
IEEE INTERNET OF THINGS JOURNAL, VOL. 9, NO. 13, JULY 1, 2022 11489

Evaluating a Flow-Based Programming Approach
as an Alternative for Developing CEP

Applications in IoT
Guadalupe Ortiz , Iván Castillo, Alfonso Garcia-de-Prado , and Juan Boubeta-Puig

Abstract—One of the main advantages brought by the Internet
of Things (IoT) is the possibility of having large amounts of
data from several sources that allow us, once analyzed, to make
decisions in various domains in real time. This implies the need
to be able to process large volumes of data in more or less limited
processing times depending on the application domain. In this
sense, complex event processing (CEP), used in conjunction with
an enterprise service bus (ESB), has proven to be very efficient
in multiple domains. In search for greater efficiency, some CEP
engines offer the option of using flow-based programming (FBP)
rather than their traditional programming using CEP together
with an event bus. However, its use, while it may be more efficient,
can lead to other limitations. In this article, we analyze and
describe the performance and limitations of using a CEP engine
with an ESB versus a CEP engine with FBP. This will allow
developers to decide which option is more convenient for their
IoT system depending on the application domain and its specific
needs.

Index Terms—Complex event processing (CEP), dataflow,
dataflow computing, enterprise service bus (ESB), flow-based
programming (FBP), Internet of Things (IoT).

I. INTRODUCTION

CURRENTLY, large amounts of data are generated from
multiple sources that are waiting to be processed in order

to obtain greater knowledge of the domain in question and
to make profitable decisions. Not surprisingly, many of the
current research works tackle how to develop data-centric
architectures for data processing in general and for the process-
ing of data from the Internet of Things (IoT) in particular [1].
It is already unthinkable to focus on batch processing, yet the

Manuscript received August 11, 2021; revised September 27, 2021;
accepted November 19, 2021. Date of publication November 24, 2021; date of
current version June 23, 2022. This work was supported in part by the Spanish
Ministry of Science and Innovation and the European Regional Development
Fund (ERDF) through Project FAME under Grant RTI2018-093608-B-C33;
in part by the Andalusian Local Government and ERDF funds through Project
DECISION under Grant P20_00865; in part by the Excellence Network
RCIS under Grant RED2018-102654-T; and in part by the Research Plan
from the University of Cadiz and Grupo Energético de Puerto Real S.A.
through Project GANGES under Grant IRTP03_UCA. (Corresponding author:
Guadalupe Ortiz.)

Guadalupe Ortiz, Iván Castillo, and Juan Boubeta-Puig are with
the Department of Computer Science and Engineering, University
of Cadiz, 11519 Cádiz, Spain (e-mail: guadalupe.ortiz@uca.es;
ivan.castillo@alum.uca.es; juan.boubeta@uca.es).

Alfonso Garcia-de-Prado is with the Computer Architecture and
Technology Department, University of Cadiz, 11519 Cádiz, Spain (e-mail:
alfonso.garciadeprado@uca.es).

Digital Object Identifier 10.1109/JIOT.2021.3130498

processing of data from the IoT is expected to be done in
streaming to facilitate real-time decision making.

Multiple publications endorse complex event process-
ing (CEP) as a successful technology for streaming data
processing at the IoT [2]–[5], including a wide variety of
work, from those focused on IoT data traffic analysis [6], [7]
to those that even go as far as to provide a visual language for
programming CEP patterns for IoT domains [8], [9]. Indeed,
as stated by Rahmani et al. [10], CEP has become a key
part of the IoT. This integration of CEP with the IoT is not
only conducted in the cloud, but also at levels closer to the
device, such as fog or edge [11]. Some of these proposals
benefit from the integration of CEP with an enterprise ser-
vice bus (ESB). An ESB eases the resolution of conflicts
between hardware (e.g., IoT devices) and software (e.g., the
CEP engine) [12] and plays a key role in multiple application
domains in general [13] and in the IoT [14] and Industrial
IoT (IIoT) [15] ones in particular. Although the performance
results are satisfactory, we cannot lose sight of the fact that
we can find scenarios which call for greater performance, as
well as the inevitable growth in the amount and speed of data
generated due to the improvement of cyber–physical devices
as well as communications. To respond to this need, some
CEP languages offer an alternative to the traditional program-
ming of CEP-based systems, which require an event bus [16],
through the support of dataflow programming and flow-based
programming (FBP).

Dataflow programming is a programming paradigm that
models a program as a directed graph of the data flowing
between operations supported by FBP. FBP approaches an
application not as a single, sequential process, but as a set
of asynchronous processes that communicate through flows.
This allows the developer to be able to focus on the applica-
tion data and the transformations applied to them to produce
the expected results.

Since FBP processes continue to run as long as they have
data to work on, FBP applications are generally more efficient
than other conventional programs, and they optimize the use
of the machine’s processor. If so, using dataflow-based CEP
can provide adequate performance in domains where the tradi-
tional use of CEP integrated with an event bus, such as an ESB,
can lead to latency problems [14]. However, the complexity of
FBP may impose limitations that are not encountered when
using CEP with an ESB. Thus, depending on the system,
we will have to consider whether to use a CEP engine with

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

https://orcid.org/0000-0002-5121-6341
https://orcid.org/0000-0002-6523-9974
https://orcid.org/0000-0002-8989-7509

11490 IEEE INTERNET OF THINGS JOURNAL, VOL. 9, NO. 13, JULY 1, 2022

ESB despite possible latency losses or a CEP engine support-
ing FBP despite the possible limitations we may encounter
in terms of programming, such as less flexible syntax. This
brings us directly to the following research questions (RQ).

RQ1: Assuming that dataflow-based CEP can be used to
implement a system, which permits the detection of
situations of interest through real-time processing in
streaming; do we find any limitation that was not
observed when using CEP with an ESB?

RQ2: If we can implement the system in RQ1 without
major limitations, can we improve the performance
of a CEP application integrated with an ESB by
using FBP, thus avoiding having to use the ESB;
and, if so, how much does it improve our system’s
performance?

RQ3: Finally, what would be the advantages and disadvan-
tages of one system over the other, and when would
it be more convenient to use either of them?

In order to answer these RQ, the main aims of this article
are, on the one hand, to implement two equivalent systems
where one uses a CEP with an ESB and the other a CEP
with dataflows and FBP, as well as to define a benchmark that
allows us to evaluate their performance. Second, to conduct
performance tests for both systems using the defined bench-
mark in the same test environment. Finally, we will analyze
the difficulties and limitations in the implementation of both
systems and their performance according to the benchmark
in question to evaluate in which scenarios it is more con-
venient to use either. For this purpose, we have chosen to
use the Esper CEP engine [17]: Esper is a highly scalable
and open-source Java-based software engine for CEP that can
rapidly process and analyze large volumes of incoming IoT
data in real time. Esper provides the Esper event processing
language (EPL), which extends the SQL standard and enables
the precise definition of complex event patterns to be detected.

