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Abstract

Contagious statistical distributions are a valuable resource for managing contagion by

means of k–connected chains of distributions. Binomial, hypergeometric, Pólya, uniform dis-

tributions with the same values for all parameters except sample size n are known to be

strongly associated. This paper describes how the relationship can be obtained via factorial

moments, simplifying the process by including novel elements. We describe the properties

of these distributions and provide examples of their real–world application, and then define

a chain of k–connected distributions, which generalises the relationship among samples of

any size for a given population and the Pólya urn model.

Introduction

A large body of literature has been generated regarding mathematical models of epidemiology.

These models usually consider the population under study to be clustered as follows: persons

born with passive immunity (denoted by M), those without passive immunity and hence sus-

ceptible (S), those who are infected but not infectious (E), those who are capable of transmit-

ting the infection, and hence infectious (I), and those who have a permanent infection–

acquired immunity, and hence recovered (R). Different epidemiology models are classified

according to which of these clusters are considered: MSEIR, SEIR, SIR, etc.

Among the main parameters included in these models are the basic reproduction number

of an epidemic, R0 (that is, the expected number of secondary cases produced by a primary

case during their infectious period, within a completely susceptible population), and the degree

of herd immunity (the fraction of immune individuals within the population beyond which

the epidemic can no longer grow). A brief historical summary of mathematical models in epi-

demiology can be found in Hethcote [1].

Knowledge and understanding in this area have advanced rapidly, and many empirical

studies have improved upon the classical models by including significant features such as the

effects of heterogeneity and correlations, household effects, network–driven contagion and

mobility models. Sun et al. [2], in a study based on Chinese data, considered the role of
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transmission heterogeneities, which are driven by demography, behaviour and interventions.

Kawagoe et al. [3]examined the question of infectious disease dynamics in heterogeneous pop-

ulations and the role played by “superspreaders”. Aleta et al. [4] studied the effects of testing,

quarantine and contact tracing, and Huber et al. [5] proposed a tracing strategy to optimise

the cost/effect balance. Chang et al. [6] successfully developed a SEIR model which used

mobile phone geolocation data.

Most of the mathematical models proposed require certain assumptions about the dynam-

ics of infectious disease. For instance, a common and sometimes unrealistic assumption is that

there is the same probability of any infectious individual infecting any susceptible one, a rela-

tion that is termed homogeneity. Britton et al. [7] showed that the contrary situation, that of

population heterogeneity, can have a considerable impact on disease–induced immunity

because the proportion of infected individuals in groups with higher contact rates is greater

than that in groups with lower contact rates. Hébert–Dufresne et al. [8] showed, using random

network theory to predict the size of an epidemic, that without data on the heterogeneity in

secondary infections (which are needed to estimate its cumulative distribution function) the

size of the outbreak remains highly uncertain.

Seeking to avoid the above assumption, various improvements to the models have been sug-

gested. For instance, Neipel et al. [9] generalised the SIR model taking into account generic

effects of heterogeneity on the population’s degree of susceptibility to infection. Introducing a

new parameter, that of a power–law exponent of the susceptibility distribution at small suscep-

tibilities, Neipel et al. showed that the class of gamma distributions acts as an attractor of the

dynamics, making it possible to identify generic effects of population heterogeneity.

Another common assumption which may be unrealistic is the “law of large numbers”

(LLN), meaning that the population size is large enough to accurately describe random

dynamics with asymptotic elements, such as limit probability distributions. However, many

situations of infectious disease spread originate within a closed environment (school class-

rooms, for instance) with a population size, where the LLN assumption does not hold. In this

circumstance, attempting to forecast the behaviour of infection dynamics by means of the clas-

sical models would be quite misleading. Brooks et al. [10] developed a stochastic transmission

model of infection spread in university campuses, based on realistic mixing patterns, and eval-

uated various infection mitigation strategies. Mayberry et al. [11] presented dynamic random

graph techniques for modelling small population outbreaks, allowing different interaction

rates among students. These authors analysed Monte Carlo simulations, assuming a beta nega-

tive binomial distribution, to determine the effects of different transmission rates and of

diverse vaccination strategies on the dynamics of a hypothetical outbreak of influenza. With

respect to the COVID–19 pandemic, several guidelines on appropriate antigen–testing strate-

gies have been developed. For instance, the National Academies of Sciences, Engineering, and

Medicine [12] provided a general guide for colleges and universities in the USA, and Nixon

et al. [13] described how the University of Bristol (UK) developed CONQUEST, a tool to

record and analyse data on COVID–19.

In this paper, we consider contagious statistical distributions and theoretical tools which

could be applied to certain scenarios of infection, such as a closed environment with several

rooms. In addition, we present techniques showing how complementary information on the

statistical behaviour of infectious disease spread can be obtained.

Contagious statistical distributions are valuable toolboxes relating to the epidemiology of

communicable diseases. These resources enhance our understanding of the presence of conta-

gions in, for example, a confined space. In a more general scenario, assume a system with n
components. Each component could have a different workload and hence a different probabil-

ity of failing. The variable considered is the number of failure events. Now assume a different
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number of system components and a different workload for each component; nevertheless, the

overall proportion of failing components remains unaltered. The question then arises: when

X(n) is the number of fails when the system contains n components, what relationship exists (if

any) among the probability distributions of X(n) for n = 1, 2, . . .?

Such a scenario is most commonly modelled using a classical binomial distribution, in

which each component has the same probability of failing. However, this means there may be

a high variance, and therefore a large statistical error in the estimates obtained. A second con-

cern is the implicit assumption that the binomial probability mass function (pmf) seems to

resemble a Gaussian curve (as the n increases), producing a certain symmetry, unimodality,

etc. This assumption is not always valid. Finally, independence cannot always be assumed.

The Pólya urn (contagious) model described by Eggenberger and Pólya [14] models the

above situation by considering an urn which initially contains W white balls (cases) and R red

ones (others). One ball is sampled at random and returned to the urn with c additional balls of

the same colour. After this procedure has been applied to n samples, the variable, X(n), which

counts the number of white balls sampled is said to be Pólya distributed, and is denoted by

X(n)� P(W, R, c, n). Its pmf, i.e. the probability that, after n draws, w white balls (representing

cases of infection) and n − w = r red balls (representing individuals free of infection) have been

drawn, is given by

Pr ðXðnÞ ¼ wjW;R; c; nÞ ¼
n!

w!r!
pðpþ dÞ � � � ½pþ ðw � 1Þd�

1ð1þ dÞ � � � ½1þ ðw � 1Þd�

�
qðqþ dÞ � � � ½qþ ðr � 1Þd�

ð1þ wdÞ½1þ ðwþ 1Þd� � � � ½1þ ðn � 1Þd�

ð1Þ

where p = W/(W + R), q = 1 − p, and δ = c/(W + R), subject to the following feasibility

conditions:

1. W + R − 1� (1 − n)c, to have a feasible set of parameters, and

2. min{W − 1, R − 1}� (1 − n)c, to have a distribution in which the rank is complete.

