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In recent years, a clear emphasis has been placed on replacing fishmeal and fish oil in
aquafeeds with other alternative ingredients, including algae, particularly in low trophic
omnivorous fish species. This work aimed at evaluating the effects of moderate dietary
supplementation with the green microalga Chlorella fusca on growth, metabolism, and
digestive functionality in juvenile thick-lipped grey mullet (Chelon labrosus). Fish were fed a
control diet (CT) or a diet containing 15% C. fusca (C-15) biomass during 90 days. C.
labrosus fed with the C-15 diet showed higher growth performance (in terms of final
weight and length, weight gain, and specific growth rate) than the control group. Somatic
indices and muscle proximate composition were similar at the end of the feeding trial.
Regarding fatty acids profile, C. fusca-fed fish showed a selective retention of
docosahexaenoic acid (DHA) in the liver, and arachidonic acid (ARA), eicosapentaenoic
acid (EPA), and DHA in the muscle. Dietary inclusion of this microalga significantly
increased intestinal total alkaline protease, leucine aminopeptidase, and alkaline
phosphatase activities in specimens fed with C-15 diet. Furthermore, intestine
histological analysis revealed the absence of damage signs on gut morphology in fish
fed the microalgae supplemented diet. Thick-lipped grey mullets fed the C-15 diet
increased plasma glucose and decreased plasma lactate. Overall, the effects observed
on liver (lipid metabolism, glycolysis and glycogenolysis) enzyme activities, together with
adequate fatty acid profile, metabolic response, and gut morphology, and a significant
in.org May 2022 | Volume 9 | Article 9022031
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increase in the intestinal mucosa’s digestive and absorptive capacity, could explain the
positive effects on growth performance obtained in fish fed the microalgae-supplemented
diet. In conclusion, the results obtained showed that C. fusca is suitable as dietary
ingredient for feeding thick-lipped grey mullet juveniles.
Keywords: absorptive capacity, aquafeed, Chlorophyta, enzymatic activity, fatty acids, fish quality, low-trophic
species, Mugilidae
INTRODUCTION

Fishmeal represents a vital protein source for cultured fish
species in aquafeeds (Jannathulla et al., 2019; Oliva-Teles et al.,
2020). However, constraints related to high prices, limited
availability, and environmental concerns have promoted
extensive research efforts focused on assessing lower-cost
alternative protein sources (Tibaldi et al., 2015; Minjarez-
Osorio et al., 2016).

Microalgae are a promising alternative to fishmeal and crop-
based ingredients since they have several features that make them
attractive for the aquafeed industry. From an economical point of
view, a model facility for microalgae production of 111 ha would
produce 2,750 tonnes yr−1 of protein and 2,330 tonnes yr−1 of
algal oil, at a capital cost of $29.3 M, such a facility would
generate $5.5 M in average annual net income over its 30-year
lifetime (Beal et al., 2018). From a nutritional perspective,
microalgae have high levels of protein (30 to 60%, dry matter
basis), relatively well-balanced amino acid profile, essential fatty
acid (specifically eicosapentaenoic and docosahexaenoic acids,
EPA and DHA, respectively) (Shah et al., 2018; Tibbetts, 2018)
and bioactive compounds, including minerals, vitamins, and
pigments (Camacho et al., 2019).

In this sense, the suitability of microalgae in practical diets for
different fish species has been previously studied (Vizcaıńo et al.,
2014; Tibaldi et al., 2015; Yeganeh et al., 2015; Sørensen et al.,
2016; Perera et al., 2020). Although depending on species tested
and levels of inclusion (Shah et al., 2018), low, moderate, and
even total substitution of fishmeal by microalgae in aquafeeds
evidenced beneficial effects on growth, nutrient utilization,
digestibility, metabolism, or survival rate (Rahimnejad et al.,
2017; Vizcaıńo et al., 2018; Garcıá-Márquez et al., 2020; Perera
et al., 2020). Microalgae also have health-promoting effects in
fish, modulate the fatty acid profile and the quality of the fish
flesh and also improve the stress resistance, which is also of great
interest today for both producers and consumers (Sarker et al.,
2016; Gong et al., 2019; Silveira Júnior et al., 2019).

Overall, herbivorous and omnivorous fish tolerate higher
inclusion levels of algae than carnivorous species. However,
results reported in the literature indicate that the optimum
dietary algae inclusion level should vary depending on the
algae and the farmed fish species (Shah et al., 2018). Therefore,
specific research should be carried out on each particular algae
strain and fish species. Owing to the high nutritional value,
species of the genus Chlorella have been used as dietary protein
source, and abundant literature assessing their effects on a wide
range of farmed fish species is available (Atlantic salmon, Salmo
in.org 2
salar: Tibbetts et al., 2017; common carp, Cyprinus carpio:
Abdulrahman et al., 2018; European sea bass, Dicentrarchus
labrax: Hasanein et al., 2018; grey mullet, Mugil cephalus:
Akbary and Aminikhoei, 2019). The microalga Chlorella fusca
shows a high content of various high-value compounds,
including carotenoids, specifically lutein (Becker, 2013).
Moreover, this species can accumulate a high content of
essential fatty acids such as linoleic, and a-linolenic acids
(Pratoomyot et al., 2005). However, it is well-known that
chlorophyte microalgae of the Chlorella genus possess
recalcitrant cell walls (Domozych et al., 2012; Liu and Hu,
2013), and in fact, itself may act as protective barrier,
diminishing the digestibility and assimilation of intracellular
nutrients (Lavecchia et al., 2016). Moreover, the nutritional
effects of Chlorella species depend on its inclusion levels in
aquaculture feeds. In this sense, Ahmad et al. (2020) reported
controversial effects on growth performance and feed utilization
in different species offish, which may be attributed to the levels of
inclusion of the microalga, as levels above 20% compromises
growth performance (Hasan and Chakrabarti, 2009; Lupatsch
and Blake, 2013).

The thick-lipped grey mullet (Chelon labrosus, Risso 1827)
has been described as an easily cultivable species and could
constitute a low-trophic level new candidate for aquaculture
diversification (Zouiten et al., 2008; Garcıá‐Márquez et al., 2021).
Recent studies have been focused on practical aspects of its
culture, like its sensitivity to stress or its digestive physiology (de
las Heras et al., 2015; Pujante et al., 2015; Pujante et al., 2017;
Pujante et al., 2018). Nevertheless, there is a lack of information
regarding feed utilization or growth performance in C. labrosus
fed compound diets.

Thus, the aim of this study is to assess the potential of the
microalga C. fusca as dietary ingredient for feeding C. labrosus
juveniles. We hypothesise that C. fusca might improve growth
performance, nutrient utilization, and several parameters related
to physiological metabolism, and digestive functionality in
juvenile C. labrosus when tested at moderate dietary inclusion
level (15%) through a 90-day feeding trial.
MATERIALS AND METHODS

Microalgae
The microalga Chlorella fusca was produced in pilot-scale
photobioreactors (PBR) at the SABANA facilities of the
University of Almeria (Spain). The inoculum was produced in
a bubble column photobioreactor (100-L water capacity, 0.20 m
May 2022 | Volume 9 | Article 902203
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diameter, 2.0 m height) with automatic temperature and pH
control, and air bubbling of 0.2 vol vol-1 min−1 (volume of air per
volume of reactor per time). After that, 3.0 m3 tubular
photobioreactors (0.10 m tube diameter) were used to produce
the final amount of biomass required. The pH, temperature, and
dissolved oxygen were continuously monitored on these reactors
using specific probes (Crison Instruments, Spain). The pH was
controlled automatically by the on-demand injection of CO2.
The temperature was kept within the range required for optimal
growth of C. fusca (20-25°C) by controlling the greenhouse’s
temperature on which the reactors were located. The culture
medium used was the one described by Sorokin and Krauss
(1958), which was prepared by dissolving fertilizers in tap water
and then sterilized by filtration (0.02 µm) and ozone (1 mg L−1).
Microalgal biomass was harvested by centrifugation (SSD6 GEA
Westfalia, Germany). Cell disruption was performed using a high-
pressure homogenizer (GEA Ariete NS3015H) at 600 bars in a
single pass, these operational conditions being previously optimized.
For drying, a spray-dryer was utilized (GEA Mobile MinorTM
Spray dryer), performed at an inlet temperature of 160 °C, while the
outlet temperature was kept below 80 °C. The final powder was
stored in the dark at −20°C until further preparation of the
experimental diet.