The remainder of this article is organized as follows.
Section II presents the background on the paradigms and
architectures used in the proposed implementations. Then,
Section III explains how both CEP-based implementations
have been carried out and what the limitations found were.
Afterward, Section IV describes the benchmark defined for
their evaluation and Section V explains the results obtained in
it. The related work is then analyzed in Section VI. Finally,
discussion and conclusions are presented in Section VII.

II. BACKGROUND

This section introduces CEP and the Esper CEP engine,
afterward event-driven service-oriented architecture (SOA)
(ED-SOA or SOA 2.0) is explained, and finally, FBP is
introduced.

A. Complex Event Processing

CEP [18] is a powerful technology that allows us to capture,
analyze, and correlate huge amounts of heterogeneous data
(in the form of simple events) in order to promptly detect
relevant situations in a particular domain [19]. To this end, this
technology requires the definition of a set of event patterns
specifying the conditions to be met from the content of the

events of one or more incoming data streams. The situation of
interest detected by an event pattern is named complex event.
It is referred to as a complex event because it is obtained from
the analysis and correlation of one or several simple events in a
given period of time. A CEP engine is the software responsible
for the real-time analysis of streaming data according to the
defined patterns. The Esper CEP engine stands out because
of its performance and maturity, and the wide coverage of its
supported EPL for event pattern definition [20]. Esper EPL is
a declarative and data-oriented language, which is compliant to
the SQL-92 standard and extended for analyzing event streams
and with regards to time. Since Esper compiles EPL source
code into Java virtual machine (JVM) bytecode, the code can
run on a JVM within the Esper runtime environment.

Esper can be operated under two different programming
paradigms. On the one hand, to work with event streams in
Esper, we have traditionally needed an infrastructure that sup-
ports reading the data streams from the sources, transforming
them into the appropriate formats and managing the complex
events detected by the CEP engine to deliver them to the tar-
get user. Usually, this work has been done by an ESB, as
part of a SOA 2.0. On the other hand, Esper supports the
programming of dataflows in EPL and, therefore, supports
FBP. It provides aid to integrate input and output adapters
in runtime. These adapters can be those provided by Esper
IO or developed ad hoc by the programmer. By making use
of the dataflows, we eliminate the need to use an external
ESB; as a result, an improvement in system performance is
expected. Both paradigms—SOA 2.0 and FBP—are explained
in the following sections.

B. Event-Driven Service-Oriented Architectures

SOA provides a paradigm for the design and implementation
of loosely coupled distributed systems. In such an architec-
ture, services are the major implementation mechanism. Such
services should provide a well-defined interface that delivers
communications based on a standard protocol. The use of these
architectures facilitates and makes the interoperability among
third-party systems in a loosely coupled way more flexible.
This way, the developer can maintain the focus on the business
process, rather than on the selected technologies for implemen-
tation. As a consequence, maintenance cost is minimized and
the system can evolve more easily [21].

The SOA 2.0 term was originally introduced in
2006 [22], [23], to refer to a combination of a SOA with an
event-driven architecture (EDA). While in traditional SOAs
communications are mainly done through remote procedure
calls, communication between users, applications, and services
in a SOA 2.0 is usually done through events [18], and it is
in this type of architectures where CEP plays a relevant role,
facilitating the detection of situations of interest in SOA 2.0
and the processing of IoT data in such an architecture.

For a successful integration of service-based systems, an
infrastructure that permits a flexible interconnection among
application and messaging middlewares is required [13], [21].
These requirements are fulfilled by an ESB. The ESB provides
other additional advantages, including guaranteed system scal-
ability, and allows the integration of several heterogeneous

ORTIZ et al.: EVALUATING FLOW-BASED PROGRAMMING APPROACH AS ALTERNATIVE FOR DEVELOPING CEP APPLICATIONS IN IoT 11491

data sources and invocations to various distributed systems and
applications [24]. It also facilitates the connection of the input
data streams with the CEP engine and the output of the latter
with the output data streams. All these features, especially the
ease of connecting data streams and invocations from various
sources and systems, are what have made the ESB a strong
candidate for an IoT architecture [12]–[15].

C. Flow-Based Programming

FBP is a programming paradigm that was first introduced
in the 1970s by J. Paul Rodker Morrison. However, it is cur-
rently gaining in popularity since dataflow processing is a
key requirement for cutting-edge data-driven applications [25].
A data-driven application can be created as a network of
asynchronous processes that exchange data chunks and apply
transformations to them.

This paradigm models software systems as a directed graph
of processing nodes [26]. These processes are executed asyn-
chronously and communicate with each other through message
passing. Processes are executed in several processing nodes,
which are interconnected. Each processing node is responsible
for conducting part of the main computation of the applica-
tion while, on the other hand, dataflow dependencies between
nodes have to be defined. When a node receives data, then the
computation is triggered.

Modularity is one of the main advantages of FBP, allowing
a system’s components to be combined, separated, and reused
by changing their interconnections. Other benefits of this
paradigm are code reuse, exceptional composability, implicit
pipeline parallelism, and testability [25]. Since CEP is nor-
mally used for processing streaming data flows, the synergy
between FBP and CEP is evident, and also how a CEP engine
integrates an FBP programming model can benefit from the
former advantages.

III. SYSTEM’S IMPLEMENTATIONS AND LIMITATIONS

In this section, we explain two equivalent implementations
for CEP with Esper 8.4.0, based on the integration of CEP
in an ESB, on the one hand, and on the use of CEP through
FBP on the other. Afterward, the limitations found during the
implementation are explained.

A. Implementation Integrating CEP in an ESB

We have prepared the implementation of a system that
integrates CEP with an ESB, as shown in Fig. 1. In particular,
we have integrated Esper CEP with Mule ESB, as success-
fully done in the past [4], [5]. Note that by using an ESB, all
modules necessary to receive and process data from multiple
sources and to notify interested parties of detected situations
of interest can be integrated into it; that is, the CEP engine
and the source for the input data and the sink for the output
data, which are connected to the respective brokers—which
may be located on another machine. In general, the flow of the
system consists of a series of data arriving at the ESB from
a message broker in a format supported by the CEP engine
and the complex events detected in the latter are sent to an
outgoing message broker. Although a single broker could be
used for data input and output, two different brokers were used

Fig. 1. Representative flow of an implementation integrating CEP with ESB.

