a‖–r
‖a‖ a ∈ BX(a, r). Finally,

∥
∥
∥
∥
‖a‖ – r

‖a‖ a
∥
∥
∥
∥ = ‖a‖ – r,

meaning that

‖a‖ – r
‖a‖ a ∈ arg min

x∈BX (a,r)
‖x‖.

Notice that ‖a‖–r
‖a‖ is λ of Lemma 5. �

Lemma 6 can be restated as:

Lemma 7 Let X be a normed space. Let a ∈ X and 0 < r < ‖a‖. Then ‖a‖–r
‖a‖ a ∈ sol(8), where

⎧
⎨

⎩

min‖x‖,

x ∈ BX(a, r).
(8)

The following theorem constitutes the main result of this subsection and serves to di-
rectly solve (2).

Theorem 8 Let X, Y be normed spaces. Let T : X → Y be a continuous linear operator,
b ∈ Y , and 0 < s < ‖b‖. If there exists a ∈ X such that T(a) = b and a

‖a‖ ∈ suppv(T), then

min
x∈T–1(BY (b,s))

‖x‖ =
‖b‖ – s
‖T‖

and

‖b‖ – s
‖b‖ a ∈ arg min

x∈T–1(BY (b,s))
‖x‖.

Proof In the first place, according to Lemma 6, we have that

T
(‖b‖ – s

‖b‖ a
)

=
‖b‖ – s

‖b‖ b ∈ BY (b, s).

Therefore, ‖b‖–s
‖b‖ a ∈ T–1(BY (b, s)). Now, fix an arbitrary x ∈ T–1(BY (b, s)). We will prove

that
∥
∥
∥
∥
‖b‖ – s

‖b‖ a
∥
∥
∥
∥ ≤ ‖x‖.
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Indeed, by Lemma 6, we know that

∥
∥
∥
∥
‖b‖ – s

‖b‖ b
∥
∥
∥
∥ ≤ ∥

∥T(x)
∥
∥ (9)

because T(x) ∈ BY (b, s). On the other hand, a
‖a‖ ∈ suppv(T) which means that

∥
∥
∥
∥T

(
a

‖a‖
)∥

∥
∥
∥ = ‖T‖,

in other words,

‖b‖ =
∥
∥T(a)

∥
∥ = ‖T‖‖a‖.

Finally, if we get back to Equation (9), then we obtain that

∥
∥
∥
∥
‖b‖ – s

‖b‖ a
∥
∥
∥
∥ =

‖b‖ – s
‖b‖ ‖a‖ =

‖b‖ – s
‖T‖‖a‖‖a‖ =

‖b‖ – s
‖b‖ ‖b‖ 1

‖T‖

=
∥
∥
∥
∥
‖b‖ – s

‖b‖ b
∥
∥
∥
∥

1
‖T‖ ≤ ∥

∥T(x)
∥
∥ 1
‖T‖ ≤ ‖T‖‖x‖ 1

‖T‖ = ‖x‖. �

Observe that Theorem 8 can be restated as follows:

Theorem 9 Let X, Y be normed spaces. Let T : X → Y be a continuous linear operator,
b ∈ Y , and 0 < s < ‖b‖. If there exists a ∈ X such that T(a) = b and a

‖a‖ ∈ suppv(T), then
‖b‖–s
‖b‖ a ∈ sol(10), where

⎧
⎨

⎩

min‖x‖,

x ∈ T–1(BY (b, s)).
(10)

We will finalize this subsection with the following result.

Proposition 10 Let X be a normed space, f ∈ X∗, a ∈ X, and 0 < r < ‖a‖. Then

inf
x∈BX (a,r)

f (x) = f (a) – ‖f ‖r.

Even more, if suppv1(f ) �= ∅, then

min
x∈BX (a,r)

f (x) = f (a) – ‖f ‖r

and

arg min
x∈BX (a,r)

f (x) = a – r suppv1(f ).

Proof Fix any arbitrary x ∈ BX(a, r). Then

f (x) = f (a) + f (x – a) ≥ f (a) – ‖f ‖‖x – a‖ = f (a) – ‖f ‖r.
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This shows that

inf
x∈BX (a,r)

f (x) ≥ f (a) – ‖f ‖r.

Fix an arbitrary ε > 0. There exists x ∈ BX such that f (x) > ‖f ‖ – ε
r . Observe that a – rx ∈

BX(a, r) and

f (a – rx) = f (a) – rf (x) < f (a) – r‖f ‖ + ε.

