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Abstract: Salt marshes are very valuable and threatened ecosystems, and are challenging to study
due to their difficulty of access and the alterable nature of their soft soil. Remote sensing methods
in unmanned aerial vehicles (UAVs) offer a great opportunity to improve our knowledge in this
type of complex habitat. However, further analysis of UAV technology performance is still required
to standardize the application of these methods in salt marshes. This work evaluates and tunes
UAV-photogrammetry and UAV-LiDAR techniques for high-resolution applications in salt marsh
habitats, and also analyzes the best sensor configuration to collect reliable data and generate the
best results. The performance is evaluated through the accuracy assessment of the corresponding
generated products. UAV-photogrammetry yields the highest spatial resolution (1.25 cm/pixel)
orthomosaics and digital models, but at the cost of large files that require long processing times,
making it applicable only for small areas. On the other hand, UAV-LiDAR has proven to be a
promising tool for coastal research, providing high-resolution orthomosaics (2.7 cm/pixel) and
high-accuracy digital elevation models from lighter datasets, with less time required to process
them. One issue with UAV-LiDAR application in salt marshes is the limited effectiveness of the
autoclassification of bare ground and vegetated surfaces, since the scattering of the LiDAR point
clouds for both salt marsh surfaces is similar. Fortunately, when LiDAR and multispectral data
are combined, the efficiency of this step improves significantly. The correlation between LiDAR
measurements and field values improves from R2 values of 0.79 to 0.94 when stable reference points
(i.e., a few additional GCPs in rigid infrastructures) are also included as control points. According
to our results, the most reliable LiDAR sensor configuration for salt marsh applications is the nadir
non-repetitive combination. This configuration has the best balance between dataset size, spatial
resolution, and processing time. Nevertheless, further research is still needed to develop accurate
canopy height models. The present work demonstrates that UAV-LiDAR technology offers a suitable
solution for coastal research applications where high spatial and temporal resolutions are required.

Keywords: salt marshes; light detection and ranging (LiDAR); photogrammetry; multispectral; high
resolution; unmanned aerial vehicle (UAV); digital models

1. Introduction

Salt marshes are highly complex systems with high ecological values and abundant
ecosystem services [1,2]. Salt marshes protect coastal areas from floods and storms [3,4],
prevent coastal erosion [5], store significant amounts of organic carbon [6], recycle nutrients,
and remove pollutants, thus improving habitat quality and maintaining a high level of
productivity in habitats with rich biodiversity [7,8].
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Despite their importance, up to 70% of worldwide salt marshes have been lost in
the 20th century [8], mostly due to extensive anthropogenic land cover changes that have
accelerated marsh degradation. Climate change is now making these threats much more
severe [5,9,10], with sea-level rise (SLR) being probably [8] the greatest current threat to
salt marshes. Rising local sea levels could put salt marshes at risk of drowning, depending
on SLR scenarios [11]. These habitats may compensate for the situation with natural
mechanisms that maintain their elevation above local sea level [5,12]. These mechanisms
include biophysical interactions between plants and soil and local sediment dynamics [12].
Nevertheless, natural events, such as inundations, and human activities, such as changes
in land use [3,12,13], may destabilize these mechanisms, compromising [3,12,13] the ability
of salt marshes to adapt to future SLR scenarios [14].

Fortunately, conservation efforts, such as the Ramsar Convention’s implementa-
tion [15], have slowed the erosion of salt marshes during the past few decades. However,
further efforts are still needed to improve the likelihood of salt marsh survival, requir-
ing an interdisciplinary approach to understanding the underlying mechanisms [16,17].
Field databases required for modeling such processes need to be extensive (i.e., sediment
availability, accurate topography, distribution, and vegetation productivity) and of high
quality [11,18,19]. Due to the great accuracy needed for modeling coastal processes [20],
the difficulties of accessing these environments, and the disturbance of the sediment dur-
ing sampling, in situ monitoring is still problematic in salt marshes [21]. Techniques for
remote sensing (RS) have proven to be an excellent tool for gathering spatial environmental
data [22,23]. Traditional platforms include satellite or aerial systems, which are frequently
utilized for many studies at the regional level, such as the mapping of tidal marshes [24],
the monitoring of vegetation cover [25,26], and coastal management [27]. The spectral,
spatial, and temporal resolution of satellite images is constrained, making them generally
unsuitable for modeling ecological processes [28,29]. Unmanned aerial vehicles (UAVs) are
bridging the high spectral, spatial, and temporal resolution gap left by satellites, enabling
the development of rapid and affordable approaches. High-resolution photogrammetric
cameras are among the current UAV sensors, while most other methods have also been
effectively applied in conventional RS platforms (i.e., thermography, multispectral, LiDAR,
and hyperspectral).

Three RS methods have a great potential for high-quality monitoring of salt marshes.
(1) Photogrammetry successfully creates orthorectified maps (i.e., orthomosaics) and topo-
graphic products using structure-from-motion (Sf M) methods [30,31]. (2) Light detection
and ranging (LiDAR) gathers highly reliable 3D point clouds for high-resolution topog-
raphy modeling and creates digital elevation models (DEM) from digital surface models
(DSM) by point cloud classification techniques [32,33]. (3) Multispectral techniques offer
useful data for vegetation mapping [34].

Sf M photogrammetric methods based on UAVs have proven to be particularly effec-
tive in mapping marsh surfaces and calculating canopy height [35–37]. Airborne-LiDAR
has been shown to enhance habitat classification for wetland areas [38–40]. However,
a significant obstacle to mapping and modeling salt marshes is the accuracy of elevation
data [20]. On the one hand, slight elevational variations (in the order of centimeters) can
have a significant impact on plant zonation, which affects biomass and species distribu-
tion [41]. On the other hand, the precision of ground elevation measurements (field and
LiDAR) below thick vegetation cover is limited by the uneven ground surface and ex-
tremely dense covers typical of salt marshes. [42,43]. The accuracy of LiDAR-derived DEM
has been improved by up to 75% using custom DEM-generation techniques [42], lowering
the root mean square error (RMSE) with specie-specific correction factors [44], by adjusting
LiDAR-derived elevation values with aboveground biomass density estimations [45], or by
integrating multispectral data during the processing [46].

LiDAR can identify tiny spatial scale structures, which is important for monitoring
and modeling elements and features in irregular and dense canopy environments such as
salt marshes, offering great potential for studying heterogeneous surface environments.
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Grassland [47,48], forest, and agricultural vegetation monitoring [49,50] have all shown
the effectiveness of UAV-LiDAR. Currently, the quality of mapping ground elevation and
vegetation characteristics of salt marshes based on UAV-LiDAR technology has only been
evaluated once [51], and the same goes for assessing the accuracy of UAV-LiDAR and UAV-
photogrammetry in determining elevation and vegetation features in salt marshes [52].
It is worth mentioning that results from Sf M-based photogrammetry techniques and
LiDAR-based techniques can be compared because they are conceptually independent.
Photogrammetric processing is based on the reconstruction of models from images, which
involves interpolating what is not visible on the surface. The LiDAR is an active sensor
whose laser beams can penetrate the spaces between features and pick up small details,
thereby combining the 3D information of the scene into the model. Pinton et al. [52]
demonstrated that LiDAR technology generates more precise salt marsh DEM and DSM in
comparison to the results from photogrammetry-based approaches, and improves habitat
classification. Nevertheless, more salt marshes with a wider range of vegetation heights
and densities must be tested to determine this effectiveness. An assessment of the effects of
flight settings on the laser beam penetration of salt marsh vegetation is also needed.

The salt marshes of Cádiz Bay Natural Park (CBNP) are an excellent example of
Atlantic tidal wetlands in the south of Europe. In addition to being a RAMSAR site, SAC,
and SPA, Cádiz Bay was designated as a Natural Park in 1994. This system is within an
important bird migration route and the southernmost tidal wetland in Europe. Additionally,
due to its geographic configuration and location, it is particularly susceptible to the impacts
of climate change [53]. This makes the salt marshes of Cádiz Bay an excellent natural
laboratory for the study of climate change effects on tidal wetlands.