Fig. 2. Representative flow of an implementation using flow-based CEP.

for the tests to avoid the broker overload influencing the final
system performance. According to the common technologies
chosen for the implementation of both systems, the process
would be as follows.

1) On the one hand, the input data stream will
reach the ESB from a RabbitMQ messaging broker
using the AMQP 0.9 protocol through an AMQP source
in the ESB.

2) Since the received messages are in a JSON format
supported by the CEP engine, we do not require any
format transformation, so from the AMQP source they
are directly submitted to the Esper CEP engine.

3) Afterward, the CEP engine will process such events and,
when a complex event is detected, it will send all the
information associated to the latter to an AMQP Sink in
the ESB linked to a RabbitMQ message broker, again
through the AMQP 0.9 protocol.

Please note that the messages have been instrumented to
obtain the processing capacity, CPU usage, and RAM memory
consumed during the execution.

B. Implementation Integrating CEP With Dataflows

Second, we have implemented the system using the FBP
paradigm with CEP, as shown in Fig. 2. Again, we will use
a different broker for data input and output when evaluating
performance. The implemented flow in Esper CEP contains
the source for the input data and the sink for the output data,
which are connected to the external brokers, as well as the
collectors required by the CEP engine for using dataflows, as
explained as follows.

1) It will have an AMQP source, which reads the incoming
message from the message queue in the RabbitMQ
broker.

11492 IEEE INTERNET OF THINGS JOURNAL, VOL. 9, NO. 13, JULY 1, 2022

2) The events will be read by a collector—
AMQPToObjectCollector—which permits transforming
the received events into the event objects supported by
the CEP engine.

3) Then, the output of the mentioned collector will be
directed to a select operator, which will permit the
application of a pattern to the incoming events and sub-
mission of the detected complex events to an output
collector.

4) The complex events detected in the previous
step are submitted to an output collector—
ObjectToAMQPCollector—which will convert them
into the right format to be submitted to an AMQP Sink.

5) Finally, the outgoing events of the last collector are
submitted to an AMQP Sink, which collects the com-
plex events detected and resubmits them to the Rabbit
MQ output message broker, to direct them to the final
destination.

Note that the collector will also allow us to instrument the
messages to obtain the processing capacity, CPU usage, and
RAM memory consumed during the execution.

C. Limitations of the Implementations

For simplicity, from now on we will call the implementation
described in Section III-A CEP-ESB and the one described in
Section III-B will be referred to as CEP-Dataflow. Even though
we have implemented equivalent systems with both types of
architectures, we have to mention we found some limitations
in the CEP-Dataflow one.

First, unlike CEP-ESB architectures, with Esper dataflows
we had to define the complete flow of the program in a single
EPL sentence, which makes it difficult to connect one pattern’s
output to the input of another.

Second, EPL dataflow patterns are black boxes, and they do
not share any insight among patterns, which hinder the pos-
sibility of personalizing the event types at runtime. However,
with the CEP-ESB implementation, it is possible to add new
event types and patterns easily at runtime.

Third, we were able to work directly with the events
received in JSON format in the CEP-ESB implementa-
tion, whereas the CEP-Dataflow required a transformation to
another format; specifically, we chose Java Map.

Fourth, the routing of messages is more complicated in
CEP-Dataflow; not surprisingly, since this is one of the
basic functions of an ESB. With CEP-Dataflow, the use
of an internal event bus with additional configurations and
requirements is necessary.

Fifth, in CEP-Dataflow, the definition of an event type at
runtime is only valid in the scope of a specific flow; however,
in CEP-ESB, the definition of an event type is by default valid
for any pattern of any flow in the CEP engine.

Finally, while CEP-ESB offers many predefined
input/output operators for the CEP engine, CEP-Dataflow
offers very little variety, which implies the need for the
developer to implement new connectors in case he/she wants
to connect the input or output using a different protocol than
those provided by Esper, which is not a trivial task.

On the other hand, the CEP-ESB implementation is much
more flexible when programming the application, overcoming,
as we have seen, the limitations of the CEP-Dataflow imple-
mentation. However, CEP-ESB presents a greater limitation in
terms of system resource consumption: ESBs are characterized
by making system integration much easier at the cost of higher
resource consumption. As an example, Mule ESB requires at
least 1-GB RAM and 4-GB storage [27], compared to the few
MB of RAM and 500-MB storage required by Esper [28]. This
involves that in certain IoT scenarios where the system is to
be deployed on an edge device, the choice of the CEP-ESB
option may compromise the performance of the system by sat-
urating the system’s resources. Naturally, the consumption of
both applications in execution will depend on the number of
streams and the type of statements deployed. Moreover, the
use of the ESB requires an additional knowledge of system
integration for the inclusion of the CEP engine in the ESB.

IV. EVALUATION

Once we have the two implementations, we are going to
evaluate their performance. In this section, we first describe the
resources used for the tests as well as the procedure followed;
then, we explain the patterns defined for the benchmark.

A. Resources and Procedure

We have carried out the tests with two sets of resources. In
Configuration 1, we have used the following machines.

1) A PC with an Intel i5-4570T processor and 8 GB of
RAM, in which we installed RabbitMQ 3.6.10. This will
be the input queue for the system.

2) A PC with an i7-3770 CPU and 8 GB of RAM, which
acts as our main system server. We used it both for the
CEP-ESB and CEP-Dataflow implementation, of course
one at a time.

3) A server machine with an Intel Xeon Silver 4110 pro-
cessor and 32 GB of RAM. This one was used as
output queue.

4) One more PC with an Intel i3 3220T processor and
4 GB of RAM was used to submit the test data to the
inbound queue.

Assuming that in a specific IoT scenario, we need to deploy
a small and cost-effective device, we have used a Raspberry
Pi 3 Model B Rev 1.2 for data processing in Configuration
2 in both the CEP-ESB and CEP-Dataflow implementations.
The Raspberry Pi processor is a Broadcom BCM2837B0,
Cortex-A53 (ARMv8) 64-bit SoC at 1.4 GHz, with 1 GB of
LPDDR2 SDRAM and Ethernet connection over USB 2.0 at
300 Mb/s. The rest of the machines (input and output queue
ones and the one that submits the test data to the inbound
queue) remain the same as in the initial configuration.

The tests will consist of deploying a CEP pattern in the
implementation under evaluation, submitting events to the
system with different incoming ratios to check for any varia-
tions in the system’s behavior when stressed, and measuring
the CPU and RAM memory usage as well as the system’s
capacity to process all the incoming events. Concerning the

ORTIZ et al.: EVALUATING FLOW-BASED PROGRAMMING APPROACH AS ALTERNATIVE FOR DEVELOPING CEP APPLICATIONS IN IoT 11493

Listing 1. Benchmark type of events.

