Submitted 2 June 2021
Accepted 28 October 2021
Published 23 November 2021

Corresponding author
José Roldén-Gomez,
jose.roldan@uclm.es

Academic editor
Anand Nayyar

Additional Information and
Declarations can be found on
page 32

DOI 10.7717/peerj-cs.787

© Copyright
2021 Roldan-Gomez et al.

Distributed under
Creative Commons CC-BY 4.0

OPEN ACCESS

Detecting security attacks in cyber-physical
systems: a comparison of Mule and WSQO2
intelligent IoT architectures

José Roldan-Gomez', Juan Boubeta-Puig?, Gabriela
Pachacama-Castillo’, Guadalupe Ortiz* and Jose Luis Martinez'
! Research Institute of Informatics (i3a), Universidad de Castilla La Mancha, Albacete, Spain

% Department of Computer Science and Engineering, University of Cadiz, Cadiz, Spain
? School of Engineering, University of Cadiz, Cadiz, Spain

ABSTRACT

The Internet of Things (IoT) paradigm keeps growing, and many different IoT
devices, such as smartphones and smart appliances, are extensively used in smart
industries and smart cities. The benefits of this paradigm are obvious, but these IoT
environments have brought with them new challenges, such as detecting and
combating cybersecurity attacks against cyber-physical systems. This paper addresses
the real-time detection of security attacks in these IoT systems through the combined
used of Machine Learning (ML) techniques and Complex Event Processing (CEP).
In this regard, in the past we proposed an intelligent architecture that integrates ML
with CEP, and which permits the definition of event patterns for the real-time
detection of not only specific IoT security attacks, but also novel attacks that have not
previously been defined. Our current concern, and the main objective of this paper,
is to ensure that the architecture is not necessarily linked to specific vendor
technologies and that it can be implemented with other vendor technologies while
maintaining its correct functionality. We also set out to evaluate and compare the
performance and benefits of alternative implementations. This is why the proposed
architecture has been implemented by using technologies from different vendors:
firstly, the Mule Enterprise Service Bus (ESB) together with the Esper CEP engine;
and secondly, the WSO2 ESB with the Siddhi CEP engine. Both implementations
have been tested in terms of performance and stress, and they are compared and
discussed in this paper. The results obtained demonstrate that both implementations
are suitable and effective, but also that there are notable differences between

them: the Mule-based architecture is faster when the architecture makes use of two
message broker topics and compares different types of events, while the WSO2-based
one is faster when there is a single topic and one event type, and the system has a
heavy workload.

Subjects Data Mining and Machine Learning, Embedded Computing, Security and Privacy
Keywords Internet of things, Complex event processing, Machine learning, Pattern detection,
Security attack

INTRODUCTION

Over the past few years, expectations regarding the use of IoT devices have risen
significantly. According to data published by the IoT Analytics company, since 2015 there
has been a significant increase in the use of IoT devices, with 7,000 million of them being

How to cite this article Rolddn-Gémez J, Boubeta-Puig J, Pachacama-Castillo G, Ortiz G, Martinez JL. 2021. Detecting security attacks in
cyber-physical systems: a comparison of Mule and WSO2 intelligent IoT architectures. Peer] Comput. Sci. 7:¢787 DOI 10.7717/peerj-cs.787

http://dx.doi.org/10.7717/peerj-cs.787
mailto:jose.�roldan@�uclm.�es
https://peerj.com/academic-boards/editors/
https://peerj.com/academic-boards/editors/
http://dx.doi.org/10.7717/peerj-cs.787
http://www.creativecommons.org/licenses/by/4.0/
http://www.creativecommons.org/licenses/by/4.0/
https://peerj.com/computer-science/

PeerJ Computer Science

registered in 2018, and this figure is estimated to reach 21,500 million in 2025 (Lueth,
2018). With this increase in the use of such devices, new security challenges also arise, such
as ensuring the security of IoT devices (Bertino et al., 2016). Although there are quite a
number of works in the literature addressing this problem, further research and
implementation is still needed within the realm of the Internet of Things. An example
of this is the attack in 2016 in which cybercriminals exploited the vulnerabilities of
thousands of IoT devices to convert them into Domain Name System (DNS) request
generators and carry out a Distributed Denial of Service (DDoS) attack, causing an
Internet service disruption that affected several companies such as Amazon, PayPal,
Netflix, Spotify and Twitter (Moss, 2016). It is also worth mentioning that the analysis
published by the Gartner company indicated that in 2020 more than 25% of the attacks
identified in companies would involve IoT devices (Moore, 2018). Several studies show
the magnitude of the problem, revealing that, in just the first half of 2019, a hundred
million attacks were carried out against smart devices, a figure seven times higher than
the number detected in 2018. The Mirai malware was responsible for 39% of them
(Demeter, Preuss & Shmelev, 2019). In 2020 and 2021 this problem has worsened; the most
common threat remains Mirai, but new variants have also been created (Gutnikov et al.,
2021; Kaspersky, 2021).

Considering all of the above, it is clear that there are currently significant security
problems in IoT devices; if these problems are not addressed, it is certain that they will be
even more damaging in the future. Therefore, it is imperative to examine new ways of
identifying attacks on IoT devices in a timely and efficient manner, and to enable
notification and alarm submission in critical attacks. In other words, it is essential to
propose an Intrusion Detection System (IDS) for IoT devices. Such a system must be able
to receive, analyze and process a large number of records in real time. Also, it must
immediately notify security experts of attacks in progress in order to give them more
reaction time to mitigate the attacks. However, the ability of traditional rule-based IDSs to
detect security attacks in the IoT domain is limited, as they cannot detect novel attacks.
Since current malware is not static, it is highly desirable to have the ability to detect
previously-unknown attacks.

With the aim of addressing this challenge, in the past we proposed a software
architecture that integrates Complex Event Processing (CEP) and Machine Learning (ML),
and has the ability to detect, and provide notification of, security attacks on IoT
devices in real time (Rolddn et al., 2020). This architecture permits the detection of not
only static but also dynamic security attacks in the IoT thanks to the use of both CEP
technology (Luckham, 2012; Boubeta-Puig, Ortiz & Medina-Bulo (2015)) and ML
techniques (Buczak ¢ Guven, 2016).

Once we had proved the viability of building this architecture by combining CEP
and ML, we observed a number of potential limitations that should be studied; in
particular, we were concerned with the fact that the architecture is necessarily linked to the
technologies of specific vendors, and also that other alternative implementations may
not achieve the desired performance in this field of application. The architecture we
proposed consists of the integration of ML with a CEP engine, and the ESB of two specific

Roldan-Gomez et al. (2021), Peerd Comput. Sci., DOl 10.7717/peerj-cs.787 2/35

http://dx.doi.org/10.7717/peerj-cs.787
https://peerj.com/computer-science/

PeerJ Computer Science

vendors, namely Esper (EsperTech, 2021) and MuleSoft (MuleSoft, 2021b). We thus
thought it might be advisable to be able to implement this architecture on other platforms;
for example, on the well-known WSO2 suite (WSO2, 2021c¢).

This gave rise to our first research question (RQ1): can a real-time data stream
processing architecture be implemented with the WSO2 ESB (WSO2, 2021d) together with
the WSO2 Siddhi CEP engine (WSO2, 2021b) and be integrated with ML techniques?
Assuming that it is feasible to implement the architecture with the CEP engine and the
ESB of other vendors, in particular with those offered by WSO2, we are necessarily
concerned about what impact this may have on the performance of the system, given that,
as we have explained above, a real-time response is required to stop security attacks on the
IoT.

This leads us to our second research question (RQ2): can a streaming data
processing architecture based on the integration of ML techniques with the WSO2 CEP
engine and ESB achieve or improve upon the performance of the previously proposed
architecture (Rolddn et al., 2020)? In addition, we consider the possibility that various
implementations of the integration architecture of CEP, ESB and ML may present a
more or less advantageous performance depending on the type of attack to be detected,
that is, the type of pattern necessary for each attack. Likewise, there may be variations in
how these systems support situations of stress.

This inevitably leads us to the third research question (RQ3): what kind of event
patterns are processed faster with WSO2/Siddhi and which ones with Mule/Esper, and
which of the two architectures is more suitable for supporting high-stress situations?

Once all this analysis has been carried out, we undoubtedly arrive at the question in
which the domain experts are most interested (RQ4): which of these architecture
implementations is the best to be deployed in an IoT security attack detection
environment? To be able to answer these research questions requires the implementation
of the architecture analogous to the one presented in Rolddn et al. (2020) and replacing the
technologies by the ones in the WSO?2 suite. It also requires the implementation of a
realistic security attack environment in an IoT network by carrying out various attacks
against the TCP, UDP and MQTT protocols, as well as analyzing the response of the
architectures in terms of performance and stress tests.

Therefore, the main aim of this paper is twofold: firstly, we aim to demonstrate that our
intelligent architecture, which integrates CEP and ML in order to detect IoT security
attacks in real time, can be implemented with different integration platforms such as
Mule and WSO2, different CEP engines such as Esper and Siddhi and different ML
algorithms such as linear regression (Montgomery, Peck ¢» Vining, 2021). Secondly we
aim to provide a comprehensive analysis of the performance and benefits of the
architecture depending on the different vendor technologies used for its implementation;
in particular, a comparison of the architecture implementation with Mule and Esper versus
WSO2 and Siddhi is included. In this way, we provide a comparative analysis that can
be very useful for the developer when choosing between one technology and another for
the implementation of the architecture, depending on the requirements of the specific
application domain and case study.

Roldan-Gomez et al. (2021), Peerd Comput. Sci., DOl 10.7717/peerj-cs.787 3/35

http://dx.doi.org/10.7717/peerj-cs.787
https://peerj.com/computer-science/

PeerJ Computer Science

In addition to the research questions and the objectives to be achieved, in this work we
rely on a series of assumptions that can be extracted from different works, These are:

o CEP works successfully in IoT environments. There are different works in which CEP
architectures are successfully deployed in IoT environments (Rolddn et al., 2020;
Corral-Plaza et al., 2020).

o CEP engines and ESBs from different vendors can be integrated with our architecture to
detect cybersecurity threats in real time: this architecture has already been deployed
with Mule (Rolddn et al., 2020) and there are works describing how to deploy WSO2 in
an IoT environment (Fremantle, 2015).

The rest of the paper is organized as follows. The Background section describes the
background to the paradigms and technologies used in this work. The Related work section
describes the most relevant works in the literature, and the Architecture for IoT security
section presents the architecture we propose for detecting attacks on IoT devices and
how the implementation with the WSO2 suite differs from that of Esper CEP and Mule
ESB. The Comparing architecture performance and stress section explains the comparison
of the performance and stress tests conducted for these architectures, which have been
implemented with Esper/Mule and WSO2. Then, the Results section presents the
experiments and results obtained, the Discussion section discuss and answer the four
research questions. Finally, the Conclusions and future work section contains our
conclusions and some lines for future research.

BACKGROUND
This section describes the background to security in the IoT, ML, SOA 2.0 and CEP.