Experimental Diets and Feeding Trial
Two iso-nitrogenous and isolipidic (40% and 7%, respectively,
on a dry weight basis) experimental diets were formulated and
elaborated by the Service of Experimental Diets (CEIMAR-
University of Almeria, Spain, grant EQC2019-006380-P) using
standard aquafeed processing procedures to obtain 3 mm
floating pellets. The diet designed as C-15 included 15% (w/w)
dry C. fusca biomass, and an algae-free diet was used as control
(CT). The ingredient composition and fatty acid profile of the
experimental diets and C. fusca are shown in Tables 1, 2,
respectively. Feed ingredients were finely ground and mixed in
a vertical helix ribbon mixer (Sammic BM-10, 10-L capacity,
Sammic, Azpeitia, Spain) before fish oil and diluted choline
chloride were added. All the ingredients were mixed together
for 15 min, and then water (350 mL kg-1) was added to the
mixture to obtain a homogeneous dough. The dough was passed
through a single screw laboratory extruder (Miltenz 51SP,
JSConwell Ltd, New Zealand). The extruder barrel consisted of
four sections, and the temperature profile in each section (from
inlet to outlet) was 95°C, 98°C, 100°C, and 110°C, respectively.
Finally, pellets were dried at 27°C in a drying chamber (Airfrio,
Almeria, Spain) for 24 h, and kept in sealed plastic bags at −20°C
until use.

Thick-lipped grey mullet (Chelon labrosus) specimens (n =
180) were provided by the Centro Integrado de Formación
Profesional C.I.F.P. Marıt́imo Zaporito (San Fernando, Cadiz,
Spain), and transferred to the Centro de Experimentación de
Ecologıá y Microbiologıá de Sistemas Acuáticos Controlados
Grice-Hutchinson (CEMSAC) of the University of Malaga
(Malaga , Spa in ; Spanish Operat iona l Code REGA
ES290670002043). The fish were acclimated to experimental
conditions and fed with a commercial diet (32% protein, 6%
fat, TI-3 Tilapia, Skretting, Spain) for 30 days before starting the
Frontiers in Marine Science | www.frontiersin.org 3
feeding trial. Six homogeneous groups of 30 fish (84.7 ± 0.3 g)
were randomly distributed in 1000 L tanks coupled to a
recirculation aquaculture system (RAS), equipped with physical
and biological filters, and maintained under natural photoperiod
(November 2019 – February 2020), in the range of 17.9–23.8°C,
and salinity 1.0–1.2 ‰. Supplemental aeration was provided to
maintain dissolved oxygen at 6.8 ± 0.4 mg L-1. Ammonia (<0.1
mg L-1), nitrite (<0.2 mg L-1), and nitrate (<50 mg L-1) were
determined weekly at 9:00 AM. The two experimental dietary
groups (CT and C-15) were then established in triplicates. Fish
were hand-fed twice per day (9:00 AM and 5:00 PM) at a rate of
1.5% of their body weight for 90 days. The uneaten pellets were
collected after 1 h and then dried and weighed.

Fish Sampling
Fish were counted and group-weighed every 3 weeks, and feed
intake was recorded for each experimental replicate to calculate
growth performance parameters. At the end of the trial (day 90),
overnight fasted fish (3 fish per replicate, 9 per experimental diet)
were randomly selected, deeply anesthetized with 2-
phenoxyethanol (1 mL L−1, Sigma-Aldrich 77699), and then
sampled for blood and tissue collection. Blood was drawn from
caudal vessels with heparinized syringes, centrifuged at 3000 × g
for 5 min at 4°C, and plasma samples were snap-frozen in liquid
TABLE 1 | Ingredient composition of the experimental diets used in the
feeding trial.

CT C-15

Ingredients (g kg-1 dry weight, DW)
Fishmeal LT941 75 64
Chlorella fusca biomass2 0 150
Pea protein concentrate3 75 64
Soybean protein concentrate4 175 149
Soybean meal 188 159
Sunflower meal 20 20
Wheat gluten5 60 51
Wheat meal6 210 170
Potato starch 25 25
Fish oil 40 35
Vitamin and mineral premix7 10 10
Binder (guar gum) 15 15

Proximate composition (g kg-1, DW)
Crude protein 404.5 376.2
Total lipid 70.4 68.0
Ash 122.9 143.1
Nitrogen-free extracts8 402.2 412.7
May 202
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Dietary codes: CT, control diet; C-15, 15% C. fusca supplemented-diet.
1(protein: 69.4%; lipid: 12.3%), Norsildemel (Bergen, Norway); 2(protein: 15.2%; lipid:
1.1%); 3(protein: 85.5%; lipid: 1.3%); 4(protein: 51.5%; lipid: 8.0%); 5(protein: 76.0%; lipid:
1.9%); 6(protein: 12.0%; lipid: 2.0%); 7Vitamin & Mineral Premix: Vitamins (IU or mg kg−1
premix): vitamin A (retinyl acetate), 2000,000 IU; vitamin D3 (DL-cholecalciferol), 200,000
IU; vitamin E, 10,000 mg; vitamin K3 (menadione sodium bisulphite), 2500 mg; vitamin B1
(thiamine hydrochloride), 3000 mg; vitamin B2 (riboflavin), 3000 mg; calcium
pantothenate, 10,000 mg; nicotinic acid, 20,000 mg; vitamin B6 (pyridoxine
hydrochloride), 2000 mg; vitamin B9 (fol ic acid), 1500 mg; vitamin B12
(cyanocobalamin), 10 mg; vitamin H (biotin), 300 mg; inositol, 50,000 mg; betaine,
50,000 mg; vitamin C (ascorbic acid), 50,000 mg. Minerals (mg kg−1 premix): Co
(cobalt carbonate), 65 mg; Cu (cupric sulphate), 900 mg; Fe (iron sulphate), 600 mg; I
(potassium iodide), 50 mg; Mn (manganese oxide), 960 mg; Se (sodium selenite), 1 mg;
Zn (zinc sulphate) 750 mg; Ca (calcium carbonate), 186,000 mg; KCl, 24,100 mg; NaCl
40,000 mg; excipient sepiolite, colloidal silica (Lifebioencapsulation SL, Almería Spain);
8Calculated as 100 − (% crude protein + % ether extract + % ash).
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nitrogen. Immediately, whole viscera were obtained, the
intestines were separated from the other organs, and all visible
perivisceral fat was removed. Liver, total viscera, and perivisceral
fat were weighed for hepatosomatic, viscerosomatic, and
perivisceral indices, respectively. Plasma, liver, and white
muscle samples were stored at −80 °C until biochemical analysis.