Particular cases are:

1. Let np = h, nδ = d, and n!1, with h and d remaining finite, then (1) has the limiting

form

hðhþ dÞðhþ 2dÞ � � � ½hþ ðw � 1Þd�
w!ð1þ dÞðh=dÞþw

;

which corresponds to a negative binomial distribution.

2. For c = 0, then (1) reduces to a classical binomial model, Bin(n, p).

3. If negative values are allowed for c, then for c = −1, P(W, R, −1, n) reduces to the hypergeo-

metric model, H(W + R, W, n) of sampling without replacement.

Recent studies of the Pólya urn models include in Kotz et al. [15], Mahmoud [16], Chen

and Wei [17] and Chen and Kuba [18].

Ollero and Ramos [19] showed that the Pólya distributions (allowing any feasible integer

value for c) are equivalent to Poisson–Binomial models. The Poisson–Binomial model

describes the number of successes, X(n), in n Bernoulli independent trials, each of which has

the probability of success pi, i = 1, . . ., n. The model is denoted by X(n)� PB(p), where p = (p1,
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. . ., pn), and its pmf is given by

Pr ðXðnÞ ¼ kÞ ¼
Yn

i¼1

ð1 � piÞ

 !
X

i1<...<ik

logitðpi1Þ � . . . � logitðpikÞ

 !

; ð2Þ

where logit(pi) = pi/(1 − pi), for i = 1, . . ., n, and the summation is over all possible combina-

tions of different i1, . . ., ik from {1, . . ., n}. Clearly, the mean of the random variable X(n) is

given by

EðXðnÞÞ ¼ p ¼
Xn

i¼1

pi:

This main result from [19] is quite surprising, meaning that the number of successes in n
dependent Bernoulli trials can be described as the number of successes in independent ones.

The Poisson–Binomial distribution has had relatively little research attention in recent

years, mainly due to the absence of assumptions regarding its parameters: the Poisson bino-

mial family contains quite different distributions, with quite different properties, and n param-

eters are required to model a random variable which can take n + 1 values. Among the few

more or less recent papers on these distributions, theoretical results have been reported by

Schlemm [20] and a goodness of fit test was proposed by Acharya and Daskalakis [21]. In addi-

tion, some work on approximation, by different methods, has been done by Neammanee [22,

23] and Barbour [24], Skipper [25], Butler and Stephens [26] and Novak [27]. Studies related

to the computation of probabilities include Hong [28] and Barrett and Gray [29]. Analyses in

which the model has proven useful are described in Chen and Liu [30], Tejada and den Dekker

[31] and Rosenman and Viswanathan [32]. An excellent review of the most recent progress

related with the Poisson–Binomial distribution is Tang and Tang [33].

Let us assume that not only Poisson–Binomial models but any finite distribution might best

fit the data. If the cdf of each X(n) is denoted by F(n) then we wish to find chains of distributions

of the form {F(n): n = 0, . . ., M}, where M could be infinity or an integer upper bound to the

chain, and where all these distributions share certain regularity conditions. However, these

conditions cannot be defined in a simple way.

A chain of finite distributions has a relationship called k–connection, meaning there exists

a strong relationship among the respective factorial moments, which can be viewed as a regular

pattern of behaviour within a contagious environment. This, in turn, implies the existence of

proportionality in the expected means, variances, etc., thus providing us with an instrument to

manage the behaviour of the number of infections taking place in an environment as its popu-

lation increases.

By means of this relationship, a model for the number of successes in n = n0 trials can not

only be described by a given distribution F(n), but can also facilitate a chain of k–connected dis-

tributions for any other feasible sample size. When the relationship among the models within

a chain is assumed as part of the model, it can be tested or estimated from samples of different

sizes.

The aim of this paper is to describe and/or characterise families of discrete distributions

parametrised by a sample size. These distributions are used to model contagion via a relation-

ship that we term k−connectedness. We show that this relationship can be presented in a natu-

ral way, among many well–known families of discrete distributions, such as the chains {Bin(n,

p): n� 0}, {P(W, R, −1, n): n = 0, . . ., M}.

What is this relationship useful for? Theorem 1 shows that chains of connected distribu-

tions are feasible statistical models for estimating the proportion of infected individuals in a
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population, given samples of varying sizes from this population. In other words, sample obser-

vations would commonly be used, jointly, with different sample sizes to estimate a unique or

common value for the probability of success, p. Thus, data from different distributions within

a chain of connected distributions can be jointly used for inference. This powerful possibility

is proven to be feasible within any given chain of k−connected distributions.

The rest of this paper is organised as follows. Next, we present the following theoretical ele-

ments considered, and describe their main properties: the connecting function of a finite ran-

dom variable or distribution; the k–connection relationship; the chains of connected

distributions; and the chain–generating sequence. In addition, we provide a triangular table to

represent a chain generating sequence. Finally, some subsets of well–known families of finite

distributions are shown to be chains of connected distributions. In the Estimation section, we

then illustrate a practical application of these elements, with a real–world example of their use,

showing that samples from different distributions belonging to the same chain of k–connected

ones can be used jointly for estimation. A simulation study is also performed to rule out the pos-

sibility of errors in the estimation process. Finally, we summarise the main conclusions drawn.

Chain of distributions

In this section, we define and study some auxiliary elements to simplify the definition of a

chain of k–connected distributions. Instead of addressing this relationship by means of facto-

rial moments, we do so using a characteristic function of the distributions, termed the con-

necting function. To facilitate the detection and management of a chain of k–connected

distributions, we also define the chain generating sequence, i.e. the sequence of real numbers

that characterises a given chain of k–connected distributions. Some classical (but previously

unknown) chains and their generating sequences are also shown.