Security in the Internet of things

The IoT and cyber-physical system devices are increasingly present in our lives. The
features offered by these devices are very attractive and they can be used for many different
purposes, among which, we can highlight domotics, the automation and control of
production processes, video surveillance and security, and medicine and health care.
The various uses that have been given to these devices and the ability to access them via the
Internet have attracted the interest of hackers. Unfortunately, the approach followed by
developers in the design of security measures for IoT devices has not been as successful
as their growth, and this is made evident by the number of cyber-attacks detected in

the first half of 2019, which surpassed a hundred million, which is seven times higher
than the previous year (Demeter, Preuss ¢ Shmelev, 2019). The vector used by attackers in
those attacks was mainly brute force, taking advantage of the weak default configuration of
the devices and gaining access to them with the default credentials (Demeter, Preuss ¢
Shmelev, 2019). These attacks took advantage of the vulnerabilities of the IoT devices to
infect them with malicious code and then manipulate them to achieve their goal. The
idea behind that malware focused on the creation of bots to be marketed for the carrying
out of Denial of Service (DoS) attacks. One of the most widely-spread (and also the first)

Roldan-Gomez et al. (2021), Peerd Comput. Sci., DOl 10.7717/peerj-cs.787 4/35

http://dx.doi.org/10.7717/peerj-cs.787
https://peerj.com/computer-science/

PeerJ Computer Science

pieces of malware specially designed for these devices was called Mirai, which is a botnet
that inserts malicious code into IoT devices so that they initiate a DoS attack against a
certain target. This caused shock and aroused the interest of hackers in these devices.

Another weakness of IoT and cyber-physical system devices is the use of unsafe network
services and protocols, due mainly to these devices having several constraints, such as a
small memory and a limited battery, which prevent developers from using a usual
security setup. These vulnerabilities have been exploited to carry out several attacks that
could have been prevented if the necessary measures had been taken. A lack of security
in the storage and transfer of data that allows the observation and analysis of the
information transmitted by these devices is another critical weakness in the security of IoT
devices. In this regard, Message Queuing Telemetry Transport (MQTT) is a very common
protocol in the IoT (OASIS, 2019). MQTT is a binary protocol that reduces the
overhead compared with other application layer protocols. It is a publish/subscribe-based
protocol in which a server (there can be more than one), known as the message broker,
manages the flow of information, which is organized as a hierarchy of topics. Each
client can be a subscriber and a publisher simultaneously. This protocol is similar to
MQTT-SN and has several weaknesses, such as allowing the sending of many MQTT
packets of a massive size, which overloads the broker. This attack causes a DoS in the
MQTT network. Furthermore, an MQTT subscription fuzzing attack could gain
information about the available topics because nodes are not authenticated and the
information is not ciphered. Moreover, an MQTT disc-wave attack can exploit a failing in
several implementations of the MQTT protocol. The specification of MQTT establishes
that each client has a unique ID, so if a new client tries to register this ID again, the broker
should reject it. However, many implementations allow a new client to connect with
a registered ID, causing the existing client with that ID to be ejected from the
previously-created connection.

Finally, a very common attack that can appear in an IoT-based network is scanning.
Attackers can perform this procedure to discover devices and open ports in the network.
By extending the scanning, attackers can cause a DoS in the network by sending large
numbers of reconnaissance packets and congesting the network. The attack generates
a large volume of traffic to try to saturate the network and so prevent users from
accessing the system. The attack can also take advantage of flaws in the code of an
application or part of the open-source code that uses the application. Two of the most
common attacks of this type are TCP and UDP flood attacks (Warburton, 2021). When the
connection is established through the TCP protocol, the client and the server exchange
flags to initiate, close or restart the connection, or indicate that the request is urgent; the
attacker sends several SYN flags asking to initiate a connection with the server, which is
blocked when there are too many ACK requests waiting and the server runs out of
resources to serve legitimate clients. A UDP port scan attack consists of sending a UDP
packet to multiple ports on the same destination system, then analyzing the response and
determining service and host availability. The attacker can determine whether the port is
open, closed or filtered through a firewall or packet filter.

Roldan-Gémez et al. (2021), Peerd Comput. Sci., DOI 10.7717/peerj-cs.787 5/35

http://dx.doi.org/10.7717/peerj-cs.787
https://peerj.com/computer-science/

PeerJ Computer Science

Machine learning
Machine Learning (ML) can be described as a set of techniques, technologies, algorithms
and methodologies used to predict, cluster and classify entities, which can be events,
objects, or anything else that can be described with attributes, also known as features, and
entity behaviors. Broadly speaking, the best way to obtain these predictions is to model the
behavior and attributes of these entities. There are many different algorithms to model
these entities using functions which are plotted with these algorithms, and datasets of
entities. The behavior, features and context of each entity are different. Therefore, the best
algorithm does not exist, as each entity type has its correct algorithm or algorithms, if they
even exist. For this reason, it is necessary to analyze these entities and their contexts,
preprocess the datasets to allow them to be managed by these algorithms, and perform a
feature selection (if it is necessary) to discover the most descriptive set of features.
Sometimes, once the feature selection has been made, we can easily obtain the distribution
of the entities, which is very useful for choosing the algorithm in a more precise way.
There are different types of machine learning techniques and algorithms, which can be
classified as follows:

o Supervised learning. In this approach, the model is trained with labelled entities, i.e. the
model knows the type of each entity in the training dataset. Also, it is possible to find
regression techniques that aim to predict a numeric value.

e Unsupervised learning. This set of techniques does not require labelled entities, so the
model learns how to group or classify them with similarity measures.

e Reinforcement learning. This kind of ML uses a prize/penalty approach. When our
model performs a correct action, we can provide it with good feedback. When it fails,
then it receives a penalty.

In this paper, we have used linear regression (Montgomery, Peck & Vining, 2021)
because our dataset has a linear distribution. We would like to highlight that our approach
can be adapted to other mathematical models, if needed.

Event-driven service-oriented architectures

Service-Oriented Architecture (SOA) is a paradigm for the design and implementation
of loosely-coupled distributed system architectures whose implementation is
fundamentally based on services. SOA services offer a well-defined interface in accordance
with standards and facilitate communications between the service provider and the
consumer in a decoupled way by using standard protocols. Thus, these architectures
provide easy interoperability between third party systems in a flexible way, and therefore
facilitate system maintenance and evolution when changes are required (Papazoglou,
2012).

ED-SOA, or SOA 2.0, has evolved from the traditional SOA. The distinguishing feature
of SOA 2.0 is that it facilitates communication between users, applications and services
through events, instead of using remote procedure calls (Luckham, 2012). With the growth
of service components and processes, and the inclusion of events in event-driven

Roldan-Gomez et al. (2021), Peerd Comput. Sci., DOl 10.7717/peerj-cs.787 6/35

http://dx.doi.org/10.7717/peerj-cs.787
https://peerj.com/computer-science/

PeerJ Computer Science

service-oriented applications, a new infrastructure is required to support the decoupled
communications and to maintain applications flexibly. These requirements are fulfilled by
an ESB, which permits interoperability among several communication protocols and
heterogeneous data sources and targets (Papazoglou, 2012). In this way, an ESB provides
and supports interoperability among diverse applications and components through
standard interfaces and messaging protocols, also reinforcing the reliability of the
communication as well as ensuring their scalability. There are several ESBs available, and
in this paper we have selected two well-known ones for their evaluation, namely Mule and
WSO2.

The Anypoint platform offers support for the design, implementation and management
of APIs and integration (MuleSoft, 2021a). It includes Mule (MuleSoft, 2021b), an
integration and ESB platform that provides assistance to developers in interconnecting
applications, and provides support for various transport protocols, as well as for the
transformation of different data formats. It delivers message routing as well as IoT and
cloud integration. In addition, it provides a graphical interface for the development of
business-to-business integration applications.

WSO?2 is an open-source decentralized approach which provides support for building
decoupled digital products that are ready to market, with a main focus on APIs and
microservices, and a wide range of complementary products and solutions (WSO2, 2021c).
WSO2 offers WSO2 Enterprise Integrator, an integration platform which consists of a
centralized integration ESB with capabilities for data, process and business-to-business
integration. WSO2 ESB (WSO2, 2021d) provides support for multiple transport protocols,
data formats and flow integration, as well as IoT and cloud service integration.

The product also includes an analysis system for comprehensive monitoring.

As we can see, both ESBs provide similar features and can be used in conjunction with

their integration platform with many plugins and solutions for further functionalities, such

as stream and event processing.

Complex event processing

Despite all the advantages of SOA 2.0 mentioned in the previous subsection, this type
of architecture requires the use of an additional technology that makes it possible to
analyze and correlate the vast amounts of data that are present in the field of the IoT in real
time. CEP (Luckham, 2012) fulfills this functionality appropriately as it is a technology
that allows the analysis and correlation of heterogeneous data streams in real time in
order to detect situations of interest in the domain in question. In particular, the software
that is capable of analyzing the data in real time is known as the CEP engine. In order to
detect situations of interest, a series of event patterns are defined in the CEP engine
(Valero et al., 2021). These patterns represent the conditions that allow us to detect that
such a situation has occurred. These rules are applied to the engine’s incoming data, which
are known as simple events, while the situations of interest detected by the pattern are
named complex events. Thus, with CEP we can improve and speed up the decision-making
process (Boubeta-Puig, Ortiz & Medina-Bulo, 2015; Benito-Parejo, Merayo ¢ Niifiez
(2020); Corral-Plaza et al., 2021).

Roldan-Gomez et al. (2021), Peerd Comput. Sci., DOl 10.7717/peerj-cs.787 7/35

http://dx.doi.org/10.7717/peerj-cs.787
https://peerj.com/computer-science/

PeerJ Computer Science

There are several CEP engines available, and in this paper we have selected two well-
known ones to be evaluated, namely Esper and WSO2 CEP.

Esper (EsperTech, 2021) is an open-source Java-based software engine for CEP,
which can quickly process and analyze large volumes of incoming IoT data. Esper comes
with the Esper Event Processing Language (EPL), which extends the SQL standard and
permits the precise definition of the complex event patterns to be detected. The Esper
compiler compiles EPL into byte code in a JAR file for its deployment, and at runtime this
byte code is loaded and executed. Esper performs real-time streaming data processing,
using parallelization and multithreading when necessary, and it is highly scalable. In
addition, it provides the option of implementing distributed stream processing over several
machines as well as horizontal scalability, should it be necessary. According to its
documentation, Esper 8.1.0 can process around 7.1 million events per second (EsperTech,
2019).

WSO2 CEP is provided within the WSO2 Stream Processor. WSO2 CEP is an open-
source CEP engine that facilitates the detection and correlation of events in real time, as
well as the notification of alerts, counting in addition with the support of enriched
dashboard tools for monitoring. It can be deployed in standalone or distributed modes,
and is highly scalable. It uses a streaming processing engine with memory optimization,
being able to find patterns of events in real time in milliseconds. According to its
specification, a single WSO2 CEP node can handle more than 100 K events per second on a
regular 4-core machine with 4 GB of RAM and several million events within the JVM
(WSO2, 2021c). The cornerstone of the WSO2 CEP is Siddhi (WSO2, 2021b). It uses a
language similar to SQL that allows complex queries involving time windows, as well as
pattern and sequence detection. In addition, CEP queries can be changed at runtime
through the use of templates.

ESB has been used in our system as a tool for transport and information management.
This use is quite simple to implement but if the parameters are not specified properly, it
could cause problems.

