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Abstract: This article presents a unique dataset, from a public building, of voltage data, acquired using
a hybrid measurement solution that combines PythonTM for acquisition and GrafanaTM for results
representation. This study aims to benefit communities, by demonstrating how to achieve more
efficient energy management. The study outlines how to obtain a more realistic vision of the quality
of the supply, that is oriented to the monitoring of the state of the network; this should allow for
better understanding, which should in turn enable the optimization of the operation and maintenance
of power systems. Our work focused on frequency and higher order statistical estimators which,
combined with exploratory data analysis techniques, improved the characterization of the shape of
the stress signal. These techniques and data, together with the acquisition and monitoring system,
present a unique combination of low-cost measurement solutions, which have the underlying benefit
of contributing to industrial benchmarking. Our study proposes an effective and versatile system,
which can do acquisition, statistical analysis, database management and results representation in less
than a second. The system offers a wide variety of graphs to present the results of the analysis, so
that the user can observe them and identify, with relative ease, any anomalies in the supply which
could damage the sensitive equipment of the correspondent installation. It is a system, therefore, that
not only provides information about the power quality, but also significantly contributes to the safety
and maintenance of the installation. This system can be practically realized, subject to the availability
of internet access.

Dataset: https://doi.org/10.7910/DVN/EGI7X1

Dataset License: CC0 1.0

Keywords: grid frequency; GrafanaTM; higher-order statistics; LabVIEWTM; network-attached storage;
power quality; PythonTM; statistical signal processing; voltage monitoring

1. Introduction

Nowadays, in the context of a modern and smarter electrical grid, there are numerous
distributed resources which, although a priori independent, exert mutual influence, causing
degradation of the supplied voltage.

Distributed non-linear loads and intermittent energy sources in the electrical network
have resulted in a complex body of network state power quality (PQ) data; it is vital
to interpret this data correctly, in order to make the necessary compensation, and to
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forecast not only demand but also possible network state degradations which obey seasonal
behavior, or which could be triggered by unexpected causes. In fact, building a resilient
national power system with real-time state monitoring has become a primary goal of many
governments [1].

Microgrids gather DG systems, like inverters in photovoltaic panels, wind turbines,
chargers of electrical vehicles, etc., which have direct consequences on the power line and
in the subsequent quality [2,3]. However, despite the complications that cause this kind of
load, the advantages of energy saving, control of energy flow and direction, etc., exceed the
possible disadvantages [4].

It is not only new non-linear loads, however, which cause alterations to the network.
Traditional non-linear loads, such as transformers and rotating machines, also contribute to
network degradation [5].

Other types of network disturbance, such as rapid voltage changes [6] or the effect of
lightning strikes [7], could also be detected by the system proposed in this study. While
they do not typically receive much attention from power quality standards monitoring,
compared to other phenomena, they still have an effect, the detection of which could
contribute to an even more complete diagnosis of the network.

Maintaining satisfactory quality is the joint responsibility of the producer, the supplier
and the user, in that order of influence, abilities and responsibilities [8].

Recording power quality data over a long period enables tracking of the power
consumption of devices and systems. Voltage and frequency are the two basic magnitudes
that characterize the quality of the power supplied to consumers, and the operation regime
of a power system [9]. The parameters measured by current instrumentation consist
basically of amplitude and shape, as an alteration in the latter leads to a variation in
the former.

A complex and highly dynamic electricity sector brings to light a twofold perspec-
tive. On the one hand, expensive analyzers are used in the industry, which are connected
occasionally in seasonal measurement campaigns. On the other hand, there is a growing
tendency to develop domestic energy quality indicators that help the novice user to analyse
their supply. In both scenarios, the underlying idea is to demystify power quality analy-
sis. Indeed, both approaches incorporate measures regulated in accordance with the EN
50160 standard. Through better understanding the quality of supply, better decisions can
be made regarding energy efficiency and the maintenance of facilities. Measurements and
analyses beyond the EN 50160 standard are needed.

There are many types of power quality problems, including voltage lag (voltage
values which are outwith the established limits), frequency surge (frequency significantly
different to the nominal) and the insertion of harmonics into the power line [10]. Most of
the anomalies that take place are in terms of voltage.

The purpose of this study is to provide a comprehensive and unique data set associated
with long-term power quality monitoring, which will provide a comprehensive network
status, so as to prevent data mismanagement, and achieve more efficient downstream
analytics. In order to achieve this goal, a homemade PQ instrument was used, based on
signal-acquiring equipment and a server programmed in PythonTM, rather than a specific
PQ analyzer, as in other works, e.g., in [8]. The designed system is described in detail in
Section 2.

2. Materials and Methods

The instrumentation used for the data collection was deployed in a public building
of the University of Cádiz (Spain). The instrumentation’s purpose was to provide an
end-to-end solution, from data acquisition to data analysis [11]. A single-phase electrical
supply voltage signal was taken directly from a traditional wall socket, in order to examine,
in situ, the quality of the voltage electrical supply received by the end user.

