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a b s t r a c t

The use of decision rules allows to extract information and to infer conclusions from
relational databases in a reliable way, thanks to some indicators like support and
certainty. Moreover, decision algorithms collect a group of decision rules that satisfies
desirable properties to describe the relational system. However, when a decision table
is considered within a fuzzy environment, it is necessary to extend all notions related
to decision algorithms to this framework. This paper presents a generalization of these
notions, highlighting the new definitions of indicators of relevance to describe decision
rules and decision algorithms.
© 2023 The Author(s). Published by Elsevier B.V. This is an open access article under the CC

BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

Pawlak [1,2] introduced a formal tool to deal with imprecise or incomplete information contained in databases, which
as called Rough Set Theory (RST). This theory considers information systems, which are relational databases composed
f a set of objects and a set of attributes which characterizes the objects, and it has attracted the attention of other
related) theories. For example, attribute reduction in the extensions of RST from the philosophy of Formal Concept
nalysis (FCA) were studied in [3–6]. The paper [7] combined the K-nearest neighbors algorithm with RST, the algebraic
otion of congruence was adapted in order to introduce an optimal attribute reduction based on RST in the FCA framework
n [8], fuzzy soft sets were used to propose a combined forecasting approach for complementing a methodology based
n rough sets [9], and fuzzy rough sets and probability statistics were studied and combined in [10]. A particular type of
nformation system widely studied within RST is the one provided by decision tables. Decision rules [11–16] can be used to
escribe decision tables, allowing the extraction of information and the inference of significant conclusions. Decision rules
re usually accompanied by some relevance indicators which describe them. In addition, decision algorithm is another
mportant notion related to decision rules. This notion was introduced with the purpose of collecting some desirable
roperties that a set of decision rules should satisfy in order to describe the decision table in a suitable way.
On the other hand, the management of real databases can be a really difficult task. Fuzzy Rough Set Theory (FRST) [17–

9] arises with the goal of increasing the flexibility of RST, addressing a wider range of real applications. FRST is a
eneralization of RST in the fuzzy environment, essential to deal with the information contained in databases, especially
hen they are composed by continuous quantities.
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The aim of this paper is to provide a generalization of the notion of decision algorithm from the classical environment
o the fuzzy framework given by the multi-adjoint paradigm. With this goal, all the necessary notions related to decision
ules and their corresponding relevance indicators are also extended to the fuzzy environment. We will prove that the
ew notions introduced in this work are indeed generalizations of the classical ones. This fact shows the possibility of
pplying this approach to the mechanisms focused on obtaining decision rules, which are mainly based on a crisp point of
iew. Notice that, for example, the last contributions in the area, such as [20], which considers an equivalent algorithm to
he one provided by Pawlak [14] in the crisp case. The authors present a mechanism on a real decision table in which they
eed to consider a discretization, however, it is more natural to study this table from a fuzzy point of view, as we will
o at the end of the paper. Hence, the contribution of this paper will also allow to extend the theory given in [20] to the
uzzy case. Granular computing is also applied to rule acquisition [21] in which the fuzzy point of view will also allow to
e more precise and flexible, and give more information about the decision table. Moreover, in [22], the authors consider
variant of the notion of algorithm [14] in crisp incomplete decision systems, in which the approach introduced in this
aper also extends the results given in the aforementioned paper to the fuzzy case, being also possible its adaptation to
ncomplete decision systems. Thus, it is possible to apply the framework introduced in this paper to classification problems
ith a greater flexibility than the current mechanisms. We will also include some examples to illustrate the content of
he paper.

The paper is organized as follows: Section 2 recalls some preliminary classical notions of RST. In Section 3, a study about
ecision rules in FRST is introduced, including the generalizations of the relevance indicators to the fuzzy framework.
ection 4 introduces a new notion of decision algorithm and shows the existing connection between the classical and the
uzzy version. Section 6 finishes with some conclusions and prospects for future work.

. Basic notions in rough set theory

This section presents some important definitions of RST [13,14]. First of all, it is convenient to recall that databases
an be represented as decision tables in this framework.

efinition 1. Let U and A be non-empty sets of objects and attributes, respectively. A decision table is a tuple
U,Ad,VAd ,Ad) such that Ad = A ∪ {d} with d /∈ A, VAd = {Va | a ∈ Ad}, where Va is the set of values associated
ith the attribute a over U , and Ad = {ā | a ∈ Ad, ā : U → Va}. In this case, the attributes of A are called condition
ttributes and d is called decision attribute.

This paper will focus on decision tables with one decision attribute, as it is shown in this definition. However, a similar
tudy could be carried out in decision tables with more than one decision attribute.
Now, an equivalence relation is defined on the set of objects of a decision table, in order to compare them by using a

iven subset of attributes.

efinition 2. Let (U,Ad, VAd ,Ad) be a decision table. The indiscernibility mapping I :P(Ad) → P(U × U) is defined, for
ach B ⊆ Ad, as the equivalence relation

I(B) = {(x, y) ∈ U × U | ā(x) = ā(y), for all a ∈ B}

hich is called B-indiscernibility relation. Each class of I(B) can be written as [x]I(B) = {y ∈ U | (x, y) ∈ I(B)}. The partition
etermined by I(B) on the set of objects U is denoted as U/I(B) = {[x]I(B) | x ∈ U}.

The positive region is introduced now. This notion is deeply studied in order to analyze and extract information from
ecision tables.

efinition 3. Let (U,Ad,VAd ,Ad) be a decision table and B ⊆ A. The positive region of the partition U/I({d}) with respect
o B is defined as

POSB({d}) =

⋃
X∈U/I({d})

B∗(X)

here B∗(X) = {x ∈ U | [x]I(B) ⊆ X}.

.1. Decision rules

The previous notions are useful for the management of the information contained in decision tables. Nevertheless,
ecision rules [14] arise in order to analyze these tables by using logic equivalences. This fact provides easier interpretation
f decision tables, describing decisions in terms of conditions that must be satisfied. In order to present the notion of
ecision rule, we must introduce a formal language to describe approximations in logical terms.
2
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Definition 4. Let S = (U,Ad,VAd ,Ad) be a decision table and B ⊆ Ad. The set of formulas associated with B, denoted
s For(B), is built from attribute–value pairs(a, v), where a ∈ B and v ∈ Va, by means of the conjunction and disjunction
ogical connectives, ∧ and ∨, respectively.

For each Φ ∈ For(B), with Φ = (a, v), the set of objects X ⊆ U that satisfies Φ in S is defined as:

∥Φ∥S = ∥(a, v)∥S = {x ∈ U | ā(x) = v}

Inductively, given Φ, Ψ ∈ For(B), the set of objects that satisfies Φ ∧ Ψ in S is defined as ∥Φ ∧ Ψ ∥S = ∥Φ∥S ∩ ∥Ψ ∥S
nd the set of objects that satisfies Φ ∨ Ψ in S is defined as ∥Φ ∨ Ψ ∥S = ∥Φ∥S ∪ ∥Ψ ∥S .

Now, we introduce the notion of decision rule. As we mentioned above, it is an important pillar of the synthesis of
nformation from relational databases.

efinition 5. Let S = (U,Ad,VAd ,Ad) be a decision table and B ⊆ A. A decision rule in S is an expression Φ → Ψ , with
Φ ∈ For(B), Ψ ∈ For({d}) where Φ and Ψ are the antecedent and the consequent of the decision rule, respectively. In
addition, we will say that an object x ∈ U satisfies the decision rule Φ → Ψ if x ∈ ∥Φ ∧ Ψ ∥S .

As we commented above, decision rules provide a logic representation of decision tables. However, it is necessary
to interpret these rules for the draw of conclusions from the decision table. For this purpose, we recall the indicators
which describe decision rules from different points of view. Specifically, the support considers the number of objects
satisfying the decision rule, the strength represents the proportion of objects satisfying the decision rule, that is, the
representativeness of that rule in the table, the certainty provides us with the proportion of objects which satisfy the
consequent satisfying the antecedent of the given decision rule and the coverage determines the proportion of objects
which satisfy the antecedent satisfying the consequent of the given decision rule.

Definition 6. Let S = (U,Ad,VAd ,Ad) be a decision table, B ⊆ A and Φ → Ψ be a decision rule in S, with Φ ∈ For(B)
and Ψ ∈ For({d}). We call

• support of the decision rule Φ → Ψ to the value:

suppS(Φ, Ψ ) = |∥Φ ∧ Ψ ∥S |

• strength of the decision rule Φ → Ψ to the value:

σS(Φ, Ψ ) =
suppS(Φ, Ψ )

|U |

• certainty of the decision rule Φ → Ψ to the value:

cerS(Φ, Ψ ) =
suppS(Φ, Ψ )

|∥Φ∥S |

when |∥Φ∥S | ̸= 0.
• coverage of the decision rule Φ → Ψ to the value:

covS(Φ, Ψ ) =
suppS(Φ, Ψ )

|∥Ψ ∥S |

when |∥Ψ ∥S | ̸= 0.