RELATED WORK

There is an interesting comparison between Mule, WSO2 and Talend conducted by Gérski
¢ Pietrasik (2017). Note that Talend is beyond the scope of this work. The authors
implemented seven different use cases and tested them with 5, 20 and 50 users
simultaneously. Moreover, their work provides measurements of throughput, standard
deviation and CPU usage for each experiment, and their results are closely aligned
with ours, i.e., WSO2 is always faster except when the output message is enormous
(221,000 bytes of output message in this case). This is not a problem for our proposal
because an IDS does not need big output messages. Moreover, WSO2 obtains a better
throughput, whereas the CPU usage is similar in both cases. On the other hand, Mule
provides a lower standard deviation, i.e., Mule is more constant than WSO2 when
processing different types of events.

Bamhdi’s work (Bamhdi, 2021) is also interesting. In contrast to our work, his paper
does not show an active performance comparison between WSO2 and Mule, but instead

Roldan-Gomez et al. (2021), Peerd Comput. Sci., DOl 10.7717/peerj-cs.787 8/35

http://dx.doi.org/10.7717/peerj-cs.787
https://peerj.com/computer-science/

PeerJ Computer Science

provides a feature comparison between four ESB platforms (WSO2 and Mule are included
among them). Although Bamhdi’s work is focused on comparing open source platforms
against proprietary ones, it allows us to compare specific features of Mule and WSO2.
This comparison, which analyzes 15 features, shows that WSO2 supports the 15 listed
capabilities, whereas Mule supports. The only feature which Mule cannot provide is web
migration from 5.0 to 6.0; note that WSO?2 is the only one that satisfies this feature.

Dayarathna & Perera (2018) compare WSO2 with other ESBs, but Mule is not
considered in their work, which provides a brief feature comparison between the Esper
(basic version) and Siddhi CEP engines. According to the authors, each language provided
by a CEP engine has its pros and cons. On the one hand, Esper (basic version)
provides nested queries and debugging support, while Siddhi registered a higher
performance than Esper: 8.55 million events/second versus 500,000 events/second.

Another work which is focused on CEP engines is that of Giatrakos et al. (2020).

It does not directly compare WSO2 against Mule or Siddhi against Esper, but instead
describes different CEP paradigms. In particular, it explains different selection policies,
consumption policies and windows. Moreover, the paper describes the scalability and
parallelization of several CEP engines. Although it is quite different from our work, it can
be useful in order to understand our work and learn about other CEP engines.

Freire, Frantz ¢ Roos-Frantz (2019) adopt a different approach in which they do not
conduct performance experiments directly, but experts enumerate the features of different
ESBs. These features are grouped into three dimensions: message processing, hotspot
detection and fairness execution. Additionally, Freire et al.’s work defines two types of
features: subjective and objective. The authors assign values for each feature, which allows
them to obtain a score for each ESB. According to their paper, Mule should be faster than
WSO2, but the problem is that this is not demonstrated through experiments. This
approach is useful because it allows the measuring of different ESB platforms without
implementing experiments; however, it would have been more useful if they had carried
out experiments to support their results.

Our paper provides a real performance comparison between Mule and WSO2, following
a similar methodology to the one proposed in the papers mentioned, i.e., executing
and deploying the proposed platforms under equal conditions and measuring events in
relation to time. More specifically, we have analyzed different pattern types, namely
time-window-based patterns and prediction patterns. The latter are a novelty with respect
to other works, as each network event is compared with a prediction event, and this acts as
an anomaly detector.

ARCHITECTURE FOR IOT SECURITY

This section describes our proposed SOA 2.0 architecture, which integrates CEP and ML
paradigms in order to detect attacks on IoT devices. Then, two implementations of

this architecture, one using Mule and the other WSO2, are presented with the aim of
comparing them under the same conditions in order to find the strengths and benefits of
each, which is the novelty and contribution of this research.

Roldan-Gomez et al. (2021), Peerd Comput. Sci., DOl 10.7717/peerj-cs.787 9/35

http://dx.doi.org/10.7717/peerj-cs.787
https://peerj.com/computer-science/

PeerJ Computer Science

@ DATA SOURCES

SR

loT network Sensor raw data] MQTT broker

l
O

Pre-trained model

Q. Sensor raw data Data preprocessing Preprocessed Network event
O_O.; (network traffic) (network data) network data genefation
=
MQTT endpoint
Inbound
Data sources Sensor raw data Data preprocessing Preprogessed Network events
(MQTT broker) (training) (training data) training data

Complex events Decision-making
process

CEP ¢ngine

Data sources
(Pre-trained model)

Only when a
pretrained modelis | Trained model/ | Prediction event
used Pretrained model | generation

Figure 1 Generic architecture to detect attacks on IoT devices.
Full-size K&] DOT: 10.7717/peerj-cs.787/fig-1

Architecture proposal

Our proposed architecture for detecting attacks on IoT devices is described below. This
architecture, which is an improved version of the architecture we presented in Rolddn et al.
(2020), is composed of three different parts.

The first module of the architecture, the data sources, consists of the data obtained
from the network and the pre-trained model, if available. Otherwise, the model would have
to be trained. As shown in Fig. 1, this module may be detached from the rest of the
architecture, because it can be replaced by any computer network with an MQTT broker as
collector. However, we consider it useful to analyze the whole system to understand its
behavior. Note that in this new version of our architecture, an MQTT broker can be
used with different topic numbers, with the aim of managing data grouped by type.
Additionally, this new version permits the use of pre-trained models as data sources, which
allows us to migrate our model from our architecture to other deployments. In addition,
pre-trained models provide greater flexibility because they allow training the model
outside (or inside) our deployed architecture.

The second module of the architecture, which is in fact the main module, receives raw
network data and, optionally, a pre-trained model. This module is responsible for making

Roldan-Goémez et al. (2021), PeerJ Comput. Sci., DOl 10.7717/peerj-cs.787 10/35

http://dx.doi.org/10.7717/peerj-cs.787/fig-1
http://dx.doi.org/10.7717/peerj-cs.787
https://peerj.com/computer-science/

PeerJ Computer Science

decisions on the basis of the network data analyzed in real time. This new version of our
architecture is more flexible since different CEP engines can be used according to the user’s
needs.

At this point, the pipeline of the second module should be explained in detail. Through
an MQTT inbound endpoint, the raw network data produced by data sources can reach
the ESB. These data are preprocessed to make them consumable for the network event
generator. The event generator provides network events which can be received and
processed in real time by the CEP engine. Moreover, our architecture needs a trained
model to predict the network event values. In particular, this model can be used to
predict the type of network packet via a predicted value and a threshold, which is
computed using the training data. In this case, our model has been built using a linear
regression, and is used to predict values and a threshold from a key feature, or features,
which is the packet length in our case. These features will vary with each case.

The last module is composed of data sinks which receive the notifications about the
decision-making process conducted by the second module. Databases, event systems,
emails, logs, or any other system required by end users to receive such notifications are
examples of data sinks. Due to its simplicity, an explanatory diagram is not included.

We would like to point out that our architecture allows us to fit the model with raw
sensor data; this traffic should be isolated and without any security attacks. There are
two ways to obtain prediction patterns: the first is to set a pre-trained model, while the
second is to train the model with the isolated network traffic. Regardless of the method
which is selected, the architecture uses this model to predict the expected value of each
incoming network packet. This prediction is used to create a prediction event which is
compared with its corresponding network event. In this way, our architecture is able to
obtain patterns which can detect anomalous packets by using the real value, the predicted
value and a calculated threshold, since the absolute value of the subtraction of the real
value and the predicted value must be smaller than the threshold; otherwise, the packet is
anomalous.

Equation (1) describes our predictor in a formal way, where the number 1 means that
the network packet belongs to the category used to train the model and obtain the ERROR.

1 if (abs(real Value — predicted Value) < ERROR)

flo) = 0 if (abs(real Value — predicted Value) > ERROR) M

It is important to note that we can fit the model with more attacks; for example, if
we have traffic from a Do§ attack, we can refit our model to detect this attack. The best way
to generate patterns is to attack the architecture or obtain traffic from attacks. As
mentioned above, we have improved the architecture to accept pre-trained models.

An initial deployment of the architecture could be composed of a few patterns that can
be proposed and designed by the domain expert, and the anomaly detector, which uses
legitimate traffic. When an anomalous pattern is triggered, anomalous packets can be used

Roldan-Gomez et al. (2021), Peerd Comput. Sci., DOl 10.7717/peerj-cs.787 11/35

http://dx.doi.org/10.7717/peerj-cs.787
https://peerj.com/computer-science/

PeerJ Computer Science

DataReceptionAndManagement

@——0

JSONToEven Send Event

(Streaming) t to Esper
Transformer Engine
Error
handling

ComplexEventReceptionAndDecisionMaking

E—®—®)

ComplexEve Object to Expression
nt JSON
Consumer
Error
handling

EventPatternAdditionToEsper

&—@—0

New EPL File to String Add Event

EventPattern Pattern to
S Esper
Engine
Error
handling

Choice Exception Strategy

Syntax Error in EventPattern Code

(&)

Incorrect
EventPattern
Code

x (m)

Event ComplexEve
Pattern nt File
Name
Variable

Figure 2 Screenshot of the implemented Mule-based architecture.

Full-size K&] DOTI: 10.7717/peerj-cs.787/fig-2

to generate a new pattern to detect this kind of anomaly again. This means that our
architecture can improve and gradually become more accurate over time.

Architecture implementation with Mule

In this subsection we explain how our architecture for IoT security has been implemented

by using the Mule ESB together with the Esper CEP engine.

The Mule-based architecture is composed of three data flows: DataReception
AndManagement, ComplexEventReceptionAndDecisionMaking and EventPattern

AdditionToEsper (see Fig. 2).

Roldan-Gomez et al. (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.787

http://dx.doi.org/10.7717/peerj-cs.787/fig-2
http://dx.doi.org/10.7717/peerj-cs.787
https://peerj.com/computer-science/

PeerJ Computer Science

_>]./—\-. —

maqtt

NetworkPredic..

ooo
Ban

query

:}o/’ﬂ[—)

eatureAnomaly log

=>./"“~o[—)

QTT BigMsg ... log

e = [

MQTT_Disconn... MQTT _Disconn... log

[—

log

|<—-»|0/—\‘0 -Q.o/’—\‘oz}

rc MQTT_1Im ... Src_MQTT 1m ... Src_ MQTT_1m_...

eatureAnoma

Figure 3 Screenshot of the implemented WSO2-based architecture.

Full-size Kal DOL: 10.7717/peerj-cs.787/fig-3

The DataReceptionAndManagement flow is responsible for receiving data from IoT data
sources, transforming them into an event format and then sending them to the Esper
CEP engine. Specifically, this flow is implemented with an MQTT inbound endpoint in
which a topic is defined to receive the data obtained from data sources. Then, a Java
transformer allows the transformation of the received JSON data into Java Map events,
which are sent to an Esper CEP engine through a customized message component.

The ComplexEventReceptionAndDecisionMaking flow receives the complex events that
are automatically generated by the CEP engine upon detection of previously deployed
patterns, and transforms these complex events into JSON format. These are then saved in
log files, which are a type of data sink for the architecture.

Finally, the EventPatternAdditionToEsper flow allows the runtime deployment of new
event patterns in the CEP engine. To this end, a file input endpoint frequently checks
whether there is a new file with an EPL extension, and if there is the event pattern code
contained in this file is transformed into a string, which is then deployed in the Esper CEP

engine.

Architecture implementation with WS02

Figure 3 depicts our architecture for IoT security that is implemented with the WSO2 ESB.
Unlike the implementation of the Mule-based architecture, which was integrated with
the external Esper CEP engine, the implementation of the WSO2-based architecture does
not require integration with an external CEP engine since WSO2 provides the Siddhi CEP
engine by default.