Definition 1 X(n) be a random variable with support in the integer interval [0, n]. The func-
tion

CðzÞ ¼ E zn� XðnÞ ðz � 1Þ
XðnÞ

h i
; 8z > 0; ð3Þ

is then termed the connecting function of X(n).

Expression (3) can be rewritten in terms of the probability generating function (pgf)

GðzÞ ¼ EðzXðnÞ Þ;

C zð Þ ¼ znE
z � 1

z

� �XðnÞ
" #

¼ znG
z � 1

z

� �

; 8z > 0: ð4Þ

Example 1 For a binomial random variable X(n)� Bin(n, p) the connecting function is given
by

CðzÞ ¼ E zn� XðnÞ ðz � 1Þ
XðnÞ

h i
¼
Xn

x¼0

ðz � 1Þ
xzn� x

n
x

� �
pxð1 � pÞn� x

¼
Xn

x¼0

n
x

� �
ððz � 1ÞpÞxðzð1 � pÞÞn� x ¼ ðz � pÞn:

Proposition 1 The connecting function of a Poisson–Binomial distributed variable, X(n)�

PB(p1, . . ., pn) is given by

CðzÞ ¼
Yn

i¼1

ðz � piÞ:
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Proof. Given that the well–known Poisson–Binomial probability generating function can be

expressed as

GðzÞ ¼
Yn

i¼1

ð1 � pi þ pizÞ;

the proof follows immediately from (4).

Corollary 1 The connecting function of a random variable X(n) with support on the integer
interval [0, n] is a polynomial with real roots iff X(n) is a Poisson–Binomial distributed variable.

Proof. To prove this, it only has to be noticed that any real root of CðzÞ is inside the real

interval [0, 1].

The connecting function is no more than a particular probability generating function. Nev-

ertheless, it is a useful means of presenting the natural concept of chain of connected distribu-

tions, which to our knowledge has not been addressed before. In this understanding, we first

introduce the concept of k−connection and then go on to prove that it is the common internal

relationship of certain particular sets of discrete probability distributions.

Definition 2 Let X(n) and X(n+k) be random variables with respective connecting functions
CnðzÞ and CnþkðzÞ. Both variables and their respective distributions are said to be k–connected if

dk

dzk
Cnþk zð Þ ¼

ðnþ kÞ!
n!

Cn zð Þ:

When a pair of random variables, X(n) and X(n+1), are 1–connected, they are said to be

connected.

For instance, in the binomial distributions Bin(n, p) and Bin(n + 1, p), we have that

Cnþ1ðzÞ ¼ ðz � pÞnþ1
; and so Bin(n, p) and Bin(n + 1, p) are 1–connected. Analogously,

Bin(n, p) and Bin(n + 2, p) are 2–connected distributions, and so on. The same outcomes are

obtained in most classical finite models, such as Pólya distributions and discrete uniform

distributions.

In the following, we use the standard Pochhammer notation for the falling and rising facto-

rials:

½a�i ¼ a � ða � 1Þ � . . . � ða � iþ 1Þ;

ðaÞi ¼ a � ðaþ 1Þ � . . . � ðaþ i � 1Þ; ðaÞ
0
¼ 1;

and ½m�iðXÞ ¼ E½XðX � 1Þ � � � ðX � iþ 1Þ�.

The following properties are straightforwardly proven.

Proposition 2 Let X(n) and X(n+1) be connected random variables with respective connecting
functions CnðzÞ; and Cnþ1ðzÞ: Let h 2 {n, n + 1}. Then:

1. Chð0Þ ¼ ð� 1Þ
h Pr ðXðhÞ ¼ hÞ:

2. Chð1Þ ¼ Pr ðXðhÞ ¼ 0Þ:

3. The connecting function can also be written as

ChðzÞ ¼
Xh

i¼0

ð� 1Þ
i ½m�iðX

ðhÞÞ

i!
zh� i:

4. For i = 0, . . ., n − 1, this verifies
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a. (n + 1 − i)[μ]i (X(n+1)) = (n + 1)[μ]i (X(n)).

b. (n + 1) Pr (X(n) = i) = (n + 1 − i) Pr (X(n+1) = i)+ (i + 1) Pr (X(n+1) = i + 1).

5. Var Xðnþ1Þ
� �

¼
ðnþ 1Þ

2

n2
Var XðnÞ
� �

þ
nþ 1

n2ðn � 1Þ
E XðnÞ2
� �

� nE XðnÞ
� �� �

.

6. Cnþ1ðzÞ ¼ ð� 1Þ
nþ1 Pr ðXðnþ1Þ ¼ nþ 1Þ þ ðnþ 1Þ

Z z

0

CnðtÞ dt:

Proof. Parts 1 and 2 are straightforward from (3). To prove 3, denote by fh,i = Pr(X(h) = i),
for i = 0, . . ., h. Then, expanding (z − 1)i in (3) we have

ChðzÞ ¼
Xh

i¼0

Xi

j¼0

ð� 1Þ
jfh;i

i
j

� �

zh� j ¼
Xn

j¼0

ð� 1Þ
j
Xh

i¼j

½i�j
j!
fh;iz

h� j

 !

;

Part b in 4 follows from

ChðzÞ ¼
Xh

i¼0

fh;iz
h� iðz � 1Þ

i
;

and taking into account that
d
dz
Cnþ1ðzÞ ¼ ðnþ 1ÞCnðzÞ: The remaining properties are

obtained immediately.

It is obvious that if X(n), X(n+k) are k–connected and X(n+k), X(n+k+h) are h–connected, then

X(n), X(n+k+h) are k + h–connected. Accordingly, this can be considered a sequence of consecu-

tively connected variables, meaning that any pair of them are k–connected.

Notice that item 3 in Proposition 2 gives a recurrence relationship among the distributions.

This relationship is verified by the well–known subfamilies of discrete distributions which are

applied to n–sampling from a given population.

Definition 3 A set of random variables X(0), X(1), . . . such that any pair of them are k–con-
nected for the appropriate k is said to be a chain of connected distributions.

A chain of connected distributions can be finite or infinite, depending on its nature, and its

first element is a degenerate random variable which takes a null value with full probability. In

an example below, we demonstrate that binomial chains contain one distribution for each

sample size. However, a chain of hypergeometric distributions only contains a finite number

of ones, as the samples without replacement cannot be higher than the population. Given a dis-

crete distribution F(n) on {0, . . ., n}, it is easily proven that there exists a chain of connected dis-

tributions {F(k): k = 0, . . ., n} which contains F(n). The question to be solved is whether there

exists an additional distribution F(n+1) that would extend the chain.