From the notion of certainty, we will say that Φ → Ψ is a true decision rule if cerS(Φ, Ψ ) = 1. If cerS(Φ, Ψ ) = 0, we
say that the decision rule is false. Otherwise, it will be called a not entirely true decision rule.

These notions are of great importance in the study of decision algorithms and their efficiency, as it is shown in the
next section.

2.2. Decision algorithm

Decision algorithms are a collection of decision rules of a decision table verifying certain conditions, focused on
providing a global representation of the decision table. The definition of a decision algorithm is given below [14].

Definition 7. Let S = (U,Ad,VAd ,Ad) be a decision table and Dec(S) = {Φi → Ψi}i∈I be a set of decision rules of S,
here the index set is I = {1, . . . ,m} and m ≥ 2. We say that:

1. Dec(S) is a set of pairwise mutually exclusive (independent) decision rules, if each pair of decision rules Φ → Ψ , Φ ′
→

Ψ ′
∈ Dec(S) satisfies that Φ = Φ ′ or ∥Φ ∧ Φ ′

∥S = ∅, and Ψ = Ψ ′ or ∥Ψ ∧ Ψ ′
∥S = ∅.

2. Dec(S) covers U , if ∥

m⋁
i=1

Φi∥S = ∥

m⋁
i=1

Ψi∥S = U .

3. A decision rule Φ → Ψ ∈ Dec(S) is admissible in S if supp (Φ, Ψ ) ̸= 0.
S

3
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4. Dec(S) preserves the consistency of S if

POSA({d}) =

⋁
Φ→Ψ ∈Dec+(S)

∥Φ∥S

where Dec+(S) is the set of true decision rules of Dec(S).

set of decision rules Dec(S) satisfying properties (1)–(4) is called decision algorithm in S and it is denoted as DA(S).

Notice that, the notion of consistency is not defined from the positive region in other works, such as [22]. However,
he approach proposed in [22] considers the notions of admissible and redundancy, being this last one closely related to
roperty (1) in Definition 7. Hence, our contribution also extends the results given in [22], being possible its adaptation
o incomplete decision systems.

On the other hand, a pair of conclusions can be extracted from the definition of decision algorithm. By Properties (1)
nd (2), if DA(S) is a decision algorithm, the antecedents and consequents of the decision rules of DA(S) define a partition
f U . Furthermore, by Property (4), the set of true decision rules define a partition of the positive region with respect to
. On the other hand, it is convenient to emphasize that there may exist objects which do not satisfy any decision rule
f the decision algorithm DA(S), as it is shown in the following example.

xample 8. Let (U,Ad,VAd ,Ad) be a decision table where the set of objects is U = {x1, x2, x3} and the set of attributes
is A = {a}. This decision table is represented in Table 1.

Table 1
Table associated with the de-
cision table (U,Ad,VAd ,Ad)
given in Example 8.

a d

x1 0 0
x2 0 1
x3 1 1

Consider the set of decision rules Dec(S) = {Φ1 → Ψ1, Φ2 → Ψ2}, denoted as r1 and r2 respectively, given as:

r1 : (a, 0) → (d, 0)
r2 : (a, 1) → (d, 1)

Hence, it is immediate to check that Φ1 ̸= Φ2, Ψ1 ̸= Ψ2 and

∥Φ1 ∧ Φ2∥S = ∥Φ1∥S ∩ ∥Φ2∥S = {x1, x2} ∩ {x3} = ∅
∥Ψ1 ∧ Ψ2∥S = ∥Ψ1∥S ∩ ∥Ψ2∥S = {x1} ∩ {x2, x3} = ∅

In addition, ∥

2⋁
i=1

Φi∥S = ∥

2⋁
i=1

Ψi∥S = U and suppS(Φ1, Ψ1) = suppS(Φ2, Ψ2) = 1 ̸= 0. Finally, cerS(Φ1, Ψ1) = 0.5 and

cerS(Φ2, Ψ2) = 1. Therefore,

POSA({d}) = {x3} = ∥Φ2∥S =

⋁
Φ→Ψ ∈Dec+(S)

∥Φ∥S

As a consequence, Dec(S) is a decision algorithm and the object x2 does not satisfy any decision rule of Dec(S). □

Decision algorithms where all the objects of the decision table satisfy a decision rule of that algorithm were also defined
by Pawlak in [13] and they are recalled now.

Definition 9. Let S = (U,Ad,VAd ,Ad) be a decision table and DA(S) be a decision algorithm. If for each x ∈ U there
xists Φ → Ψ ∈ DA(S) such that x ∈ ∥Φ ∧ Ψ ∥S then DA(S) it is called a complete decision algorithm.

An important consequence of Definition 9, taking into account the first item of Definition 7, is that the addition of the
supports of all decision rules is the cardinal of the set of objects, since for each object there exists only one decision rule
which is satisfied by that object. Therefore, the addition of the strengths of all decision rules is 1.

3. Decision rules in fuzzy rough set theory

This section will focus on the study of decision tables in the fuzzy environment by using decision rules. With this
purpose, it is needed to recall some important notions of FRST [17]. Most of them are the generalization of the previous
definitions to the fuzzy framework. The first definition is essential to compare a pair of objects of a decision table according
to an attribute. It presents a map that, evaluated on two objects, indicates the relationship between these objects, taking
into account the considered attribute.
4



F. Chcón-Gómez, M.E. Cornejo, J. Medina, E. Ramírez-Poussa Journal of Computational and Applied Mathematics xxx (xxxx) xxx

v
t
d

t

D
r

Definition 10. Let (U,Ad,VAd ,Ad) be a decision table and a ∈ Ad. An a-indiscernibility relation is a [0, 1]-fuzzy tolerance
relation Ra :U × U → [0, 1], that is, a reflexive and symmetrical fuzzy relationship.

Depending on the value of Ra(x, y) we can conclude how similar the objects x, y are, according to the attribute a. Next
definition is required to compare pairs of objects by using a subset of attributes B ⊆ A instead of a single attribute.
Aggregation operators [17] are indispensable for that.

Definition 11. Let (U,Ad,VAd ,Ad) be a decision table and Ra : U × U → [0, 1] be an a-indiscernibility relation for all
a ∈ A. The B-indiscernibility relation RB :U × U → [0, 1] is defined for each pair of objects x, y ∈ U as

RB(x, y) = @(Rx,y
B (a1), . . . ,R

x,y
B (am))

where Rx,y
B :A → [0, 1] is defined for each a ∈ A as

Rx,y
B (a) =

{
Ra(x, y) if a ∈ B
1 otherwise

and @ : [0, 1]m → [0, 1] is an aggregation operator, that is, an increasing operator on each argument satisfying
@(1, . . . , 1) = 1 and @(0, . . . , 0) = 0.

The interpretation of the value given by this mapping is the same as Definition 10. In addition, notice that RB is a
[0, 1]-fuzzy tolerance relation for all B ⊆ A.

In the following, some previous notions given in [17] are recalled, which are necessary to define the positive region
in the fuzzy environment. First of all, we introduce the notion of adjoint triple.

Definition 12. Let (P1, ≤1), (P2, ≤2) and (P3, ≤3) be partially ordered sets (posets) and & : P1 × P2 → P3, ↙: P3 × P2 → P1
and ↖: P3 × P1 → P2 be mappings. Then (&, ↙, ↖) is an adjoint triple with respect to P1, P2 and P3 if these mappings
satisfy the adjoint property, that is, x ≤1 z ↙ y iff x&y ≤3 z iff y ≤2 z ↖ x for all x ∈ P1, y ∈ P2, z ∈ P3.

Notice that, the mappings ↙, ↖ can be univocally obtained from the operator &. Therefore, we can refer to the adjoint
triple (&, ↙, ↖) simply as &. On the other hand, in the particular case that the mapping & is commutative and P1 = P2,
we obtain that ↙= ↖. More properties can be seen in [23].

Left-continuous t-norms together with their corresponding residuated implications clearly are particular cases of
adjoint triples [24], such as the well-known Gödel, product and Łukasiewicz t-norms. In order to illustrate the impact
of the use of adjoint triples in the management of information, a pair of adjoint triples are presented in the following
example.