As shown in Fig. 3, the architecture receives the data obtained from data sources
(NetworkPacket and NetworkPrediction) by using an MQTT broker with two topics. Then,
these data are matched through the different event patterns (queries) implemented with
SiddhiQL and previously deployed in the Siddhi CEP engine. When a complex event is
automatically created upon a pattern detection, it is saved in a log file, which is a data sink
for the architecture.

Roldan-Gomez et al. (2021), Peerd Comput. Sci., DOl 10.7717/peerj-cs.787 13/35

http://dx.doi.org/10.7717/peerj-cs.787/fig-3
http://dx.doi.org/10.7717/peerj-cs.787
https://peerj.com/computer-science/

PeerJ Computer Science

COMPARING ARCHITECTURE PERFORMANCE AND
STRESS

This section presents our comparison of the performance and stress tests conducted for the
two architectures implemented with Mule and WSO2.

Proposed approach
Before analyzing each architecture component in depth, a schematic overview of the steps
followed to address this comparison are explained below:

e First, a virtualized MQTT network, in which clients publish periodically, is deployed.

e Then, packets are collected from that network to define a normal scenario, in which the
system is not under attack.

o Afterwards, a malicious client is introduced into the network and this client launches the
attacks. Packets that generate attacks are collected to perform the experiments.

e A number of these packets are preprocessed and used to train the linear regression
model. The mean square error for each category to be predicted with the regressor is also
extracted.

o The values of the packets that were not used for training are predicted and saved. They
will be used to perform the experiments.

e Then, event patterns are defined. To perform a complete comparison, we create a
pattern per attack that will be able to detect the attack, as a domain expert would do,
except for DoS, which is detected with a regressor because in practice it is difficult to
establish a specific pattern for this type of attack. In addition, we create the
FeatureAnomaly pattern, which is able to detect anomalies using the linear regressor.
This pattern is used to detect unknown attacks, such as Subfuzzing, DoS or Discwave.
And then there is the ProtocolAnomaly pattern, which detects any unknown protocol
that should not be present in the network.

e Both platforms, Mule and WSO2, are deployed with their corresponding patterns.

e The simulator is used to perform the experiments (see next subsection) in such a way
that these experiments are reproducible.

e Finally, the metrics of the experiments are extracted for comparison.

Simulator

To ensure the reproducibility of the experiments, we implemented an MQTT network
simulator. We chose an MQTT simulator because, as mentioned above, it is a widely-used
protocol in the IoT paradigm. Moreover, MQTT networks, by the nature of the
protocol, are usually centralized because the broker acts as a centralizer, so that all MQTT
packets pass through it. This makes it very easy to set up a network-based IDS in the
broker, because there is no need to redirect traffic to another device. This simulator is
capable of sending network packets to an MQTT broker, taking as data source different
CSV files which contain real network traffic that was previously generated and stored.
This is essential because it allows us to use real traffic and to combine the reproducibility of

Roldan-Gomez et al. (2021), Peerd Comput. Sci., DOl 10.7717/peerj-cs.787 14/35

http://dx.doi.org/10.7717/peerj-cs.787
https://peerj.com/computer-science/

PeerJ Computer Science

MQTT NETWORK SIMULATOR

. . csv Delta/Packets
csv csv
Legit trafiic
Discwave Subfuzzing H
';' Our architecture
DoS TCP-SYN
> Delta/Packets
CEP+ML
Atack
UDP scan XMAS scan
CSV Delta/Packets
Mirai First stage .
Legit traffic

Topic sensor 2

Topic sensor 1 Topic sensorn

_ broker
D>

Attacks

N)
(b) MQTT network diagram

Figure 4 MQTT network (A) and MQTT simulator (B).
Full-size K&l DOT: 10.7717/peerj-cs.787/fig-4

the experiments with data that have been generated in a real MQTT network.
The main advantages of our simulator are that it can reliably send such network packets
while taking the delay between packets into account, and it allows us to generate several
scenarios to test both the proposed architectures.

Figure 4A outlines this MQTT network simulator. Note that when we wish to generate
heavy workloads, we can use the sum of deltas from the packets or the number of packets
as the threshold which is used to stop the generation of packets.

Roldan-Gomez et al. (2021), Peerd Comput. Sci., DOI 10.7717/peerj-cs.787 B 4000 15/35

http://dx.doi.org/10.7717/peerj-cs.787/fig-4
http://dx.doi.org/10.7717/peerj-cs.787
https://peerj.com/computer-science/

PeerJ Computer Science

The behavior of the simulator is quite simple. First, it reads the CSV files, which first
allows us to avoid the delay that is due to reading each row of the CSV while we are sending
them.

When the simulator has read both CSV files (legitimate traffic, and the specific attack), it
starts to send packets with MQTT, these being sent using JSON format. The number of
packets is defined as described above.

Figure 4B shows an MQTT network diagram where there are a certain number of
legitimate devices, 4 in our case, and 1 malicious device which attacks the network in
different ways. This network is similar to the network used to obtain the network traffic.

Event patterns
In our previous work (Rolddn et al., 2020), we defined and implemented twelve event
patterns in Esper EPL for detecting the following security attacks:

e TCP/SYN port scan: the malicious device sends a round of 10 or more TCP packets with
the SYN flag to three or more different ports of the broker in 1 s. If the port is open, the
broker sends a SYN/ACK packet, otherwise it sends an RST packet. The TCP_SYN
pattern implements this attack by making use of an intermediate pattern called
SrcDst_TCP_1s_Batch.

e UDP port scan: the malicious device sends a round of 10 or more empty UDP packets to
three or more different ports of the broker in 5 s. If the broker sends any response,
then the port is open, but if the broker does not send a response, the port could be open.
If the broker sends ICMP unreachable, the port should be closed. And if it sends a
different error (not unreachable), the port should be filtered. The UDP_Port_Scan
pattern implements this attack by making use of an intermediate pattern called
SrcDst_UDP_5s_Batch.

e Xmas port scan: the malicious device sends a round of 10 or more TCP packets with
PSH, FIN and URG flags to 2 or more different ports of the broker in 1 s. If the
broker does not respond, the port should be open or filtered. If the broker sends an RST
packet, it should be closed. If the broker sends an ICMP unreachable error, it should be
filtered. The Xmas_Scan pattern implements this attack by making use of an
intermediate pattern called SrcDst_Xmas_1s_Batch.

e TELNET Mirai: the malicious device simulates the first stage of Mirai, sending connect
packets with different tuples (username/password). The pattern can be detected if the
attacker sends more than 5 TELNET packets in 1 min. The TELNET Mirai pattern
implements this attack by making use of an intermediate pattern called
Src_TELNET Im_Batch.

o MQTT disconnect wave: the malicious device sends many MQTT packets with the
connect command. As sending more than 1 connect command is strange, the pattern can
be detected if the broker receives more than 5 MQTT connect commands in 1 min from a
single IP address. The MQTT_Disconnect_Wave pattern implements this attack by
making use of an intermediate pattern called Src_ MQTT_Im_Batch.

Roldan-Gémez et al. (2021), Peerd Comput. Sci., DOI 10.7717/peerj-cs.787 16/35

http://dx.doi.org/10.7717/peerj-cs.787
https://peerj.com/computer-science/

PeerJ Computer Science

o MQTT subscription fuzzing: the malicious device tries to subscribe to all topics, so the
pattern can be detected if an MQTT client subscribes to more than 20 topics in 5 min.
The MQTT _Subscription_Fuzzing pattern implements this attack by making use of
an intermediate pattern called Src. MQTT_5m_Batch.

In the present work, we have used these twelve event patterns implemented in Esper
EPL to test the Mule-based architecture. Moreover, we have implemented analogous
patterns but in SiddhiQL to test the WSO2-based architecture.

Additionally, in this work we have split the Anomaly pattern, proposed in Rolddn et al.
(2020), into 2 new patterns: ProtocolAnomaly and FeatureAnomaly. The first pattern
allows us to detect protocols which are not expected because this may suggest that the
system is under attack. The second pattern allows us to detect anomalous packets in
expected protocols. Thus this pattern split allows us to classify anomalies more accurately.

Listing 1 shows the FeatureAnomaly pattern implemented in Esper EPL, while Listing 2
contains the implementation of the same pattern but using the SiddhiQL language.

This pattern implements Eq. (1) and allows us to detect unmodeled attacks, such as the
DoS with big messages. Moreover, it will detect other attacks, such as disconnect wave or
subscription fuzzing, even if we do not define specific patterns to detect them. The
ProtocolAnomaly pattern implemented in Esper EPL is shown in Listing 3, while Listing 4
contains the same pattern using the SiddhiQL language.

We have implemented two types of event patterns to detect such attacks. The first
type uses a time batch window (SrcDst_TCP_1s_Batch, SrcDst_UDP_5s_Batch,
SrcDst_Xmas_1s_Batch, Src. TELNET 1m_Batch, Src. MQTT_1m_Batch and
Src._ MQTT_5m_Batch) to trigger a complex event when a condition is met. The second
type of pattern allows the comparison of messages coming from two broker topics, one
that manages prediction and threshold data while the other topic manages real packet
information. In this case, the pattern is activated when the difference between the
prediction and the real values is higher than a certain threshold; this is useful because we
can compare the performance for different attacks but also with different types of patterns.

Machine learning model

Selecting a machine learning model is a very important step in effectively deploying the
architecture. Although this paper does not focus on ML processes, it is important to give a
brief explanation of the model we have used.

The first step in defining our ML model was to select the most important features.
For this purpose we applied the criteria proposed by KDD99, which are adaptable
to our MQTT dataset. In addition, we also added features obtained from MQTT.

Once the features have been selected, they are normalized and binarized when
necessary. Then we used Extremely Randomized Trees with our dataset to arrange the
features by importance. After that, we selected the most important features (Geurts, Ernst
& Wehenkel, 2006).

Table 1 show the importance of the binarized features. One or several features are
chosen to be the key feature/s, and these are predicted with the rest of the features

Roldan-Gomez et al. (2021), Peerd Comput. Sci., DOl 10.7717/peerj-cs.787 17/35

http://dx.doi.org/10.7717/peerj-cs.787
https://peerj.com/computer-science/

PeerJ Computer Science

Listing 1 FeatureAnomaly pattern implemented in Esper EPL.

@Name (“FeatureAnomaly”)

Q@Tag(name=“domainName”, value = “IoTSecurityAttacks”)

insert into FeatureAnomaly select a2 . id as id,

current time stamp() as time stamp, al . destIp as destIp

from pattern[((every al = NetworkPacket((al . protocol = ‘MQTT or
al . protocol = ‘TCP’)))

-> a2 = NetworkPrediction((a2 . id=al . id and

(a2 . packetLengthPredict < (al . packetLength

- a2 . packetLengthPredictSquaredError) or a2 . packetLengthPredict >
(al . packetLength

+ a2 . packetLengthPredictSquaredError)))))]

Listing 2 FeatureAnomaly pattern implemented in SiddhiQL.
@info(name= “FeatureAnomaly”)

from ((every al = NetworkPacket[(al . protocol == ‘MQTT’
or al . protocol == ‘TCP’)]) —> a2

= NetworkPrediction[(a2 . i d==al . id and

(a2 . packetLengthPredict < (al . packetLength

— a2 . packetLengthPredictSquaredError) or

a2 . packetLengthPredict > (al . packetLength

+ a2 . packetLengthPredictSquaredError)))])

select a2 . id a s id,

time : timestampInMilliseconds() as time stamp,

al . destIp as destIp

insert into FeatureAnomaly;

obtained. Furthermore, this prediction will be compared with the real value for each event,
with the error threshold being defined using the mean square error obtained when we train
the model.