Listing 2. Statement 1 for the CEP-ESB implementation.

procedure followed to carry out the tests, it is important to
mention that:

1) each test will last 10 min, regardless of the timing of
the messages;

2) between tests, we have ensured that we start from a clean
instance of the system, that is, that the system is not
affected by underlying tests;

3) once we start the system, some messages are submit-
ted for 2–3 min as warm-up, before setting the initial
test time;

4) after each test is completed, the results are collected;
5) each test was repeated three times; afterward, the aver-

age of the three executions was calculated.

B. Benchmark Patterns

To test a CEP environment, it is necessary to define, on
the one hand, the type of events that the system is going to
receive (in Esper, this is done by defining its scheme) and, on
the other hand, the patterns that are going to be applied to the
stream of incoming events to see if they are fulfilled.

In particular, we have defined the type BenchmarkEvent, as
follows.

As we can see in Listing 1, the BenchmarkEvent type is
composed of the following fields.

1) attr1, attr2, attr3: These are the event attributes that
will permit us to test the functionality of the different
patterns defined for the tests.

2) Receivedtimestamp: This is a timestamp used to record
the time when the simple event reaches the CEP engine.

3) Processedtimestamp: This timestamp is used to record
the time when the CEP engine has finished processing
the event.

The pattern selected for the benchmark will make use of
different Esper operators that can give rise to diverse computer
system loads. Note that Esper provides a very large number of
operators, of which we have selected several, of frequent use
and diverse computational load. In particular, six patterns have
been defined, which increase their computational complexity
progressively. The patterns have been written in an analogous
way both for CEP-ESB and CEP-Dataflow implementations.

1) Statement 1: The first pattern we have tested selects all
messages without any kind of discrimination, which means
that we will have an output complex event for each input sim-
ple event immediately after its reception. We can see both
implementations in Listings 2 and 3.

Listing 3. Statement 1 for the CEP-Dataflow implementation.

Listing 4. Statement 2 for the CEP-ESB implementation.

Listing 5. Statement 2 for the CEP-Dataflow implementation.

Listing 6. Statement 3 for the CEP-ESB implementation.

Listing 7. Statement 3 for the CEP-Dataflow implementation.

Listing 8. Statement 4 for the CEP-ESB implementation.

2) Statement 2: The second pattern we have tested selects
only the incoming messages whose attr1 value is Attribute;
therefore, we will have an output complex event for each input
simple event with attr1 valued Attribute immediately after
its reception. We can see both implementations in Listings 4
and 5.

3) Statement 3: In this third pattern, we have added a length
sliding window to Statement 2; that is, the window keeps the
last events occurred according to the size of the window in
memory. In this case, the window length is 1 event and there-
fore, we will have an output complex event for each simple
input event with attr1 valued Attribute after a window of length
1 is closed. We can see both implementations in Listings 6
and 7.

4) Statement 4: In this fourth pattern, we have added a slid-
ing temporal window to Statement 2, that is, the window keeps
the events occurred during the time specified in the window in
memory. In this case, we will have a complex event output for
each simple input event with attr1 valued Attribute produced
in the last two minutes. We can see both implementations in
Listings 8 and 9.

11494 IEEE INTERNET OF THINGS JOURNAL, VOL. 9, NO. 13, JULY 1, 2022

Listing 9. Statement 4 for the CEP-Dataflow implementation.

Listing 10. Statement 5 for the CEP-ESB implementation.

Listing 11. Statement 5 for the CEP-Dataflow implementation.

Listing 12. Statement 6 for the CEP-ESB implementation.

Listing 13. Statement 6 for the CEP-Dataflow implementation.

5) Statement 5: In order to further increase the
computational complexity, in this pattern, we have added the
sentence COUNT DISTINCT to Statement 4. This way, we will
have a complex event output for the simple input events with
attr3 valued Attribute produced in the last 2 min. The output
will be composed of complex events with three attributes: attr1
and eventTotal—calculated as the number of simple events
whose attr2 have distinct values—and receivedTimestamp. We
can see both implementations in Listings 10 and 11.

6) Statement 6: Finally, we have added the GROUP BY
clause to Statement 5. This clause divides the output of a
pattern into groups. This way, we will have a similar complex
event output as in Statement 5, grouped by the attr1 property.
We can see both implementations in Listings 12 and 13.

V. EVALUATION RESULTS

This section shows the results obtained in the performance
tests with Configurations 1 and 2 with each of the patterns
explained in Section IV.

TABLE I
PERFORMANCE OF STATEMENT 1 FOR CEP-ESB AND

CEP-DATAFLOW IMPLEMENTATIONS

TABLE II
PERFORMANCE OF STATEMENT 2 FOR CEP-ESB AND

CEP-DATAFLOW IMPLEMENTATIONS

A. Results Obtained With Configuration 1

As previously explained, the patterns in Listings 2
and 3 generate a complex event from each simple event
entering the system. In Table I, we can find the results
of the tests performed with this pattern for the CEP-ESB
implementation, as for the CEP-Dataflow one. After perform-
ing the tests, we could draw the conclusion that a similar
performance is obtained with both technologies; however, CPU
consumption is much lower in the CEP-Dataflow implementa-
tion (5.66% compared to 87.36% of use). The same happens
with RAM consumption, which is lower in the CEP-DataFlow
implementation. Furthermore, the CEP-ESB implementation
does not support real-time processing of an incoming rate of
10 000 events per second. We find the CEP-Dataflow limits
at 15 000 events per second, but CPU and RAM consumption
remain low; it is not the CEP engine that is limiting the input
rate but the network on which this architecture runs.

A WHERE clause has been added in the patterns in
Listings 4 and 5. Such a clause will select the simple events
whose attribute value is Attribute. It should be noted that we
have evaluated whether the fact that the condition is met or not
impacts on the CEP engine’s performance and no variation has
been noticed; that is, performance is the same whether 50%
or 100% of the messages meet the condition. Table II shows
the results for the test.

As was the case with the first test, both programming
approaches show similar performances regarding the percent-
age of processed events. However, Esper Dataflows only
requires 8.23% of CPU usage for the computation of events,
compared to 92.83% of the implementation with Mule ESB
with an incoming rate of ten events per second.