The main goal of this study is to understand the performance of UAV technologies
in salt marshes. We will assess the benefits and drawbacks of using UAV-LiDAR and
UAV-photogrammetry to create precise digital models (DEM and DSM). The related spatial
accuracy will also be evaluated. Additionally, the effectiveness of supplementary multi-
spectral data on habitat classification will be assessed. The capability of canopy penetration
and the accuracy of canopy height model estimations is explored by using several LiDAR
sensor setups. Our findings will establish the conditions for standardizing the application
of UAV technology in the study of salt marshes and will provide the first data for modeling
the future responses of the Bay of Cádiz to SLR scenarios.

2. Materials and Methods
2.1. Site Description

The study area is located in Cádiz Bay, on the southwestern Atlantic coast of Spain
(Figure 1). This bay also represents the southernmost example of the European coastal
wetlands, right on the intersection between the Mediterranean and Atlantic oceans and the
European and African continents. The most representative habitat of Cádiz Bay is the tidal
marsh, presenting large extensions of this environment [54].

Cádiz Bay is divided into two waterbodies. A narrow strait connects an inner shallow
basin, with a mean depth of around 2 m, with a deeper external basin, with depths up to
20 m and characterized by sandy beaches. The inner basin is a sheltered area protected
from oceanic waves [55]. The study area is situated in the northwest corner of the inner
basin (NE zone, 36◦30′59.2′′N 6◦10′14.7′′W), in front of the salina of San José de Barbanera.
The intertidal system includes natural salt marshes, salinas, mudflats, and a complex
network of tidal channels (Figure 1).

Cádiz Bay has a mesotidal and semi-diurnal tidal regime, with a mean tidal range
(MTR) of 2.3 m, up to 3.7 m during spring tides [56]. The vegetation communities describe
a typical salt marsh zonation of mid-latitudes [57], which can be divided into three main
salt marsh horizons, depending on vegetation types and elevation ranges: upper, medium,
and low marsh [54]. Unfortunately, in most cases, the upper marsh is interrupted by
the protective walls of the salinas, with the most representative horizons of natural salt
marshes of Cádiz bay being the medium and low ones. The medium marsh is dominated



Remote Sens. 2022, 14, 3582 4 of 26

by Sarcocornia spp. (mainly S. fruticose and S. perennis) and other halophytic species in lower
abundance (Figure 2), and the low marsh is mainly dominated by Sporobolus maritimus.
The lowest zones of the intertidal flats are colonized by sequential belts of seagrasses Zostera
noltei and Cymodocea nodosa and small patches of Zostera marina [58].
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Figure 1. Location of Cádiz Bay and detailed view of the study site in the internal basin (in front
of the salina San José de Barbanera). The yellow polygon indicates the flight area in September
2021 and the red one is for the flight area in October 2021. (A–C) are drone-captured images at the
corresponding points in the left image: the uppermost part of the salt marsh system and a portion
of a salina with its external wall on the right (A), a zone with a transition of dominant vegetation
between Sarcocornia spp. and S. maritimus (B), and the lowermost part of the salt marsh system with
a clear view of the tidal channel network (C).
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Figure 2. Westward view of the study area from the uppermost part of the salt marsh. The zoomed
pictures show a detail of Sporobolus maritimus—predominant vegetation of the low marsh—(left) and
Sarcocornia spp.—predominant vegetation of the medium marsh—(right).
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The sampling site was selected according to the criteria of the width of the salt marsh
vegetation and difficulty of access, as it was the best example of salt marsh plant zonation
in the bay and was easy accessed by car. The conclusions of this work are expected to be of
direct applicability to other tidal salt marshes across the world, given that low and medium
tidal marshes usually present comparable structural properties [59].

2.2. UAV and Sensors

The drones service of the University of Cádiz (https://dron.uca.es/vehiculos-aereos/)
(accessed on 25 April 2022) provided all of the equipment and sensors that were used
for this work. The UAV used is a DJI Matrice 300 RTK quadcopter. The drone has an
on-board RTK (real-time kinematic positioning) technology. The RTK records accurate GPS
information during the flight, providing up to centimeter-level accuracy in geopositioning.
The sensors implemented in the UAV were the photogrammetric sensor DJI Zenmuse P1,
the DJI Zenmuse L1 LiDAR, and the Micasense RedEdge MxDual multispectral camera
(Table S1). The missions were planned with the DJI pilot application.

The DJI Zenmuse P1 RGB photogrammetric supports 24 mm, 35 mm, and 50 mm
fixed-focus lenses. For this work, the 35 mm fixed-focus lens was used, which, together with
the 45 Mp full-frame sensor, provided an estimated value for ground sampling distance
(GSD) of 1.26 cm/pixel. This sensor offers 0.03 m horizontal and 0.05 m vertical accuracy
without deploying ground control points (GCPs).

The DJI Zenmuse L1 LiDAR sensor integrates a Livox LiDAR module, a high-precision
IMU with a 20 Mp RGB camera with a focal length of 24 mm and a mechanical shutter
on a stabilized 3-axis gimbal. Enabling the RGB camera entails collecting images, which
can be used to assign the color to each point of the cloud generated by the LiDAR. When
an adequate overlap is set, images can also be used to build an orthomosaic. The Livox
LiDAR module has a maximum detection range of 450 m at 80% reflectivity. It can achieve
a point cloud data rate of up to 240,000 points/s and it allows up to three returns per laser
beam. The laser wavelength is 905 nm. The L1 LiDAR sensor supports two scan modes:
repetitive and non-repetitive (Figure 3). The repetitive scan mode executes a regular line
scan. The non-repetitive pattern is an accumulative process with an increase in the area
scanned inside the field-of-view (FOV) together with the increase in integration time. This
last pattern increases the probability of object detection within the FOV. The sensor can
capture data from a nadir or oblique position. In a nadir flight, data are captured with the
sensor axis oriented in a straight vertical position. The oblique flight configuration means
data are captured with the sensor tilted at an angle with respect to the vertical. The sensor
scans the area up to five times, changing the perspective from which the data are captured.
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L1 Livox LiDAR module.

The Micasense RedEdge-MX Dual sensor is a two-camera multispectral imaging
system, with a total of 10 bands (five each camera), sampling data in the electromagnetic
spectrum from blue to near-infrared. Two bands are centered in the blue (444 and 475 nm),
two in the green (531 and 560 nm), two in the red (650 and 668 nm), three in the red
edge (707, 715 and 750 nm), and one in the infrared (842 nm). The two-camera system is

https://dron.uca.es/vehiculos-aereos/
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connected to a downwelling light sensor (DSL2), which is used to correct for global lighting
changes during the flight (e.g., changes in clouds covering the sun) and for sun orientation.

2.3. Flight Campaigns

The study area was surveyed in two consecutive campaigns at the end of summer and
the beginning of autumn of 2021.

2.3.1. September Campaign

The first campaign was performed on the 8 September 2021, with a low tide of 1.4 m
LAT. The campaign included three missions, covering an area of approximately 20 ha
(yellow polygon, Figure 1). The first mission collected data with the photogrammetric
sensor DJI Zenmuse P1, while the other two collected data with the DJI Zenmuse L1 LiDAR,
changing some configurations in between missions (see Table 1 for mission configuration
details). The two LiDAR missions were programmed with the repetitive scanning mode,
double returns operating at a frequency of 240 kHz. The altitude of the LiDAR missions
was set to obtain adequate point clouds, rather than an orthomosaic reconstruction. Never-
theless, the lateral overlap for the second LiDAR mission was increased to 70% to allow for
the generation of the corresponding orthomosaic.

Table 1. Summary of flight configurations for the missions executed for this work.