The arbitrariness of ε forces that

inf
x∈BX (a,r)

f (x) = f (a) – ‖f ‖r.

Next, suppose that suppv1(f ) �= ∅. Take any u ∈ suppv1(f ). Then

f (a – ru) = f (a) – rf (u) = f (a) – r‖f ‖ = inf
x∈BX (a,r)

f (x),

meaning that infx∈BX (a,r) f (x) is attained at any element of a–r suppv1(f ). As a consequence,

min
x∈BX (a,r)

f (x) = f (a) – ‖f ‖r

and

arg min
x∈BX (a,r)

f (x) ⊇ a – r suppv1(f ).

Finally, take any y ∈ arg minx∈BX (a,r) f (x). Then a–y
r ∈ BX and

f
(

a – y
r

)

=
f (a) – f (y)

r
=

f (a) – f (a) + r‖f ‖
r

= ‖f ‖.

That is, a–y
r ∈ suppv1(f ), hence y = a – r a–y

r ∈ a – r suppv1(f ). �

Notice that Proposition 10 can be restated as follows:

Proposition 11 Let X be a normed space, f ∈ X∗, a ∈ X, and 0 < r < ‖a‖. If suppv1(f ) �= ∅,
then sol(11) = a + r suppv1(–f ), where

⎧
⎨

⎩

min f (x),

x ∈ BX(a, r).
(11)

3 Discussion and conclusions
Applying the previous results to the optimal design of MRI coils is the main goal of this
section. Our first step is to verify that (2) is, indeed, an MNP.
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Proposition 12 Consider the optimization problem (2), whose region of constraints can be
expressed by

R :=
{

ψ ∈R
n :

‖Aψ – b‖∞
‖b‖∞

≤ D
}

.

Then:
1. R is a closed and convex subset of Rn.
2. D ≥ 1 if and only if ker(A) ⊆R. In this situation, sol(2) = {0}.
3. If ψ0 ∈ sol(2), then ‖Aψ0–b‖∞

‖b‖∞ = D.
4. If ψ ∈R, then ψ + ker(A) ⊆R.
5. R is bounded if and only if ker(A) = {0}.

Proof
1. It is an easy exercise to check the convexity of R. Now if (ψn)n∈N ⊆R converges to

ψ0 ∈R
n, then (Aψn)n∈N converges to Aψ0, so

‖Aψn – b‖∞
‖b‖∞

n→∞−→ ‖Aψ0 – b‖∞
‖b‖∞

which implies that

‖Aψ0 – b‖∞
‖b‖∞

≤ D.

2. This is obvious.
3. Notice that

{

ψ ∈R
n :

‖Aψ – b‖∞
‖b‖∞

< D
}

⊆ int(R). (12)

Lemma 3 assures that ψ0 is in the boundary of R; therefore, by bearing in mind
Equation (12), we conclude that

‖Aψ0 – b‖∞
‖b‖∞

= D.

4. This is trivial.
5. If ker(A) �= {0}, then by Proposition 12(4), we have that R + ker(A) ⊆R, which means

that R is not bounded. Conversely, suppose that ker(A) = {0}. Consider the
continuous linear operator

T : �n
2 → �m

∞

ψ �→ T(ψ) := Aψ .
(13)

Let S : T(�n
2) → �m∞ be the linear inverse of T . Notice that S is continuous because

T(�n
2) is finite-dimensional. Next,

R = T–1(B�m∞
(
b, D‖b‖∞

))
= S

(
B�m∞

(
b, D‖b‖∞

) ∩ T
(
�n

2
))

.
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The last set in the previous chain of equalities is bounded in �n
2 because of the

continuity of S. �

Now that we know that (2) is an MNP, we will search for a solution of (2). For this, we
will rely on Theorem 8.

Corollary 13 Consider the optimization problem (2). Suppose that 0 < D < 1. Consider the
continuous linear operator T given in (13). If there exists ψ0 ∈ R

n such that Aψ0 = b and
ψ0

‖ψ0‖2
∈ suppv(T), then (1 – D)ψ0 ∈ sol(2).

Proof Consider the MNP

⎧
⎨

⎩

min‖ψ‖2,

ψ ∈ T–1(B�m∞ (b,‖b‖∞D)).
(14)

Notice that the MNP (14) is precisely the MRI problem (2). Observe also that 0 < ‖b‖∞D <
‖b‖∞. According to Theorem 8,

(1 – D)ψ0 =
‖b‖∞ – ‖b‖∞D

‖b‖∞
ψ0 ∈ sol(14) = sol(2). �
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