Example 13. We include an adjoint triple (&, ↙, ↖) with respect to the unit interval in which the mapping & is not
commutative. This fact will lead to obtain two different mappings ↙ and ↖.

x&y = x2y

z ↙ y =

{
1 if y ≤ z
√
z/y otherwise

z ↖ x =

{
1 if x2 ≤ z
z/x2 otherwise

From this adjoint triple we can deduce that the values of the variable x are penalized by the square (the square of
alues less or equal to 1 provides a less value than the original). Hence, we can say that with the use of this conjunctor
he variable y has a major impact (for obtaining a large aggregated value) than the variable x. This fact allows us to give
ifferent importance to each variable of the corresponding study.
Now, we present the family of Łukasiewicz adjoint triples (&β

Ł , ↙
β

Ł , ↖
β

Ł ), which depends on a parameter β ∈ N:

x&β

Ł y = max{0, β
√
xβ + yβ − 1}

z ↖
β

Ł x =
β
√
min{1, 1 + zβ − xβ} (1)

Since the mapping &β

Ł is commutative we obtain that ↙
β

Ł = ↖
β

Ł . In this family of adjoint triples, the parameter β affects
o the monotonicity. Specifically, it can be checked that &β

Ł is decreasing in β and ↖
β

Ł is increasing in β , as it is shown in
Fig. 1. Hence, the user can consider different values of β depending on the objects under consideration, choosing higher
or lower values to give them different importance [17]. □

Now, we recall the notion of multi-adjoint property-oriented frame.

efinition 14. Given a poset (P1, ≤1), two complete lattices (L2, ⪯2) and (L3, ⪯3) and adjoint triples (&i, ↙
i, ↖i), with

espect to P1, L2, L3, for all i ∈ {1, . . . , n}, a multi-adjoint property-oriented frame is the tuple
(P1, L2, L3,&1, . . . ,&n)

5
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Fig. 1. Operators &β

Ł (left) and ↖
β

Ł (right), with β ∈ {1, 3, 5}.

Next, the notion of context is introduced.

efinition 15. Let A and B be non-empty sets and (P1, L2, L3,&1, . . . ,&n) be a multi-adjoint property-oriented frame. A
ontext is a tuple (A, B, R, τ ), where R is a P1-fuzzy relation R : A× B → P1 and τ : A× B → {1, . . . , n} is a mapping which
ssociates any pair of elements in A × B with some particular adjoint triple in the frame.

In the following definition, we recall the generalization of the notion of upper and lower approximation of fuzzy RST
iven in [17].

efinition 16. Let (P1, L2, L3,&1, . . . ,&n) be a multi-adjoint property oriented frame and (A, B, R, τ ) be a context. Given
g ∈ LB2 and f ∈ LA3 we define the possibility and necessity operators, ↑π : LB2 → LA3 and ↓

N
: LA3 → LB2, respectively, as:

g↑π (a) = sup{R(a, b)&τ (a,b)g(b) | b ∈ B}

f ↓
N
(b) = inf{f (a) ↖τ (a,b) R(a, b) | a ∈ A}

here g↑π is interpreted as the upper approximation of g and f ↓
N
as the lower approximation of f .

Notice that, the use of the mapping τ allows the consideration of different degrees of preference on the sets of
bjects and attributes [25]. Furthermore, the possibility of taking into account non-commutative operators allows to
onsider different levels of relevance in the computation of the aggregated value. For example, if the first adjoint triple in
xample 13 is considered in the possibility operator, then we are assuming that it is more relevant the values g(b) (the
bject b belong to the fuzzy subset g) than the values given by the relation.
In this paper, we will focus on a multi-adjoint property-oriented frame ([0, 1] , [0, 1] , [0, 1] ,&1, . . . ,&n) and a context

(U,U, RB, τ ) with B ⊆ A. Finally, we recall the notion of positive region (generalization of Definition 3) in the fuzzy setting
when Rd only takes boolean values, which was given in [17].

Definition 17. Let (U,Ad,VAd ,Ad) be a decision table and B ⊆ A. Given a multi-adjoint property oriented frame
([0, 1] , [0, 1] , [0, 1] ,&1, . . . ,&n), a context (U,U, RB, τ ) and a boolean relation Rd, the multi-adjoint fuzzy B-positive region
is defined, for each y ∈ U , as:

POS f
B(y) = (Rd y)↓

N
(y) = inf{(Rd y)(x) ↖τ (x,y) RB(x, y) | x ∈ U}

where Rd y : U → {0, 1} is defined as (Rd y)(x) = Rd(y, x) and ↖τ (x,y) is the left residuated fuzzy implication of &τ (x,y)
associated with the pair of objects x, y.

The authors in [17] asserted that Definition 17 is a generalization of Definition 3. The following result shows the details
of this statement.

Proposition 18. Let (U,Ad,VAd ,Ad) be a decision table, x ∈ U and RA and Ra be boolean relations for all a ∈ Ad. Then
x ∈ POSA({d}) if and only if POS f

A(x) = 1.

Proof. First of all, notice that if RA is a boolean relation then, given two objects x, y ∈ U , RA(x, y) = 1 if and only if
Ra(x, y) = 1 for all a ∈ A, that is, ā(x) = ā(y) for all a ∈ A, and RA(x, y) = 0 otherwise. Let x ∈ POSA({d}) and y ∈ U . We
istinguish two cases.

• We suppose that y ∈ [x]I(A). Since x ∈ POSA({d}) we obtain that [x]I(A) ⊆ [x]I(d). Therefore, y ∈ [x]I(d). Hence,
Ra(x, y) = 1 for all a ∈ Ad. As a consequence,

Rd(y, x) ↖τ (x,y) RA(x, y) = 1 ↖τ (x,y) 1 = 1

• Now, we suppose that y /∈ [x]I(A). Then there exists a ∈ A such that ā(x) ̸= ā(y). Hence, RA(x, y) = 0. As a
consequence,
Rd(y, x) ↖τ (x,y) RA(x, y) = Rd(y, x) ↖τ (x,y) 0 = 1

6
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In conclusion, Rd(y, x) ↖τ (x,y) RA(x, y) = 1 for all y ∈ U . Therefore,

POS f
A(x) = (Rd y)↓

N
(y) = inf{Rd(y, x) ↖τ (x,y) RA(x, y) | x ∈ U} = 1

Now, we suppose that POS f
A(x) = 1. As a consequence, we obtain that Rd(y, x) ↖τ (x,y) RA(x, y) = 1 for all y ∈ U . If

x /∈ POSA({d}) then there exists y ∈ [x]I(A) \ [x]I(d). Hence, RA(x, y) = 1 and Rd(x, y) = 0. Therefore,

Rd(y, x) ↖τ (x,y) RA(x, y) = 0 ↖τ (x,y) 1 = 0,

obtaining a contradiction. In conclusion, x ∈ POSA({d}). □

Since in the computation of POS f
A(y) all the objects of the decision table are taken into account, by using indiscernibility

relations and a fuzzy implication, this notion provides a degree of consistency of the object y in the decision table. As a
consequence, the higher the value of POS f

A(y), the more dependence there will be between the set of attributes A and
the decision attribute d for the object y.

Real datasets usually present numerous attributes, making difficult the management of the information contained in
them. The notion of fuzzy decision reduct arises to reduce the number of attributes without losing information, which
enables us to deal with them in an easier way. Before introducing this notion, we must recall the following definition.

Definition 19. Let S = (U,Ad,VAd ,Ad) be a decision table, B ⊆ A and ([0, 1] , [0, 1] , [0, 1] ,&1, . . . ,&n) be a multi-
adjoint property oriented frame. A monotonic mapping m :P(A) → [0, 1] is a [0, 1]-valued measure associated with S if
the condition Rd(x, y) ↖τ (x,y) RB(x, y) = Rd(x, y) ↖τ (x,y) RA(x, y), for all x, y ∈ U implies m(B) = 1.

Now, we can present the notion of fuzzy decision reduct, which is supported by [0, 1]-valued measures.

Definition 20 ([17]). Let S = (U,Ad,VAd ,Ad) be a decision table, B ⊆ A, m be a [0, 1]-valued measure associated with S
and α ∈ (0, 1]. The set B is called a fuzzy m-decision superreduct to degree α if α ≼ m(B). Moreover, if α ̸⪯ m(B′) for each

′
⊂ B then B is called fuzzy m-decision reduct to degree α.

Now, we recall the notion of cardinal of a fuzzy set, which will be used later. This definition is introduced focusing on
he multi-adjoint fuzzy positive region.

efinition 21. Given a universe U and f :U → [0, 1], the cardinal of f is given as

cardF (f ) =

∑
x∈U

f (x)

Furthermore, it is necessary to generalize the notions defined in Sections 2.1 and 2.2 to this framework.
First of all, we introduce a particular kind of tolerance relation that will be used in the rest of the paper.

efinition 22 ([26]). Let S = (U,Ad,VAd ,Ad) be a decision table, a ∈ A and Ta : Va × Va → [0, 1] be a tolerance relation.
If Ta(v, w) = 1 implies v = w then Ta is called a separable tolerance relation.

Notice that, the counterpart is verified for all tolerance relations since they are reflexive. As a consequence, a separable
tolerance relation Ta satisfies that Ta(v, w) = 1 if and only if v = w.

Regarding to the notion of formula in the fuzzy setting, we must emphasize that this notion is the same as Definition 4.
The reason is that the value v can be any element of an arbitrary set associated with the attribute a, providing a great
level of flexibility, which is in consonance with the fuzzy environment. However, ∥Φ∥S has a different meaning.