Date Mission
Name Sensor Covered

Area (ha)

Flight
Altitude
(m AGL)

Side
Overlap

(%)

Frontal
Overlap

(%)

Speed
(m/s)

Flight
Time (min)

8 September 2021 P1 P1 20 100 70 80 7 12
8 September 2021 100 m-L1 L1 20 100 20 n/a 7 15
8 September 2021 60 m-L1 L1 20 60 70 n/a 7 20
22 October 2021 MS MS 4.5 100 70 80 3 5
22 October 2021 1–8 L1 4.5 60 40 n/a 5 *

* Although using the same flight configuration, L1 flight time in the October campaign changed depending
on the sensor configuration (see Table 2 for further details). Sensors: P1: photogrammetric sensor; L1: LiDAR;
MS: multispectral.

Table 2. Configuration of LiDAR missions performed on 22 October 2021 in Cádiz Bay. The calibration
column indicates whether the mission was performed before or after the vegetation was removed for
the calibration trial. The flight time indicates the duration of the mission in minutes and seconds.

Mission Scan Mode Sensor
Orientation Calibration Flight Time

1 Non-repetitive Nadir Before 2′48′′

2 Repetitive Nadir Before 2′48′′

3 Non-repetitive Oblique Before 18′30′′

4 Repetitive Oblique Before 18′30′′

5 Non-repetitive Nadir After 2′48′′

6 Repetitive Nadir After 2′48′′

7 Non-repetitive Oblique After 18′30′′

8 Repetitive Oblique After 18′30′′

2.3.2. October Campaign

The second campaign was performed on the 22 October 2021, with a low tide of
1.3 m LAT. This campaign included nine missions, one using the Micasense RedEdge
MxDual sensor and eight missions with LiDAR (Table 1). The eight LiDAR missions only
included four LiDAR configurations, but were duplicated to proceed with the calibration
trial (Table 2; see Section 2.6).

The area covered in October was much smaller (4.5 ha approx., red polygon, Figure 1),
but still representative of the system. The reduction was necessary to reduce the processing
time for the collected multispectral data (MS).
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The LiDAR missions had the aim of evaluating the best sensor setting combination
for optimum accuracy/processing time balance. Settings evaluated included flight time,
captured LiDAR data size, accuracy, and spatial resolution of deliverables. The sensor
settings manipulated were scan mode (repetitive or non-repetitive) and sensor orientation
(nadir or oblique) (Table 2). The missions were repeated for the calibration trial (see
Section 2.6).

2.4. Data Processing

Orthomosaics are generated through photogrammetric processing of images, captured
either by the Zenmuse P1 or the Zenmuse L1 LiDAR sensors. Digital models can be
obtained from the photogrammetric processing of images or LiDAR processing of point
cloud data (Figure 4). This section summarizes both types of processing, photogrammetric
and LiDAR, as well as the methods to generate the multispectral masks and the digital
models. Visualization and handling of raster deliverables were always done with the free
and open-source software QGis.
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Source Dataset Software Process End Product 
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sensor Images Pix4Dmapper Photogrammetric processing 
(SfM) 

Orthomosaic, DSM and 
DEM 

L1 sensor 
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Photogrammetric processing 

(SfM) Orthomosaic  
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colored point cloud 

CloudCompare Point cloud comparison  Point cloud distances 

Figure 4. Flowchart showing the main data collected by the UAV sensors and their processing steps
(photogrammetric camera on the left, LiDAR in the middle, and multispectral sensor on the right).
The multispectral data allows the creation of masks for correctly classifying the plants in the point
cloud. When multispectral imagery is missing, the imported mask step is absent in LiDAR data
processing. Rectangular panels represent processing steps; rounded panels represent products.

2.4.1. Photogrammetric Processing

The Pix4Dmapper software [60], which transforms the images into orthomosaics and
digital models, automatically implements the three steps of the structure-from-motion
(Sf M) algorithm workflow [30] (Figure 4, Table 3). In the first step, the scale invariant
feature transform (SIFT) identifies key points from multiple images. The second step
reconstructs a low-density 3D point cloud, based on camera positions and orientations,
and densifies the cloud with the multi-view-stereo (MVS) algorithms. The third step is the
transformation, georeferencing, and post-processing of the dense point clouds, producing
the orthomosaics and the corresponding digital models. The ground sample distance (GSD)
expresses the spatial resolution of the products in cm/pixel.
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Table 3. Summary of processing operations and performing software as a function of the UAV
dataset nature.

Source Dataset Software Process End Product

P1 sensor, L1 sensor Images Pix4Dmapper Photogrammetric processing
(Sf M)

Orthomosaic,
DSM and DEM

L1 sensor
Images + 3D

georeferenced and
colored point cloud

Pix4Dmapper Photogrammetric processing
(Sf M) Orthomosaic

MS sensor Multispectral images Pix4Dmapper Photogrammetric processing
(Sf M) and calibration Reflectance maps

L1 sensor L1 raw data DJI Terra First LiDAR processing 3D georeferenced and
colored point cloud

L1-DJI
Terra-processed

3D georeferenced and
colored point cloud

CloudCompare Point cloud comparison Point cloud distances

Global Mapper LiDAR
module

Filtering, classification,
and digital model generation DSM, DEM, CHM

CNIG PNOA 2015-point
cloud LAStools Digital model generation DSM, DEM

The Zenmuse L1 LiDAR sensor captures both image and point cloud datasets. Images
can thus undergo photogrammetric processing to generate orthomosaic and digital models.
However, for processing the RGB from the Zenmuse L1 LiDAR sensor, the second step of
the Sf M workflow is replaced by direct capture of the LiDAR 3D point cloud. Unfortunately,
Pix4Dmapper does not allow for editing imported point clouds. Therefore, in those cases,
the resulting DSM and DEM may contain larger errors and imperfections.

2.4.2. LiDAR Processing

DJI Terra software performs preliminary processing of the raw LIDAR data [61], which
is required to produce a georeferenced, true color, dense 3D point cloud for the next steps
(Figure 4, Table 3).

After pre-treatment, these datasets must also go through three major steps for pro-
cessing (Figure 4), carried out using Global Mapper LiDAR module [62] (Table 3). Firstly,
in order to increase the accuracy of the final products, the point cloud must be filtered
and edited to remove artefacts and signal noises. With greater scan angles, a laser pulse
travels a longer path, leading to biased measurements [63]. Therefore, the primary filtering
method was to reduce the sensor’s initial −35◦/35◦ range of scan angles to a proper range
of −26◦/26◦. The classification of the points is the second phase. The algorithms employ
geometric positions in relation to nearby points to assign the classes (see Digital Surface
Models (DSM) Section). Vegetation masks can be created and imported into the procedure
if multispectral data are available. By separating vegetated environments, these masks
help with the accurate classification of plant points (see Section 2.4.3). The third step is the
generation of digital models. By using data interpolation, this step reconstructs the ground
surface, which results in the creation of the corresponding DEMs and DSMs.

The difference in elevation between DEM and DSM could be the height of the canopy,
as there were no other items present apart from plants. Thus, using a geographic information
system (e.g., Global Mapper or QGis), canopy height models (CHM) can be produced by
subtracting one elevation model from another (see Canopy Height Models (CHM) Section).

Point Cloud Classification

An accurate DEM can only be obtained when the point cloud has been correctly
classified. In our situation, classification entails designating each point to one of the
following three categories: ground, non-ground, or noise. This method, in which the
information on geometry and color is used to assign the class, is made possible by machine
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learning algorithms. The method works effectively in contexts that are comparable to those
used to train the algorithms (i.e., trees and buildings). The algorithm is not expected to
operate efficiently in our study location, which is a flat, rough terrain with patches of low,
dense vegetation. Manual intervention may be required, which can be a challenging and
time-consuming operation.

The auto-classification tool recognizes noise and ground. The remaining points are
labelled as non-ground points and interpreted as vegetation points.