Moreover, for the enzymatic analysis intestines from four fish
per each experimental tank were randomly grouped, which
allowed obtaining four different enzymatic extracts per
experimental tank (12 enzymatic extracts per dietary
treatment). Intestinal samples were homogenized in distilled
water at 4°C (w/v 1:2). Supernatants were obtained after
centrifugation (13,000 × g, 12 min, 4°C) and stored at −20°C
until further analysis. In parallel, 1 cm length portions of the
proximal intestine of three specimens from each tank (9 fish per
dietary treatment) were collected for further examination under
light (LM), transmission (TEM), and scanning (SEM)
electron microscopy.

Growth Performance and
Biometric Parameters
The following growth parameters were evaluated: (1) weight gain
(WG) = ((final fish weight – initial fish weight) x 100); (2) specific
growth ratio (SGR) = (100 x [(ln final fish weight) – (ln initial fish
weight)]/experimental days); (3) feed conversion ratio (FCR) =
dry feed intake (g)/weight gain (g); (4) protein efficiency
ratio (PER) = weight gain/intake of particular protein;
(5) condition factor (K, %) = ((fish weight/fish length3) x 100);
Frontiers in Marine Science | www.frontiersin.org 4
(6) hepatosomatic index (HSI, %) = ((liver weight/body weight) x
100); (7) viscerosomatic index (VSI, %) = ((total viscera weight/
body weight) x 100); (8) perivisceral index (PVI, %) = ((total fat
viscera weight/total viscera weight) x 100).

Proximate Composition, Fatty
Acid Profile, and Indices of Lipid
Metabolism and Quality
Proximate analyses of feeds and fish muscle samples were carried
out according to AOAC (2000) for dry matter and ash. Crude
protein content (N × 6.25) was determined using elemental
analysis (C:H:N) (Fisons EA 1108 analyzer, Fisons Instruments,
USA), and total lipid content was quantified according to the
methods described by Folch et al. (1957). Fatty acid composition
of feeds, liver, and muscle samples was determined by gas
chromatograph following the procedure described by Rodrıǵuez-
Ruiz et al. (1998).

From the fatty acid profile of fish muscle, different indices were
calculated (Arakawa and Sagai, 1986; Senso et al., 2007): (1)
peroxidability index (PI)= (% monoenoic × 0.025) + (% dienoic ×
1) + (% trienoic × 2) + (% tetraenoic × 4) + (% pentaenoic × 6) + (%
hexaenoic × 8); (2) index of thrombogenicity (IT) = (14:0 + 16:0 +
18:0)/[(0.5 × 18:1) + (0.5 × SMUFAs) + (0.5 × n-6 PUFAs) + (3 × n-
3 PUFAs) + (n-3/n6)]; (3) index of atherogenicity (IA) = (12:0 + 4 ×
14:0 + 16:0)/[(n-6 + n-3) PUFAs + 18:1 + other MUFAs]; (4) fish
lipid quality (FLQ, %) = [(20:5n-3 + 22:6n-3)/total lipid] × 100.
MUFAs and PUFAs stand for monounsaturated fatty acids and
polyunsaturated fatty acids, respectively.

Determination of Digestive
Enzyme Activities
Total alkaline protease activity was measured using buffered 5 g
L−1 casein (50 mM Tris-HCl, pH 9.0) as substrate following the
method described by Alarcón et al. (1998). One unit of activity
(UA) was defined as the amount of enzyme releasing 1 µg
tyrosine per minute measured spectrophotometrically at 280
nm (extinction coefficient for tyrosine of 0.008 mg−1 cm−1

mL−1). Trypsin and chymotrypsin activities were determined
using 0.5 mM BAPNA (N-a-benzoyl-DL-arginine-4-
nitroanilide) as substrate according to Erlanger et al. (1961)
and 0.2 mM SAPNA (N-succinyl-(Ala)2-Pro-Phe-P-
nitroanilide) according to DelMar et al. (1979), respectively, in
50 mM Tris–HCl buffer, pH 8.5, containing 10 mM CaCl2.
Leucine aminopeptidase activity was assayed using buffered 2
mM L-leucine -p-nitroanilide (LpNa) (100 mM Tris-HCl, pH
8.8) as substrate according to Pfleiderer (1970), and alkaline
phosphatase activity was determined using buffered p-
nitrophenyl phosphate (pH 9.5) as substrate, according to the
methodology described by Bergmeyer (1974). For trypsin,
chymotrypsin, and leucine aminopeptidase activities, one UA
was defined as the amount of enzyme that released 1 µmol of p-
nitroanilide (pNA) per minute (extinction coefficient 8,800 M
cm−1 at 405 nm). For alkaline phosphatase, one UA was defined
as the amount of enzyme that released 1 µg of nitrophenyl per
min (extinction coefficient 17,800 M cm−1 at 405 nm). All assays
were performed in triplicate in each one of the 12 enzymatic
TABLE 2 | Fatty acid composition (% of total fatty acids) of microalga and
experimental diets used in the feeding trial.

Fatty acids C. fusca Experimental diets

CT C-15

14:0 – 2.62 2.37
16:0 44.36 19.45 20.45
16:1n7 – 3.20 3.93
16:2n4 – 0.66 0.60
16:3n4 4.51 – 0.68
18:0 5.16 4.86 4.53
18:1n9 17.25 17.76 17.26
18:1n7 1.49 – –

18:2n6 13.13 20.99 19.70
18:3n3 14.09 2.34 4.76
18:4n3 – 0.70 0.97
20:1n9 – 1.74 1.79
20:4n6 – 0.96 0.91
20:5n3 – 5.58 4.94
22:5n3 – 1.12 0.99
22:6n3 – 13.66 12.36
SFA 49.53 26.93 27.35
MUFA 18.75 22.70 22.98
PUFA – 21.33 19.20
Other FA – 4.35 3.75
n - 3 14.09 23.41 24.03
n - 6 13.13 21.95 20.60
n - 9 17.25 1.74 1.79
n - 3/n - 6 1.07 1.07 1.17
EPA/DHA – 0.41 0.40
Dietary codes: CT, control diet; C-15, 15% C. fusca supplemented-diet.
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extracts obtained per dietary treatment, and specific enzyme
activities were expressed as U g tissue−1 (Galafat et al., 2020).

In addition, a substrate-SDS-PAGE (sodium dodecyl sulfate
polyacrylamide gel electrophoresis) electrophoresis gel was
carried out to visualize the active proteases present in intestinal
extracts of fish. Intestinal extracts were mixed with SDS sample
buffer (1:1), and SDS-PAGE was performed according to
Laemmli (1970) using 11% polyacrylamide (100 V per gel,
60 min, 4°C). Zymograms revealing protease active bands were
made according to Alarcón et al. (1998). After electrophoresis,
gels were washed with distilled water and incubated for 30 min at
4°C in buffer 0.75% (w/v) casein solution (50 mM Tris–HCl
buffer, pH 9). Then, gels were incubated in the same solution for
90 min at 37°C. After the incubation, gels were washed and fixed
in 12% trichloroacetic acid solution (TCA) for 105 min to stop
the reaction prior to staining with Coomassie Brilliant Blue R-
250 in a solution of methanol-acetic acid-water overnight.
Finally, gels were destained using a methanol–acetic acid–
water solution. Clear gel zones revealed the presence of active
proteases with caseinolytic activity.