The voltage data was acquired with a sampling rate of 10 kHz through a chassis and
card from the manufacturer NI™. This equipment received the voltage from the electrical
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network, and a pulsating signal (1 PPS) from a GPS reference; the latter for temporary
stamping of the measures, as explained in [12].

As Gourov N., et al., detailed in [8], this type of acquisition system can be designed to
work offline, storing data in memory, or remotely, sending data in real time to the server.
For this study, we chose the second option, as the huge amount of data generated would
require massive memory storage capacity, which is not necessary for an online system; and
because the system was able to work more autonomously, since it was not necessary to
disconnect it from the electrical network to transfer the data.

Data was sent from the chassis to a central computer via ethernet. The computer
was able to receive and manage data from various sources, allowing multipoint reading.
In this study, the computer was running a program developed in Python that carried
out the corresponding modifications, and stored the results in the database and on a
network-attached storage. The results were thus available for user consultation. The whole
measurement & data pipeline architecture is presented in Figure 1.
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Figure 1. Overall measurement & data pipeline architecture. Grafana is in the web server.

Frequency measurements were carried out according to two different procedures: a
standardized method, used in accordance with the norm [10], storing frequency data every
10 s; and a specific method, in which the frequency and its associated uncertainty were
calculated every second, using a method based on Allan’s variance. This method, and
its benefits over the traditional one, are explained in [13]. In other works—for example,
in [4]—a third method was used, based on zero crossings; but as the authors noted, this
method was not as reliable, since interharmonics or phase disturbances led to errors in
calculations.

In addition to the frequency, other power quality parameters were calculated: variance,
kurtosis, skewness, VRMS, total harmonic distortion (THD) and a power quality index (PQI)
developed in [13]. These calculations were done using three different types of analysis (see
Table 1), depending on which computation window was used:

Table 1. Analyses performed.

Analysis Type Computation Window Database Update

1 1 cycle of 50 Hz 1 s (max, mix, avg values)
2 10 cycles of 50 Hz 1 s (max, mix, avg values)
3 2 s 2 s (value)

Analysis Type 1 measured waveform time features cycle-by-cycle. Analysis Type 2
measured the same parameters as Type 1, but with a window of 10 cycles, which enabled
the calculation of THD. These two analyses returned too many values (one value every
0.02 s for Type 1, and one value every 0.2 s for Type 2); therefore, in order to extract general
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information about the grid state, only the minimum, maximum and average values were
saved in the database every second, since if all data had been stored there, the queries
would have been slower. However, all generated values were saved in files for further
consultation if needed.

For Analysis Type 3, results were available every 2 s, and so they were stored in the
database directly.

After several tests, it was confirmed that, despite the enormous data flow, the system
was working properly. PythonTM turned out to be so powerful that data processing took
only about 15 ms storing 10 × 103 points, and about 80 ms for 100 × 103 points, both using
a sampling frequency of 10 kHz.

If the system, as it was ultimately designed, had not worked as desired, it would have
been necessary to search for alternatives, as was the case in [14], where the developed
application used wavelet compression technique for signal data transmission. In that case,
before displaying the signal for user visualization, Inverse Discrete Wavelet Transform
(IDWT) had to be applied, in order to reconstruct the original signal.

3. Data Description and Records

Once the required calculations were done, the next step was to have all data available
in a database for further consultation. As explained before, for Analysis Types 1 and
Analysis Type 2, the previous step was to store the results in files, that were stored in a
Network Attached Storage (NAS) and then averaged, with maximum and minimum values
being saved in the database. MATLABTM files (.mat) were chosen as the primary import
source, as they demonstrated a high compression rate, and they could be edited and saved
from multiple sources.

Each analysis had its own table on the database, and they were created monthly:
Table 2 below is an example of these tables.

Table 2. Results from the 2-s scan (Analysis Type 3) for 1 November 2021.

t Variance Skewness Kurtosis PQ Index VRMS (V) THD Freq. (Hz)

0:00:01 0.506935 0.00114295 −1.50365 0.0117251 231.59 0.0775725 49.9511
0:00:03 0.506523 −0.00129794 −1.50302 0.0108383 231.496 0.0779946 49.9481
0:00:05 0.506305 −0.00146479 −1.50178 0.00954501 231.446 0.0807156 49.954
0:00:07 0.505414 −0.00167911 −1.5017 0.00878987 231.242 0.0705752 49.9414
0:00:09 0.506608 −0.00137201 −1.50209 0.0100683 231.515 0.085768 49.959
0:00:11 0.50713 −0.000809826 −1.50355 0.0114893 231.634 0.0804071 49.9555
0:00:13 0.506744 0.00120363 −1.50351 0.0114553 231.546 0.0839629 49.955
0:00:15 0.506497 0.00202925 −1.50216 0.010683 231.49 0.0821167 49.9544
0:00:17 0.50597 0.00148796 −1.50209 0.00955296 231.369 0.0861749 49.961
0:00:19 0.505923 0.00159949 −1.50174 0.00925834 231.359 0.0843541 49.959
0:00:21 0.506533 0.00169597 −1.50209 0.0103187 231.498 0.0893845 49.963
0:00:23 0.506652 0.00108132 −1.50333 0.0110593 231.525 0.0844368 49.959
0:00:25 0.50716 −0.000218186 −1.50316 0.01054 231.641 0.0905389 49.965