Definition 23. Let S = (U,Ad,VAd ,Ad) be a decision table, B ⊆ Ad and T = {Ta : Va × Va → [0, 1] | a ∈ Ad} be a family
of separable [0, 1]-fuzzy tolerance relations. The mapping ∥ · ∥

T
S : For(B) → [0, 1]U is inductively defined as:

∥Φ∥
T
S (x) = Ta(ā(x), v)

for all x ∈ U and Φ = (a, v), where a ∈ B and v ∈ Va. For every Φ, Ψ ∈ For(B), the conjunction and disjunction of
formulas are defined, for all x ∈ U , as follows:

∥Φ ∧ Ψ ∥
T
S (x) = inf{∥Φ∥

T
S (x), ∥Ψ ∥

T
S (x)}

∥Φ ∨ Ψ ∥
T
S (x) = sup{∥Φ∥

T
S (x), ∥Ψ ∥

T
S (x)}

Therefore, ∥Φ∥
T
S (x) represents how much the object x satisfies the formula Φ , through the relationships between the

value of the attribute a in the object x and the value of the attribute a in the formula Φ .

Notice that, the infimum and the supremum are the extensions of the intersection and the union of sets to the fuzzy
environment, respectively. In this way, ∥Φ ∧ Ψ ∥

T
S (x) and ∥Φ ∨ Ψ ∥

T
S (x) generalize the conjunction and disjunction of

formulas in the classical environment given in Definition 4. In addition, Definition 23 generalizes Definition 4 when
boolean separable tolerance relations are considered, as we show below.
7
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Table 2
Table associated with the decision table (U,Ad,VAd ,Ad) given in Example 25.

a1 a2 a3 a4 d

x1 0.34 0.31 0.75 0.2 0
x2 0.21 0.71 0.5 0.2 1
x3 0.52 0.92 1 0.7 0
x4 0.85 0.65 1 0.7 1
x5 0.43 0.89 0.5 0.2 0
x6 0.21 0.47 0.25 0.5 1
x7 0.09 0.93 0.25 0.5 0

Proposition 24. Let S = (U,Ad,VAd ,Ad) be a decision table, B ⊆ Ad, Φ ∈ For(B) and x ∈ U. If T = {Ta : Va ×Va → {0, 1} |

a ∈ Ad} is a family of boolean separable tolerance relations then the following property holds:

x ∈ ∥Φ∥S if and only if ∥Φ∥
T
S (x) = 1

Proof. We will consider an attribute–value pair Φ = (a, v) and Ta a boolean separable tolerance relation. The proof can
be extended inductively to the conjunction or disjunction of attribute–value pairs. Suppose that x ∈ ∥Φ∥S = ∥(a, v)∥S .
Then, x satisfies the formula Φ , that is, ā(x) = v. As a consequence, since Ta is reflexive, we obtain that Ta(ā(x), v) = 1.
Hence, ∥Φ∥

T
S (x) = 1.

The proof of the counterpart is completely analogous taking into account that Ta is a separable relation. □

On the other hand, the definition of decision rules in FRST is the same as Definition 5. An example is presented in
order to show the notions of formula and decision rule in FRST.

Example 25. Consider the decision table S = (U,Ad,VAd ,Ad) where the set of objects is U = {x1, x2, x3, x4, x5, x6, x7},
the set of attributes is A = {a1, a2, a3, a4} and Va = [0, 1] for all a ∈ Ad. This decision table is represented in Table 2.
In this example, we will show the decision rules that can be obtained from these data considering a reduct instead of
all the attributes A. In addition, we will compute how much each object satisfies each antecedent and consequent of the
decision rules, respectively.

First of all, we are interested in finding a fuzzy m-decision reduct to degree 1 in order to deal with the decision table
S without considering all the attributes while all the information contained in S is preserved. With this purpose, we will
use the [0, 1]-valued measure m :P(A) → [0, 1] defined for each B ⊆ A as

m(B) = cardF (POS f
B) ↙

Ł cardF (POS f
A) (2)

= min
{
1, 1 −

cardF (POS f
A)

|U |
+

cardF (POS f
B)

|U |

}
(3)

Now, we fix the set B = {a1, a2, a3} in order to check if it is possible to discard the attribute a4 without losing
nformation. Next step is to compute POS f

A(x) and POS f
B(x), for all x ∈ U . For this purpose, we consider the a-indiscernibility

elation Ra :U × U → [0, 1] given as:

Ra(x, y) = 1 − |ā(x) − ā(y)| (4)

or all a ∈ Ad and x, y ∈ U . Furthermore, we will consider the following indiscernibility relations:

RA(x, y) =
Ra1 (x, y) + 2(Ra2 (x, y) + Ra3 (x, y)) + Ra4 (x, y)

6

RB(x, y) =
Ra1 (x, y) + 2(Ra2 (x, y) + Ra3 (x, y)) + 1

6
for all x, y ∈ U . Moreover, we define a fuzzy implication in order to calculate the fuzzy positive region in the context
(U,U, RA, τ ). It will depend on the objects under consideration and on a value β given from the mapping τ :U × U →

{1, 3, 5} defined for each xi, xj ∈ U as:

τ (xi, xj) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

1 if i and j are even

3 if i and j are odd

5 otherwise

We will consider the fuzzy implication in Eq. (1), that is, ↖β

Ł : [0, 1] × [0, 1] → defined, for each xi, xj ∈ U , as:

x ↖
β x =

β

√
min{1, 1 + xβ

− xβ
} (5)
i Ł j i j

8
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Table 3
Relation Ra1 of Example 25.

Ra1 x1 x2 x3 x4 x5 x6 x7
x1 1 0.87 0.82 0.49 0.91 0.87 0.75
x2 0.87 1 0.69 0.36 0.78 1 0.88
x3 0.82 0.69 1 0.67 0.91 0.69 0.57
x4 0.49 0.36 0.67 1 0.58 0.36 0.24
x5 0.91 0.78 0.91 0.58 1 0.78 0.66
x6 0.87 1 0.69 0.36 0.78 1 0.88
x7 0.75 0.88 0.57 0.24 0.66 0.88 1

Table 4
Relation Ra2 of Example 25.

Ra2 x1 x2 x3 x4 x5 x6 x7
x1 1 0.6 0.39 0.66 0.42 0.84 0.38
x2 0.6 1 0.79 0.94 0.82 0.76 0.78
x3 0.39 0.79 1 0.73 0.97 0.55 0.99
x4 0.66 0.94 0.73 1 0.76 0.82 0.72
x5 0.42 0.82 0.97 0.76 1 0.58 0.96
x6 0.84 0.76 0.55 0.82 0.58 1 0.54
x7 0.38 0.78 0.99 0.72 0.96 0.54 1

Table 5
Relation Ra3 of Example 25.

Ra3 x1 x2 x3 x4 x5 x6 x7
x1 1 0.75 0.75 0.75 0.75 0.5 0.5
x2 0.75 1 0.5 0.5 1 0.75 0.75
x3 0.75 0.5 1 1 0.5 0.25 0.25
x4 0.75 0.5 1 1 0.5 0.25 0.25
x5 0.75 1 0.5 0.5 1 0.75 0.75
x6 0.5 0.75 0.25 0.25 0.75 1 1
x7 0.5 0.75 0.25 0.25 0.75 1 1

Table 6
Relation Ra4 of Example 25.

Ra4 x1 x2 x3 x4 x5 x6 x7
x1 1 1 0.5 0.5 1 0.7 0.7
x2 1 1 0.5 0.5 1 0.7 0.7
x3 0.5 0.5 1 1 0.5 0.8 0.8
x4 0.5 0.5 1 1 0.5 0.8 0.8
x5 1 1 0.5 0.5 1 0.7 0.7
x6 0.7 0.7 0.8 0.8 0.7 1 1
x7 0.7 0.7 0.8 0.8 0.7 1 1

with τ (xi, xj) = β . Notice that, the case β = 1 corresponds to the Łukasiewicz implication. The relations Ra1 , Ra2 , Ra3 , Ra4 ,
B and RA given in Tables 3–8 will be needed to compute POS f

A(x) and POS f
B(x), for all x ∈ U . In order to illustrate the

omputations, we include the following examples:

Ra1 (x1, x2) = 1 − |ā1(x1) − ā1(x2)| = 1 − |0.34 − 0.21| = 0.87

RA(x1, x2) =
Ra1 (x1, x2) + 2(Ra2 (x1, x2) + Ra3 (x1, x2)) + Ra4 (x, y)

6

=
0.87 + 2(0.6 + 0.75) + 1

6

=
4.57
6

≈ 0.76

On the other hand, since d is a boolean attribute, the tolerance relation Rd(x, y) = 1− |d̄(x) − d̄(y)| is given as follows:

Rd(x, y) =

{
1 if d̄(x) = d̄(y)
0 otherwise

(6)
9
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Table 7
RB of Example 25.
RB x1 x2 x3 x4 x5 x6 x7
x1 1 0.76 0.68 0.72 0.71 0.76 0.59
x2 0.76 1 0.71 0.71 0.9 0.84 0.82
x3 0.68 0.71 1 0.86 0.81 0.55 0.68
x4 0.72 0.71 0.86 1 0.68 0.58 0.53
x5 0.71 0.9 0.81 0.68 1 0.74 0.85
x6 0.76 0.84 0.55 0.58 0.74 1 0.83
x7 0.59 0.82 0.68 0.53 0.85 0.83 1

Table 8
RA of Example 25.
RA x1 x2 x3 x4 x5 x6 x7
x1 1 0.76 0.6 0.64 0.71 0.71 0.54
x2 0.76 1 0.63 0.62 0.9 0.79 0.77
x3 0.6 0.63 1 0.86 0.73 0.52 0.64
x4 0.64 0.62 0.86 1 0.6 0.55 0.5
x5 0.71 0.9 0.73 0.6 1 0.69 0.8
x6 0.71 0.79 0.52 0.55 0.69 1 0.83
x7 0.54 0.77 0.64 0.5 0.8 0.83 1

Table 9
POS f

A of Example 25.
POS f

A

x1 0.94
x2 0.83
x3 0.89
x4 0.89
x5 0.83
x6 0.91
x7 0.91

Finally, Tables 7 and 8 show the relations RB and RA. From Tables 7 and 8 the multi-adjoint fuzzy B-positive region
nd A-positive region are computed, obtaining that POS f

A(x) = POS f
B(x), for all x ∈ U . These values are shown in Table 9.

s a consequence, it is immediately obtained that m(B) = 1.
In a similar way it can be computed that m({a1, a2}) = 0.97, m({a1, a3}) = 0.86 and m({a2, a3}) = 0.98. Therefore,

y Definition 20, B is a fuzzy m-decision reduct to degree 1. In this way, we can discard the attribute a4 without losing
nformation. Thus, we will only consider the attributes a1, a2 and a3, and by using the conjunction of formulas, to compute
he set of decision rules which will describe the decision table of Table 2. In this way, one decision rule is obtained for
ach object. For instance, for the object x1 we obtain the formulas (a1, 0.34), (a2, 0.31) and (a3, 0.75) considering each
ttribute of A. By using the conjunction of these pairs we obtain the formula Φ1 = (a1, 0.34) ∧ (a2, 0.31) ∧ (a3, 0.75).
n the other hand, considering the attribute d we obtain the formula Ψ1 = (d, 0). As a consequence, the decision rule
1 = Φ1 → Ψ1 associated with the object x1 is r1 : (a1, 0.34) ∧ (a2, 0.31) ∧ (a3, 0.75) → (d, 0). Following an analogous
easoning next decision rules are obtained.

r1 : (a1, 0.34) ∧ (a2, 0.31) ∧ (a3, 0.75) → (d, 0)
r2 : (a1, 0.21) ∧ (a2, 0.71) ∧ (a3, 0.5) → (d, 1)
r3 : (a1, 0.52) ∧ (a2, 0.92) ∧ (a3, 1) → (d, 0)
r4 : (a1, 0.85) ∧ (a2, 0.65) ∧ (a3, 1) → (d, 1)
r5 : (a1, 0.43) ∧ (a2, 0.89) ∧ (a3, 0.5) → (d, 0)
r6 : (a1, 0.21) ∧ (a2, 0.47) ∧ (a3, 0.25) → (d, 1)
r7 : (a1, 0.09) ∧ (a2, 0.93) ∧ (a3, 0.25) → (d, 0)

Now, we compute the degree of satisfaction to each antecedent for each object, that is, ∥Φi∥
T
S (xj) with i, j ∈

1, 2, . . . , 7}. For this purpose, we use the family of separable [0, 1]-fuzzy tolerance relation T = {Ta : Va × Va → [0, 1] |

∈ Ad} defined as Ta(ā(x), v) = 1 − |ā(x) − v|, for all a ∈ Ad, x ∈ U and v ∈ [0, 1]. Notice that, ∥Φi∥
T
S (xj) = ∥Ψi∥

T
S (xj) = 1

f i = j, since each object generates the decision rule with the same subscript. The computation of ∥Φ2∥
T
S (x1) is shown for

non-trivial example.

∥Φ2∥
T
S (x1) = ∥(a1, 0.21) ∧ (a2, 0.71) ∧ (a3, 0.5)∥T

S (x1)
= ∥(a , 0.21)∥T (x ) ∧ ∥(a , 0.71)∥T (x ) ∧ ∥(a , 0.5)∥T (x )
1 S 1 2 S 1 3 S 1

10
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Table 10
Degree of satisfaction to each antecedent of decision rules for each object.

∥Φ1∥
T
S ∥Φ2∥

T
S ∥Φ3∥

T
S ∥Φ4∥

T
S ∥Φ5∥

T
S ∥Φ6∥

T
S ∥Φ7∥

T
S

x1 1 0.6 0.39 0.49 0.42 0.5 0.38
x2 0.6 1 0.5 0.36 0.78 0.75 0.75
x3 0.39 0.5 1 0.67 0.5 0.25 0.25
x4 0.49 0.36 0.67 1 0.5 0.25 0.24
x5 0.42 0.78 0.5 0.5 1 0.58 0.66
x6 0.5 0.75 0.25 0.25 0.58 1 0.54
x7 0.38 0.75 0.25 0.24 0.66 0.54 1

= (1 − |a1(x1) − 0.21|) ∧ (1 − |a2(x1) − 0.71|) ∧ (1 − |a3(x1) − 0.5|)
= (1 − |0.34 − 0.21|) ∧ (1 − |0.31 − 0.71|) ∧ (1 − |0.75 − 0.5|)
= 0.87 ∧ 0.6 ∧ 0.75 = 0.6

Following an analogous procedure, the rest of calculations are obtained. They are shown in Table 10.
On the other hand, we compute ∥Ψi∥

T
S (xj) = ∥(d, vi)∥T

S (xj) with i, j ∈ {1, 2, . . . , 7}. In this case, since d is a boolean
attribute the calculations are easier, obtaining

∥Ψi∥
T
S (xj) =

{
1 if d̄(xj) = vi

0 otherwise
□ (7)

Now, we present the notions of support, strength, certainty and coverage in the fuzzy environment, in order to describe
decision rules in this framework. These notions generalize the classical ones, so they have an analogous interpretation.

Definition 26. Let S = (U,Ad,VAd ,Ad) be a decision table, Φ → Ψ be a decision rule in S and T = {Ta : Va × Va →

0, 1] | a ∈ Ad} be a family of separable [0, 1]-fuzzy tolerance relations. We call:

• T -support of the decision rule Φ → Ψ to the value:

suppTS (Φ, Ψ ) = cardF (∥Φ ∧ Ψ ∥
T
S )

• T -strength of the decision rule Φ → Ψ to the value:

σ T
S (Φ, Ψ ) =

suppTS (Φ, Ψ )
|U |

• T -certainty of the decision rule Φ → Ψ to the value:

cerTS (Φ, Ψ ) =
suppTS (Φ, Ψ )
cardF (∥Φ∥

T
S )

when cardF (∥Φ∥
T
S ) ̸= 0.

• T -coverage of the decision rule Φ → Ψ to the value:

covT
S (Φ, Ψ ) =

suppTS (Φ, Ψ )
cardF (∥Ψ ∥

T
S )

when cardF (∥Ψ ∥
T
S ) ̸= 0.

Notice that, cerTS (Φ, Ψ ) ≤ 1 for each Φ → Ψ in S since ∥Φ ∧ Ψ ∥
T
S (x) = ∥Φ∥

T
S (x) ∧ ∥Ψ ∥

T
S (x) ≤ ∥Φ∥

T
S (x) for all

x ∈ U . In the same way, it can be concluded that σ T
S (Φ, Ψ ), covT

S (Φ, Ψ ) ≤ 1. Analogously to the classical environment,
we characterize decision rules depending on the value of its T -certainty.

Definition 27. Let S = (U,Ad,VAd ,Ad) be a decision table, Φ → Ψ be a decision rule in S and T = {Ta : Va × Va →

[0, 1] | a ∈ Ad} be a family of separable [0, 1]-fuzzy tolerance relations. If cerTS (Φ, Ψ ) = 1 we will say that Φ → Ψ is a
T -true decision rule. If cerTS (Φ, Ψ ) = 0, we say that the decision rule is T -false. Otherwise, it will be called a not entirely
T -true decision rule.

Now, we prove that these notions generalize to the classical ones.

Proposition 28. Let S = (U,Ad,VAd ,Ad) be a decision table and Φ → Ψ be a decision rule in S. If T = {Ta : Va × Va →

{0, 1} | a ∈ Ad} is a family of boolean separable tolerance relations then

suppT (Φ, Ψ ) = supp (Φ, Ψ )
S S

11
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σ T
S (Φ, Ψ ) = σS(Φ, Ψ )

cerTS (Φ, Ψ ) = cerS(Φ, Ψ )
covT

S (Φ, Ψ ) = covS(Φ, Ψ )

Proof. Let B ⊆ Ad. Since it is well-known that cardF generalizes the classical definition of cardinality, we have that
|∥Φ∥S | = cardF (∥Φ∥

T
S ) with Φ ∈ For(B). Thus, because of the notions of T -support, T -strength, T -certainty and T -coverage

are based on the cardinal of fuzzy sets we obtain that these notions generalize to the classical ones. □

These notions are illustrated in the following example.