Histological and Ultrastructural Study of
the Intestinal Mucosa
Anterior intestinal samples from three fish per tank (9 per
dietary treatment) were collected for examination by light and
electron microscopy. For light microscopy examination, intestine
samples were fixed for 24 h in phosphate-buffered formalin (4%
v/v, pH 7.2), dehydrated, and embedded in paraffin according to
standard histological techniques described in Vizcaıńo et al.
(2014). Briefly, samples were cut in 5 mm transversal sections,
and the slides were stained with hematoxylin-eosin (H&E). The
stained preparations were examined under a light microscope
(Olympus ix51, Olympus, Barcelona, Spain) equipped with a
digital camera (CC12, Olympus Soft Imaging Solutions GmbH,
Muenster, Germany). Images were analyzed with specific
software (Image J, National Institutes of Health, USA). The
length and diameter of mucosal folds, total enterocyte height,
as well as the thickness of the lamina propria of the submucosa,
muscular and serous layer were analyzed (50 independent
measurements per treatment) in intestinal samples.

Samples for transmission (TEM) and scanning (SEM)
electron microscopy were processed as described in Vizcaıńo
et al. (2014). For TEM, intestine samples were fixed with
glutaraldehyde 25 g L−1 and formaldehyde 40 g L−1 in
phosphate buffer saline (PBS) pH 7.5 for 4 h at 4°C. Then,
they were washed three times with PBS, and a 2 h post-fixation
with 20 g L−1 osmium tetroxide was carried out. After that,
samples were dehydrated by consecutive immersions in gradient
ethanol solutions (from 50% to 100%; v/v). The dehydrated
tissue was embedded in a mixture of 1:1 ethanol 100% (v/v) and
EPON resin for 2 h with stirring. Then, it was included in pure
EPON resin for 24 h and polymerized at 60°C. The ultra-fine cuts
were placed on 700 copper mesh and stained with uranyl acetate
and lead citrate. The observation was performed with a
transmission electron microscope Zeiss 10C at 100 kV (Carl
Zeiss, Barcelona, Spain). For SEM, samples were fixed for 24 h in
phosphate-buffered formalin (4% v/v, pH 7.2). Then, they were
Frontiers in Marine Science | www.frontiersin.org 5
washed and progressively dehydrated in graded ethanol. Then
samples were dried by critical point (CDP 030 Critical point
dryer, Leica Microsystems, Madrid, Spain) with absolute ethanol
as the intermediate fluid and CO2 as the transition fluid. Dried
samples were mounted on supports, fixed with graphite
(PELCO® Colloidal Graphite, Ted Pella Inc., Ca, USA), and
gold sputter-coated (SCD 005 Sputter Coater, Leica
Microsystems). Finally, all samples were screened with a
scanning electron microscopy (HITACHI model S-3500,
Hitachi High-Technologies Corporation, Japan). All digital
images were analyzed with UTHSCA ImageTool software and
morphometric analysis to determine the microvilli length (ML),
the microvilli diameter (MD), the number of microvilli over 1
mm distance, and the enterocyte apical area (EA) was carried out.
Finally, the total absorption surface per enterocyte (TAS) was
estimated following the procedure described byVizcaı ́no
et al. (2014).

Tissue Metabolites
For assessing tissue metabolite levels, samples from liver and muscle
(three fish per tank, 9 per dietary treatment) were individually
minced on an ice-cold Petri dish and subsequently homogenized by
mechanical disruption (Ultra-Turrax®, T25basic with an S25N-8G
dispersing tool, IKA®-Werke) with 7.5 vol. (w/v) of ice-cold 0.6 N
perchloric acid and neutralized after adding the same volume of 1M
KHCO3. Subsequently, the homogenates were centrifuged (3500 ×
g, 30 min, 4°C), and the supernatants were recovered in different
aliquots. The aliquots were then stored at −80°C until used in
metabolite assays. Metabolite concentrations in plasma (glucose,
lactate, and triglycerides) and liver (glucose and triglycerides) were
determined using commercial kits from Spinreact (Barcelona,
Spain) (Glucose-HK Ref. 1001200; Lactate Ref. 1001330;
Triglycerides ref. 1001311) with reactions adapted to 96-well
microplates. Liver glycogen levels were assessed using the method
from Keppler and Decker (1974). After subtracting free glucose
levels, the glucose obtained after glycogen was determined using the
commercial kit described above for glucose. Plasma total protein
concentration was determined using bovine serum albumin (BSA)
as the standard with BCA Protein AssayKit (PIERCE, Thermo
Fisher Scientific, USA, #23225). Total a-amino acid levels were
assessed colorimetrically using the ninhydrin method from Moore
(1968) adapted to 96-well microplates. All standards and samples
were measured in duplicate. All the assays were run on an
Automated Microplate Reader (PowerWave 340, BioTek
Instrument Inc., Winooski, VT, USA) using KCjunior™ software.

Activity of Metabolic Enzymes in the Liver
Frozen liver tissues (three fish per tank, 9 per dietary treatment)
for enzyme activity assays were homogenized by mechanical
disruption (Ultra-Turrax®) with 10 vol. (w/v) of ice-cold
homogenization buffer (in mM: 50 imidazole, 1 2-
mercaptoethanol, 50 NaF, 4 EDTA, 0.5 phenylmethylsulfonyl
fluoride (PMSF), and 250 sucrose; pH 7.5). Homogenates were
centrifuged for 30 min at 3220 × g and 4°C, and supernatants
were stored at −80°C for further analysis. The assays of several
enzymes involved in glycogenolysis (GPase [active]: glycogen
phosphorylase, EC 2.4.1.1), glycolysis (HK: hexokinase,
May 2022 | Volume 9 | Article 902203
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EC 2.7.1.1; PK: pyruvate kinase, EC 2.7.1.40), gluconeogenesis
(LDH: lactate dehydrogenase, EC 1.1.1.27; FBP: fructose 1,6-
bisphosphatase, EC 3.1.3.11) and lipid metabolism (HOAD: 3-
hydroxyacyl-CoA dehydrogenase, EC 1.1.1.35) were performed
as previously described for gilthead seabream (Sparus aurata)
tissues (Perera et al., 2020). All the assays were run on an
Automated Microplate Reader (PowerWave 340, BioTek
Instrument Inc., Winooski, VT, USA) using KCjunior™

software. Activities were expressed as specific activities per mg
of protein in the homogenate (U mg prot−1). Proteins were
assayed in duplicate, as described above for plasma samples.

Statistical Analysis
Results are reported as means ± SEM (n = 9). Normal
distribution was checked for all data with the Shapiro–Wilk
test, while the homogeneity of the variances was obtained using
the Levene test. When necessary, an arcsin transformation was
performed. Differences between the two experimental diets (CT
and C-15) were tested using Student’s t-test. In all statistical tests
performed, p < 0.05 was considered significantly different. All
analyses were performed with SPSS Statistics 25 software (SPSS
Inc, IBM Company, NY, USA).
RESULTS

Growth Performance, Nutrient Utilization,
and Proximate Composition
No mortality occurred during the experimental period. The
inclusion of C. fusca statistically stimulated growth performance
of C. labrosus juveniles (Table 3). After 90 days, C-15 group animals
enhanced significantly body weight and length as well as weight
gain and specific growth ratio respect to fish fed CT diet. Fish fed
with Chlorella increased protein efficiency and decreased feed
conversion ratio compared to the control group; however, no
statistical differences were found between experimental groups.
Furthermore, no significant differences were found in Fulton’s
Condition Factor (K) and somatic indices (HSI, VSI, and PVI).
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The proximate composition of C. labrosus specimens is
presented in Table 4. Body composition of fish did not show
any significant variation between fish fed CT and C-15 diets.