To increase the computational complexity of CEP, we have
started to add windows from this test on. For the patterns

ORTIZ et al.: EVALUATING FLOW-BASED PROGRAMMING APPROACH AS ALTERNATIVE FOR DEVELOPING CEP APPLICATIONS IN IoT 11495

TABLE III
PERFORMANCE OF STATEMENT 3 FOR CEP-ESB AND

CEP-DATAFLOW IMPLEMENTATIONS

TABLE IV
PERFORMANCE OF STATEMENT 4 FOR CEP-ESB AND

CEP-DATAFLOW IMPLEMENTATIONS

in Listings 6 and 7, we keep the WHERE clause and add
a length window. Table III shows the results of the various
tests that were performed for both paradigms. We can notice
the performance impact of adding windows to the CEP-ESB
implementation, since the maximum rate supported by the
system is limited to 5208 events per second. Furthermore, the
increase in CPU consumption with respect to the results of the
analogous tests in Tables I and II can be highlighted. On the
other hand, RAM consumption remains rather stable compared
to previous tests.

Nevertheless, CPU consumption in the CEP-DataFlow
implementation is lower (6.36% maximum) compared to the
previous test’s maximum values (Table II), although there is
a peak at 10 000 events per second due to background tasks.
We must take into account that even though we have tried
to minimize the impact, CPU metrics may show slight varia-
tions when having several system processes in the background.
However, no increase in the main memory usage is noticed.

In the next test, a time window is used instead of a length
one, as shown in the patterns in Listings 8 and 9. The results
of the test are shown in Table IV. In this case, memory con-
sumption has increased in the CEP-DataFlow implementation,
which is due to the fact that when time windows are used, the
events have to be stored in memory for a period of time deter-
mined in the pattern. However, performance is again better in
the CEP-Dataflow implementation than in the CEP-ESB one
(10 000 versus 5080 events per second, respectively). In addi-
tion, we can highlight that even increasing the message rate
in the CEP-Dataflow implementation, memory consumption is
ten times lower compared to the implementation with CEP-
ESB. At a rate of 15 000 events per second, CEP-Dataflow
increases consumption to 54.7% of CPU and 1966.37 MB of
memory. This drastic increase in CPU and memory usage is
due to the fact that as we increase the rate of input events per

TABLE V
PERFORMANCE OF STATEMENT 5 FOR CEP-ESB AND

CEP-DATAFLOW IMPLEMENTATIONS

TABLE VI
PERFORMANCE OF STATEMENT 6 FOR CEP-ESB AND

CEP-DATAFLOW IMPLEMENTATIONS

second, more data have to be stored in each time window, and
therefore, there is greater memory consumption and proces-
sor context switches take more time. There is also a greater
transfer of input/output data and, for all of the above, a greater
saturation of the CPU that begins to have unstable behavior
due to the high workload.

In order to further increase the complexity, a COUNT
DISTINCT clause has been added to the previously tested
patterns, as shown in the patterns in Listings 10 and 11.
The results of the evaluation are shown in Table V. We
can check that system response is similar to that of the
previous test (see Table IV): we have once more lower
memory and CPU consumption in the CEP-Dataflows imple-
mentation as well as a higher capacity to support high
incoming rates. At 15 000 events per second of input rate,
the CPU consumption in the CEP-Dataflow implementation
is contained (22.71%) and the memory consumption reaches
1878.46 MB.

Finally, we added the GROUP BY clause to the previous
pattern in Listings 12 and 13. In Table VI, we can see that we
have obtained similar results to the previous tests, in which
the CEP-ESB implementation supported a maximum rate of
around 5000 incoming events per second, compared to the
10 000 supported by the CEP-Dataflow implementation. It can
be noted that the CPU usage of the CEP-Dataflow implemen-
tation remains low, but memory use increases, although not
as much as in the CEP-ESB implementation. At a rate of
15 000 events per second, the CPU and memory consump-
tion in the CEP-Dataflow implementation reach 39.55% and
1904.22 MB, respectively.

To facilitate a thorough overview of the evaluation results,
Fig. 3 shows the complete comparison for all the statements
(St1 to St6) and incoming rates in terms of CPU and memory
usage. Fig. 3(a) and (b) clearly shows that memory usage

11496 IEEE INTERNET OF THINGS JOURNAL, VOL. 9, NO. 13, JULY 1, 2022

Fig. 3. Performance comparison for all the statements and incoming rates.
(a) CEP-ESB memory Usage. (b) CEP-dataflow memory usage. (c) CEP-ESB
CPU usage. (d) CEP-dataflow CPU usage.

remains stable, though high, for the CEP-ESB implementa-
tion, compared to the CEP-Dataflow implementation, which
starts with very low values and increases over time. Recall
that CEP-ESB does not support the higher incoming rates for
various statements, which CEP-Dataflow does, although with
higher memory consumption. Fig. 3(c) and (d) also clearly
illustrates that CPU consumption in the CEP-Dataflow imple-
mentation is much lower than in the CEP-ESB one. It is worth
mentioning that despite testing with patterns that could lead
to higher memory consumption, no significant changes have
been observed in this regard.

B. Results Obtained With Configuration 2

In this second configuration, it is evident that by processing
the data with a much less powerful machine, the ratio of
successfully processed input events is lower. Furthermore,

TABLE VII
PERFORMANCE OF ALL THE STATEMENTS FOR CEP-ESB AND

CEP-DATAFLOW IMPLEMENTATIONS IN THE RASPBERRY PI

the enormous difference in processing capacity between both
architectures is clearly visible.

As we can see in the left-hand side of Table VII, the CEP-
ESB architecture is able to deal with an incoming rate of
100 events per second for all patterns. An incoming event
rate of 200 events per second is also processed correctly in
the case of event patterns 1 and 2; however, the rest of the
patterns present problems to process all the data at that input
ratio. Finally, at 250 events per second input rate, only the
first pattern can correctly process the data, while the oth-
ers cannot, showing a clear CPU overload and high memory
consumption.

Concerning the CEP-Dataflow implementation, as shown in
the right-hand side of Table VII, event patterns 1, 2, and 3 are
processed correctly at 1000, 2000, and 2500 events per sec-
ond/s of input rate, although the CPU overhead increases as
the incoming message rate rises. In the case of patterns 3,
5, and 6, almost 50% of received events cannot be processed
when the rate of 250 events per second/s is reached.