Noise may be automatically identified with a classification algorithm that detects
elevation values above or below a local average height. ‘Maximum allowed variance from
local average’, and ‘local area base bin size’, which were set to 1 SD and 0.2 m respectively,
are the input parameters for this algorithm. This means that using reference areas of 0.2 m,
points with more than 1 SD of the local average height are classified as noise.

Ground auto-classification is done in two steps. The algorithm first determines non-
ground points based on morphological attributes, such as the expected terrain slope and
the ground’s maximum elevation change. A second phase allows for the exclusion of some
of those remaining from ground classification by comparing them to a simulated 3D curved
surface representing the ground. The algorithm requires the neighboring area’s size and
the ground classification’s vertical limit in order to compare the points [62].

The auto-classification process starts with default values that are then improved
through trial and error. The parameters for the first filter were chosen based on the salt
marsh’s flat surface, with a maximum elevation change of 5 m and an expected terrain
slope of 1 degree. The base bin size for modeling the 3D curved surface was set to 6-point
spacing (ps). Two values of minimum height deviation from the local average height, 0.03 m
and 0.10 m, were tested, in order to determine the appropriate threshold to differentiate
vegetation from ground classification.

2.4.3. Masks from Multispectral Data

LiDAR data alone seems insufficient for high-quality classification of salt marsh point
clouds. Hard and regular surfaces, such as roads, generate a single return LiDAR signal.
However, salt marshes generate wide point clouds with scattered returns for the same
LiDAR pulse. Thick point clouds in vegetated zones are reasonable and desirable for
habitat classification. However, in salt marshes, bare grounds also produce thick point
clouds, hindering the classification step (Figure 5). A method to solve this issue involves
including additional information on the spatial distribution of vegetation. This information
is incorporated into the process as multispectral masks that allow the vegetation zones to
be separated from the bare ground ones, thereby allowing the creation of cut-off areas to
successfully classify the point cloud.

The generation of multispectral masks requires the processing of the reflectance maps
of the bands of the multispectral images. The procedure is similar to photogrammetric
processing, except for the need for radiometric calibration. The calibration is done for each
radiometric band, capturing the image of a calibration target immediately before and after
the flight. The calibration target is made of a material with a known reflectance and allows
the creation of reflectance-compensated outputs, in order to accurately compare changes
in data captured over different days or at different times of day [64]. The Pix4Dmapper
software calibrates and corrects the reflectance of the images according to the calibration
values, delivering a total of 10 reflectance maps of the surveyed area.

The multispectral masks are obtained from the map of the normalized difference
vegetation index (NDVI). The NDVI map is obtained by importing the reflectance band
maps into QGis and stacking them together with the semi-automatic classification plugin
(SCP) [65]; the NDVI was calculated according to Equation (1):

NDVI = (NIR − RED)/(NIR + RED) (1)
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Negative NDVI values correspond to water, while NDVI values close to zero represent
the bare ground. Values higher than 1 correspond to vegetation, with values increasing
with density and physiological conditions [25].

The NDVI raster can be classified using several clustering techniques. Among these,
the ‘k-mean clustering’ technique was chosen for its quick and simple implementation.
All it requires is to specify the number of clusters to generate; then, each object is placed in
the cluster with the nearest “mean” [66]. The algorithms used were the combined minimum
distance and the hill-climbing method, resulting in the definition of three classes (namely
water, bare soil, and vegetation). The resulting raster is polygonized, and the classes are
exported as separate shapefiles. These shapefiles are used for cutting the point clouds into
vegetated and bare ground point clouds, treating each of them individually with different
classification parameters. After that, the classified point clouds are merged into a single
file. To validate the improvement provided by this method, classification results were
corroborated visually. Furthermore, the proportions of vegetation and bare ground from
each classified point cloud were compared to the values of coverage area obtained from the
shapefiles. This would provide a rough estimate of the classification consistency.

2.4.4. Digital Model Generation

From P1 datasets, DSM and DEM are generated with the Pix4Dmapper software,
whereas, for L1 datasets, the digital models are created using Global Mapper LiDAR
software. The use of the LiDAR software in the second case is due to the limitations of the
photogrammetric software. Pix4Dmapper lacks manual intervention options when point
clouds are imported, leading to accuracy issues in the final products (see Section 2.4.1).
All digital models are referred to as the ellipsoidal elevation.

Digital Surface Models (DSM)

When obtained from photogrammetric processing, DSMs were generated with the
“Triangulation” method, which is based on Delaunay triangulation and recommended for
flat areas [60]. When calculated from LiDAR data, the point clouds were manipulated
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with the Global Mapper LiDAR module before the generation of the DSMs. In this case,
the DSMs are generated with the binning method, a processing technique that takes point
data and creates a grid of polygons, or bins [62].

Digital Elevation Models (DEM)

The DEM is the digital model resulting from excluding any feature on top of the
ground after point cloud classification (Figure 4, Table 3, see Point Cloud Classification
Section). For the specific case of P1 datasets, since the photogrammetric processing did not
include point cloud classification, all points are treated as non-ground points, resulting in a
DEM that is a smoothed version of the DSM.

DEMs are created only with points of the ground class. To identify the true ground
points, the general practice is to use only the minimum values of the LiDAR point clouds.
However, this method is inefficient in salt marshes, where true ground surfaces generate
broad point distributions, underestimating the elevation of bare areas [42]. To address this
specific problem of salt marshes, the true ground has been classified using the mean values
of the cloud points instead of minimum ones.

Canopy Height Models (CHM)

Canopy height models (CHM) were generated by computing the DEM of difference
(DoD), which is estimated as the difference between the DSM and the DEM. The result
is a raster map with the canopy height distribution (i.e., CHM). This operation does not
require matching resolution; it simply works based on cell overlap. Output resolution will
be dictated by the element of the equation with the finest resolution (i.e., the DSM).

In order to determine whether UAV-LiDAR data can generate reliable CHMs, and test
which is the optimal resolution of DSM and DTM needed to produce accurate estimates,
DODs were generated by executing the subtraction operation using source digital models at
different resolutions. Three DSMs—at 1, 3, and 5 ps resolution—and three DEMs—at 5, 10,
and 15 ps resolution—were produced per LiDAR datasets. DoDs were generated using
all possible combinations of DSM and DEM resolutions (i.e., the 1 ps DSM was subtracted
from the 5 ps DEM, the 3 ps DSM was subtracted from the 5 ps DEM, etc.) for a total of
nine DODs for each LiDAR mission.

2.5. Accuracy

RTK systems are supposed to be highly accurate. However, the P1 and L1 sensors have
centimetric accuracy (see specifications in Section 2.2, Table S1). Therefore, it is necessary
to quantify the accuracy of the products. For the accuracy of the products, the UAV sensor
results are compared with ground control points (GCPs: blue, red, and yellow points in
Figure 6A) measured in situ with a dGPS. For dGPS measurements, a LeicaGS18 GNSS
RTK Rover was used, with horizontal and vertical measurement precision of 8 mm + 1 ppm
and 15 mm + 1 ppm, respectively. In September 2021, the campaign included a total of
41 GCPs. Six of these GCPs were collected on the wall of the saline behind the sampling
site. This provides a stable surface reference over time. In October 2021, the campaign
included 63 GCPs (blue points in Figure 6A), with one of the GCPs on the wall of the
saline and four GCPs at the calibration trial areas (two points per sector, yellow points in
Figure 6B, Section 2.6). In this last campaign, the canopy height was also measured at the
salt marsh GCPs.

Product accuracy was evaluated using the coefficient of determination (R2) and root
mean square error (RMSE), which can be calculated from the following Equations (2) and (3):

R2 = 1− ∑n
i=1(xi − yi)

2

∑n
i=1(xi − xm)2 (2)

RMSE =

√
∑n

i=1(xi − yi)
2

n
(3)
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where n is the number of samples, xi and yi are the values from ith reference data (GCPs)
and evaluated values (UAV sensor data), and xm is the mean of all reference data.
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Figure 6. (A) Distribution of ground control points (GCP) over the surveyed area. The sectors for the
calibration trial are identified by c1–c2 and c3–c4. (B) Trial operation scheme. White areas represent
areas with vegetation removal. Black points indicate the location of canopy height measurements.
Yellow points identify the location of dGPS measurements inside the trial areas.