Any chain of connected distributions is characterised by a sequence of real numbers, such

that the chain can be extended if this is possible, and if not, this is apparent. These distributions

are termed chain generating sequences. In this case, the finite difference operator of a sequence

of numbers is denoted as

D
0ak ¼ ak
D
jak ¼ D

j� 1akþ1 � D
j� 1ak; j ¼ 1; 2; . . .

ð5Þ

The following properties of this operator are evident:
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Lemma 1 Given a sequence of real numbers A = {ak: k = 0, . . ., n}, then

D
jak ¼

Xj

i¼0

ð� 1Þ
i j
i

� �

akþj� i ¼
Xj

i¼0

ð� 1Þ
j� i j

i

� �

akþi: ð6Þ

Definition 4 Let A = {ak: k = 0, . . ., n} be a sequence of real numbers that verifies:

1. a0 = 1

2. (−1)j Δj ak� 0, for k + j� n.

Then, A is termed a chain generating sequence (cgs).
It can be easily proven that each element of a cgs lies within the real interval [0, 1], and that

ak� ak + 1, for any k = 0, . . ., n − 1.

Lemma 2 Let X(n−1) and X(n) be random variables, and let

fn� 1;i ¼ Pr ðXðn� 1Þ ¼ iÞ; fn;j ¼ Pr ðXðnÞ ¼ jÞ;

for i = 0, . . ., n − 1 and j = 0, . . ., n. Then, X(n−1) and X(n) are connected iff it is verified that:

fn� 1;i ¼
ðn � iÞfn;i þ ðiþ 1Þfn;iþ1

n
;

for all i = 0, . . ., n − 1.

Proof. Following part b in 4 from Proposition 2, we obtain one direction of the iff. To prove

the opposite direction, and for h 2 {n − 1, n}, the polynomial expression of ChðzÞ is given by

ChðzÞ ¼
Xh

i¼0

fh;iðz � 1Þ
izh� i:

Thus,

dCnðzÞ
dz

¼
Xn� 1

i¼0

n � ið Þfn;i þ iþ 1ð Þfn;iþ1

� �
ðz � 1Þ

izn� 1� i: ð7Þ

After identifying the terms in the polynomial expression of Cn� 1 we obtain that
dCnðzÞ
dz

¼

nCn� 1ðzÞ is equivalent to verifying (7), and so the proof is complete.

Theorem 1 Let A = {ak: k = 0, . . ., N} be a cgs, where N could be infinite. Consider the set of
vectors fk = (fk,0, . . ., fk,k), where

fk;i ¼ ð� 1Þ
k� i k

i

� �

D
k� iai; i ¼ 0; . . . ; k ð8Þ

Then, the set of random variables {X(k): k = 0, . . ., N} such that

Pr ðXðkÞ ¼ jÞ ¼ fk;j; j ¼ 1; . . . ; k;

is a chain of connected distributions, which we term the chain of connected distributions gener-
ated from A.

Proof. Proceed recursively. For k = 1, f0,0 = a0 = 1, and f1,0 = Δ1a0 = 1−a1� 0, f1,1 = Δ0a1 =

a1. Notice that f0,0 = (f1,0 + f1,1)/1, and apply Lemma 2. Now, if the result is true for k − 1, we

search for a pmf fk = (fk,0, . . ., fk,k) which is connected to fk−1 = (fk−1,0, . . ., fk−1,k−1). From
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Lemma 2, the following linear system must be solved:

fk� 1;i ¼
ðk � iÞfk;i þ ðiþ 1Þfk;iþ1

k
; i ¼ 0; . . . ; k � 1:

Notice that condition
Xk

i¼0

fk;i ¼ 1 is redundant, and that the system has infinitely many solu-

tions. A particular solution can be found by first taking fk,k = (−1)0Δ0ak = ak. After some

straightforward, if tedious, calculus, the proof is complete.

Given any given finite distribution F(n) within the integer interval [0, n] it is simple to

obtain a chain that contains F(n), and to determine whether another distribution F(n+1) could

be added to the chain. The necessary procedure, which somewhat resembles Pascal’s triangle,

only requires the use of (8) and (5), as shown in the following example.

Example 2 Let X(2) be a random variable with a pmf given by

f2 ¼ f2;0; f2;1; f2;2
� �

¼
1

6
;
2

3
;
1

6

� �

, and where

Pr ðXð2Þ ¼ jÞ ¼ f2;j;

for j = 0, 1, 2. Then, from (8) we have

f2;0 ¼
1

6
¼ D

2a0; f2;1 ¼
2

3
¼ � 2D

1a1; f2;2 ¼
1

6
¼ D

0a2:

Thus,

D
2a0 ¼

1

6
; D

1a1 ¼ �
1

3
; D

0a2 ¼
1

6
:

Now, using (5) and from bottom to top, we can easily derive the following triangle:

¢0 ¢1 ¢2

a0 1
a1 1=2 ¡1=2
a2 1=6 ¡1=3 1=6

From this triangle, the pmf’s of X(k), k = 0, 1, are also found, again from (8):

f0 ¼ 1ð Þ; f1 ¼
1

2
;
1

2

� �

:

We now wish to find a feasible value for a3 = x. In order to preserve the condition of cgs, the
entries in the additional row must maintain the sign of each column:

¢0 ¢1 ¢2 ¢3

a0 1
a1 1=2 ¡1=2
a2 1=6 ¡1=3 1=6
a3 x ¸ 0 x¡ 1=6 ∙ 0 x+ 1=6 ¸ 0 x ∙ 0

To conclude, x = 0 leads to f3 ¼ 0; 1

2
; 1

2
; 0

� �
, which is a uniform distribution on {1, 2}.

For any unknown cgs {1, a1, . . ., an}, the squares of a generic triangle table are easily found

as a linear function of ai, by using (6) and (8). Moreover, it is easy to obtain cases where a cgs
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can be enlarged with a unique feasible additional number, or within a rank of values, or it is

impossible, as the last row gives an inequalities system, which can have just one solution, or no

solution or an infinite number of solutions.

The nature of the k–connection among distributions is illustrated by the following set of

results. The proof of each one reduces to simple checking. The parameter notation is shown in

the Introduction section.