By using pre-processed features, we can select the model. In this case, our data features
fit a linear distribution very well. Therefore, we chose a linear regression to predict these
key features. This model can change depending on the whole IoT network.

Tests

By implementing a network simulator, we were able to measure the performance of our
proposed architecture implemented with WSO2 and Mule, and compare them. We
designed 14 experiments with seven different attacks against MQTT, and each test was
composed of legitimate traffic and one specific attack. Specifically, we carried out seven

Roldan-Gomez et al. (2021), Peerd Comput. Sci., DOl 10.7717/peerj-cs.787 18/35

http://dx.doi.org/10.7717/peerj-cs.787
https://peerj.com/computer-science/

PeerJ Computer Science

Listing 3 ProtocolAnomaly pattern implemented in Esper EPL.

@Name (“ProtocolAnomaly”)

0Tag (name="domainName”, value= “ToTSecurityAttacks”)
insert into ProtocolAnomaly

select al.id as id,

current_timestamp() as timestamp,

al.destIp as destIp

from pattern[(every al = NetworkPacket ((al.protocol != ‘TCP’ and
al.protocol != ‘UDP’

and al.protocol != ‘MQTT and

al.protocol != ‘ARP’ and al.protocol != DHCP’

and al.protocol != ‘MDNS and

al . protocol != ‘NTP’ and al.protocol != ICMP’

and al.protocol != ‘ICMPv6 and

al.protocol != DNS’ and al.protocol != IGMPv3’)))]

Listing 4 ProtocolAnomaly pattern implemented in SiddhiQL.

@info(name=“ProtocolAnomaly”)

from (every al = NetworkPacket[(al.protocol != ‘TCP’ and
al.protocol != ‘UDP’

and al.protocol != ‘MQTT and

al.protocol != ‘ARP’ and al.protocol != ‘DHCP’

and al.protocol != ‘MDNS’ and

al.protocol != ‘NTP’ and al.protocol != ‘ICMP’

and al.protocol != ‘ICMPv6 and

al.protocol != DNS’ and al.protocol != IGMPv3)])
select al.id as id,
time:timestampInMilliseconds() as timestamp,
al.destIp as destIp

insert into ProtocolAnomaly;

experiments (one per attack) which used the delay of each packet in order to simulate a
network realistically, and seven experiments without a delay, which allowed us to measure
the performance with heavy workloads. Thus, the proposed tests were as follows:

e TCP-SYN scan (with delay/without delay)
e UDP port scan (with delay/without delay)
o XMAS port scan (with delay/without delay)

Roldan-Gomez et al. (2021), Peerd Comput. Sci., DOl 10.7717/peerj-cs.787 19/35

http://dx.doi.org/10.7717/peerj-cs.787
https://peerj.com/computer-science/

PeerJ Computer Science

e Mirai first stage (with delay/without delay)
e MQTT disconnect wave (with delay/without delay)
e MQTT subscription fuzzing (with delay/without delay)

RESULTS

This section presents and discusses the experiments and the results obtained when
comparing the performance of our architecture implemented with WSO2 and Mule, as
well as the limitations of each implementation.

These experiments were carried out under similar conditions for the WSO2-based
architecture, composed of the WSO2 ESB and the WSO2 CEP engine, and the Mule-based
architecture that integrates Mule ESB with the Esper CEP engine. We would like to point
out that WSO2 provides some extra performance features such as multiworkers and
PMML models(WSO2, 2020, 2021a), which could enhance the architecture’s performance.
However, we did not integrate these features in our proposed architecture in order to
create similar conditions for both systems.

The results obtained for the two types of tests conducted in this work (performance and
stress tests) are discussed below. The implementation code can be accessed in the Rolddn-
Gomez et al. (2021) repository.

Performance tests

The results for the performance tests are presented in the following subsections.

Estimated computational complexity

Although it is difficult to give an exact figure for computational complexity because of the
internal operations performed by the CEP engines, we estimate the computational
complexity on the basis of the steps that we can calculate. Note that this estimation
assumes that the model and preprocessing steps are as mentioned. Obviously, this will
change if another model or steps are used during the preprocessing step.

To define the computational complexity, we consider the following variables: n, which
defines the number of packets, which F is the number of variables where each step is
applied (this value will be constant for each step); and v, which defines the different values
of each category and is used only for the binarization of categorical attributes. First, we
calculate the computational complexity of each step, then the total for the training stage,
and then the total at runtime.

The estimated computational complexities are as follows: min-max scaler O(2nF,), fill
empty values O(nF,), binarization of categorical attributes O(2nF;v), and training linear
regression model O(nF3 + F;). All these steps only have to be carried out once. In
addition: predict a value with the regressor and create n events O(Fsn). In summary, the
estimated computational complexity in training is as follows:

O(2nF, + nF, + 2nFsv + nF; + F;).

Roldan-Gomez et al. (2021), Peerd Comput. Sci., DOl 10.7717/peerj-cs.787 20/35

http://dx.doi.org/10.7717/peerj-cs.787
https://peerj.com/computer-science/

PeerJ Computer Science

Table 1 Feature importance.

Feature name Feature importance
Destination port (1883) 0.259
Calculated window size 0.240
Protocol (TCP) 0.122
Protocol (MQTT) 0.100
IP source (192.168.1.11) 0.092
Information (Publish message) 0.032
Source port (59662) 0.030
IP source (192.168.1.7) 0.029
Source port (62463) 0.027
Source port (52588) 0.016
Packet length 0.005

TCP-SYN Scan 5-mins scenario

a Mule TCP_SYN + .

2

>

- WS02 TCP_SYN * " *

Q

ot

W

% Mule SrcDst TCP_1s Batch M v v

el

n

‘e WSO02 SrcDst_TCP_1s_Batch * - *

2

QU

g Mule network packet -] L] - -
a

E

8 W502 network packet - L] - []

. . : : :
174000 175000 176000 177000 178000 179000 180000
timestamp (ms)

Figure 5 TCP_SYN attack comparison. Full-size K] DOT: 10.7717/peerj-cs.787/fig-5

And the estimated computational complexity at runtime is:

O(Fsn).

Since we do not know the exact inner workings of CEP engines, it is difficult to calculate
the remaining steps. That is why performance experiments, such as those carried out in
this paper, are so important.

TCP SYN scan

The first experiment performed was composed of legitimate traffic (a simple MQTT
network) and a TCP SYN scan. We used our architecture as an IDS to detect attacks or
scans.

Figure 5 shows the results obtained for the TCP-SYN scan test executed for 5 min on
both the WSO2-based architecture and the Mule-based one. The X-axis represents the
execution time in milliseconds, while the Y-axis shows the different complex event types
detected in real time during the execution of the test.

Roldan-Goémez et al. (2021), PeerJ Comput. Sci., DOl 10.7717/peerj-cs.787 21/35

http://dx.doi.org/10.7717/peerj-cs.787/fig-5
http://dx.doi.org/10.7717/peerj-cs.787
https://peerj.com/computer-science/

PeerJ Computer Science

UDP Scan 5-mins scenario

Mule UDP_Port_Scan 1 + +
WS02 UDP_Port_Scan * * ®
Mule SrcDst_UDP_5s_Batch ¥ v v
WS02 SrcDst_UDP_5s_Batch A - A

Mule network packet q

complex events detected by type

WSO2rnetworkpacket {1 ® @ @ @ @ & & @ & & & & & & & & &0 & &

. T T : . T :
75000 77500 BOOOO 82500 85000 87500 90000 92500 95000
timestamp (ms)

Figure 6 UDP scan attack comparison. Full-size K&l DOT: 10.7717/peerj-cs.787/fig-6

As we can see, the WSO2 implementation triggers the TCP_SYN complex event first.
Therefore, we can conclude that the WSO2 achieves an earlier detection than the
Mule-based one. In this case, TCP_SYN starts sooner in the WSO2 scenario, but this delay
is shorter than the detection time difference.

UDP port scan

The UDP scan is slower than the TCP one, and it is useful to study the performance in a
different way. This experiment allowed us to compare the performance when the attack
has a low packet sending ratio. As in the case of the TCP SYN Scan experiment, there
was normal traffic and a UDP port scan.

Figure 6 shows the results obtained for this UDP port scan experiment. In conclusion,
we can say that WSO2 was faster than Mule again. Mule generated a null window, not
being able to detect the third UDP_Port_Scan complex event. It is important to note that
the difference is smaller than in Fig. 5; this may be because the attacks, in both cases,
started at the same time.

Xmas port scan

This scan is not very common and shows how our architecture is able to detect more

unusual attacks. From the point of view of the experiment, it should be like the TCP_SYN

scan, as both have similar packet sending ratios and event generation characteristics.
Figure 7 shows that WSO2 was faster than Mule, even though the Xmas port scan attack

started sooner in the Mule scenario. This experiment is useful because it allowed us to

confirm the superiority of WSO2 when there is not a comparison between different events.

Mirai first stage

This scenario simulates the first stage of Mirai. This attack tries to connect with Telnet
using a username/password list. The main aim of this experiment was to check the
behavior of our system under common IoT attacks. Figure 8 shows a comparison of the
results for the Mirai scenario, executing it on the WSO2-based architecture and the
ESB-based one. Again, WSO2 detected the first complex event faster than Mule.

Roldan-Gomez et al. (2021), Peerd Comput. Sci., DOl 10.7717/peerj-cs.787 22/35

http://dx.doi.org/10.7717/peerj-cs.787/fig-6
http://dx.doi.org/10.7717/peerj-cs.787
https://peerj.com/computer-science/

PeerJ Computer Science

XMAS Scan 5-mins scenario

g Mule Xmas_Scan + + +

2

)

— WS502 Xmas_Scan * * * *

a

4

[=)

% Mule SrcDst_Xmas_1s Batch ¥ ¥ Y Y

o

%]

‘E WSO02 SrcDst_Xmas_1s _Batch A A A A

S

Qv

ﬁ Mule network packet]] a a |
g

8 WS02 network packet 1® = [(2] 2]

60000 61000 62000 63000 64000 65000 66000
timestamp (ms)

Figure 7 XMAS scan attack comparison. Full-size K&l DOT: 10.7717/peerj-cs.787/fig-7

Mirai 5-mins scenario

g Mule TELNET Mirai 1 -

2

=

g WS02 TELNET Mirai 1 B *
&

w

% Mule Src_TELNET 1m_Batch 1 ¥ v
o

w

£ WS02 Src_TELNET 1m_Batch 1 - -
2

@

é Mule network packet

=1

£

Q

(¥

WS02 network packet ﬁ

; T T : . y
100000 120000 140000 160000 180000 200000
timestamp (ms)

Figure 8 Telnet-Mirai attack comparison. Full-size K&l DOT: 10.7717/peerj-cs.787/fig-8

DoS big message
This scenario simulates a common DoS attack in which the attacker sends big messages
quickly to the broker.