The accuracy and mean errors of the orthomosaic were assessed through the pho-
togrammetric software. This software estimates the position difference with respect to the
GCPs. Only GCPs measured on the external wall of the saline were used for evaluating
the photogrammetric processing reconstruction. To assess the quality of the point cloud,
a linear regression between the dGPS measurements and their corresponding values in
the point cloud was executed. The quality was evaluated with and without the saline
wall GCPs.

In situ GCPs only contain information on ground elevation and canopy height (the
last one only for the October campaign). Therefore, the accuracy of the digital models was
only evaluated for DEM and CHM, but not for DSM (as we cannot obtain high precision
field measurements of the landscape surface elevation).

2.6. Calibration Trial

To evaluate the potential of the UAV-LiDAR in discriminating ground and vegetation,
a calibration trial was carried out in the October campaign. As part of the calibration
study, aboveground vegetation was intentionally removed from two randomly selected
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50 cm × 100 cm sections (yellow points in Figure 6A,B). The aboveground vegetation was
pruned using garden shears. Then, the value of canopy height was measured at those plants
present laterally at the four edges of the trial areas (black points in Figure 6B). Gathered
values were used to estimate an average value for each sector, which was assumed to be
representative of canopy height in those sectors. All October LiDAR missions were run
twice, before and after the vegetation removal. Differences in elevation are expected to
represent canopy height in the trial areas.

The LiDAR capacity for recognizing differences in elevation before and after vegetation
removal was evaluated using three methods (see below). For each method, the goodness of
fit was evaluated by comparing the field values with those obtained with the correspond-
ing method.

2.6.1. Method A: Point Clouds

The first method compared LiDAR elevation data with field measurements. Vegetation
and post-pruning datasets were compared using CloudCompare, an open-source 3D point
cloud and mesh viewer and processing software [67] (Table 3). The distance between pre-
and post-pruning point clouds was estimated with the ‘Compute cloud/cloud distance’
tool, using the ‘Quadric’ model and six neighbor points. This method allows for filter-
ing and delimiting areas with height differences, sampling up to 20 points per area to
estimate the corresponding value of the difference. The results were compared with the
field measurements.

2.6.2. Method B: DSM

The second method compared the DSMs obtained from the missions before and after
the calibration trial. This method evaluates vertical differences between pairs of DSMs.
Up to 15 points per pair were sampled with the tool “Path profile” in Global Mapper and the
value of the difference was estimated as the average of the 15 differences. The comparison
was performed for all the DSM pairs, including photogrammetric and LiDAR-derived
ones, evaluating the most reliable processing and resolution to detect canopy differences.
The accuracy of the method was evaluated by comparing the results with field values,
but also with points from the point cloud (Method A).

2.6.3. Method C: CHM

The validation of this method is done by applying the DoD to the calibration ar-
eas and cross-checking the results with field measurements of canopy height and point
cloud-derived estimations. For this method, only flights before pruning were considered,
comparing only the calibration areas.

2.7. PNOA 2015 Dataset

To evaluate the resources generated by the UAV-LiDAR, our data were compared with
those of the LiDAR data of the Spanish National Plan of Aerial Orthophotography (PNOA).
The PNOA provides a free library of orthophotography and LiDAR, the LiDAR resources
having been initiated in 2009 (Centro Nacional de Información Geográfica—CNIG). This
work required four PNOA 2015 LiDAR files since the area studied falls at the junction
of four tiles of available point clouds (AND-SW, 214/216-4046/4048). These datasets
were merged and cut to the same extent as our UAV missions and processed with the
LAStools software [68]. Since the PNOA 2015 LiDAR dataset already comes classified,
the corresponding DSM and DEM were generated without the classification step. The res-
olution and accuracy of the resulting digital models were compared with those of the
UAV-LiDAR-derived results.
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3. Results
3.1. Photogrammetric Processing Deliverables

From the Zenmuse P1 sensor, the photogrammetric deliverables include orthomosaics,
DSMs (both with 1.25 cm/pixel GSD), and DEMs (6.25 cm/pixel GSD) (Table 4). From
the LiDAR sensor, the orthomosaic resolution depends on the flight altitude. Surveys at
100 m had an average of 2.78 cm/pixel GSD. For LiDAR surveys at 60 m, the orthomosaic
had a GSD of 1.69 cm/pixel. In general, photogrammetric processing is a very time-
consuming task, with most of the time dedicated to densifying the point cloud. However,
for L1 datasets, the processing is much shorter (Table 4), since this step is omitted due to
the fact that the imported LiDAR point cloud is already densified.

Table 4. Characteristics of deliverables from photogrammetric processing (Sf M) of P1 sensor and
LiDAR sensor image datasets. Sens: sensor, Alt: flight altitude, Time: processing time for the
entire project.

Sens Alt (m) Captured Images Data Size Deliverable Final Size Resolution (cm/pixel) Time

P1 100 374 8.34 GB
Orthomosaic 2.98 GB 1.26

6 h 30 minDSM 1.97 GB 1.26
DEM 116 MB 6.25

L1
100 91 762 MB Orthomosaic 945 MB 2.78 2 h 10 min
60 236 1.92 GB Orthomosaic 1.26 GB 1.69 3 h 45 min

When evaluating the overall accuracy of the photogrammetric processing, the process-
ing of P1 datasets generates products with a low general RMSE (0.044 m). The horizontal
accuracy was comparable in both x and y coordinates (0.012, 0.009 m RMSE), but the error
in the vertical dimension was higher (0.111 m RMSE). The processing of the L1 datasets
generates products with RMSE even lower than P1 processing (0.006–0.010 m). The hori-
zontal RMSE were <0.010 m and the vertical ones were 0.011 and 0.014 m for 100 and 60 m
flights, respectively (Table S2).

The DEM produced by the photogrammetric processing of the P1 dataset has lower
accuracy, with 0.335 m RMSE (R2 0.6027). The greatest deviations correspond to the six
points located at the saline wall (Table S3). When such points are excluded, P1-derived
DEM more accurately matches field measurements (R2 0.946, RMSE 0.070 m. Table S3,
Figure S1).

3.2. LiDAR Processing Deliverables

LiDAR processing generates the full range of digital models (DEM, DSM, and CHM).
Pre-processing the LiDAR point clouds requires 3D georeferencing and coloring the point
cloud, which takes less than 10 min. The next step, filtering the effects of the scan angle,
reduces the file size by up to 43% without changing the range of elevations. (Tables 5 and S18).

Table 5. LiDAR point cloud characteristics.

Mission Raw LiDAR Data Size DJI Terra-Processed
Data Size

Count Decrease after
Filtering (%)

100 m-L1 2.5 GB 4.53 GB 38.1
60 m-L1 3.7 GB 7.65 GB 39.7

1 270 MB 415 MB 17.1
2 270 MB 430 MB 42.7
3 1.99 GB 3.5 GB 15.8
4 1.99 GB 2.6 GB 39.6
5 270 MB 410 MB 17.0
6 270 MB 430 MB 41.9
7 1.99 GB 3.2 GB 14.6
8 1.99 GB 2.4 GB 36.6
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Most of the salt marsh surface generated only one LiDAR return, precluding classifica-
tion based on the number of returns. Elevation thresholds for ground/non-ground point
classification proved to not be satisfactory. Depending on the threshold selected, ground
points were either underestimated (0.03 m threshold) or overestimated (0.10 m threshold)
(Tables S4, S5, S10, S11 and S20–S35). Multispectral data were used to resolve this prob-
lem. Using masks created from the multispectral dataset, point clouds could be classified
much more accurately based on the actual distribution of the vegetation (Figures 7 and S7,
Tables S36–S43). In general, any pattern described a dependence of classification perfor-
mance on specific datasets. The estimations of the error vary arbitrarily, unaffected by flight
type (nadir vs. oblique) or scan mode.
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LiDAR point clouds had good accuracy, showing that the technology works well even
when dealing with the challenges of salt marsh surfaces. Even when omitting stable GCP
measurements (see R2 value (marsh) in Table 6), the accuracy remains high, with R2 values
within 0.797–0.949 (Table 6). The lowest RMSEs corresponded to surfaces where LiDAR
easily detects the ground (e.g., external wall). This was supported by the calibration trial,
showing that the bare ground points in the pruned regions had the smallest deviations.
On the other hand, the greatest RMSEs were associated with surfaces of Sarcocornia where
vegetation obstructs LiDAR penetration (Tables S46–S53).