Proposition 3 Let p be a real number within the real interval [0, 1]. Then, the sequence {an =

pn: n� 0} is a cgs and the chain of distributions generated is the set of classical binomial distribu-
tions {Bin(n, p): n = 0, 1, 2, . . .}.

Proof. The proof is immediate from (8).

Proposition 4 Given M� R> 0 integers, the sequence

an ¼

R!ðM � nÞ!
ðR � nÞ!M!

; n ¼ 0; . . . ;R;

0; n ¼ Rþ 1; . . . ;M;

8
><

>:

is a cgs and the chain of distributions generated is the set of hypergeometric distributions {H(M,

N, n): n = 0, 1, 2, . . ., M}.

Proof. The proof is immediate from (8).

The latter result has an interesting meaning, namely that in sampling without replacement,

higher values of n lead to null probabilities for some extreme values of X(n), meaning that its

support set is not actually the integer interval [0, n], but a subset within it.

Proposition 5 GivenW> 0, R> 0, c> 0 integers, then the sequence

an ¼

W
c

� �

n

W þ R
c

� �

n

;

for n� 1 and a0 = 1 is a cgs and the chain generated is the set of Pólya distributions {P(W, R, c,
n): n = 0, 1, 2, . . .}.

Proof. The proof is immediate from (8).

Proposition 6 The sequence an = (n + 1)−1, for n� 0 is a cgs and the chain of distributions
generated is the family of discrete uniform distributions in the integer intervals [0, n].

Proof. The proof is immediate from (8).

From the previous results, it seems that the k–connection of finite distributions is an essen-

tial relationship, which is present in a natural way, although largely unnoticed. Accordingly, it

seems credible that certain apparently unrelated distributions may actually present a similar

relationship, for example, Poisson–Binomial distributions with no common individual proba-

bilities of success. On the other hand, any more or less arbitrary finite distribution can be con-

nected to a chain.

Estimation

Consider the following scenario. In a given country or city, the presence of infectious disease is

noticed, and planners wish to model the number of contagious persons in a classroom, waiting

room or similar. An initial approach to this task might be to create a binomial model, whereby

the parameter to be estimated would be the proportion of contagious persons, p within the

total population in the environment. This parameter could be estimated from samples of

rooms containing any number of persons. If any model other than a binomial one were
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considered, the existence of different-sized rooms (i.e. capacities) could make it difficult or

even impossible to conduct a joint estimation.

On the one hand, the possibility of making joint use of different room capacities is helpful,

as the number of persons within each room is another random variable in itself. But on the

other hand, the binomial model requires the (uncomfortable) condition of independence

among the numbers present in each room.

Given these circumstances, a helpful, relaxed condition could be to consider that the num-

ber of contagious persons in a room of any size is k−connected random variables. The implica-

tions of this assumption are only the regularity conditions given by the proportionality of the

factorial moments for each room size. The advantage of this assumption is that it reduces the

problem of estimation to that of finding a cgs, {an: n = 0, . . ., M}, and making joint use of all

data, with no constraints on room sizes.

Consider the following notation. There are N rooms; inside each room kj people are

meeting, where j = 1, . . ., N and each kj 2 {1, . . ., M}, and where M is the highest number of

persons observed in a room. The number of persons infected after each meeting is given by

XðkjÞj ; j ¼ 1; . . . ;N: Then, we denote by

dðk; iÞ ¼ fj : kj ¼ k ^ XðkjÞj ¼ i; j ¼ 1; . . . ;Ng;

the number of cases where X(k) = i, that is, the number of rooms with k persons attending and

where i of them are infected after their meeting. We also denote

dk ¼
Xk

i¼0

dðk; iÞ;

that is, the number of rooms with k persons present. Then, N ¼
Pk

i¼0
dk.

The problem to be addressed is then to estimate

fk ¼ ðfk;0; . . . ; fk;kÞ;

where

fk;i ¼ Pr ðXðkÞ ¼ iÞ;

If no assumptions were made for the models, there would be M(M − 1)/2 values to be esti-

mated, {fk: k = 0, . . ., M}. But if we assume that those fk are k–connected pmf’s, the problem

reduces to that of estimating the M unknown values ot their cgs, {ak: k = 0, . . ., M}, where

a0 = 1.

To do so, estimates f̂ k for fk can be found by solving the following program:

min
P
kdðk; iÞ � dk � fk;ik

s:t: : fk;i � 0; i ¼ 0; . . . ; k; k ¼ 1; . . . ;N
ð9Þ

In this case, the best results are obtained by the quadratic norm kxk = x2.

Then, by using (6) and (8), each f̂ k;i can be written as a linear function of {ak: k = 0, . . ., M}.

These are well–known, and no comments are needed in this paper about convergence

kdðk; iÞ � dk � f̂ k;ikdk!1 ! 0 (from the law of large numbers) or the chi-square goodness–of–

fit test for each pmf, fk.

The following example illustrates how even with a sparse dataset, estimation is feasible.
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Example 3 Assume an infectious disease outbreak and the known existence of meetings at
which some of those present have been infected. At each meeting, there are three, four or five
attendees. Consider eight samples, as shown in Table 1:

Here, the values XðkjÞj (Infected) from rooms with the same number of attendees, kj = 3, 4, 5

(Attendees) are shown in each row. For rooms with three attendees, only one meeting concluded
with no persons infected; two meetings concluded with one infected, three with two infected and
two with three infected.

These data can also be presented as follows:

dð3; 0Þ ¼ 1; dð3; 1Þ ¼ 2; dð3; 2Þ ¼ 3; dð3; 3Þ ¼ 2

dð4; 0Þ ¼ 0; dð4; 1Þ ¼ 1; dð4; 2Þ ¼ 2; dð4; 3Þ ¼ 3; dð4; 4Þ ¼ 2;

dð5; 0Þ ¼ 0 dð5; 1Þ ¼ 1; dð5; 2Þ ¼ 1;

dð5; 3Þ ¼ 2; dð5; 4Þ ¼ 3 dð5; 5Þ ¼ 1:

Then, the unknown pmf’s can be written as

f3 ¼ ½� a3 þ 3a2 � 3a1 þ 1; 3ða3 � 2a2 þ a1Þ; 3ða2 � a3Þ; a3�;

f4 ¼ ½a4 � 4a3 þ 6a2 � 4a1 þ 1; 4ð� a4 þ 3a3 � 3a2 þ a1Þ; 6ða4 � 2a3 þ a2Þ; 4ða4 � a3Þ; a4�

f5 ¼ ½� a5 þ 5a4 � 10a3 þ 10a2 � 5a1 þ 1; . . . ; 5ða5 � a4Þ; a5�:

The programs were solved using Wolfram Mathematica©. The results obtained (rounded
to 2 decimals) are shown in Table 2. Notice that each respective cgs is found on the main diagonal
of the corresponding table.