Tissue Fatty Acids
Fatty acid profiles results are shown in Table 5. The fatty acid
profiles of liver and muscle differed between experimental groups.
Palmitic acid (16:0) and oleic acid (18:1n-9) were both tissues’most
abundant fatty acids. Liver from the CT group had significantly
higher proportions of oleic acid, linolenic acid (18:3n-3), and
arachidonic acid (ARA, 20:4n-6). However, liver from the C-15
group showed significantly higher proportions of vaccenic acid
(18:1n-7), eicosenoic acid (20:1n-9), and docosahexaenoic acid
(DHA, 22:6n-3). In muscle, C-15 specimens presented statistically
higher proportions of palmitic acid, stearic acid (18:0), ARA,
eicosapentaenoic acid (EPA, 20:5n-3), docosapentaenoic acid
(22:5n-3), and DHA. On the other hand, muscle from the control
group had higher oleic acid, vaccenic acid, linoleic acid (18:2n6),
linolenic acid, and eicosenoic acid. Hepatic percentage of total
saturated, monounsaturated and polyunsaturated fatty acids (SFA,
MUFA, and PUFA, respectively) was not modified by the inclusion
of C. fusca. In contrast, while a significantly higher proportion of
SFA, PUFA, and n-3 content was found in muscle of the C-15 diet,
higher content of MUFA, n-6, and n-9 were detected in muscle of
control specimens. Altogether, the n-3/n-6 ratio enhanced
significantly in both tissues from C-15-fed fish, while EPA/DHA
ratio decreased significantly. As a result of these differences due to
the inclusion of C. fusca, C-15 specimens showed a significantly
higher peroxidability index (PI), flesh lipid quality (FLQ), and
atherogenicity index (IA), as well as a lower index of
thrombogenicity (IT).

Digestive Functionality
Enzyme activities measured in the intestinal extracts of C. labrosus
specimens fed with the experimental diets are shown in Table 6.
Total alkaline protease activity was significantly higher in the C-15
group than fish fed the control diet, whilst trypsin and
chymotrypsin activity levels were similar between both groups.
Regarding brush border enzymes, dietary inclusion of C. fusca
significantly increased both leucine aminopeptidase and alkaline
phosphatase activity levels compared to CT group. In addition, the
zymogram of the intestinal proteases revealed the same profile of
active fractions in both CT and C-15 fed fish (Figure 1).

The histological characteristics of intestinal sections from fish
receiving the two dietary treatments are shown in Figure 2.
Overall, no signs of intestinal damage were found as all
specimens presented intestinal mucosa without evidence of
TABLE 3 | Growth performance and somatic indices of juvenile C. labrosus fed
control (CT) and C-15 diets during 90 days.

Parameters CT C-15 p

Initial weight (g) 84.5 ± 0.6 85.0 ± 0.5 n.s.
Final weight (g) 144.8 ± 5.1 158.8 ± 3.6* 0.018
Initial length (cm) 18.0 ± 0.1 17.9 ± 0.2 n.s.
Final length (cm) 21.6 ± 0.4 22.3 ± 0.2* 0.041
WG (%) 171.8 ± 7.2 185.5 ± 3.3* 0.039
SGR (%) 0.6 ± 0.0 0.7 ± 0.0* 0.045
FCR 3.5 ± 1.2 2.6 ± 0.1 n.s.
PER 0.8 ± 0.2 1.0 ± 0.0 n.s.
K 1.4 ± 0.0 1.4 ± 0.0 n.s.
HSI (%) 0.8 ± 0.2 0.8 ± 0.1 n.s.
VSI (%) 9.1 ± 1.7 7.6 ± 1.8 n.s.
PVI (%) 43.4 ± 14.9 39.7 ± 9.5 n.s.
Dietary codes: CT, control diet; C-15, 15% C. fusca supplemented-diet. Values are
expressed as mean ± SE of triplicate groups. Asterisks denote significant differences (p <
0.05). n.s., not significant.
TABLE 4 | Muscle proximate composition (% dry weight) of juvenile C. labrosus
fed control (CT) and C-15 diets during 90 days.

CT C-15 p

Protein 79.31 ± 0.27 80.06 ± 0.71 n.s.
Lipid 8.75 ± 0.83 8.81 ± 0.20 n.s.
Ash 7.41 ± 0.35 7.38 ± 0.53 n.s.
May 20
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Dietary codes: CT, control diet; C-15, 15% C. fusca supplemented-diet. Values are
expressed as mean ± SE (n = 9 fish per dietary treatment). n.s., not significant.
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abnormality. The morphometric analysis (Table 7) revealed a
significant increase of fold length in fish fed the C-15 diet, while
fold diameter and enterocyte height were similar in both dietary
groups. Additionally, thickness of the serosa and muscular layers,
as well as of the lamina propria was significantly reduced in
specimens fed with C-15 diet.

TEM and SEM observations confirmed a well-defined and
organized intestinal brush border membrane in both dietary
groups (Figure 3). Morphometric analysis of TEM and SEM
TABLE 5 | Liver and muscle fatty acid profile (% of total fatty acids) of juvenile C. labrosus fed control (CT) and C-15 diets during 90 days.

Fatty acids Liver Muscle

CT C-15 p CT C-15 p

14:0 3.59 ± 0.46 3.08 ± 0.04 n.s. 1.94 ± 0.03 1.99 ± 0.08 n.s.
16:0 27.43 ± 0.93 28.55 ± 0.07 n.s. 23.54 ± 0.05 24.63 ± 0.31* 0.001
16:1n7 8.51 ± 1.04 10.18 ± 1.13 n.s. 6.69 ± 0.02 6.97 ± 0.19 n.s.
18:0 3.27 ± 0.59 3.50 ± 0.10 n.s. 3.36 ± 0.05 3.74 ± 0.20* 0.010
18:1n9 33.67 ± 0.92* 29.17 ± 0.08 0.006 34.31 ± 0.50* 30.30 ± 0.34 <0.001
18:1n7 3.88 ± 0.09 4.98 ± 0.08* <0.001 1.34 ± 0.00* 1.10 ± 0.04 0.004
18:2n6 8.45 ± 0.91 6.91 ± 0.09 n.s. 13.46 ± 0.19* 11.80 ± 0.01 0.002
18:3n3 1.60 ± 0.16* 1.22 ± 0.03 0.004 2.60 ± 0.12* 2.38 ± 0.01 0.045
20:1n9 0.48 ± 0.18 1.05 ± 0.03* 0.002 1.31 ± 0.03* 1.10 ± 0.08 0.004
20:4n6, ARA 0.63 ± 0.12* 0.40 ± 0.02 0.009 1.20 ± 0.01 1.38 ± 0.05* 0.001
20:5n3, EPA 1.43 ± 0.53 1.80 ± 0.03 n.s. 2.63 ± 0.06 2.95 ± 0.06* <0.001
22:5n3 – – – 1.21 ± 0.06 1.42 ± 0.08* 0.007
22:6n3, DHA 2.46 ± 1.32 4.95 ± 0.26* 0.010 4.87 ± 0.29 8.64 ± 0.54* <0.001
SFA 34.29 ± 0.79 35.13 ± 0.22 n.s. 28.84 ± 0.03 30.35 ± 0.19* 0.002
MUFA 46.53 ± 2.55 45.38 ± 1.32 n.s. 43.64 ± 0.52* 39.46 ± 0.65 <0.001
PUFA 5.12 ± 2.80 8.23 ± 0.31 n.s. 9.92 ± 0.16 14.40 ± 0.73* <0.001
Other FA 3.51 ± 0.18* 2.32 ± 0.93 0.036 1.04 ± 0.65 1.14 ± 0.08 n.s.
n - 3 6.32 ± 2.86 9.05 ± 0.30 n.s. 11.32 ± 0.05 15.40 ± 0.68* 0.004
n - 6 9.08 ± 1.03 7.32 ± 0.12 n.s. 14.66 ± 0.21* 13.18 ± 0.04 0.001
n - 9 34.15 ± 1.59* 30.22 ± 0.11 0.026 35.61 ± 0.53* 31.40 ± 0.42 <0.001
n - 3 PUFA 4.49 ± 2.68 7.83 ± 0.33 n.s. 8.72 ± 0.17 13.02 ± 0.68* <0.001
n - 3/n - 6 0.68 ± 0.24 1.24 ± 0.06* 0.005 0.77 ± 0.01 1.17 ± 0.05* <0.001
EPA/DHA 0.61 ± 0.11* 0.36 ± 0.01 0.033 0.54 ± 0.04* 0.34 ± 0.01 <0.001
PI1 – – – 87.11 ± 1.10 118.91 ± 5.37* <0.001
IT2