Table 6. Analysis of the LiDAR point cloud accuracy. The estimation of the RMSE includes all the
GCPs of the corresponding campaign. RMSE: root mean square error. Marsh: including only GCPs
on the marsh surface.

Point Cloud Mission RMSE (m) R2 Value R2 Value (Marsh)

100 m-L1 0.115 0.976 0.939
60 m-L1 0.089 0.989 0.949

1 0.114 0.952 0.821
2 0.128 0.967 0.885
3 0.101 0.947 0.877
4 0.114 0.959 0.869
5 0.102 0.948 0.813
6 0.126 0.948 0.813
7 0.098 0.962 0.876
8 0.097 0.962 0.797
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LiDAR Processing Digital Models

By flying at a lower altitude or using an oblique flight configuration, denser point
clouds and products with finer resolution products can be produced, but at the expense of
heavier datasets. The output resolution of the digital models depends on the density of the
point cloud (Table 5) and the selected grid point spacing. For this task, the digital models
were generated with up to three different point spacing values, obtaining DSMs with a
resolution of 0.02–0.25 m/pixel and DEMs with 0.09–0.76 m/pixel resolution (Table S45).

LiDAR-derived DEMs had a high correlation with field data when using all available
points (R2 > 0.86). Correlation was lowered when using only points from the marsh surface
(Table 7). As regards the sensor setting, the non-repetitive scan mode produced the most
accurate DEM with lower RMSE. For the repetitive scan mode setting, DEM precision
improves with a coarser resolution.

Table 7. LiDAR-derived DEM accuracy. nr: non-repetitive scan mode; r: repetitive scan mode; ps:
point spacing.

DEM Mission Non-Ground Threshold Average RMSE R2 Value R2 Value (Marsh)

5-ps 10-ps 15-ps 5-ps 10-ps 15-ps 5-ps 10-ps 15-ps

100 m-L1
0.03 0.088 0.086 - 0.970 0.973 - 0.867 0.881 -
0.10 0.115 0.120 - 0.984 0.982 - 0.941 0.923 -

60 m-L1
0.03 0.097 0.140 - 0.971 0.930 - 0.972 0.971 -
0.10 0.099 0.101 - 0.986 0.983 - 0.968 0.975 -

1nr - 0.069 0.056 0.076 0.904 0.930 0.888 0.703 0.774 0.768
2r - 0.099 0.096 0.064 0.873 0.904 0.969 0.593 0.682 0.916

3nr - 0.059 0.058 0.162 0.917 0.922 0.880 0.736 0.751 0.593
4r - 0.066 0.064 0.053 0.954 0.967 0.946 0.864 0.915 0.866

5nr - 0.064 0.067 0.069 0.924 0.916 0.916 0.813 0.809 0.846
6r - 0.100 0.091 0.065 0.863 0.903 0.949 0.611 0.723 0.859

7nr - 0.048 0.045 0.073 0.954 0.961 0.946 0.791 0.853 0.863
8r - 0.048 0.045 0.037 0.969 0.971 0.965 0.873 0.878 0.870

The nine combinations of DSM and DEM resolutions used for estimating CHM re-
vealed that only the DSM resolution influenced the CHM results (Tables S62–S80). Therefore,
only three CHMs per mission—those produced from the operation between DSM at three
resolutions and the 5 ps DEM resolution—are displayed (Table 8). In general, the accuracy
of the estimated CHMs was very low, with high RMSE (0.09–0.183 m) and low R2 values
(0.002–0.172, Table 8). These results show a lack of correspondence between modeled and
field values.

Table 8. Analysis of canopy height model accuracy. The CHM resolution is indicated in the subindex
with 0.02, 0.06, and 0.09 m/pixel, respectively. RMSE: root mean squared error.

R2 RMSE (m)

Mission CHM0.02 CHM0.06 CHM0.09 CHM0.02 CHM0.06 CHM0.09

1 0.002 0.004 0.005 0.123 0.156 0.173
2 0.038 0.029 0.043 0.179 0.167 0.155
3 0.069 0.069 0.033 0.138 0.103 0.100
4 0.061 0.116 0.079 0.164 0.136 0.126
5 0.021 0.038 0.027 0.124 0.100 0.093
6 0.035 0.036 0.034 0.183 0.169 0.160
7 0.105 0.078 0.082 0.151 0.119 0.104
8 0.079 0.126 0.172 0.152 0.121 0.110
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3.3. Calibration Trial
3.3.1. Method A: Point Clouds

Depending on the configuration of the missions (Table 2), point cloud values had
slight differences, but were very close to the field measurements, with a deviation of
+/− 0.01 m (Table 9). This result validated the use of cloud points as reference values in
further assessments.

Table 9. Deviations between field measurements and trial calibration values according to methods A,
B, and C. For Method B, p4d corresponds to photogrammetric-processing-derived DSM and the rest
for LiDAR-processing DSM, indicating the corresponding spatial resolution (ps: point spacing). For
Method C, the CHM subindex indicates the spatial resolution. Values are in m.

Method A Method B Method C

Sector Mission Point Cloud p4d 1-ps 3-ps 5-ps CHM0.02 CHM0.06 CHM0.09

c1–c2

1–5 0.01 0.00 0.00 0.00 −0.02 0.05 0.09 0.09
2–6 0.01 −0.01 0.01 0.00 −0.02 −0.06 −0.04 −0.03
3–7 0.00 0.11 −0.01 −0.01 −0.01 −0.03 0.02 0.04
4–8 0.00 0.00 0.00 −0.02 −0.02 −0.01 0.01 0.02

c3–c4

1–5 −0.01 0.00 0.02 −0.01 −0.03 −0.03 0.01 0.04
2–6 −0.01 −0.02 0.00 −0.01 −0.04 −0.06 −0.02 −0.02
3–7 −0.01 0.10 −0.01 −0.01 −0.01 −0.09 −0.02 −0.02
4–8 −0.02 −0.01 −0.02 −0.02 −0.02 −0.07 −0.05 −0.02

3.3.2. Method B: DSM

The estimates from the comparison of paired DSM (before and after vegetation prun-
ing) deviated from field measurements within a range of −0.04 and 0.11 m (Table 9).
On average, the overall concordance between estimations and field values was good.
However, data captured with the nadir-non-repetitive configuration (Missions 1 and 5)
produced the most accurate estimates (Table 9). The coarsest resolution (5 ps) tended to
have the highest underestimation of canopy height, while 3 ps models generated the lowest
deviation values.

Exceptionally, the estimations from Mission 3 (oblique-non-repetitive configuration)
systematically overestimated the canopy height by 0.10 m. However, this effect was
attributed to the signal loss of the RTK during the flight, which made a post-processing
kinematic (PPK) treatment necessary to transform the raw dataset into an operable LiDAR
dense point cloud. This operation caused a small z-shift in the reconstructed point cloud.
This z-offset affects the results of the photogrammetric processing, which does not edit
imported point clouds—but not the LiDAR processing, which allows the shifted point
cloud to be corrected with other datasets.