The estimate for the connecting function of f5 is given by

CðzÞ ¼ � 0:130124þ 1:00027z � 2:94753z2 þ 4:27716z3 � 3:18756z4 þ z5:

Its three real roots are, z1 = 0.358869, z2 = 0.489898, z3 = 0.902781, and so the estimate of f5

is a Poisson–Binomial pmf.

Table 2. Estimated probability mass functions.

Pr(0) Pr(1) Pr(2) Pr(3) Pr(4) Pr(5)

f0 1 0 0 0 0 0

f1 0.36 0.64 0 0 0 0

f2 0.15 0.42 0.43 0 0 0

f3 0.07 0.23 0.40 0.30 0 0

f4 0.04 0.15 0.23 0.38 0.20 0

f5 0.01 0.13 0.13 0.25 0.35 0.13

https://doi.org/10.1371/journal.pone.0268810.t002

Table 1. Number of attendees and persons infected at each of the 8 samples per row.

Attendees Infected

3 0,1,1,2,2,2,3,3

4 1,2,2,3,3,3,4,4

5 1,2,3,3,4,4,4,5

https://doi.org/10.1371/journal.pone.0268810.t001
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A simulation experiment

Suppose that, in a contagion situation within several rooms, as in the Estimation section, the

probability distributions of X(k) (number of infected persons after a meeting with k attendees)

are k–connected hypergeometric, meaning that X(k)�H(M, N, k), where M and N are fixed

values for all values of k considered, M� k, and k is the number of attendees in each room.

A simulation study was conducted to evaluate the estimation errors, considering three

hypergeometric chains H(100, 20, n), H(100, 50, n) and H(100, 80, n). For each chain, only the

data from n = 5, 10, 20 were simulated.

Two scenarios are considered:

• Scenario 1: Sample sizes were 35, 35, 30 for the respective values of n = 5, 10, 20. This

first scenario is an almost egalitarian one, while the second would be cheaper (in the example

given in the above section about meetings under epidemic situation).

• Scenario 2: Sample sizes were 50, 25, 25 for the respective values of n = 5, 10, 20.

1000 simulations of each case were performed and the results obtained are shown in Tables

3 to 8. In each table, the exact values for the cgs (ai) and the last pmf, Pr(X(20) = i), are shown

beside the respective mean squared error (mse) for the estimations. In Tables 3 and 4, the sim-

ulated data correspond to H(100, 20, n)simulations; in Tables 5 and 6, data belong to H(100,

50, n); and in Tables 7 and 8 the data correspond to H(100, 80, n) estimations, where each pair

of tables corresponds to Scenario 1 and 2, respectively.

Table 3. Scenario 1. H(100, 20, n) where n = 5, 10, 20.

i ai mean ai mse(ai) Pr(i) mean Pr(i) mse (Pr(i))

0 1 1 0 0.00659594 0.0262467 0.000664715

1 0.2 0.271854 0.00613594 0.0432521 0.0370613 0.000681201

2 0.0383838 0.105385 0.00522223 0.125919 0.101032 0.00361373

3 0.00705009 0.057036 0.00288968 0.215862 0.183343 0.00635286

4 0.00123558 0.0372934 0.00150628 0.243688 0.206126 0.0074745

5 0.000205931 0.026535 0.000809113 0.191951 0.150218 0.00617363

6 0.0000325153 0.0197261 0.000458071 0.109063 0.0702231 0.00318446

7 4.84 × 10−6 0.0151093 0.000273676 0.0455786 0.0320194 0.000579272

8 6.77 × 10−7 0.0118519 0.000171737 0.0141595 0.0204036 0.00016339

9 8.83 × 10−8 0.00948517 0.000112578 0.00328337 0.0185264 0.000306308

10 1.07 × 10−8 0.00772356 0.000076744 0.000567554 0.0203981 0.000457889

11 1.186 × 10−9 0.00638557 0.0000542178 0.0000726701 0.0196984 0.00044445

12 1.20 × 10−10 0.00535212 0.0000395962 6.81 × 10−6 0.0203859 0.000467378

13 1.10 × 10−11 0.00454284 0.000029837 4.59 × 10−7 0.0247557 0.000702795

14 8.77 × 10−13 0.00390197 0.0000231607 2.17 × 10−8 0.0169341 0.000344913

15 6.12 × 10−14 0.00338973 0.0000184911 2.17 × 10−8 0.0142907 0.000245178

16 3.60 × 10−15 0.002977 0.0000151579 1.43 × 10−11 0.0140222 0.000237945

17 1.71 × 10−16 0.00264194 0.0000127329 1.75 × 10−13 0.0113501 0.00015821

18 6.20 × 10−18 0.00236787 0.0000109365 1.12 × 10−15 0.00725644 0.0000672437

19 1.51 × 10−19 0.00214196 9.58 × 10−6 2.98 × 10−18 0.00375453 0.0000197057

20 1.86 × 10−21 0.00195423 8.54 × 10−6 0.125919 0.00195423 8.54 × 10−6

Total – – 0.000828097 1 – 0.00149539

https://doi.org/10.1371/journal.pone.0268810.t003
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Table 4. Scenario 2. H(100, 20, n) where n = 5, 10, 20.

i ai mean ai mse(ai) Pr(i) mean Pr(i) mse (Pr(i))