VI. RELATED WORK

First, it is important to highlight that we have not seen any
related work that provides a performance comparison between
a system where CEP is integrated with an ESB and one that
integrates CEP with FBP. This related work section aims to
describe work that attempts to process streaming data using
FBP and CEP, which motivates the need for this comparative

ORTIZ et al.: EVALUATING FLOW-BASED PROGRAMMING APPROACH AS ALTERNATIVE FOR DEVELOPING CEP APPLICATIONS IN IoT 11497

performance study. We would also like to emphasize that when
examining related work, we have noted that most FBP-based
approaches focused on processing data from the IoT inte-
grate MQTT brokers with the Node-RED tool [2], [29]–[31].
We consider that these approaches may be sufficient in some
case studies, but not in others, since Node-RED provides a
much more succinct syntax for defining event patterns and
less performance than the Esper CEP engine. In any case, in
the following lines, we examine the most relevant proposals
using an FBP approach in conjunction with CEP.

Mahapatra [29] proposed a mashup tool called aFlux, which
is based on FBP, for composing data analytics applications in
a graphical way. This tool tries to combine the simplicity of
use provided by IoT mashup tools and the flexibility brought
by big data frameworks, such as Flink and Spark Streaming.
This tool supports the following Flink components: CEP begin,
CEP new pattern, CEP add condition, and CEP end. Although
aFlux allows for the definition of event patterns, the number
of types of pattern operators, data windows, and aggregation
functions is much lower than the one provided by Esper CEP
and therefore, the ability to detect situations of interest is also
much lower.

Hung et al. [32] proposed an application framework that
allows developers to build embedded and mobile applications
by using an FBP paradigm. Particularly, they use JavaFBP
and the Android operating environment. This work makes use
of a machine learning tool called Mobile Weka to analyze
data in real time; such a tool requires training a mathematical
model with a previously stored database and a machine learn-
ing algorithm. In contrast to this approach, the integration of
CEP with dataflows or with an ESB can analyze and correlate
data on the fly, thanks to the use of the CEP engine, which
could indeed be integrated with machine learning algorithms
if needed, as previously done in previous works [2], [7].
In addition, CEP-Dataflow supports considerably more input
and output data adapters compared to the ones proposed by
Hung et al.’s work.

Young et al. [33] described an architecture for dynamic dis-
tributed data through an FBP model. This architecture allows
us to coordinate data mining tasks between edge and cloud
containers. Its implementation is done with Apache NiFi,
which provides the user with the ability to create a real-
time dataflow by connecting different processors in a graphical
way. This work makes use of Anaconda, a Python-based data
science platform, together with machine learning libraries to
analyze data. As Hung et al.’s work, this one also does not
integrate CEP technology with the FBP paradigm to analyze
and correlate huge amounts of data in real time, so it requires
the access and management of local databases, which can
impact on system performance.

VII. DISCUSSION AND CONCLUSION

In response to the RQ posed in Section I, we can assert that
as anticipated, a system based on the CEP-Dataflow imple-
mentation can be used to promptly detect situations of interest
from incoming events in streaming in real time. However, it
should be noted that we have found a series of limitations that
can hinder the implementation of those systems, which require

diverse processing flows of incoming data or to feed back the
system with the complex events detected due to a more com-
plex routing procedure. In addition, the number of input/output
connectors provided by the CEP-Dataflow implementation is
very limited and the implementation of new connectors by the
developer is rather complex, a fact that is aggravated by the
lack of documentation for the development of these systems.

Regarding the evaluation results, we have checked through
the performance tests conducted that the CEP-Dataflow imple-
mentation offers better performance than the CEP-ESB one
for all the defined benchmark patterns and all tested input
message ratios. We consider that the ratio and pattern variety
tested allow us to affirm that, in a generalized way, a CEP-
Dataflow implementation offers better performance than the
CEP-ESB one and performs better under situations of stress.
This is undoubtedly due to the removal of the need to use an
event bus. Without a doubt, when we choose the CEP-ESB
option, we have to integrate 2 solutions (the ESB and the
CEP engine), which entails information flows between one
and the other and can lead to higher latency than with CEP-
Dataflow. Furthermore, according to the Esper documentation,
we also gain performance by avoiding the need to match events
to statements and avoiding wrapping the objects to Bean at
runtime [16]. Particularly, with the Raspberry Pi, the process-
ing capacity is excessively reduced in the case of the CEP-ESB
implementation. We have to bear in mind that an ESB requires
a high amount of resources, as we have seen in Section III C.

As a conclusion, we can affirm that the use of CEP in the field
of real-time streaming data processing can support intelligent
decision making in a wide range of domains. Although the
implementation can be done with two different alternatives
(CEP-Dataflow and CEP-ESB), it is necessary to evaluate the
advantages and disadvantages that each alternative may imply
according to the needs of the system in question. On the one
hand, it can be programmed in a traditional way, integrating the
CEP engine into an ESB, where its efficiency in SOAs 2.0 for
IoT scenarios has been proven. However, if the scenario requires
better performance, it can be alternatively programmed through
dataflow-based CEP if the system to be implemented has certain
flexibility with the communication protocols and the workflows
in the system since, as previously stated in Section III-C, this
implementation is more limited with regards to input/output
connectors, flows with complicated routing, as well as when
changes in system flows are required and it is not intended to
stop the execution of the system.

ACKNOWLEDGMENT

Details of the acknowledgements for the
DECISION/P20_00865 project. Grant programme for
R&D&I projects, aimed at universities and public research
entities qualified as agents of the Andalusian Knowledge
System, within the scope of the Andalusian Plan for Research,
Development and Innovation (PAIDI 2020). Project 80%
co-financed by the European Union, within the framework
of the Andalusia ERDF Operational Programme 2014–2020
“Smart growth: An economy based on knowledge and
innovation.” Project funded by the Department of Economic
Transformation, Industry, Knowledge and Universities of the
Regional Government of Andalusia.

11498 IEEE INTERNET OF THINGS JOURNAL, VOL. 9, NO. 13, JULY 1, 2022

REFERENCES

[1] S. D. Liang, “Smart and fast data processing for deep learning in
Internet of Things: Less is more,” IEEE Internet Things J., vol. 6, no. 4,
pp. 5981–5989, Aug. 2019, doi: 10.1109/JIOT.2018.2864579.

[2] A. Akbar, A. Khan, F. Carrez, and K. Moessner, “Predictive analytics
for complex IoT data streams,” IEEE Internet Things J., vol. 4, no. 5,
pp. 1571–1582, Oct. 2017, doi: 10.1109/JIOT.2017.2712672.

[3] R. Mayer, B. Koldehofe, and K. Rothermel, “Predictable low-
latency event detection with parallel complex event processing,”
IEEE Internet Things J., vol. 2, no. 4, pp. 274–286, Aug. 2015,
doi: 10.1109/JIOT.2015.2397316.

[4] A. García-de-Prado, G. Ortiz, and J. Boubeta-Puig, “CARED-SOA: A
context-aware event-driven service-oriented architecture,” IEEE Access,
vol. 5, pp. 4646–4663, 2017, doi: 10.1109/ACCESS.2017.2679338.