– – – 0.39 ± 0.00* 0.37 ± 0.00 0.031
IA3

– – – 0.47 ± 0.00 0.49 ± 0.01* 0.004
FLQ4

– – – 7.50 ± 0.23 11.60 ± 0.60* <0.001
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Dietary codes: CT, control diet; C-15, 15% C. fusca supplemented-diet. Values are expressed as mean ± SE (n = 9 fish per experimental diet). Asterisks denote significant differences (p <
0.05). SFA, saturated fatty acids; MUFA, monounsaturated fatty acids; PUFA, polyunsaturated fatty acids; ARA, arachidonic acid; EPA, eicosapentaenoic acid; DHA, docosahexaenoic
acid; n.s., not significant. 1PI, peroxidability index; 2IT, index of thrombogenicity; 3IA, index of atherogenicity; 4FLQ, fish lipid quality.
TABLE 6 | Enzyme activities (U g tissue−1) measured in the whole intestinal
extracts of juvenile C. labrosus fed control (CT) and C-15 diets during 90 days.

CT C-15 p

Pancreatic enzymes
Total alkaline protease 490.31 ± 105.13 763.20 ± 173.66* 0.002
Trypsin 0.16 ± 0.05 0.21 ± 0.04 n.s.
Chymotrypsin 2.88 ± 0.90 3.01 ± 0.76 n.s.

Brush border enzymes
Leucine aminopeptidase 0.36 ± 0.07 0.46 ± 0.07* 0.008
Alkaline phospatase 3.72 ± 0.45 5.21 ± 0.74* <0.001
Dietary codes: CT, control diet; C-15, 15% C. fusca supplemented-diet. Values are
expressed as mean ± SE of triplicate determinations (n = 12 extracts per dietary
treatment). Asterisks denote significant differences (p < 0.05). n.s., not significant.
FIGURE 1 | Zymogram showing total proteolytic activity from pooled
intestinal extracts of fish. Dietary codes: CT, control diet; C-15, 15% C. fusca
supplemented-diet. Protein standards employed were phosphorylase b (94),
bovine serum albumin (66), ovalbumin (45), carbonic anhydrase (30), soybean
trypsin inhibitor (20). The molecular mass (in kDa) of proteins was measured
using a linear plot of log Mr. of protein standards (M) vs. relative mobility (Rf).
Five microliters of molecular weight marker (M) were loaded.
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FIGURE 2 | Transversal sections from the proximal intestine of C. labrosus juveniles fed control (CT) or experimental (C-15) diets during 90 days. H&E stain, scale
bar 200 mm, and 100 mm. Dietary codes: CT, control diet; C-15, 15% C. fusca supplemented-diet.
TABLE 7 | Quantification of the histological parameters assessed in the intestine of juvenile C. labrosus fed control (CT) and C-15 diets during 90 days.

CT C-15 p

Fold length (µm) 677.39 ± 62.28 728.30 ± 52.68* <0.001
Fold diameter (µm) 120.33 ± 21.05 112.01 ± 13.53 n.s.
Enterocyte height (µm) 40.93 ± 4.25 41.55 ± 2.63 n.s.
Serosa layer (µm) 31.22 ± 5.90* 20.97 ± 2.65 <0.001
Muscular layer (µm) 33.75 ± 3.33* 30.63 ± 2.53 <0.001
Submucosa layer (µm) 29.75 ± 3.27* 24.39 ± 1.63 0.024
Lamina propria (µm) 39.41 ± 5.13* 33.32 ± 3.90 <0.001
Frontiers in Marine Science | www.fr
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Dietary codes: CT, control diet; C-15, 15% C. fusca supplemented-diet. Values are expressed as mean ± SE of triplicate determinations (n = 9 fish per dietary treatment). Asterisks denote
significant differences (p < 0.05). n.s., not significant.
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images revealed that enterocytes from proximal intestine of fish
fed with C-15 diet increased significantly microvilli length, apical
area, as well as total absorption surface compared to the CT
group (Table 8).

Plasma, Liver, and Muscle Metabolites
and Enzyme Metabolic Activities
Plasma, liver, and muscle metabolites are shown in Table 9. The
experimental diets did not cause significant plasma triglycerides
and protein changes. A statistical increase in plasma glucose and
a reduction in lactate values were observed in C-15 group
compared to the CT group. In the liver, triglycerides levels
decreased statistically in C-15 group respect to CT group,
while amino acid levels enhanced significantly. No significant
differences were detected among experimental groups in hepatic
free glucose, glycogen, or lactate values. In muscle, no significant
differences were detected among experimental groups for any
metabolite assessed.
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The effect of the dietary inclusion of C. fuscawas also evaluated
in several metabolic enzymes related to glycogenolysis, glycolysis,
gluconeogenesis, and lipid metabolism in the liver (Figure 4).
HOAD (lipid metabolism), HK (glycolysis), and GPact
(glycogenolysis) enzymes displayed a significant increase in C-15
group after 90 days of feeding. In contrast, hepatic activity of the
FBP (gluconeogenesis) enzyme decreased in this group. No effects
were found between experimental groups on the hepatic activity of
LDH (gluconeogenesis) and PK (glycolysis) enzymes.
DISCUSSION

Microalgae have been evaluated as functional dietary ingredients
or for replacement of fishmeal in different aquaculture species,
generally with positive effects on growth and fatty acid profile of
fish fillet (Vizcaıńo et al., 2014; Pakravan et al., 2017; Sarker et al.,
2018; Garcıá-Márquez et al., 2020), thereby not only improving
A

B

FIGURE 3 | Comparative TEM (A) and SEM (B) micrographs from the anterior intestine of C. labrosus juveniles at the end of the feeding trial. Dietary codes: CT,
control diet; C-15: 15% C. fusca supplemented-diet. (TEM bar: 1 mm, SEM bar: 20 mm).
TABLE 8 | Microvillar morphology of juvenile C. labrosus fed control (CT) and C-15 diets during 90 days.