0 1 1 0 0.00659594 0.029304 0.00105527

1 0.2 0.262825 0.00483402 0.0432521 0.0412223 0.000859336

2 0.0383838 0.0984558 0.00425147 0.125919 0.103989 0.00378119

3 0.00705009 0.0522257 0.00238994 0.215862 0.187097 0.00660327

4 0.00123558 0.033995 0.00126294 0.243688 0.209884 0.00783769

5 0.000205931 0.0242883 0.000690615 0.191951 0.14748 0.00679407

6 0.0000325153 0.0182135 0.000400042 0.109063 0.0690276 0.00357991

7 4.843 × 10−6 0.0141107 0.000245375 0.0455786 0.0327003 0.000690876

8 6.7693 × 10−7 0.0112135 0.000158236 0.0141595 0.0206662 0.00017422

9 8.8293 × 10−8 0.00909877 0.000106449 0.00328337 0.0184538 0.000307339

10 1.0673 × 10−8 0.00751255 0.0000742072 0.000567554 0.0194673 0.000420477

11 1.186 × 10−9 0.00629532 0.0000533225 0.0000726701 0.0184263 0.000389932

12 1.1998 × 10−10 0.00534345 0.000039333 6.813 × 10−6 0.0187196 0.000397633

13 1.0903 × 10−11 0.00458753 0.0000296908 4.5943 × 10−7 0.022139 0.000557509

14 8.772 × 10−13 0.00397973 0.0000228797 2.1732 × 10−8 0.014776 0.000263712

15 6.120 × 10−14 0.00348604 0.0000179644 2.173 × 10−8 0.0121336 0.000177651

16 3.600 × 10−15 0.00308158 0.0000143493 1.429 × 10−11 0.011716 0.000166751

17 1.714 × 10−16 0.00274768 0.0000116442 1.747 × 10−13 0.00991182 0.000121937

18 6.196 × 10−18 0.00247003 9.588 × 10−6 1.120 × 10−15 0.00692317 0.000062485

19 1.511 × 10−19 0.00223751 8.002 × 10−6 2.985 × 10−18 0.00392164 0.00002222

20 1.866 × 10−21 0.00204143 6.762 × 10−6 0.125919 0.00204143 6.762 × 10−6

Total – – 0.000731341 1 – 0.00163192

https://doi.org/10.1371/journal.pone.0268810.t004

Table 5. Scenario 1. H(100, 50, n) where n = 5, 10, 20.

i ai mean ai mse(ai) Pr(i) mean Pr(i) mse(Pr(i))

0 1 1 0 8.793 × 10−8 0.019301 0.000423816

1 0.5 0.478273 0.000714287 2.836 × 10−6 0.0187427 0.000399058

2 0.247475 0.247407 0.000209011 0.0000412617 0.0201606 0.000469202

3 0.121212 0.132727 0.000310055 0.000360102 0.0165181 0.000325567

4 0.0587316 0.0740286 0.000374546 0.0021156 0.0204372 0.000423312

5 0.0281422 0.0434128 0.000337277 0.0088976 0.0219637 0.000288987

6 0.0133305 0.0270581 0.000262747 0.027805 0.0268727 0.000308576

7 0.00623983 0.0180066 0.000190918 0.0661308 0.0482384 0.00132162

8 0.00288508 0.0127473 0.000134561 0.121602 0.0943245 0.00334131

9 0.0013171 0.00950666 0.0000940776 0.174609 0.146117 0.00516198

10 0.00059342 0.00738351 0.0000661493 0.196871 0.169261 0.00553581

11 0.000263742 0.00591258 0.0000471884 0.174609 0.148333 0.00503247

12 0.000115572 0.00484627 0.0000343374 0.121602 0.101236 0.00333282

13 0.0000499063 0.00404665 0.0000255647 0.0661308 0.0591852 0.00123585

14 0.0000212245 0.0034322 0.0000194983 0.027805 0.0310876 0.000459348

15 8.885 × 10−6 0.00295157 0.0000152344 0.027805 0.0196668 0.000270624

16 3.658 × 10−6 0.0025704 0.0000121821 0.0021156 0.0157637 0.000277218

17 1.481 × 10−6 0.00226456 9.955 × 10−6 0.000360102 0.0111275 0.000157651

18 5.887 × 10−7 0.00201651 8.298 × 10−6 0.0000412617 0.00665356 0.00006173

19 2.297 × 10−7 0.00181325 7.04168 × 10−6 2.836 × 10−6 0.00336493 0.0000180435

20 8.793 × 10−8 0.001645 6.073 × 10−6 0.0000412617 0.001645 6.073 × 10−6

Total – – 0.00014395 1 – 0.00137386

https://doi.org/10.1371/journal.pone.0268810.t005

PLOS ONE Contagious statistical distributions

PLOS ONE | https://doi.org/10.1371/journal.pone.0268810 May 27, 2022 14 / 18

https://doi.org/10.1371/journal.pone.0268810.t004
https://doi.org/10.1371/journal.pone.0268810.t005
https://doi.org/10.1371/journal.pone.0268810


Table 6. Scenario 2. H(100, 50, n) where n = 5, 10, 20.

i ai mean ai mse(ai) Pr(i) mean Pr(i) mse (Pr(i))

0 1 1 0 8.793 × 10−8 0.0165672 0.000317122

1 0.5 0.483319 0.000640753 2.836 × 10−6 0.0163346 0.000307585

2 0.247475 0.250621 0.000347012 0.0000412617 0.0177904 0.000375308

3 0.121212 0.134502 0.000427707 0.000360102 0.0156997 0.000305505

4 0.0587316 0.0749533 0.000438192 0.0021156 0.0189751 0.000382738

5 0.0281422 0.0438641 0.000366137 0.0088976 0.0211285 0.00028278

6 0.0133305 0.0272526 0.000274392 0.027805 0.0261491 0.000412183

7 0.00623983 0.0180651 0.000195002 0.0661308 0.0490477 0.00153268

8 0.00288508 0.0127371 0.000135618 0.121602 0.0945931 0.00353275

9 0.0013171 0.00946548 0.0000940812 0.174609 0.146485 0.00577509

10 0.00059342 0.00733267 0.0000659103 0.196871 0.17217 0.00643016

11 0.000263742 0.005864 0.0000470087 0.174609 0.152539 0.00580381

12 0.000115572 0.00480628 0.0000343042 0.121602 0.101577 0.00366574

13 0.0000499063 0.00401805 0.00002568 0.0661308 0.0591698 0.00135839

14 0.0000212245 0.00341564 0.0000197367 0.027805 0.0324712 0.000570899

15 8.885 × 10−6 0.00294638 0.0000155666 0.027805 0.0210031 0.000357689

16 3.658 × 10−6 0.00257521 0.0000125844 0.0021156 0.0160033 0.000302161

17 1.481 × 10−6 0.00227773 0.0000104111 0.000360102 0.0109458 0.000160198

18 5.887 × 10−7 0.00203636 8.799 × 10−6 0.0000412617 0.0063863 0.0000598713

19 2.297 × 10−7 0.00183821 7.583 × 10−6 2.836 × 10−6 0.00329085 0.0000191426

20 8.793 × 10−8 0.00167366 6.654 × 10−6 0.0000412617 0.00167366 6.654 × 10−6

Total – – 0.000158657 1 – 0.00152183

https://doi.org/10.1371/journal.pone.0268810.t006

Table 7. Scenario 1. H(100, 80, n) where n = 5, 10, 20.