[5] A. Garcia-de-Prado, G. Ortiz, and J. Boubeta-Puig, “COLLECT:
COLLaborativE ConText-aware service oriented architecture for intel-
ligent decision-making in the Internet of Things,” Expert Syst. Appl.,
vol. 85, pp. 231–248, Nov. 2017, doi: 10.1016/j.eswa.2017.05.034.

[6] K. C. Serdaroglu and S. Baydere, “An efficient multi-priority data packet
traffic scheduling approach for fog of things,” IEEE Internet Things J.,
early access, May 27, 2021, doi: 10.1109/JIOT.2021.3084502.

[7] J. Roldán, J. Boubeta-Puig, J. Luis Martínez, and G. Ortiz, “Integrating
complex event processing and machine learning: An intelligent archi-
tecture for detecting IoT security attacks,” Expert Syst. Appl., vol. 149,
Jul. 2020, Art. no. 113251, doi: 10.1016/j.eswa.2020.113251.

[8] M. O. Gökalp, A. Koçyiğit, and P. E. Eren, “A visual programming
framework for distributed Internet of Things centric complex event
processing,” Comput. Elect. Eng., vol. 74, pp. 581–604, Mar. 2019,
doi: 10.1016/j.compeleceng.2018.02.007.

[9] D. Corral-Plaza, G. Ortiz, I. Medina-Bulo, and J. Boubeta-Puig,
“MEdit4CEP-SP: A model-driven solution to improve decision-making
through user-friendly management and real-time processing of het-
erogeneous data streams,” Knowl. Based Syst., vol. 213, Feb. 2021,
Art. no. 106682, doi: 10.1016/j.knosys.2020.106682.

[10] A. M. Rahmani, Z. Babaei, and A. Souri, “Event-driven IoT architecture
for data analysis of reliable healthcare application using complex event
processing,” Clust. Comput., vol. 24, no. 2, pp. 1347–1360, Jun. 2021,
doi: 10.1007/s10586-020-03189-w.

[11] G. Mondragón-Ruiz, A. Tenorio-Trigoso, M. Castillo-Cara,
B. Caminero, and C. Carrión, “An experimental study of fog and cloud
computing in CEP-based real-time IoT applications,” J. Cloud Comput.,
vol. 10, no. 1, p. 32, Dec. 2021, doi: 10.1186/s13677-021-00245-7.

[12] A. Massaro, S. Selicato, R. Miraglia, A. Panarese, A. Calicchio,
and A. Galiano, “Production optimization monitoring system imple-
menting artificial intelligence and big data,” in Proc. IEEE Int.
Workshop Metrol. Ind. 4.0 IoT, Roma, Italy, Jun. 2020, pp. 570–575,
doi: 10.1109/MetroInd4.0IoT48571.2020.9138198.

[13] O. Aziz, M. S. Farooq, A. Abid, R. Saher, and N. Aslam, “Research
trends in enterprise service bus (ESB) applications: A system-
atic mapping study,” IEEE Access, vol. 8, pp. 31180–31197, 2020,
doi: 10.1109/ACCESS.2020.2972195.

[14] H. Derhamy, J. Eliasson, and J. Delsing, “IoT interoperability—
On-demand and low latency transparent multiprotocol translator,”
IEEE Internet Things J., vol. 4, no. 5, pp. 1754–1763, Oct. 2017,
doi: 10.1109/JIOT.2017.2697718.

[15] S. Trabesinger, R. Pichler, D. Schall, and R. Gfrerer, “Connectivity
as a prior challenge in establishing CPPS on basis of heterogeneous
IT-software environments,” Procedia Manuf., vol. 31, pp. 370–376,
Jan. 2019, doi: 10.1016/j.promfg.2019.03.058.

[16] “Esper Reference. Version 8.4.0. Chapter 21. EPL Reference: Data
Flow.” EsperTech. 2020. [Online]. Available: http://esper.espertech.com/
release-8.4.0/reference-esper/html/dataflow.html (Accessed: Sep. 20,
2021).

[17] “Esper.” EsperTech. 2021. [Online]. Available: http://www.espertech.
com/esper/ (Accessed: Sep. 20, 2021).

[18] D. C. Luckham, Event Processing for Business: Organizing the Real-
Time Enterprise. Hoboken, NJ, USA: Wiley, 2012.

[19] C. Inzinger, W. Hummer, B. Satzger, P. Leitner, and S. Dustdar, “Generic
event-based monitoring and adaptation methodology for heterogeneous
distributed systems,” Softw. Pract. Exp., vol. 44, no. 7, pp. 805–822,
Jul. 2014, doi: 10.1002/spe.2254.

[20] “Esper Reference. Version 8.4.0. Chapter 5. EPL Reference: Clauses.”
EsperTech. 2020. [Online]. Available: http://esper.espertech.com/release-
8.4.0/reference-esper/html/epl_clauses.html (Accessed: Sep. 20, 2021).

[21] M. Papazoglou, Web Services and SOA: Principles and Technology,
2nd ed. Essex, U.K.: Pearson Educ., 2012. [Online]. Available: http://
catalogue.pearsoned.co.uk/educator/product/Web-Services-and-SOA-Pri
nciples-and-Technology/9780273732167

[22] P. Krill. “Make Way for SOA 2.0.” InfoWorld. May 2006.
[Online]. Available: https://www.infoworld.com/article/2654672/make-
way-for-soa-2-0.html (Accessed: Sep. 20, 2021).

[23] O. Etzion et al., “Panel session 3: Event-driven architectures and com-
plex event processing,” in Proc. IEEE Int. Conf. Web Serv. (ICWS),
Chicago, IL, USA, Sep. 2006, p. 36, doi: 10.1109/ICWS.2006.100.

[24] M. P. Papazoglou and W.-J. V. D. Heuvel, “Service-oriented design and
development methodology,” Int. J. Web Eng. Technol., vol. 2, no. 4,
pp. 412–442, Jul. 2006, doi: 10.1504/IJWET.2006.010423.

[25] R. Young, S. Fallon, P. Jacob, and D. O. Dwyer, “A flow
based architecture for efficient distribution of vehicular information
in smart cities,” in Proc. 6th Int. Conf. Internet Things Syst.
Manage. Security (IOTSMS), Granada, Spain, Oct. 2019, pp. 93–98,
doi: 10.1109/IOTSMS48152.2019.8939233.

[26] B. Zarrin and H. Baumeister, “Towards separation of concerns in flow-
based programming,” in Proc. Companion 14th Int. Conf. Modularity
(MODULARITY Companion), Fort Collins, CO, USA, 2015, pp. 58–63,
doi: 10.1145/2735386.2736752.