Example 29. Coming back to the environment of Example 25, we compute the T -support, T -strength, T -certainty and
-coverage of each decision rule by using Table 10, Eq. (7) and Definition 26. We will only show some calculus since the
est are analogous.

First of all, we will calculate suppTS (Φ1, Ψ1).

suppTS (Φ1, Ψ1) = cardF (∥Φ1 ∧ Ψ1∥
T
S )

=

∑
x∈U

∥Φ1 ∧ Ψ1∥
T
S (x)

=

∑
x∈U

(
∥Φ1∥

T
S (x) ∧ ∥Ψ1∥

T
S (x)

)
= ∥Φ1∥

T
S (x1) ∧ ∥Ψ1∥

T
S (x1) + ∥Φ1∥

T
S (x2) ∧ ∥Ψ1∥

T
S (x2)

+ ∥Φ1∥
T
S (x3) ∧ ∥Ψ1∥

T
S (x3) + ∥Φ1∥

T
S (x4) ∧ ∥Ψ1∥

T
S (x4)

+ ∥Φ1∥
T
S (x5) ∧ ∥Ψ1∥

T
S (x5) + ∥Φ1∥

T
S (x6) ∧ ∥Ψ1∥

T
S (x6)

+ ∥Φ1∥
T
S (x7) ∧ ∥Ψ1∥

T
S (x7)

= 1 ∧ 1 + 0.6 ∧ 0 + 0.39 ∧ 1 + 0.49 ∧ 0 + 0.42 ∧ 1 + 0.5 ∧ 0 + 0.38 ∧ 1
= 1 + 0 + 0.39 + 0 + 0.42 + 0 + 0.38
= 2.19

Hence, the T -strength of the decision rule Φ1 → Ψ1 is

σ T
S (Φ1, Ψ1) =

suppTS (Φ1, Ψ1)
|U |

=
2.19
7

≈ 0.31

In order to compute the T -certainty of this decision rule we calculate cardF (∥Φ1∥
T
S ).

cardF (∥Φ1∥
T
S ) =

∑
x∈U

∥Φ1∥
T
S (x) = ∥Φ1∥

T
S (x1) + ∥Φ1∥

T
S (x2) + ∥Φ1∥

T
S (x3)

+ ∥Φ1∥
T
S (x4) + ∥Φ1∥

T
S (x5) + ∥Φ1∥

T
S (x6) + ∥Φ1∥

T
S (x7)

= 1 + 0.6 + 0.39 + 0.49 + 0.42 + 0.5 + 0.38
= 3.78

As a consequence,

cerTS (Φ1, Ψ1) =
suppTS (Φ1, Ψ1)
cardF (∥Φ1∥

T
S )

=
2.19
3.78

≈ 0.58

Now, we calculate the T -coverage of the decision rule Φ1 → Ψ1. With this purpose, we compute cardF (∥Ψ1∥
T
S ).

cardF (∥Ψ1∥
T
S ) =

∑
x∈U

∥Ψ1∥
T
S (x) = ∥Ψ1∥

T
S (x1) + ∥Ψ1∥

T
S (x2) + ∥Ψ1∥

T
S (x3)

+ ∥Ψ1∥
T
S (x4) + ∥Ψ1∥

T
S (x5) + ∥Ψ1∥

T
S (x6) + ∥Ψ1∥

T
S (x7)

= 1 + 0 + 1 + 0 + 1 + 0 + 1
= 4

Hence,

covT
S (Φ1, Ψ1) =

suppTS (Φ1, Ψ1)
cardF (∥Ψ1∥

T
S )

=
2.19
4

≈ 0.55

The other indicators are calculated analogously and they are presented in Table 11. □
12
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Table 11
T -support, T -strength, T -certainty and T -coverage of the decision rules of Example 25.
Rule suppTS σ T

S cerTS covT
S

r1 2.19 0.31 0.58 0.55
r2 2.11 0.3 0.45 0.7
r3 2.14 0.31 0.6 0.54
r4 1.61 0.23 0.58 0.54
r5 2.58 0.37 0.58 0.65
r6 2 0.29 0.52 0.67
r7 2.29 0.33 0.6 0.57

Table 12
Relation between each pair of antecedents of decision rules of Example 25.
RFd Φ1 Φ2 Φ3 Φ4 Φ5 Φ6 Φ7

Φ1 1 0.6 0.39 0.49 0.42 0.5 0.38
Φ2 0.6 1 0.5 0.36 0.78 0.75 0.75
Φ3 0.39 0.5 1 0.67 0.5 0.25 0.25
Φ4 0.49 0.36 0.67 1 0.5 0.25 0.24
Φ5 0.42 0.78 0.5 0.5 1 0.58 0.66
Φ6 0.5 0.75 0.25 0.25 0.58 1 0.54
Φ7 0.38 0.75 0.25 0.24 0.66 0.54 1

4. Decision algorithms in fuzzy rough set theory

This section is devoted to the study of decision algorithms in the fuzzy environment. First of all, it is necessary to
ompare formulas. These will be conjunction of attribute–value pairs because it is the usual form of the antecedent of
ecision rules. With this purpose, a fuzzy tolerance relation is introduced below.

efinition 30. Let (U,Ad,VAd ,Ad) be a decision table, T = {Ta : Va × Va → [0, 1] | a ∈ Ad} be a family of separable
[0, 1]-fuzzy tolerance relations and Φ, Φ ′

∈ For(Ad), with Φ = (a1, v1)∧ · · · ∧ (an, vn) and Φ ′
= (a′

1, w1)∧ · · · ∧ (a′
m, wm).

he F-indiscernibility relation is a [0, 1]-fuzzy tolerance relation RFd : For(Ad) × For(Ad) → [0, 1] given as

RFd(Φ, Φ ′) =

⎧⎨⎩
⋀

i∈{1,...,n}
Tai (vi, wi) if n = m and ai = a′

i for all i ∈ {1, . . . , n}

0 otherwise

Given α ∈ [0, 1], the RFd − α-block is defined for each Φ ∈ For(Ad) as:

[Φ]α = {Φ ′
∈ For(Ad) | α ≤ RFd(Φ, Φ ′)}

If Φ ′
∈ [Φ]α then we will say that Φ and Φ ′ are RFd − α-related.

It is important to emphasize that RFd is not a transitive fuzzy tolerance relation, in general, this is why we have tolerance
locks instead of equivalence classes. In addition, notice that given a pair of formulas Φ, Φ ′ and a fuzzy tolerance relation
Fd, the value α determines if each formula belongs to the RFd − α-block of the other formula and vice versa.
In the following example, we will compare each pair of antecedents of decision rules of Example 25 by using a

-indiscernibility relation RFd.

xample 31. We will compute RFd(Φ, Φ ′) for each Φ, Φ ′ antecedents of decision rules of Example 25. With this purpose,
we fix the [0, 1]-fuzzy tolerance relation Ta : Va ×Va → [0, 1] defined as Ta(v, w) = 1−|v − w| for all a ∈ A. In particular,
we illustrate the computation of RFd(Φ1, Φ2). This is made by using Table 2 and Definition 30.

RFd(Φ1, Φ2) =

⋀
i∈{1,2,3}

Tai (vi, wi)

= Ta1 (0.34, 0.21) ∧ Ta2 (0.31, 0.71) ∧ Ta3 (0.75, 0.5)
= 0.87 ∧ 0.6 ∧ 0.75 = 0.6

The rest of results are shown in Table 12. □

Before defining the notion of decision algorithm in the fuzzy framework it is necessary to introduce the following
definition.

Definition 32. Let S = (U,Ad,VAd ,Ad) be a decision table, α ∈ (0, 1], RFd : For(Ad) × For(Ad) → [0, 1] be a F-
indiscernibility relation and Dec(S) = {Φ → Ψ } be a set of decision rules of S, where the index set is I = {1, . . . ,m}
i i i∈I

13
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and m ≥ 2. The set of α-consistent decision rules is defined as follows:

Dec+

α (S) = {Φ → Ψ ∈ Dec(S) | if for each Φ ′
→ Ψ ′

∈ Dec(S) such
that Φ ′

∈ [Φ]α then Ψ ′
∈ [Ψ ]α}

Notice that, this set does not contain contradictory decision rules, that is, this set is composed of decision rules that, if
their antecedents are RFd − α-related then their consequents are also RFd − α-related. Therefore, it is not possible to find
ecision rules in Dec+

α (S) whose antecedents are RFd − α-related but their consequents not.
Finally, it is important to emphasize that we have not defined Dec+

α (S) as the set of T -true decision rules because, by
efinition 26, given Φ → Ψ ∈ Dec(S), we have that cerTS (Φ, Ψ ) = 1 if and only if ∥Φ∥S(x) ≤ ∥Ψ ∥S(x) for all x ∈ U . Hence,
n order to avoid a restrictive condition we have adapted the notion of Dec+(S) to obtain interesting results.