i ai mean ai mse(ai) Pr(i) mean Pr(i) mse (Pr(i))

0 1 1 0 1.866 × 10−21 0.00793569 0.000101726

1 0.8 0.749504 0.00388344 2.985 × 10−18 0.00773466 0.0000969905

2 0.638384 0.583925 0.004553 1.120 × 10−15 0.00766626 0.0000954767

3 0.508101 0.457955 0.0039429 1.747 × 10−13 0.0071716 0.0000843803

4 0.403338 0.359081 0.00315898 1.429 × 10−11 0.00734159 0.0000887814

5 0.319309 0.28076 0.00246952 6.954 × 10−10 0.00752825 0.0000909079

6 0.252086 0.218592 0.00191599 2.173 × 10−8 0.00683131 0.0000760903

7 0.198451 0.169297 0.00148371 4.594 × 10−7 0.00723933 0.0000847369

8 0.155773 0.130317 0.00114848 6.813 × 10−6 0.00736504 0.000086718

9 0.12191 0.0996113 0.000888455 0.0000726701 0.0077133 0.0000942853

10 0.0951163 0.0755386 0.000686301 0.000567554 0.00845152 0.000108698

11 0.0739793 0.0567715 0.000528731 0.00328337 0.00978918 0.000127513

12 0.0573548 0.0422359 0.000405682 0.0141595 0.015911 0.000270103

13 0.0443196 0.0310629 0.000309534 0.0455786 0.0399379 0.00110113

14 0.0341312 0.0225512 0.00023451 0.109063 0.0975736 0.00319351

15 0.0261937 0.0161363 0.000176219 0.109063 0.176439 0.00555138

16 0.0200305 0.0113651 0.000131311 0.243688 0.236614 0.00582794

17 0.0152613 0.00787584 0.0000972341 0.215862 0.203737 0.006051

18 0.0115839 0.00538072 0.0000720633 0.125919 0.111695 0.00346575

19 0.00875855 0.00365218 0.0000544142 0.0432521 0.0228133 0.00118291

20 0.00659594 0.00251152 0.0000434223 1.1201 × 10−15 0.00251152 0.0000434223

Total – – 0.00130919 1 – 0.00132493

https://doi.org/10.1371/journal.pone.0268810.t007
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Conclusions

In the epidemiology of communicable diseases, it is essential to analyse and control the spread

of infection, which can provoke severe problems not only for public health but in many other

areas (for example, a major outbreak may force schools and universities to close). In this

respect, statistical procedures such as contagious statistical distributions can be a useful means

of studying and controlling the situation. In this paper, we describe the development of proce-

dures directly linked to the modelling of contagion in a closed environment through k–con-

nected chains of distributions.

A chain of k–connected distributions contains a single probability distribution for each

integer interval [0, n] as its support set, where n = 0, . . ., N, and where N could be infinity.

These distributions are closely related, as verified by various well–known models for sampling

within a given population and for other families of finite distributions.

Conversely, any probability distribution with a support set in the integer interval [0, N]

belongs to a chain, which could be enlarged with other distributions with support sets

[0, N + 1], [0, N + 2], . . .

A major application of this result is as a means of estimating the probabilities of a set of dis-

tributions from sparse data, as we show in an example. This example also illustrates how the

approach described can be used to obtain a contagious model which contains the Pólya distri-

bution as a particular case. When the hypothesis of k–connection among a set of finite distri-

butions is accepted, the pmf of each one can be estimated with data from some of them.

Therefore, the k–connection might be considered not only a generalisation of the relationship

among sampling distributions from a given population, in which different sample sizes can be

Table 8. Scenario 2. H(100, 80, n) where n = 5, 10, 20.

i ai mean ai mse(ai) Pr(i) mean Pr(i) mse (Pr(i))

0 1 1 0 1.86 × 10−21 0.00490265 0.0000462427

1 0.8 0.768486 0.00184085 2.98 × 10−18 0.00466926 0.0000432453

2 0.638384 0.605351 0.00224843 1.12 × 10−15 0.00463977 0.0000423858

3 0.508101 0.478937 0.00205368 1.75 × 10−13 0.00429676 0.0000362838

4 0.403338 0.378836 0.00175865 1.43 × 10−11 0.00457045 0.0000403688

5 0.319309 0.299035 0.00148432 6.95 × 10−10 0.00496864 0.0000473832

6 0.252086 0.235318 0.00124989 2.17 × 10−8 0.00465226 0.0000413063

7 0.198451 0.184485 0.00105175 4.59 × 10−7 0.00540529 0.0000558015

8 0.155773 0.144018 0.000883612 6.81 × 10−6 0.00598145 0.0000673022

9 0.12191 0.111902 0.000740501 0.0000726701 0.00686121 0.0000876842

10 0.0951163 0.086507 0.000618815 0.000567554 0.00807862 0.000120217

11 0.0739793 0.0665102 0.000515782 0.00328337 0.0097998 0.000164977

12 0.0573548 0.0508382 0.000429077 0.0141595 0.0157663 0.000342529

13 0.0443196 0.0386198 0.000356633 0.0455786 0.0368223 0.00124593

14 0.0341312 0.0291494 0.000296588 0.109063 0.0924901 0.00393681

15 0.0261937 0.0218575 0.000247277 0.109063 0.1793 0.00624285

16 0.0200305 0.0162861 0.000207259 0.243688 0.236579 0.00719695

17 0.0152613 0.0120681 0.000175336 0.215862 0.209047 0.00626063

18 0.0115839 0.00891106 0.000150583 0.125919 0.122607 0.00391803

19 0.00875855 0.00658267 0.000132389 0.0432521 0.0336619 0.00134578

20 0.00659594 0.00489957 0.000120517 1.12 × 10−15 0.00489957 0.000120517

Total – – 0.000828097 1 – 0.00149539

https://doi.org/10.1371/journal.pone.0268810.t008
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jointly used to estimate the common probability of success, p, but also a generalisation of the

Pólya contagious model, as both can be obtained as particular cases of k–connected chains.
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