[27] “Hardware and Software Requirements | MuleSoft Documentation.”
MuleSoft LLC. [Online]. Available: https://docs.mulesoft.com/mule-
runtime/4.3/hardware-and-software-requirements (Accessed: Sep. 20,
2021).

[28] “Esper FAQ.What is the Footprint of Esper in a Typical Installation, i.e.,
What is the RAM, Disk and CPU Usage?” EsperTech. 2021. [Online].
Available: https://www.espertech.com/esper/esper-faq/#resource-
consumption (Accessed: Sep. 20, 2021).

[29] T. Mahapatra, “Composing high-level stream processing
pipelines,” J. Big Data, vol. 7, no. 1, p. 81, Sep. 2020,
doi: 10.1186/s40537-020-00353-2.

[30] T. Szydlo, R. Brzoza-Woch, J. Sendorek, M. Windak, and C. Gniady,
“Flow-based programming for IoT leveraging fog computing,” in
Proc. IEEE 26th Int. Conf. Enabling Technol. Infrastruct. Collab.
Enterprises (WETICE), Poznan, Poland, Jun. 2017, pp. 74–79,
doi: 10.1109/WETICE.2017.17.

[31] Z. Li, Y. Xiao, S. Liang, and S. Wang, “Design of smart home
management system based on MQTT and FBP,” in Proc. Chin.
Autom. Congr. (CAC), Xi’an, China, Nov. 2018, pp. 3086–3091,
doi: 10.1109/CAC.2018.8623113.

[32] S.-H. Hung et al., “MobileFBP: Designing portable reconfigurable appli-
cations for heterogeneous systems,” J. Syst. Archit., vol. 60, no. 1,
pp. 40–51, Jan. 2014, doi: 10.1016/j.sysarc.2013.11.009.

[33] R. Young, S. Fallon, and P. Jacob, “Dynamic collaboration of
centralized & edge processing for coordinated data management
in an IoT paradigm,” in Proc. IEEE 32nd Int. Conf. Adv. Inf.
Netw. Appl. (AINA), Krakow, Poland, May 2018, pp. 694–701,
doi: 10.1109/AINA.2018.00105.

Guadalupe Ortiz was born in Madrid, Spain,
in 1977. She received the Ph.D. degree in com-
puter science from the University of Extremadura,
Cáceres, Spain, in 2007.

She was as Assistant Professor with the University
of Extremadura, since 2001. In 2009, she joined
the University of Cadiz, Cádiz, Spain, as Professor
of Computer Science and Engineering. She has
published over 100 peer-reviewed papers in inter-
national journals, workshops, and conferences. Her
research interests embrace service context awareness

and their adaptation to mobile devices, as well as the integration of CEP in
service-oriented architectures in the scope of the IoT and smart cities.

Iván Castillo was born in Puerto Real, Spain, in
1998. He received the B.S. degree in computer
science and engineering from the University of
Cadiz, Cádiz, Spain, in 2020.

He was an intern with the Department of
Computer Science and Engineering, University of
Cadiz, from 2019 to 2020. His research in that period
was focused on the area of CEP for IoT applications
through a microservice-oriented architecture
perspective.

http://dx.doi.org/10.1109/JIOT.2018.2864579
http://dx.doi.org/10.1109/JIOT.2017.2712672
http://dx.doi.org/10.1109/JIOT.2015.2397316
http://dx.doi.org/10.1109/ACCESS.2017.2679338
http://dx.doi.org/10.1016/j.eswa.2017.05.034
http://dx.doi.org/10.1109/JIOT.2021.3084502
http://dx.doi.org/10.1016/j.eswa.2020.113251
http://dx.doi.org/10.1016/j.compeleceng.2018.02.007
http://dx.doi.org/10.1016/j.knosys.2020.106682
http://dx.doi.org/10.1007/s10586-020-03189-w
http://dx.doi.org/10.1186/s13677-021-00245-7
http://dx.doi.org/10.1109/MetroInd4.0IoT48571.2020.9138198
http://dx.doi.org/10.1109/ACCESS.2020.2972195
http://dx.doi.org/10.1109/JIOT.2017.2697718
http://dx.doi.org/10.1016/j.promfg.2019.03.058
http://dx.doi.org/10.1002/spe.2254
http://dx.doi.org/10.1109/ICWS.2006.100
http://dx.doi.org/10.1504/IJWET.2006.010423
http://dx.doi.org/10.1109/IOTSMS48152.2019.8939233
http://dx.doi.org/10.1145/2735386.2736752
http://dx.doi.org/10.1186/s40537-020-00353-2
http://dx.doi.org/10.1109/WETICE.2017.17
http://dx.doi.org/10.1109/CAC.2018.8623113
http://dx.doi.org/10.1016/j.sysarc.2013.11.009
http://dx.doi.org/10.1109/AINA.2018.00105

ORTIZ et al.: EVALUATING FLOW-BASED PROGRAMMING APPROACH AS ALTERNATIVE FOR DEVELOPING CEP APPLICATIONS IN IoT 11499

Alfonso Garcia-de-Prado was born in Madrid,
Spain, in 1972. He received the Ph.D. degree in com-
puter science and engineering from the University of
Cadiz, Cádiz, Spain, in 2017.

For several years, he has been a Programmer,
an Analyst, and a Consultant for various interna-
tional industry partners. Since 2011, he has been
an Assistant Professor with the University of Cadiz.
His research focuses on trending topics, such as the
CEP integration in service-oriented architectures and
context awareness in the IoT.

Juan Boubeta-Puig was born in Cádiz, Spain, in
1985. He received the Ph.D. degree in computer sci-
ence from the University of Cadiz, Cádiz, Spain, in
2014.

He is a tenured Associate Professor with the
Department of Computer Science and Engineering,
University of Cadiz. His research interests include
real-time big data analytics through CEP, event-
driven service-oriented architecture, IoT, blockchain
and model-driven development of advanced user
interfaces, and their application to smart cities,

industry 4.0, e-health, and cybersecurity.
Dr. Boubeta-Puig was honored with the Extraordinary Ph.D. Award from

UCA and the Best Ph.D. Thesis Award from the Spanish Society of Software
Engineering and Software Development Technologies.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Helvetica
 /Helvetica-Bold
 /HelveticaBolditalic-BoldOblique
 /Helvetica-BoldOblique
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /Times-Bold
 /Times-BoldItalic
 /Times-Italic
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryITCbyBT-MediumItal
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Recommended" settings for PDF Specification 4.01)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