Data was then available for consultation using GrafanaTM, and also MATLABTM to
represent and assess data. The data was then available for query using Grafana. MATLAB
was used only to visualize boxplots, as though it were a punctual complement to the
information offered by the trend curves with GrafanaTM. In this way, we were able to
eliminate data that was not representative of the main trend of the time series, and to make
the interpretation of it more powerful. But the main display engine was GrafanaTM, which
is what we show below. The significance of GrafanaTM as a display option is illustrated
below. The main idea was to elicit subjacent trends, tendencies and hidden patterns in the
data structures, so as to enable the data operator to easily make decisions and adopt quick
measurements using the web server, which would concentrate the variables involved in a
control process. Our study precisely employed this method to monitor power quality.
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Multiple analyses were conducted and, for each type, the power quality parameters
were calculated. Therefore, for example, the RMS was computed every 1 cycle, every
10 cycles, and every 2 s (Figures 2–4):
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The three analyses showed that RMS voltage was oscillating between approximately
222 and 232 V, therefore around 230 V, the nominal value for RMS voltage, according to the
UNE 50160 standard.

For frequency it was possible to compare directly the values obtained, following both
the method based on Allan variance and the traditional method, which follows the [10]
standard (see Figure 5).
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Allan variance (orange line). Frequency vs. hourly time (Hz vs. hh:mm). The vertical line is an
example of cursor reading.

It was observed that the tendency of the frequency based on Allan variance had a lot of
peaks compared to the tendency of the traditional frequency. This was logical as, with the
Allan variance method, the frequency was calculated every second, while in the traditional
method it was calculated every 10 s, therefore the tendency in the latter case looked softer.

By representing the values of the power quality parameters across time, it was possible
to detect anomalies, which could be useful for detecting and preventing disturbances in
the power network. An example of unusual values for the skewness of the signal can be
seen in Figure 6, where two values outside the range of tolerable values were detected:
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These kinds of disturbance can damage sensitive equipment, especially if they persist
over time.

As a complement to the former plots, MATLABTM offered even more possibilities for
data analysis. For example, Figure 7 shows the distribution of the frequency using the
tool Boxplot:
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Figure 7. Boxplot of frequency values for 1 day, grouped by hours.

This type of graphic classifies data in boxes. There is one box for each hour of the day.
The red line inside the box indicates the median of data that belongs to that time interval.
The superior and inferior limits of the boxes represent, respectively, the percentiles 75 and
25 of data. The whiskers of the boxes represent those data outwith the percentiles which
are not considered atypical, while the red crosses show the values considered anomalous.
More details about this type of representation for RMS Voltage can be seen at [15]. It can be
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seen observed that data is fluctuating around 50 Hz, the nominal frequency following the
UNE 50160 standard.

Another possibility that MATLABTM offered, over GrafanaTM, was to front power
quality parameters, to find relationships between them. For example, THD vs. frequency
has been represented in Figure 8 for data recorded in July 2021. For a better analysis, values
considered as outliers were discarded.
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Figure 8 shows seen that the ‘cloud’ was approximately symmetric, and that its vertical
symmetry axis was situated on 50 Hz. The ‘cloud’ had a triangular form: low values of
THD corresponded to notable variations of frequency, while for a THD of around 0.2,
frequency variations were not significant.

4. Conclusions

The dataset provides information about the electrical grid, which was variable in time
and location, despite its nominal values and tolerances having been established by the norm.
Studying the characteristics of the grid made it possible to carry out static and dynamic
characterization of the power system, in order to assess the quality of the electricity supply
(power quality, PQ).

One of the most critical parameters was frequency, as frequency exerts a decisive
influence on the performance of electrical machines. For instance, on filters which require
very precise tuning, a significant frequency deviation from the nominal value result is
unacceptable. In this study, frequency was monitored by two methods: the traditional one,
established by the UNE EN 61000-4-30:2015 norm, in which the measures were taken every
10 s [7], and an alternative method, based on Allan’s variance, in which a frequency measure
was taken each second, so that it was possible to track the frequency in more detail.

Various statistical parameters were also calculated (e.g., skewness, kurtosis, variance,
and THD). They were calculated by different analyses: every cycle of 50 Hz; every 10 cycles;
and every 2 s.

It is important to stress that, because data was deposited in the database every 1, 2
or 10 s each day, the monthly tables had a huge number of rows, so that when they were
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exported, the resulting files were of a very large size. That is why only 1 month’s data was
appended to the dataset.

The possible drawbacks of the proposed monitoring system reside in the difficulty of
achieving embedded systems conceived to be integrated in the modern industry. This can
be the subject of future study.

The data presented in this data descriptor was used to evaluate power quality, which
depends largely on distributed generators and non-linear loads, as well as different operat-
ing conditions. Due to their high variability, probabilistic studies are inevitable. The study
of power quality will help to identify the worst performing areas, and will facilitate the
development of appropriate mitigating solutions.
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