This experiment is different to the other ones because time windows are not used.
Instead of time windows, each packet is matched with its prediction. As we mentioned
above, there are two different ways to detect attacks using our predictor. In this case,
the system trains the model with legitimate and isolated traffic, allowing us to detect

anomalous packets. Note that each packet which does not match with its prediction, and
whose difference exceeds the threshold, can be classified as anomalous. Additionally, we
could have fitted a model to detect each specific attack.

Figure 9 illustrates that, in this case, Mule was faster than WSO2, since WSO2 needed
more time to detect all the malicious packets. Therefore, we can conclude that Mule offers
better performance when we need to compare different events (network events and

prediction events in this case).

Roldan-Gomez et al. (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.787

23/35

http://dx.doi.org/10.7717/peerj-cs.787/fig-8
http://dx.doi.org/10.7717/peerj-cs.787/fig-7
http://dx.doi.org/10.7717/peerj-cs.787
https://peerj.com/computer-science/

PeerJ Computer Science

MQTT DOS 5-mins scenario

Mule FeatureAnomaly 4 A
WS02 FeatureAnomaly - -

VU2 e ok e ——

WS02 network packet ﬁ

00000 900000 1000000 1100000 1200000 1300000
timestamp (ms)

complex events detected by type

Figure 9 DoS big message attack comparison. Full-size E&] DOI: 10.7717/peerj-cs.787/fig-9

MQTT Discwave 5-mins scenario

Mule MQTT_Disconnect_Wave + + +
W502 MQTT_Disconnect_Wave * * * * *
Mule Src_MQTT_1m_Batch

WS02 Src_MQTT_1m_Batch B - B A s

Mule network packet

complex events detected by type

WSO02 network packet

0 50000 100000 150000 200000 250000 300000
timestamp (ms)

Figure 10 Discwave attack comparison (using time windows).
Full-size K&l DOT: 10.7717/peerj-cs.787/fig-10

MQTT disconnect wave
This scenario provides useful knowledge about both platforms. Here there are time
windows and an anomalous packet detector, which works by matching each packet with its
prediction, as we did in the DoS experiment. The advantage of this experiment is that it
allowed us to check the behavior of the whole proposal deployed with the predictor
working. Note that in a real scenario we would not use both methods (time windows and
prediction), but it was useful and appropriate to test the performance.
As we can conclude from Figs. 10 and 11, Mule again worked better with predictions (by
using two topics) than WSO2. On the other hand, WSO2 again detected the first complex
event earlier than Mule when using time windows.

Subscription fuzzing

In this scenario, we used both methods again (time windows and predictions), but this
attack is slower than the discwave one, which meant that the delay between packets
was longer than in the discwave attack. This experiment shows the behavior of our

Roldan-Gomez et al. (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.787

24/35

http://dx.doi.org/10.7717/peerj-cs.787/fig-9
http://dx.doi.org/10.7717/peerj-cs.787/fig-10
http://dx.doi.org/10.7717/peerj-cs.787
https://peerj.com/computer-science/

PeerJ Computer Science

MQTT Discwave 5-mins scenario

Mule FeatursAnomaly 1 -

W502 FeatureAnomaly

complex events detected by type

.|
Mule network packet 4 ——
I —

WS02 network packet

T T T T T T
0 100000 200000 300000 400000 500000
timestamp (ms)

Figure 11 Discwave attack comparison (using FeatureAnomaly pattern).
Full-size K&] DOT: 10.7717/peerj-cs.787/fig-11

Subfuzzing 5-mins scenario

2 Mule MOTT_Subscription_Fuzzing +

=

>

ﬁ WS02 MQTT_Subscription_Fuzzing - = B
@

=

w

% Mule Src_MQTT_Sm_Batch v

o

15

e WS02 Src_MQTT_Sm_Batch | o A
2

v

;() Mule network packet

=1

E

=]

¥

WS02 network packet —

250000 300000 350000 400000 450000 500000 550000 600000
timestamp (ms)

Figure 12 Subfuzzing attack comparison (using time windows).
Full-size K&l DOT: 10.7717/peerj-cs.787/fig-12

proposal when the system receives an attack with a lower packet sending ratio than DoS or
discwave.

Figures 12 and 13 show that there are two interesting facts that we can extract from this
experiment. The first is that WSO2 detected the second complex event very late when
using time windows. As it uses a 5-min window, the second time window was closed
after the attack finished. But the important thing is that, in this case, WSO2 and Mule
presented a similar performance with predictions. This is due to the long delay between
packets in this experiment. WSO?2 again registered the first detection sooner. It seems
that Mule was processing a heavy workload when we compared two different events, but
WSO2 provided a better brute performance when the system compared features/properties
in the same event.

Stress test
Additionally, we carried out 7 more experiments in which the network packets had no
delay. Although this is not a realistic case, it is very useful because it allows us to study the

Roldan-Goémez et al. (2021), PeerJ Comput. Sci., DOl 10.7717/peerj-cs.787 25/35

http://dx.doi.org/10.7717/peerj-cs.787/fig-11
http://dx.doi.org/10.7717/peerj-cs.787/fig-12
http://dx.doi.org/10.7717/peerj-cs.787
https://peerj.com/computer-science/

PeerJ Computer Science

Subfuzzing 5-mins scenario

Mule FeatureAnomaly

WS02 FeatureAnomaly L= S - A

Mule network packet

complex events detected by type

WS02 network packet -

T T T T T
0 100000 200000 300000 400000
timestamp (ms)

Figure 13 Subfuzzing attack comparison (using FeatureAnomaly pattern).
Full-size &al DOI: 10.7717/peerj-cs.787/fig-13

TCP-SYN without delay comparison

Mule simple events processing time

WS02 simple events processing time

Event type

Mule complex events processing time

WS02 complex events processing time

time(seconds)

Figure 14 TCP-SYN without delay comparison. Full-size K&l DOT: 10.7717/peerj-cs.787/fig-14

difference in performance between the two architecture implementations in greater
depth. The figures in this subsection compare the last simple event detected with the first
one, as well as the last complex event detected with the first one, measuring the time
differences between these events.

TCP-SYN without delay
For each attack mentioned above, we implemented a stress scenario.

In this case, we executed the TCP-SYN scan 100 times, which took about 1 min.

Figure 14 shows the difference between the last and the first simple events detected, as
well as that for the last and first complex events detected. Our goal was to discover the
processing speed difference between the platforms.

As we can see, WSO2 was faster at processing simple events and complex events than
Mule when there was a single broker topic, so this experiment confirms the results
obtained in the previous section. It seems that, regardless of the packet delay, WSO2 is
faster at processing simple events and complex events when there are no relationships
between them.

Roldan-Gomez et al. (2021), Peerd Comput. Sci., DOI 10.7717/peerj-cs.787 I [26/35

http://dx.doi.org/10.7717/peerj-cs.787/fig-13
http://dx.doi.org/10.7717/peerj-cs.787/fig-14
http://dx.doi.org/10.7717/peerj-cs.787
https://peerj.com/computer-science/

PeerJ Computer Science

UDP scan without delay comparison

Mule simple events processing time
& W502 simple events processing time
2
s
c
@
>
w

Mule complex events processing time

W502 complex events processing time

0 10 2 0 P 0
time({seconds)

Figure 15 UDP scan without delay comparison. Full-size K&l DOT: 10.7717/peerj-cs.787/fig-15

XMAS scan without delay comparison

Mule simple events processing time
& Ws02 simple events processing time
2
a
[
@
>
]

Mule compiex events processing time

WS02 complex events processing time

0 10 20 0 0 50 60 70
time(seconds)

Figure 16 XMAS Scan without delay comparison. Full-size &) DOTI: 10.7717/peerj-cs.787/fig-16

UDP scan without delay
In this case, the UDP scan was launched 100 times, which took about 37 s.

Figure 15 depicts a similar result to the TCP-SYN experiment: WSO2 was faster again. It
is interesting that the differences in the experiments without a delay between WSO2
and Mule are far bigger than in those with a delay; this is because these experiments

generate many more events than the experiments with a delay.

XMAS scan without delay
The XMAS scan was executed 100 times again, which took about 60 s.
As we can see in Fig. 16, the results are consistent with those we have observed above.

In this experiment, WSO2 was faster again.

Mirai first stage without delay
The first stage of Mirai was executed 100 times, which took about 48 s.
Figure 17 shows that WSO2 was faster again at processing simple events.

DoS big message without delay
The DoS scenario does not use time windows, instead it compares each packet with its
prediction. We executed the DoS experiment without delay once, which took about 20 s.

Roldan-Gémez et al. (2021), PeerJ Comput. Sci., DOl 10.7717/peerj-cs.787 I 27/35

http://dx.doi.org/10.7717/peerj-cs.787/fig-15
http://dx.doi.org/10.7717/peerj-cs.787/fig-16
http://dx.doi.org/10.7717/peerj-cs.787
https://peerj.com/computer-science/

PeerJ Computer Science

Mirai without delay comparison

Mule simple events processing time

Y WS02 simple events processing time
=
i
c
@
u>_, Mule complex events processing time

W502 complex events processing time Only 1 complex event

0 10 20 0 40 50 60 70 80
time(seconds)
Figure 17 Mirai first stage without delay comparison. Full-size K&l DOI: 10.7717/peerj-cs.787/fig-17
DoS without delay comparison
Mule simple events processing time

g WS02 simple events processing time
2
i
c
@
.3_', Mule complex events processing time

WS02 complex events processing time

time(seconds)

Figure 18 DoS without delay comparison. Full-size K&l DOT: 10.7717/peerj-cs.787/fig-18

The results are very interesting, as illustrated in Fig. 18. They show that Mule was faster
than WSO2 when there was an operation between 2 broker topics. The performance
difference between implementations was even bigger than in the experiments with one

type of simple event.

MQTT disconnect wave without delay
We executed the discwave attack for about 27 s, and used the FeatureAnomaly prediction

pattern to detect it.
Fig. 19 shows that Mule was faster again when we compared 2 different events. This
experiment had the highest workload, and therefore the difference between WSO2 and

Mule was even bigger than before.

MQTT subscription fuzzing without delay
This experiment consisted in running the subfuzzing attack for approximately 47 s.

As we can see in Fig. 20, Mule was much faster again, so we can conclude that WSO2
is only faster than Mule when there are no comparison operations between different
events.

In short, each CEP engine has different advantages. The Esper CEP engine integrated
with the Mule ESB is better when there are comparisons between different events, so

Roldan-Gomez et al. (2021), Peerd Comput. Sci., DOI 10.7717/peerj-cs.787 I [28/35

http://dx.doi.org/10.7717/peerj-cs.787/fig-18
http://dx.doi.org/10.7717/peerj-cs.787/fig-17
http://dx.doi.org/10.7717/peerj-cs.787
https://peerj.com/computer-science/

PeerJ Computer Science

Discwave without delay comparison

Mule simple events processing time

WS02 simple events processing time

Event type

Mule complex events processing time 4=

W502 complex events processing time

0 0 4 & 8 100 120 140 160
time{seconds)

Figure 19 Discwave without delay comparison. Full-size K&l DOT: 10.7717/peerj-cs.787/fig-19

Subfuzzing without delay comparison

Mule simple events processing time

& WS02 simple events processing time
Z
=
@
>
[}

Mule complex events processing time

160.711

WS02 complex events processing time

0 25 50 I 100 125 150 175
time(seconds)

Figure 20 Subscription fuzzing without delay comparison.
Full-size K&] DOT: 10.7717/peerj-cs.787/fig-20

Esper/Mule performs better on patterns where different events are compared. As an
example, we can see this behavior in the anomalous packet pattern. However, when there
are no comparisons between different events, WSO2 is faster than Esper/Mule. We can
conclude that WSO2 provides a better raw performance, in other words, WSO?2 is able
to process network packets faster than Esper/Mule but its performance is worse when there

are comparisons between events.