CT C-15 p

Microvilli length (µm) 1.95 ± 0.12 2.55 ± 0.36* <0.001
Microvilli diameter (µm) 0.11 ± 0.01 0.11 ± 0.01 n.s.
Density (microvilli per µm2) 43.22 ± 6.85 46.11 ± 5.73 n.s.
Enterocyte apical área (µm2) 18.13 ± 3.25 31.63 ± 2.58* <0.001
Enterocyte absorption Surface (µm2) 521.49 ± 93.47 1312.33 ± 97.50* <0.001
May 2022 | Volume 9 | Article
Dietary codes: CT, control diet; C-15, 15% C. fusca supplemented-diet. Values are expressed as mean ± SE (n = 9 fish per dietary treatment). Asterisks denote significant differences
(p < 0.05); n.s., not significant.
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fish health but also increasing productivity and the value of the
commercial product obtained. The result of this work revealed that
the inclusion of 15% ofC. fusca stimulated specific growth rate and
body weight, which is in broad agreement with that previously
published for other fish species fed with different microalgae
(Vizcaıńo et al., 2018; Gong et al., 2019; Sarker et al., 2020).
Furthermore, the feed efficiency (PER and FCR) was not
negatively affected by the inclusion of C. fusca. Different studies
have reported both favourable and unfavourable effects of
Chlorella species at varying supplementation levels in
aquaculture feeds on growth performance and feed utilization in
different fish species. For instance, Rahimnejad et al. (2017)
reported that dietary inclusion of 10–15% of Chlorella vulgaris
enhanced significantly growth performance and specific growth
rate in Olive flounder (Paralichthys olivaceus). Similarly, Teuling
et al. (2017) reported the overall performance in both Nile tilapia
(Oreochromis niloticus) and African catfish (Clarus gariepinus)
were similar or superior compared to fish fed the reference diet
when C. vulgaris meal was included at 30% in the aquafeeds. In
contrast, when Chlorella sp. meal was supplemented at 1.6% and
2% in diets for gibel carp (Carassius auratus gibelio) feed
conversion ratio was significantly lower than the control group
(Xu et al., 2014). To resume, the varied effects on fish performance
reported at higher and lower dietary Chlorella inclusion levels
could be attributed to the different inclusion levels, the specific
microalgae strain and fish species, and/or the duration of the
experiment. Even so, the positive effects observed in the present
study strongly suggest its use as suitable ingredient in herbivorous/
omnivorous marine species, at least at 15% of biomass. However, it
has been reported that C. labrosus changes its digestive enzyme
profile according to the size/age of specimens (Pujante et al., 2017).
For this reason, the beneficial effects observed of dietary inclusion
of C. fusca (i.e. 15%) could be confirmed using specimens with
different stages of development.
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Similar to that reported previously in feeding trials using
aquafeed with inclusion of other microalgae, no differences in
proximate muscle composition attributable to the dietary
inclusion of C. fusca were observed (Vizcaıńo et al., 2014;
Vizcaıńo et al., 2018; Sales et al., 2021). However, disparate
effects of microalgae inclusion on muscle proximate composition
can be described. Thus, some authors described that microalgal
biomass inclusion may increase protein and decrease lipid
content in different farmed fish species owing to the presence
of several bioactive compounds in microalgae biomass that may
activate fish metabolism, and particularly the use of lipid as
energy source (Roohani et al., 2019; Galafat et al., 2020).

Regarding fatty acids profile, the inclusion of C. fusca induced
selective retention of DHA in the liver, and ARA, EPA, and DHA
in the muscle. This fact has been previously pointed out in other
studies, which evidenced a relationship between microalgae
inclusion and higher efficiency of mobilizing lipids from liver
(He et al., 2018; Vizcaıńo et al., 2018; Garcıá-Márquez et al.,
2020). Besides this, the relative increase of structural fatty acids
in muscle (ARA, EPA, and DHA) is also reflected in the
significant fish lipid quality index (FLQ), n3/n6 ratio, and
index of atherogenicity (IA) enhancement in fish fed on C-15
diet, which could be beneficial from a human nutrition
standpoint (Abdelhamid et al., 2018; Román et al., 2019).

According to Furné et al. (2008), adequate feed efficiency is
highly related to the physiological capacity of fish to digest and
transform the ingested nutrients, and therefore to the presence of
an appropriate set of digestive enzymes. Indeed, any change in
their activity levels could reveal a significant impact on fish
growth and proper nutrient utilization. Previous works
evidenced that dietary inclusion of different microalgal
biomasses may exert substantial changes in the activity of
several enzymes involved in the digestive and absorptive
processes at intestinal level (Vizcaıńo et al., 2014; Vizcaıńo
et al., 2018; Gong et al., 2019; Galafat et al., 2020; Galafat et al.,
2022). In agreement with these studies, the results obtained in
this piece of research evidenced noticeable differences in enzyme
activity levels between fish fed C-15 diet and those fed on the
control diet. Dietary inclusion of 15% C. fusca did not cause any
adverse effects on enzymatic activities from the pancreatic
secretion, as it can be observed in the zymogram, which
evidenced that microalgae-fed fish showed the same pattern of
intestinal proteases that control (CT) specimens. However,
protease activity was significantly higher in fish fed C-15 diet
than the CT group. Similar results were shown by Akbary and
Raeisi (2020), who found an increase of total alkaline protease
activity in grey mullet (M. cephalus) specimens fed on diets
supplemented with up to 15% C. vulgaris. This increase in
proteolytic activity seems to be related to an improvement in
digestive functionality that could lead to better absorption and
utilization of nutrients (Engrola et al., 2007), in line with the
higher growth performance observed.

On the other hand, there are previous works focused on
evaluating the changes in the digestive enzyme profile in fish that
modify their feeding habits during the ontogeny such as mullets,
which showed an omnivorous feeding habits during their early
TABLE 9 | Tissue metabolites content of juvenile C. labrosus fed control (CT)
and C-15 diets during 90 days.

CT C-15 p

Plasma
Glucose (mM) 6.91 ± 0.34 7.42 ± 0.31* 0.038
Triglycerides (mM) 8.26 ± 0.80 7.06 ± 1.11 n.s.
Lactate (mM) 2.07 ± 0.16* 1.54 ± 0.18 0.001
Protein (mM) 37.44 ± 4.63 35.97 ± 3.68 n.s.
Liver
Glucose (mmol g-1w.w.) 101.82 ± 0.99 101.25 ± 1.41 n.s.
Glycogen (mmol g-1w.w.) 33.70 ± 4.26 38.22 ± 4.49 n.s.
Triglycerides (mmol g-1w.w.) 2.51 ± 0.59* 1.28 ± 0.13 0.018
Lactate (mmol g-1w.w.) 2.35 ± 0.68 2.09 ± 0.44 n.s.
Amino acid (mg g-1) 5.30 ± 0.93 7.18 ± 0.35* 0.002
Muscle
Glucose (mmol g-1w.w.) 96.04 ± 2.22 96.75 ± 1.71 n.s.
Glycogen (mmol g-1w.w.) 1.24 ± 0.73 2.33 ± 1.09 n.s.
Triglycerides (mmol g-1w.w.) 0.18 ± 0.05 0.18 ± 0.04 n.s.
Lactate (mmol g-1w.w.) 65.41 ± 2.58 69.08 ± 9.97 n.s.
Amino acid (mg g-1w.w) 7.47 ± 0.85 7.44 ± 1.19 n.s.
Dietary codes: CT, control diet; C-15: 15% C. fusca supplemented-diet. Values are
expressed as mean ± SE (n = 9 fish per dietary treatment). Asterisks denote significant
differences (p < 0.05); n.s., not significant.
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stages with a trend to become herbivorous with age (Wassef et al.,
2001). In this regard, Pujante et al. (2017), found a noticeable
increase in the protease activity levels in C. labrosus as
consequence of the changes in the fish-feeding habits. These
modifications might reflect a possible compensation mechanism
(i.e. by increasing enzyme secretion) that ensure efficient
digestive processes, as it has been described in other
herbivorous fish species such as carp or tilapia (Uscanga-
Martı ́nez et al., 2011; Hernández-Sámano et al., 2017).
Regarding brush border enzymes, a significant increase in
leucine aminopeptidase and alkaline phosphatase activity levels
was observed in fish fed the diets supplemented with 15% C.
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fusca. Both enzymes play a key role in the final stages of protein
digestion, hydrolysing the oligopeptides released by pancreatic
enzymes into free amino acids, dipeptides or tripeptides (Gisbert
et al., 2018) and allowing absorption or transport of amino acids
through the enterocytes (Cahu and Zambonino Infante, 2001).
These enzymes, especially alkaline phosphatase, can be used as
indicator of intestinal integrity and nutrient absorption, so
increased activity levels seem to be related to an improvement
in digestive process efficiency and absorptive capability of the
intestinal mucosa (Vizcaıńo et al., 2014).