3.3.3. Method C: CHM

In general, CHM estimations had no good correspondence with field values at the
removed-vegetation-areas (Table 9), although for some missions the differences were
reasonable (e.g., +/− 0.01 m). Data captured by nadir repetitive flights (Mission 2) showed
similar differences in the two trimmed areas, always underestimating canopy height.
For the rest of the missions, differences between CHM and field measurements did not
have a consistent pattern with similar proportions of under- and overestimations.

3.4. LiDAR Sensor Optimum Settings

LiDAR sensor settings were manipulated to evaluate the best setting combination for
optimum accuracy/processing time balance (Table 2).
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3.4.1. Sensor Orientation

Sensor orientation includes nadir vs. oblique sensor configuration. This setting has
major consequences on covered area, classification processing time, point cloud size, density,
and deliverables resolution. Oblique configuration generates larger point clouds than the
nadir one, increasing dataset size with the spatial range of the tilted sensor (Table S16).
A larger dataset size implies increasing time processing for classification, but also the
possibility of generating products with finer resolution.

3.4.2. Scan Mode

Scan mode (repetitive vs. non-repetitive) did not influence flight time or captured
dataset size. However, the repetitive scan mode increases the occurrence of extreme
values that need to be cleaned and filtered before the datasets are acceptable for modeling.
The proportion of points lost during filtering is 36–42% for repetitive scan mode vs. 14–17%
for the non-repetitive one (Table 5).

3.5. Comparison of PNOA 2015 and UAV-Based Data

The PNOA 2015-point cloud had a lower density than point cloud data captured from
UAVs. The PNOA 2015 dataset has 0.80 samples/m2, which represents 400 to 2600 times
lower point density than UAV-derived datasets.

PNOA 2015-point cloud is an already classified product and it is available in RGB
and IR colors. However, when digital elevation models were derived from this dataset,
the obtained output resolution was extremely poor for environmental applications at
high resolution (Figure 8). The DSM has a resolution of 4.4 m/pixel, while the DEM has
18 m/pixel.
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PNOA 2015 LiDAR data presented a large error in elevation values (1.36 m aver-
aged RMSE), with individual point deviations between 1.01 m and 1.54 m. Nevertheless,
the PNOA 2015 LiDAR data had a strong relationship with the field points (R2 value
0.952 for all GCPs, 0.780 only for marsh GCPs).

PNOA 2015-derived DEM estimates elevations between 0.249 to 1.409 m below
the field measurements (1.248 averaged RMSE). These results confirm that the PNOA
2015 LiDAR dataset underestimates local elevation of more than 1 m in the area of Cádiz
Bay. The correlation between the PNOA 2015-DEM and field values was, nevertheless,
strong (R2 0.885), albeit not as strong as the correlation between the UAV-LiDAR data and
field values.

4. Discussion
4.1. Orthomosaic

Our UAV-photogrammetric system provides an extremely high detail orthomosaic,
with a spatial resolution up to 1.25 cm. One drawback is that this high spatial resolution
requires a long processing time since the image dataset from the photogrammetric sensor is
four times larger than the corresponding LiDAR ones. Flying at the same altitude (100 m),
the UAV-LiDAR system provides up to 2.7 cm spatial resolution, still very high for any
salt marsh ground monitoring application. Orthomosaics of 2 cm/pixel resolution have
been demonstrated to be particularly effective for the water and ecological environment
monitoring, resulting in a better evaluation and development of hydrogeological simulation
and temporal analysis of the area [69,70] The spatial resolution of our UAV-LiDAR products
can be increased by reducing flight altitude (60 m), but to the detriment of the collected
dataset magnitude, with heavier images and point cloud datasets.

Horizontal accuracy is crucial for detecting changes in spatial and temporal distri-
butions with sea-level rise and when modeling the accretion or subsidence rate of salt
marshes [10,11,71]. In our case, the processing of the photogrammetry images generates
very high horizontal accuracy (1.2 cm, 0.9 cm for x and y coordinates). However, LiDAR
images provide even higher horizontal accuracy (0.4 cm and 0.5 cm), demonstrating higher
precision in positioning than photogrammetry images. The accuracies obtained here are
higher than those found in studies in coastal areas, which reported accuracies ranging from
1.5 to 5 cm [35,72,73].

4.2. LiDAR Point Clouds

As expected, measurements at lower altitudes exhibited higher accuracy than at
higher altitudes, but with small differences (R2 0.989 and 0.089 m RMSE vs. R2 0.976 and
0.115 m RMSE, respectively, Table 6). A lower altitude increases measurement reliability by
increasing spatial resolution and point cloud density.

There is an average RMSE of nearly 0.10 m associated with all datasets, which supports
the hypothesis of a systematic error. However, this is a reasonable value for LiDAR datasets,
consistent with previous observations that ascribe up to 0.15 m of error to the limitation
of the airborne laser to penetrate the dense vegetation [20,74]. Inaccuracy in salt marsh
point clouds increases with the penetration issues in vegetation. The highest differences
between LiDAR point cloud and field values were observed in areas covered by Sarcocornia,
suggesting that this species generates the greatest issues of LiDAR penetration. This is
not surprising, since this species forms very dense and thick shrubs covering the marsh
surface like a carpet [75]. While technology can overcome this barrier, the best strategy is
to determine the most appropriate model to explain the correlation between UAV-LiDAR
and field data. Linear regression analysis seems to be a good approximation for salt
marshes, especially if the dataset also includes measurements from stable surfaces (i.e.,
points collected on rigid structures stable over time).
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4.3. Digital Models

The present study presents different types of digital models, including digital surface
models (DSM), digital elevation models (DEM), and canopy height models (CHM). Both
LiDAR and photogrammetric processing can provide digital models. Elevation values
in photogrammetric sensor datasets are interpolated from point clouds generated from
images, whereas the LiDAR sensor directly measures a point cloud of elevations. The main
benefit of LiDAR is the capacity to penetrate spaces between features and pick up small
details, whereas photogrammetry is limited to what is visible at the surface of the images.

4.3.1. Photogrammetric Processing Digital Models

The distribution of plants can be affected by differences of just a few centimeters,
making maximum vertical accuracy crucial for salt marsh studies [76,77]. Digital models
generated from our photogrammetric datasets did not offer the greatest vertical accuracy
(RMSE 0.335 m). The high inaccuracy was related to the drone being unstable during the
first flight line just over the points measured on the saline wall. When those points were
excluded, field measurements and the P1-derived DEM appeared to match well (i.e., R2

0.946 and RMSE 0.070 m). This implies that the results should be interpreted cautiously if
the drone’s stability could not be ensured throughout the entire mission.

4.3.2. LiDAR Processing Digital Models

Point cloud classification is the most critical step in LiDAR processing for DEM
generation. Initially, autoclassification algorithms were not able to correctly separate
vegetation from ground points, although two elevation thresholds (0.03 m and 0.10 m) were
tested for the classification algorithms. In terms of point cloud thickness, both vegetated
and ground surfaces were comparable, making it difficult to classify them automatically.
The rough and irregular surface of the dense canopy reduces the effectiveness of laser
penetration, affecting the thickness of the point cloud corresponding to vegetated surfaces.
Likewise, bare ground is not flat; it is irregular due to microtopography, rocks, vegetation
remnants, puddles, etc., all of which produce scattering returns, which also increase the
thickness of the point cloud. To overcome the limitation caused by the LiDAR point
dispersion, a multispectral dataset was included. UAV-multispectral systems can be used
to map plant communities in wetland environments with high accuracy [78,79]. In our
case, NDVI-derived masks proved to be essential for the habitat classification allowing the
adjustment of classification parameters and lower DEM error from an average RMSE of
0.11 m to 0.06 m (Tables S9, S15 and S61).

Modeling marsh environments requires high-quality elevation data. Alizad et al. [20]
have shown that microtidal models are particularly vulnerable to imprecision because
in these systems the error can be as large as the tidal amplitude. Instead, in mesotidal
environments such as ours, with tidal amplitudes up to 3.6 m, an error of less than 20 cm
(Tables S9, S15 and S61) can be considered irrelevant. A maximum error of 0.162 cm is
observed in the produced DEMs, with an average error of 0.07 cm. The average error
corresponds to 2.8% of the tidal amplitude (2.6 m), which proves the potential of the
UAV-LiDAR system for the accurate elevation mapping of coastal marsh data.