DISCUSSION
With the obtained results, we can discuss and answer the four research questions posed in

Introduction section:

Answers to the Research Questions

e RQ1: Can a real-time data stream processing architecture be implemented with the

WSO2 ESB together with the Siddhi CEP engine and be integrated with ML techniques?

- We can definitely affirm that it is possible to implement a streaming data processing
architecture using WSO2 ESB together with the Siddhi CEP engine and integrate
them with ML techniques. In fact, we have implemented an architecture equivalent to

Roldan-Gomez et al. (2021), Peerd Comput. Sci., DOI 10.7717/peerj-cs.787 I [29/35

http://dx.doi.org/10.7717/peerj-cs.787/fig-20
http://dx.doi.org/10.7717/peerj-cs.787/fig-19
http://dx.doi.org/10.7717/peerj-cs.787
https://peerj.com/computer-science/

PeerJ Computer Science

the one presented in Rolddn et al. (2020), but using the said WSO2 technologies. We
have also tested its functionality in a realistic environment consisting of security
attacks in the field of the IoT.

e RQ2: Can a streaming data processing architecture based on the integration of ML
techniques with the WSO2 CEP engine and ESB achieve or improve upon the
performance of the previously proposed architecture (Rolddn et al., 2020)?

- We can undoubtedly say that WSO2 CEP and ESB can achieve a performance similar
to that achieved by integrating Esper CEP and Mule ESB in an equivalent streaming
data processing architecture for detecting security attacks in the IoT. We have
carried out a series of tests with a number of typical attacks on communication
protocols in the IoT environment, and we have seen that both architectures achieve an
appropriate and similar performance, although we did detect that each of them
can achieve a better performance with certain types of patterns, which allows us to
answer our next research question.

e RQ3: What kind of event patterns are processed faster with WSO2/Siddhi and which
ones with Mule/Esper, and which of the two architectures is more suitable for
supporting high-stress situations?

— On the one hand, we have observed that the WSO2-based architecture is faster at
processing simple events when there are no pattern comparisons between different
event types. This is because WSO2 has a higher performance when processing
simple events. On the other hand, the Mule-based architecture has shown to be faster
when comparing different types of events. The behavior of the architectures under
stress will depend on the type of pattern conditions. If we are able to avoid patterns
with comparisons between events of different types, WSO2 will be faster in a high-
stress situation, since its ESB has a higher performance when processing simple
events. Otherwise, Mule will be faster.

e RQ4: Which of these architecture implementations is the best to be deployed in an IoT
security attack detection environment?

- Both implementations are effective, but in this context we advocate the choice of
WSO2 because it allows us to integrate the different types of events in a general
unified event. This dramatically increases the performance of WSO2. Both ESBs can
be deployed in an IoT environment, but WSO?2 is faster when using this general event
(as we can see from the stress experiments). Despite this, Mule can be deployed
successfully too, but its performance is worse than that of WSO2.

CONCLUSIONS AND FUTURE WORK

This paper has presented and compared two implementations of an intelligent SOA 2.0-
based architecture integrated with CEP technology and ML techniques that are designed to

Roldan-Gomez et al. (2021), Peerd Comput. Sci., DOl 10.7717/peerj-cs.787 30/35

http://dx.doi.org/10.7717/peerj-cs.787
https://peerj.com/computer-science/

PeerJ Computer Science

detect security attacks against IoT systems. Each of the implementations incorporates a
CEP engine and an ESB from prestigious vendors: Esper CEP and Mule ESB on the one
hand, and WSO2 ESB and Siddhi CEP on the other.

The validation process, through which the behavior of both architectures was evaluated
under the same conditions in a realistic scenario of security attacks on IoT protocols,
allowed us to draw the following relevant conclusions:

e Both implementations of the architecture allow us to detect well-known attacks in the
field of IoT protocols, with the corresponding event patterns of these attacks.

e Thanks to the use of ML techniques, the architecture can detect novel attacks that have
not previously been defined through specific event patterns.

e Our architecture is able to work as a pure rule-based IDS with patterns defined by an
expert, as well as allowing the addition of patterns for detecting non-modeled attacks in
order to act as an anomaly detection architecture.

e Both architecture implementations present a suitable degree of efficiency for the field of
security attacks in the IoT, but each one has its own advantages and drawbacks.

e The Mule-based architecture is faster when the architecture makes use of 2 message
broker topics to compare the values of their features.

e The WSO2-based architecture is faster when there is a single topic and the system has a
heavy workload.

e To mitigate the performance degradation, suffered by the system under heavy
workloads, the operations between the topics can be modified by joining the prediction
and network packet data in a general topic, thus mitigating this problem when
comparing 2 topics in the WSO2-based architecture.

o In the Mule-based architecture it is more difficult to overcome this problem because our
experiments have shown that the performance of Mule does not improve when there is a
single type of topic.

Although our work achieved the proposed objectives, there are certain limitations in
specific contexts. One is that although, the architecture makes it possible to define a
threshold automatically, it is still necessary to perform a feature selection process. Another
is that despite the fact that the architecture is capable of defining a threshold for one or
more features, it is not able to fully generate the pattern.

As future work, we plan to test our architecture in a different network to validate our
proposal with other protocols and conditions. We would like to point out that the
performance of our proposal is subject to a correct ML process (data extraction, data
preprocessing, algorithm selection, etc.). It would also be of interest to implement the
architecture with additional ESBs and CEP engines to extend the comparison with the
products of other vendors. Another interesting line of future work would be to automate
the process of feature selection, as proposed in Wajahat et al. (2020), thus providing
useful information for the selection of the machine learning model with different

Roldan-Gomez et al. (2021), Peerd Comput. Sci., DOl 10.7717/peerj-cs.787 31/35

http://dx.doi.org/10.7717/peerj-cs.787
https://peerj.com/computer-science/

PeerJ Computer Science

underlying structures in network traffic. These modifications should solve the current
limitations of the architecture mentioned above.

ADDITIONAL INFORMATION AND DECLARATIONS

Funding

This work was supported by the Spanish Ministry of Science, Innovation and
Universities and the European Union FEDER Funds [grant numbers FPU 17/02007,
RT12018-093608-B-C33, RT12018-098156-B-C52 and RED2018-102654-T]. This work
was also supported by the JCCM [grant number SB-PLY/17/180501/ 000353] and the
Research Plan from the University of Cadiz and Grupo Energetico de Puerto Real S.A.
under project GANGES [grant number IRTP03’ UCA]. The funders had no role in study
design, data collection and analysis, decision to publish, or preparation of the manuscript.

Grant Disclosures

The following grant information was disclosed by the authors:

Spanish Ministry of Science, Innovation and Universities and the European Union FEDER
Funds: FPU 17/02007, RTI2018-093608-B-C33, RT12018-098156-B-C52 and RED2018-
102654-T.

JCCM: SB-PLY/17/180501/ 000353.

Research Plan from the University of Cadiz and Grupo Energetico de Puerto Real S.A.
under project GANGES: IRTP03_UCA.

Competing Interests
The authors declare that they have no competing interests.

Author Contributions

e José Roldan-Gomez conceived and designed the experiments, performed the
experiments, analyzed the data, performed the computation work, prepared figures and/
or tables, authored or reviewed drafts of the paper, and approved the final draft.

e Juan Boubeta-Puig conceived and designed the experiments, analyzed the data,
performed the computation work, prepared figures and/or tables, authored or reviewed
drafts of the paper, and approved the final draft.

e Gabriela Pachacama-Castillo performed the computation work, authored or reviewed
drafts of the paper, and approved the final draft.

e Guadalupe Ortiz conceived and designed the experiments, analyzed the data, prepared
figures and/or tables, authored or reviewed drafts of the paper, and approved the final
draft.

e Jose Luis Martinez conceived and designed the experiments, analyzed the data, prepared
figures and/or tables, authored or reviewed drafts of the paper, and approved the final

draft.

Roldan-Goémez et al. (2021), PeerJ Comput. Sci., DOl 10.7717/peerj-cs.787 32/35

http://dx.doi.org/10.7717/peerj-cs.787
https://peerj.com/computer-science/

PeerJ Computer Science

Data Availability
The following information was supplied regarding data availability:

The data is available at Mendeley: Roldan-Gdémez, José; Boubeta-Puig, Juan;
Pachacama-Castillo, Gabriela; Ortiz, Guadalupe; Martinez, José Luis (2021), “Dataset for
Detecting Security Attacks in Cyber-Physical Systems: A Comparison of Mule and WSO2
Intelligent IoT Architectures”, Mendeley Data, V1, doi: 10.17632/ftvb9pp5xsh.1.

The code is available as a Supplemental File and the code and patterns are available at
GitHub: https://github.com/josE4roldan/Detecting-security-attacks-in-cyber-physical-
systems-a-comparison-of-mule-and-WSO2-intelligent-IoT.

Supplemental Information
Supplemental information for this article can be found online at http://dx.doi.org/10.7717/
peerj-cs.787#supplemental-information.

REFERENCES

Bamhdi A. 2021. Requirements capture and comparative analysis of open source versus
proprietary service oriented architecture. Computer Standards & Interfaces 74:103468
DOI 10.1016/j.¢si.2020.103468.

Benito-Parejo M, Merayo MG, Nuiiez M. 2020. An evolutionary technique for supporting the
consensus process of group decision making. In: 2020 IEEE International Conference on Systems,
Man, and Cybernetics (SMC). 2201-2206.

Bertino E, Choo KKR, Georgakopolous D, Nepal S. 2016. Internet of things (IoT): smart and
secure service delivery. ACM Transactions on Internet Technology 16(4):1-7
DOI 10.1145/3013520.

Boubeta-Puig J, Ortiz G, Medina-Bulo I. 2015. MEdit4CEP: a model-driven solution for real-time
decision making in SOA 2.0. Knowledge-Based Systems 89:97-112
DOI 10.1016/j.knosys.2015.06.021.

Buczak AL, Guven E. 2016. A survey of data mining and machine learning methods for cyber
security intrusion detection. IEEE Communications Surveys Tutorials 18(2):1153-1176
DOI 10.1109/COMST.2015.2494502.

Corral-Plaza D, Medina-Bulo I, Ortiz G, Boubeta-Puig J. 2020. A stream processing architecture
for heterogeneous data sources in the Internet of Things. Computer Standards & Interfaces
70(C):103426 DOI 10.1016/j.¢s1.2020.103426.

Corral-Plaza D, Ortiz G, Medina-Bulo I, Boubeta-Puig J. 2021. MEdit4CEP-SP: a model-driven
solution to improve decision-making through user-friendly management and real-time
processing of heterogeneous data streams. Knowledge-Based Systems 213:106682
DOI 10.1016/j.knosys.2020.106682.

Dayarathna M, Perera S. 2018. Recent advancements in event processing. ACM Computing
Surveys 51(2):1-36 DOI 10.1145/3170432.

Demeter D, Preuss M, Shmelev Y. 2019. IoT: a malware story. Securelist. Available at https://
securelist.com/iot-a-malware-story/94451/ (accessed 9 May 2021).