In addition, it was observed that these positive changes in
enzymatic intestinal activities concur with the histological and
A B

C D

E F

FIGURE 4 | Specific activity (U mg protein−1 as mean ± SEM) of metabolic enzymes in the liver of juvenile (C) labrosus fed control (CT) and C-15 diets during 90
days. Asterisks denote significant differences at p < 0.001 (***). (A) HOAD, 3-hydroxyacyl-CoA dehydrogenase; (B) HK, hexokinase; (C) LDH, lactate dehydrogenase;
(D) FBP, fructose 1,6-bisphosphatase; (E) PK, pyruvate kinase; (F) GPase, glycogen phosphorylase (active).
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ultrastructural measurements carried out on the intestinal
mucosa. In herbivorous fish, intestines are generally larger than
in carnivorous ones, which is thought to allow for additional
processing of relatively difficult-to-digest items (Wilson and
Castro, 2010). The structural condition of the intestine is
considered a reliable nutritional and physiological biomarker
since it reflects any physiological disorder caused by unbalanced
diets or inadequate feeding conditions (Gisbert et al., 2008).
Similar to other previous studies (Vizcaıńo et al., 2014; Galafat
et al., 2022), histological observations indicated that microalgae
inclusion did not cause adverse effects on gut morphology.
Besides the increase in mucosal fold length observed in fish fed
on C. fusca-supplemented diet, the histological analysis revealed
the absence of inflammatory processes in the lamina propria or
accumulation of lipid vacuoles inside the enterocytes that could
evidence intestinal enteritis and/or steatosis (Uran et al., 2008).
Indeed, the serosa, muscular, and submucosa layers, as well as
the lamina propria, were significantly thinner in fish fed with C.
fusca than those fed with the microalgae-free diet. Those results
pointed out that dietary microalgae inclusion might be useful to
prevent intestinal pro-inflammatory processes, but further
research is required to elucidate if longer feeding period or if
higher microalgae dietary inclusion level can produce
morphological alteration on the intestinal morphology in
this species.

Electron microscopy analysis did not evidence structural
alterations or signs of damage on intestinal brush border
attributable to dietary inclusion of C. fusca biomass. It was
observed that all the specimens showed a particular
morphology and disposition of their intestinal folds, which was
different from that observed in other fish species such as the
carnivorous seabream (S. aurata), seabass (D. labrax), or
Senegalese sole (Solea senegalensis) (Vizcaıńo et al., 2014;
Vizcaıńo et al., 2018). C. labrosus folds were characterized by
the presence of numerous laminar ridges with a flattened apex
and a random distribution similar to that observed in other
Mugilidae species such as gold grey mullet (Liza aurata)
(Ferrando et al., 2006) (see Supplementary Material 1).
Regarding the morphometric analysis of TEM and SEM
images, microvilli length, enterocyte apical area, and enterocyte
absorption surface significantly increased in fish fed C. fusca-
supplemented diet. These results are consistent with those
observed in previous studies performed in S. aurata (Vizcaıńo
et al., 2014; Galafat et al., 2020; Galafat et al., 2022), so it seems
that the use of this microalga in aquafeeds enhanced absorption
capacity, reinforcing the idea of the function of the intestinal
mucosa as a physical barrier.

The response of the metabolism concerning the experimental
diets was also characterized. The C-15 diet significantly
mobilized carbohydrate metabolism by increasing plasma
glucose and concomitantly decreasing plasma lactate. Thus, we
suggest that C. fusca inclusion in the aquafeed may promote
depletion of plasma lactate, which is previously originated in
white muscle due to anaerobic metabolism, for later be partially
incorporated into the liver according to what Perera et al. (2020)
observed. However, the conversion of lactate to pyruvate by LDH
Frontiers in Marine Science | www.frontiersin.org 12
in the liver (i.e. Cori cycle), and its further conversion to
glycogen, are not supported neither by LDH activity nor
glucose-glycogen trends in the present study, which remained
unchanged regardless of the experimental diet. In this regard,
high plasma glucose levels might indicate a proficient digestive
breakdown of carbohydrates from the diet in this species and a
potential source for glycogen reservoirs (Omlin et al., 2014). It
has also been found that C. fusca inclusion increased hepatic HK
activity, whereas PK activity was unaltered. HK is the first step in
glycolysis, phosphorylating glucose to be used by cells, while PK
catalyzes the last step of glycolysis, producing pyruvate and ATP.
Even though hepatic glycogen content was not significantly
higher, its increase supports that the C-15 diet enhanced
hepatic glucose uptake capacity to be stored as glycogen
instead of oxidized for energy, as previously observed in
gilthead seabream (Perera et al., 2020).

The above-mentioned metabolic stage agrees with the
observed reduction of hepatic gluconeogenic enzyme (FBP)
activity in C-15 group, further supporting subsequent non-
significant increases in muscle and hepatic glycogen within this
same group. Although the metabolic significance of higher
glycogen phosphorylase activity remains unknown in fish, it
could be related to the turnover of liver glycogen for glucose in
other metabolic pathways, such as synthesizing specific fatty
acids as occurs in humans (Adeva-Andany et al., 2016). In this
regard, the significant decrease in liver triglycerides values (the
fundamental unit of lipid metabolism) in the C-15 group
supports this hypothesis.

Increased glucose uptake by the liver, or production of
glucose from glycogen, is known to have a stimulatory effect
on the lipogenic enzymes, glucose-6-phosphate dehydrogenase
(G6PDH), and malate dehydrogenase (MDH) (Perera et al.,
2020), which provide NADPH for the biosynthesis of fatty
acids, and subsequently lead to higher lipid storage or export
from the liver (Alvarez et al., 2000; Laliotis et al., 2010). However,
we cannot rule out the possibility that some of the changes in
specific fatty acids depositions are due to the existence of other
nutrients in this microalga. The higher muscular HOAD activity
(the third step of beta-oxidation) observed in specimens of C-15
group is remarkable. In higher vertebrates, lipid availability
increases mitochondrial fatty acid oxidative capacity in muscle
(Turner et al., 2007). Thus, we suggest that HOAD activity in the
present study may be a compensatory mechanism to control
excessive fat accumulation in fish muscles supplemented with
microalgae or might be involved in lipid muscle deposition
remodeling. Additionally, we also observed a significant
increase in hepatic a-amino acids. The liver is an important
organ for protein synthesis, degradation, and detoxification as
well as amino acid metabolism. Overall hepatic amino acids are
involved in various cellular metabolisms, the synthesis of lipids
and nucleotides as well as detoxification reactions (Lee and
Kim, 2019).

In conclusion, the results obtained in this work are in
accordance with previous studies using microalgae-based
aquafeeds and confirmed that C. fusca biomass is suitable for
using as dietary ingredient in C. labrosus juveniles. The effects
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observed on digestive and metabolic enzyme activities, together
with adequate metabolic response and gut morphology, as well as
a significant increase in intestinal mucosa’s digestive and
absorptive capacity, could explain the positive effects on
growth performance obtained in fish fed the microalgae.
However, given the scarce information related to the
optimization of specific aquafeeds for this species and the
changes in intestinal digestive capacity associated with
developmental stages (Pujante et al., 2017), further studies to
determine optimal inclusion levels of C. fusca in a long-term
feeding trial and/or different developmental stages in this fish
species are needed.
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