Now, we present the notion of decision algorithm in the fuzzy setting.

efinition 33. Let S = (U,Ad,VAd ,Ad) be a decision table, α ∈ (0, 1], α1, α2, α4 ∈ [0, 1),1 α3 > 0, T = {Ta : Va × Va →

0, 1] | a ∈ Ad} be a family of separable tolerance relations and Dec(S) = {Φi → Ψi}i∈I be a set of decision rules of S,
here the index set is I = {1, . . . ,m} and m ≥ 2. We say that:

1. Dec(S) is a set of α1α2-pairwise mutually exclusive (independent) decision rules, if each pair of decision rules
Φ → Ψ , Φ ′

→ Ψ ′
∈ Dec(S) satisfies that Φ = Φ ′ or ∥Φ ∧ Φ ′

∥
T
S (x) ≤ α1 and Ψ = Ψ ′ or ∥Ψ ∧ Ψ ′

∥
T
S (x) ≤ α2, for all

x ∈ U .
2. Dec(S) covers U , if cardF (∥

m⋁
i=1

Φi∥
T
S ) = cardF (∥

m⋁
i=1

Ψi∥
T
S ) = |U |.

3. The decision rule Φ → Ψ ∈ Dec(S) is α3-admissible in S if α3 < suppTS (Φ, Ψ ).
4. Dec(S) preserves the α-consistency of S with a degree α4 if the next inequality holds for all x ∈ U:⏐⏐POS f

A(x) −

⋁
Φ→Ψ ∈Dec+α (S)

∥Φ∥
T
S (x)

⏐⏐ ≤ α4

The set of decision rules Dec(S) satisfying the previous properties for the values α1, α2, α3, α4 is called (α1, α2, α3, α4)α-
ecision algorithm in S and it is denoted as DAT (S).

In the previous definition only α affects α4, however, since the value α is a ‘threshold’ that the user must fix from
he beginning, it should be known before defining the decision algorithm, and so it appears as subindex of the tuple of
hresholds (α1, α2, α3, α4).

It is important to emphasize that the set Dec(S) in which each decision rule is extracted from each object of the
ecision table S is a (α1, α2, α3, α4)α-decision algorithm, taking appropriate values of each αi, with i ∈ {1, 2, 3, 4} as we
ill show in Example 38. Each value has a different role. The value α1 sets a bound to discern each pair of antecedents of
he decision rules of Dec(S), except the cases in which they are equals. The interpretation of α2 is the same considering
he consequents instead of the antecedents. Moreover, α3 ensures a minimum value of satisfaction for all decision rules
n Dec(S) taking into account all the objects, which provides a meaningful description of the set of decision rules. Finally,
4 is established to compare two important notions involved in the study of dependence between attributes, the fuzzy
ositive region and the decision rules of Dec+

α .
In order to obtain a relationship between the sets Dec+

α (S) and Dec+(S), we introduce the following notion.

efinition 34. Let S = (U,Ad,VAd ,Ad) be a decision table and DAT (S) be a (α1, α2, α3, α4)α-decision algorithm. If for each
∈ U there exists Φ → Ψ ∈ DAT (S) such that ∥Φ ∧Ψ ∥

T
S (x) = 1 then DAT (S) is called a complete (α1, α2, α3, α4)α-decision

lgorithm.

Considering complete (α1, α2, α3, α4)α-decision algorithms, it is possible to relate Dec+
α (S) of Definition 33 and the set

ec+(S) of Definition 7, as the following result reveals.

roposition 35. Let (U,Ad,VAd ,Ad) be a decision table and T = {Ta : Va × Va → {0, 1} | a ∈ Ad} be a family of boolean
separable tolerance relations. If α > 0 and DAT (S) is a complete (α1, α2, α3, α4)α-decision algorithm then

Dec+

α (S) = Dec+(S)

Proof. To begin with, notice that if each Ta tolerance relation of the family T is boolean, then RFd is also a boolean tolerance
elation. In addition, since α > 0 we obtain that

[Φ]α = {Φ ′
| α ≤ RFd(Φ, Φ ′), Φ ′

→ Ψ ′
∈ DAT (S)}

= {Φ ′
| RFd(Φ, Φ ′) = 1, Φ ′

→ Ψ ′
∈ DAT (S)}

= {Φ ′
| Φ ′

= Φ, Φ ′
→ Ψ ′

∈ DAT (S)}

1 The value 1 is not taken into account since these cases are always satisfied and they are valueless.
14
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Hence, Φ ′
∈ [Φ]α if and only if Φ = Φ ′. Therefore, under these hypotheses we obtain that

Dec+

α (S) = {Φ → Ψ ∈ DAT (S) | if for each Φ ′
→ Ψ ′

∈ DAT (S) such
that Φ ′

= Φ then Ψ ′
= Ψ }

First of all, we prove that Dec+
α (S) ⊆ Dec+(S). Let Φ → Ψ ∈ Dec+

α (S). By reductio ad absurdum, we suppose that
→ Ψ /∈ Dec+(S). Then cerTS (Φ, Ψ ) < 1. Since T is a family of boolean separable tolerance relations, by Proposition 28,
e obtain cerTS (Φ, Ψ ) = cerS(Φ, Ψ ). Therefore,∑

x∈U
∥Φ ∧ Ψ ∥

T
S (x)∑

x∈U
∥Φ∥

T
S (x)

=
suppTS (Φ, Ψ )
cardF (∥Φ∥

T
S )

= cerTS (Φ, Ψ ) = cerS(Φ, Ψ ) < 1

As a consequence, there exists x ∈ U such that ∥Φ ∧ Ψ ∥
T
S (x) < ∥Φ∥

T
S (x). Taking into account that T is a family of

oolean separable tolerance relations, ∥Φ∥
T
S (x) = 1 and ∥Ψ ∥

T
S (x) = 0.

On the other hand, since DAT (S) is a complete (α1, α2, α3, α4)α-decision algorithm, there exists Φ ′
→ Ψ ′

∈ DAT (S)
uch that ∥Φ ′

∧ Ψ ′
∥
T
S (x) = 1. Hence, ∥Φ∥

T
S (x) = ∥Φ ′

∥
T
S (x) = ∥Φ ∧ Φ ′

∥
T
S (x) = 1. As a result, taking into account that

1 < 1 it is deduced that α1 < ∥Φ ∧ Φ ′
∥
T
S (x), so Φ = Φ ′. In addition, ∥Ψ ′

∥
T
S (x) = 1 and ∥Ψ ∧ Ψ ′

∥
T
S (x) = 0. Therefore, it

must be Ψ ̸= Ψ ′. This fact leads to a contradiction, since Φ → Ψ ∈ Dec+
α (S), so Φ → Ψ ∈ Dec+(S). Therefore, we can

onclude that Dec+
α (S) ⊆ Dec+(S).

Now, we prove that Dec+(S) ⊆ Dec+
α (S). Let Φ → Ψ ∈ Dec+(S). Then cerS(Φ, Ψ ) = 1 and by Proposition 28,

cerTS (Φ, Ψ ) = 1. By reductio ad absurdum, we suppose that Φ → Ψ /∈ Dec+
α (S). Then, there exists Φ → Ψ ′

∈ DAT (S)
such that Ψ ̸= Ψ ′. Since DAT (S) is a (α1, α2, α3, α4)α-decision algorithm, it is obtained that suppTS (Φ, Ψ ), suppTS (Φ, Ψ ′) >

α3 ≥ 0. In particular, since each mapping of T is boolean and separable, suppTS (Φ, Ψ ), suppTS (Φ, Ψ ′) ≥ 1. Therefore, there
exists x ∈ U such that ∥Φ ∧ Ψ ′

∥
T
S (x) = 1. Taking into account that Ψ ̸= Ψ ′, it is concluded that ∥Φ ∧ Ψ ∥

T
S (x) = 0. Hence,

cerTS (Φ, Ψ ) =
suppTS (Φ, Ψ )
cardF (∥Φ∥

T
S )

=

∑
x∈U

∥Φ ∧ Ψ ∥
T
S (x)∑

x∈U
∥Φ∥

T
S (x)

< 1

leading to a contradiction. As a consequence, Φ → Ψ ∈ Dec+
α (S), and Dec+

α (S) = Dec+(S). □

From this result, we can relate the set Dec+
α (S) to the set of T -true decision rules as it is shown below.