EsperTech. 2019. 7+ Million events-per-second. EsperTech. Available at https://www.espertech.
com/2019/03/07/6-million-events-per-second/ (accessed 9 May 2021).

EsperTech. 2021. Esper. Available at http://www.espertech.com/esper/ (accessed 9 May 2021).

Roldan-Goémez et al. (2021), PeerJ Comput. Sci., DOl 10.7717/peerj-cs.787 33/35

http://dx.doi.org/10.7717/peerj-cs.787#supplemental-information
https://github.com/josE4roldan/Detecting-security-attacks-in-cyber-physical-systems-a-comparison-of-mule-and-WSO2-intelligent-IoT
https://github.com/josE4roldan/Detecting-security-attacks-in-cyber-physical-systems-a-comparison-of-mule-and-WSO2-intelligent-IoT
http://dx.doi.org/10.7717/peerj-cs.787#supplemental-information
http://dx.doi.org/10.7717/peerj-cs.787#supplemental-information
http://dx.doi.org/10.1016/j.csi.2020.103468
http://dx.doi.org/10.1145/3013520
http://dx.doi.org/10.1016/j.knosys.2015.06.021
http://dx.doi.org/10.1109/COMST.2015.2494502
http://dx.doi.org/10.1016/j.csi.2020.103426
http://dx.doi.org/10.1016/j.knosys.2020.106682
http://dx.doi.org/10.1145/3170432
https://securelist.com/iot-a-malware-story/94451/
https://securelist.com/iot-a-malware-story/94451/
https://www.espertech.com/2019/03/07/6-million-events-per-second/
https://www.espertech.com/2019/03/07/6-million-events-per-second/
http://www.espertech.com/esper/
http://dx.doi.org/10.7717/peerj-cs.787
https://peerj.com/computer-science/

PeerJ Computer Science

Freire DL, Frantz RZ, Roos-Frantz F. 2019. Ranking enterprise application integration platforms
from a performance perspective: an experience report. Software: Practice and Experience
49(5):921-941 DOI 10.1002/spe.2679.

Fremantle P. 2015. A reference architecture for the Internet of Things. Available at https://www.
researchgate.net/publication/308647314_A_Reference_Architecture_for_the_Internet_of_Things
(accessed 18 September 2021).

Geurts P, Ernst D, Wehenkel L. 2006. Extremely randomized trees. Machine Learning 63(1):3-42
DOI 10.1007/5s10994-006-6226-1.

Giatrakos N, Alevizos E, Artikis A, Deligiannakis A, Garofalakis M. 2020. Complex event
recognition in the big data era: a survey. The VLDB Journal 29(1):313-352
DOI 10.1007/s00778-019-00557-w.

Gutnikov A, Badovskaya E, Kupreev O, Shmelev Y. 2021. Analytical report on DDoS attacks in
the second quarter of 2021. Securelist. Available at https://securelist.com/ddos-attacks-in-q2-
2021/103424/ (accessed 29 September 2021).

Gorski T, Pietrasik K. 2017. Performance analysis of Enterprise Service Buses. Journal of
Theoretical and Applied Computer Science 10:16-32.

Kaspersky. 2021. Kaspersky Security Bulletin 2020-2021. EU statistics. Available at
https://securelist.com/kaspersky-security-bulletin-2020-2021-eu-statistics/102335/

(accessed 29 September 2021).

Luckham DC. 2012. Event processing for business: organizing the real-time enterprise. Hoboken, NJ:
John Wiley & Sons.

Lueth KL. 2018. State of the IoT 2018: number of IoT devices now at 7B-market accelerating.
Available at https://iot-analytics.com/state-of-the-iot-update-q1-q2-2018-number-of-iot-devices-
now-7b/ (accessed 9 May 2021).

Montgomery DC, Peck EA, Vining GG. 2021. Introduction to linear regression analysis. Hoboken:
John Wiley & Sons.

Moore S. 2018. Gartner says 25 percent of customer service operations will use virtual customer
assistants by 2020. Available at https://www.gartner.com/en/newsroom/press-releases 855 /2018-
02-19-gartner-says-25-percent-of-customer-service-\operati 856 ons-will-use-virtual-customer-
assistants-by-2020.

Moss S. 2016. Major DDoS attack on Dyn disrupts AWS, Twitter, Spotify and more. Available at
https://www.datacenterdynamics.com/en/news/major-ddos-attack-on-dyn-disrupts-aws-twitter-
spotify-and-more/# (accessed 9 May 2021).

MuleSoft. 2021a. Enterprise hybrid integration platform | Anypoint platform. Available at
https://www.mulesoft.com/platform/enterprise-integration (accessed 9 May 2021).

MuleSoft. 2021b. Mule ESB | Enterprise Service Bus | Open Source ESB. Available at https://www.
mulesoft.com/platform/soa/mule-esb-open-source-esb (accessed 9 May 2021).

OASIS. 2019. MQTT Version 5.0. Available at http://docs.oasis-open.org/mqtt/mqtt/v5.0/mqtt-v5.
0.html (accessed 9 May 2021).

Papazoglou M. 2012. Web services and SOA: principles and technology. Second Edition. Essex,
New York: Pearson Education.

Roldan J, Boubeta-Puig J, Martinez JL, Ortiz G. 2020. Integrating complex event processing and
machine learning: an intelligent architecture for detecting IoT security attacks. Expert Systems
with Applications 149:113251 DOI 10.1016/j.eswa.2020.113251.

Roldan-Gomez J, Boubeta-Puig J, Ortiz G, Pachacama G, Martinez JL. 2021. Detecting-security-
attacks-in-cyber-physical-systems-a-comparison-of-mule-and-WSO2-intelligent-IoT. GitHub.

Roldan-Goémez et al. (2021), PeerJ Comput. Sci., DOl 10.7717/peerj-cs.787 34/35

http://dx.doi.org/10.1002/spe.2679
https://www.researchgate.net/publication/308647314_A_Reference_Architecture_for_the_Internet_of_Things
https://www.researchgate.net/publication/308647314_A_Reference_Architecture_for_the_Internet_of_Things
http://dx.doi.org/10.1007/s10994-006-6226-1
http://dx.doi.org/10.1007/s00778-019-00557-w
https://securelist.com/ddos-attacks-in-q2-2021/103424/
https://securelist.com/ddos-attacks-in-q2-2021/103424/
https://securelist.com/kaspersky-security-bulletin-2020-2021-eu-statistics/102335/
https://iot-analytics.com/state-of-the-iot-update-q1-q2-2018-number-of-iot-devices-now-7b/
https://iot-analytics.com/state-of-the-iot-update-q1-q2-2018-number-of-iot-devices-now-7b/
https://www.gartner.com/en/newsroom/press-releases855/2018-02-19-gartner-says-25-percent-of-customer-service-\operati856ons-will-use-virtual-customer-assistants-by-2020
https://www.gartner.com/en/newsroom/press-releases855/2018-02-19-gartner-says-25-percent-of-customer-service-\operati856ons-will-use-virtual-customer-assistants-by-2020
https://www.gartner.com/en/newsroom/press-releases855/2018-02-19-gartner-says-25-percent-of-customer-service-\operati856ons-will-use-virtual-customer-assistants-by-2020
https://www.datacenterdynamics.com/en/news/major-ddos-attack-on-dyn-disrupts-aws-twitter-spotify-and-more/#
https://www.datacenterdynamics.com/en/news/major-ddos-attack-on-dyn-disrupts-aws-twitter-spotify-and-more/#
https://www.mulesoft.com/platform/enterprise-integration
https://www.mulesoft.com/platform/soa/mule-esb-open-source-esb
https://www.mulesoft.com/platform/soa/mule-esb-open-source-esb
http://docs.oasis-open.org/mqtt/mqtt/v5.0/mqtt-v5.0.html
http://docs.oasis-open.org/mqtt/mqtt/v5.0/mqtt-v5.0.html
http://dx.doi.org/10.1016/j.eswa.2020.113251
http://dx.doi.org/10.7717/peerj-cs.787
https://peerj.com/computer-science/

PeerJ Computer Science

Available at https://github.com/josE4roldan/Detecting-security-attacks-in-cyber-physical-
systems-a-comparison-of-mule-and-WSO2-intelligent-IoT-.

Valero V, Diaz G, Boubeta-Puig J, Macia H, Brazalez E. 2021. A compositional approach for
complex event pattern modeling and transformation to colored Petri nets with black sequencing
transitions. IEEE Transactions on Software Engineering DOI 10.1109/TSE.2021.3065584.

Wajahat M, Yele A, Estro T, Gandhi A, Zadok E. 2020. Analyzing the distribution fit for storage
workload and internet traffic traces. Performance Evaluation 142:102121
DOI 10.1016/j.peva.2020.102121.

Warburton D. 2021. DDoS attack trends for 2020. Available at https://www.f5.com/labs/articles/
threat-intelligence/ddos-attack-trends-for-2020 (accessed 18 September 2021).

WSO02. 2020. Separating the worker and manager nodes. Available at https://docs.wso2.com/
display/ADMIN44x/Separating+the+ Worker+and+Manager+Nodes (accessed 9 May 2021).

WSO02. 2021a. PMML based predictive analytics extension. Available at https://docs.wso2.com/
display/DAS310/PMML+Based+Predictive+Analytics+Extension (accessed 9 May 2021).

WSO02. 2021b. Siddhi. Available at http://siddhi.io/ (accessed 9 May 2021).

WS02. 2021c. WSO2 | The open source technology for digital business. Available at https://wso2.
com/ (accessed 9 May 2021).

WSO02. 2021d. WSO2 enterprise service bus. Available at https://wso2.com/products/enterprise-
service-bus/ (accessed 9 May 2021).

Roldan-Goémez et al. (2021), PeerJ Comput. Sci., DOl 10.7717/peerj-cs.787 35/35

https://github.com/josE4roldan/Detecting-security-attacks-in-cyber-physical-systems-a-comparison-of-mule-and-WSO2-intelligent-IoT-
https://github.com/josE4roldan/Detecting-security-attacks-in-cyber-physical-systems-a-comparison-of-mule-and-WSO2-intelligent-IoT-
http://dx.doi.org/10.1109/TSE.2021.3065584
http://dx.doi.org/10.1016/j.peva.2020.102121
https://www.f5.com/labs/articles/threat-intelligence/ddos-attack-trends-for-2020
https://www.f5.com/labs/articles/threat-intelligence/ddos-attack-trends-for-2020
https://docs.wso2.com/display/ADMIN44x/Separating+the+Worker+and+Manager+Nodes
https://docs.wso2.com/display/ADMIN44x/Separating+the+Worker+and+Manager+Nodes
https://docs.wso2.com/display/DAS310/PMML+Based+Predictive+Analytics+Extension
https://docs.wso2.com/display/DAS310/PMML+Based+Predictive+Analytics+Extension
http://siddhi.io/
https://wso2.com/
https://wso2.com/
https://wso2.com/products/enterprise-service-bus/
https://wso2.com/products/enterprise-service-bus/
https://peerj.com/computer-science/
http://dx.doi.org/10.7717/peerj-cs.787

	Detecting security attacks in cyber-physical systems: a comparison of Mule and WSO2 intelligent IoT architectures
	Introduction
	Background
	Related work
	Architecture for iot security
	Comparing architecture performance and stress
	Results
	Discussion
	Conclusions and future work
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