Previous works have addressed the issues on DEM and DSM [80,81], associating the
uncertainties and variability of digital models with surface complexity, field measurement
accuracy, processing methods, interpolation, and resolution. These errors propagate when
modeling DSM and DEM, resulting in amplified errors in the DoDs. These effects are
supported by our results, explaining the low correlation between the CHMs and the
field data.

Underestimations of canopy height on LiDAR-derived CHMs have already been
documented [48,82]. Possibly, this issue is caused by insufficient laser scanning frequency
for corresponding drone speeds, which translates into the missing vegetation tops [50,83,84].
The loss of information from the top of the canopy is more frequent than the loss of canopy
bottom points, and it is mainly influenced by the maximum vegetation height, its standard
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deviation, and true flight height [79]. This could explain why salt marsh DEMs are accurate,
but CHMs are so inaccurate. Other interpretations could be that LiDAR technology does
not provide accurate DSMs in salt marshes, or that field canopy height measurements are
still inaccurate.

4.4. Calibration Trial

The calibration trial aimed to understand the sensor sensitivity in order to identify
changes in elevations by comparing the mission data before and after the removal of
vegetation. Method A contrasts paired point clouds (pre- and post-pruning) and shows a
good correspondence between the difference in elevation computed from point clouds and
field observations (deviations of 0–0.02 m). This is consistent with prior assessments of the
efficiency of UAV-LiDAR in determining elevation changes [48,79,84].

Method B shows that paired DSMs and onsite values mostly agree, but that, as previ-
ously demonstrated [44], the interpolation of point clouds to generate digital models may
introduce additional elevation error. Our findings support earlier findings that the higher
inaccuracy for high-resolution models is related to the natural surface complexity of the
environment. [80]. From the three resolutions tested (1, 3, and 5 ps), the intermediate (3 ps)
seems to be the most appropriate value for obtaining the most reliable results.

Method C was unable to find a relation between values extracted from CHM and onsite
measures at peeled areas. Method C was thus inadequate to validate sensor sensitivity.
This experiment revealed that CHMs are inaccurate, not only in areas covered by dense
vegetation (see Section 4.3.2)—which could limit laser penetration—but also in areas where
the bare ground information is collected (i.e., peeled areas). This result supports the
conclusion that interpolating CHMs from UAV-LiDAR may smooth the range of plant
height and result in low accuracy of height-related structural features [79].

4.5. LiDAR Sensor Optimum Setting

The evaluation of sensor settings included the assessment of the sensor orientation
(nadir vs. oblique) and scan mode (repetitive vs. non-repetitive). The sensor orientation
produces very different flight and processing times. In our case, the oblique flights were six
times longer and the datasets six to eight times larger than the nadir ones (Table 2). Our
results agree with previous results that found that oblique flights improve accuracy when
collecting point clouds, resulting in a high precision 3D reconstruction [85] (Table S54).
However, the differences with accuracy from the nadir ones are very small. Therefore,
the nadir configuration was considered preferable, as the level of detail of the products is
adequate, but the datasets are much smaller and need less time for processing.

The scan mode includes repetitive and non-repetitive modes. The repetitive mode
produces a higher occurrence of extreme scan angle points, which is the main factor
in producing artefacts in the resulting models. This is consistent with the findings of
Ma et al. [83], who revealed that as scan angle exceeded a specific threshold, the uncertainty
in LiDAR-derived estimations increased significantly. Extreme scan angle points need to be
removed, causing an important decrease in point counts and dataset density in datasets
from repetitive scan mode flights. Non-repetitive scan mode generates more accurate
DEMs (lower RMSE values) at a finer resolution. On the other hand, repetitive scan mode
datasets require a coarser resolution to improve the precision of the DEMs. This is consistent
with previous studies that explain this effect as a function of the data collection method:
the repetitive scan mode works with a linear pattern, which is more sensitive to properties
such as shininess, clarity, and color, resulting in larger variability and errors [86,87], whereas
the non-repetitive mode improves the detection and details of objects, suggesting that this
scan mode is the most suitable for salt marsh systems.

4.6. Comparison of PNOA 2015 and UAVs-Based Data

UAV-LiDAR technology is certainly a very effective tool in environments that require
very high temporal and spatial resolution for accurate knowledge of the system, such as
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salt marshes. PNOA datasets are freely accessible and cover the entire Spanish territory,
but they have a very limited temporal and spatial resolution to use for modeling salt marsh
processes. Our UAV-LiDAR sensor provided more detailed elevation information than
any dataset available in the PNOA 2015 LiDAR library, with higher resolution, correlation,
and accuracy. It is important to note that while UAV-LIDAR cannot capture data at the
regional scale as a single mission, its high mobility and ease of use allow this technology
to capture data for areas larger than the one of this study by planning several flights that,
when stitched together, will provide a large spatial coverage. This will enable the use of
this method in additional research contexts and environments where high temporal and
spatial resolutions are necessary for monitoring programs.

The results presented in this study are in line with those presented by García-López et al. [88],
who improved the previous PNOA-derived cartography through significantly reducing
the spatial resolution of the mapped area by generating a DEM from a UAV-LiDAR dataset
(0.069 m vs. 5 m). Our results also revealed a systematic underestimation of −1 m elevation
in PNOA 2015. This corresponds to 44–48% of the mean tidal range of the area, which is
definitively too high for high-resolution modeling of the system. Systematic error in other
national-LiDAR datasets has been previously reported [42,89]. The authors attributed this
error to the type of land cover surveyed and the physical and technological limitations of the
employed LiDAR system. The PNOA 2015-derived digital models obtained underestimated
the elevation values of the area in concordance with the findings of García-López et al. [88],
who demonstrated a PNOA-LiDAR systematic error of −0.4 m for the marshes of Cádiz Bay.

The results from this work therefore reiterate that PNOA-LiDAR datasets can be useful
for a first assessment and a general framework, but they should not be used for applications
that require high precision, such as flood risk and coastal hazard estimates.

5. Conclusions

This study demonstrates the potential of UAV sensors for the study of complex and
difficult access systems such as salt marshes, where inaccuracies are still difficult to over-
come. Photogrammetric and LiDAR techniques provide orthomosaics and digital models
at very-high spatial resolution. The LiDAR sensor can also capture images that generate
products with high accuracy from lighter image datasets in a shorter processing time than
the photogrammetric sensor (P1). Nevertheless, the photogrammetric sensor can provide
a higher spatial resolution that can be an excellent complementary tool for limited areas.
For the use of LiDAR in salt marshes, the nadir non-repetitive configuration seems the best
setting for reliable results at fine resolution, providing the best balance between dataset size,
spatial resolution, and processing time. Nevertheless, the best results require multispectral
data to help with the discrimination of vegetated and non-vegetated zones. Our results
demonstrate that LiDAR data can generate accurate salt marsh DEMs, suggesting that
LiDAR can penetrate dense vegetation to some extent. However, unless the penetration
and reflectance issues observed on natural salt marsh surfaces are solved, additional techni-
cal improvements are still required to generate reliable salt marsh canopy height models
(CHMs). The inaccuracy of CHMs could be associated not only with LiDAR penetration
issues, but also with the reliability of the ground truthing measurements in elevation and
canopy height, as field measurements are challenging in this environment. UAV-LiDAR
datasets can reach resolutions and accuracies unachievable from the datasets of the national
cartography LiDAR library (PNOA-LiDAR 2015), which definitively have high applicability
in large-scale frameworks, but lack the precision and details required for coastal research
where high spatial and temporal resolutions are crucial. The results from this research can
be used to plan monitoring programs in any marsh environment, as well as in other coastal
and continental habitats.
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