Corollary 36. Let S = (U,Ad,VAd ,Ad) be a decision table and T = {Ta : Va × Va → {0, 1} | a ∈ Ad} be a family of boolean
separable tolerance relations. If α > 0 and DAT (S) is a complete (α1, α2, α3, α4)α-decision algorithm then

Dec+

α (S) = {Φ → Ψ ∈ DAT (S) | cerTS (Φ, Ψ ) = 1}

Proof. It is immediately obtained, by using Propositions 28 and 35

Dec+

α (S) = Dec+(S)
= {Φ → Ψ ∈ DAT (S) | cerS(Φ, Ψ ) = 1}
= {Φ → Ψ ∈ DAT (S) | cerTS (Φ, Ψ ) = 1} □

Hence, when boolean and separable relations are considered, the set Dec+
α (S) coincides with the set of T -true decision

ules.
Finally, we show that complete (α1, α2, α3, α4)α-decision algorithms generalize complete decision algorithms.

roposition 37. Let S = (U,Ad,VAd ,Ad) be a decision table, T = {Ta : Va × Va → {0, 1} | a ∈ Ad} be a family
of boolean separable tolerance relations and RA and Ra be boolean separable tolerance relations for all a ∈ Ad. Given
DAT (S) = {Φi → Ψi}i∈I , where the index set is I = {1, . . . ,m} and m ≥ 2, α ∈ (0, 1], α1, α2, α4 ∈ [0, 1) and
0 ≤ α3 < min{suppTS (Φ, Ψ ) | Φ → Ψ ∈ DAT (S)}, then DAT (S) is a complete (α1, α2, α3, α4)α-decision algorithm if and
only if it is a complete decision algorithm.

Proof. Suppose that DAT (S) is a (α1, α2, α3, α4)α-decision algorithm. We will prove the equivalence between each item
of Definitions 7 and 33.

1. Let Φ → Ψ , Φ ′
→ Ψ ′

∈ DAT (S) with Φ ̸= Φ ′. If ∥Φ ∧ Φ ′
∥
T
S (x) ≤ α1 < 1 for all x ∈ U , taking into account that T is

a family of boolean separable tolerance relations, it will be ∥Φ ∧Φ ′
∥
T
S (x) = 0 for all x ∈ U . Then, by Proposition 24,

x /∈ ∥Φ ∧Φ ′
∥S for all x ∈ U . As a consequence, ∥Φ ∧Φ ′

∥S = ∅. Analogously, if ∥Ψ ∧Ψ ′
∥
T
S (x) ≤ α2 < 1 for all x ∈ U

then ∥Ψ ∧ Ψ ′
∥ = ∅.
S
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2. We suppose that cardF (∥
m⋁
i=1

Φi∥
T
S ) = |U |. By the definition of cardinal of a fuzzy set and the disjunction of formulas

we obtain

cardF (∥
m⋁
i=1

Φi∥
T
S ) =

∑
x∈U

∥

m⋁
i=1

Φi∥
T
S (x) =

∑
x∈U

m⋁
i=1

∥Φi∥
T
S (x) = |U |

Since 0 ≤

m⋁
i=1

∥Φi∥
T
S (x) ≤ 1 and that addition has |U | addends, it is obtained that

m⋁
i=1

∥Φi∥
T
S (x) = 1, for all x ∈ U .

Therefore, for each x ∈ U , there exists k ∈ {1, 2, . . . ,m} such that ∥Φk∥
T
S (x) = 1. Hence, by Proposition 24,

x ∈ ∥Φk∥S ⊆ ∥

m⋁
i=1

Φi∥S . Consequently, U ⊆ ∥

m⋁
i=1

Φi∥S . The other inclusion is immediately obtained because of

Definition 4. It can be proved analogously that cardF (∥
m⋁
i=1

Ψi∥
T
S ) = |U | implies that ∥

m⋁
i=1

Ψi∥S = U .

3. The third item is obtained immediately since, by Proposition 28, suppTS (Φ, Ψ ) = suppS(Φ, Ψ ) for each decision rule
Φ → Ψ when T is a family of boolean separable tolerance relations.

4. For the fourth item notice that Dec+
α (S) = Dec+(S) by Proposition 35. Since α4 < 1 and

POS f
A(x),

⋁
Φ→Ψ ∈Dec+α (S)

∥Φ∥
T
S (x) ∈ {0, 1} for all x ∈ U , we obtain that

POS f
A(x) =

⋁
Φ→Ψ ∈Dec+α (S)

∥Φ∥
T
S (x)

for all x ∈ U . Now, we will prove that POSA({d}) =
⋁

Φ→Ψ ∈Dec+(S)
∥Φ∥S . Let x ∈ POSA({d}). By Proposition 18,

POS f
A(x) = 1. Hence,

⋁
Φ→Ψ ∈Dec+α (S)

∥Φ∥
T
S (x) = 1. As a consequence, x ∈

⋁
Φ→Ψ ∈Dec+(S)

∥Φ∥S and POSA({d}) ⊆⋁
Φ→Ψ ∈Dec+(S)

∥Φ∥S .

Suppose now that x ∈
⋁

Φ→Ψ ∈Dec+(S)
∥Φ∥S . Then,

⋁
Φ→Ψ ∈Dec+α (S)

∥Φ∥
T
S (x) = 1. As a consequence, POS f

A(x) = 1. Therefore,

by Proposition 18 x ∈ POSA({d}) and
⋁

Φ→Ψ ∈Dec+(S)
∥Φ∥S ⊆ POSA({d}).

Finally, we suppose that DAT (S) is a complete (α1, α2, α3, α4)α-decision algorithm. Then, for each x ∈ U there exists
→ Ψ ∈ DAT (S) such that ∥Φ ∧ Ψ ∥

T
S (x) = 1. Taking into account that T is a family of boolean separable tolerance

elations and applying Proposition 24, we obtain that x ∈ ∥Φ ∧ Ψ ∥S . As a consequence, DAT (S) is a complete decision
lgorithm.
The counterpart can be analogously proved, taking into account the requirement of the value α3 given in the

ypothesis. □

This connection between complete decision algorithms in the classical and fuzzy frameworks gives more importance
o Definition 33, since it provides more flexibility than Definition 7, thanks to the family of tolerance relations T and the
alues α1, α2, α3, α4.
The following example is introduced to illustrate the notion of (α1, α2, α3, α4)α-decision algorithm.

xample 38. Now, we will calculate maximum/minimum values of αk with k ∈ {1, 2, 3, 4} to obtain a (α1, α2, α3, α4)α-
ecision algorithm composed of the decision rules Dec(S) = {r1, r2, r3, r4, r5, r6, r7} of Example 25. Firstly, we compute α1
y using Table 10 and Definition 23. From the first item of Definition 33, we compute the value

max{∥Φ ∧ Φ ′
∥
T
S (x) | Φ → Ψ , Φ ′

→ Ψ ′
∈ Dec(S), Φ ̸= Φ ′, x ∈ U} = ∥Φ2 ∧ Φ5∥S(x2)

= 1 ∧ 0.78
= 0.78

Consequently, any value α1 ≥ 0.78 verifies that ∥Φ ∧ Φ ′
∥
T
S (x) ≤ α1 for each Φ, Φ ′ antecedents of decision rules

f Dec(S). The condition α2 ≥ 0 clearly arises because d is a boolean attribute. Hence, Dec(S) is a set of α1α2-pairwise
utually exclusive decision rules.
On the other hand, notice that each decision rule of Dec(S) satisfies that ∥Φi ∧ Ψi∥

T
S (xi) = ∥Φi∥

T
S (xi) ∧ ∥Ψi∥

T
S (xi) = 1,

hat is, ∥Φi∥
T
S (xi) = ∥Ψi∥

T
S (xi) = 1 for all i ∈ {1, 2, . . . , 7}. As a consequence,

cardF (∥
7⋁

Φi∥
T
S ) =

∑
∥

7⋁
Φi∥

T
S (x) =

∑ 7⋁
∥Φi∥

T
S (x) =

|U |∑
∥Φj∥

T
S (xj) =

|U |∑
1 = |U |
i=1 x∈U i=1 x∈U i=1 j=1 j=1
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Analogously, cardF (∥
m⋁
i=1

Ψi∥
T
S ) = |U |. Therefore, according to Definition 33, Dec(S) covers U .

Now, for the computation of α3 we take into account the third item of Definition 33, obtaining:

min{suppTS (Φ, Ψ ) | Φ → Ψ ∈ Dec(S)} = suppTS (Φ4, Ψ4) = 1.61

Therefore, any value α3 < 1.61 satisfies that α3 < suppTS (Φ, Ψ ) for all Φ → Ψ ∈ Dec(S). Consequently, each decision
rule of Dec(S) is α3-admissible.

Finally, the value α4 is computed. In Table 9, we showed the values of POS f
A(x), for all x ∈ U . Now, we must obtain

the set Dec+
α (S) to compute

⋁
Φ→Ψ ∈Dec+α (S)

∥Φ∥
T
S (x) for all x ∈ U . In order to consider a good level of flexibility and a value

close to 1 at the same time, we choose the value α = 0.75. Hence, according to Definition 33, it is necessary to calculate
the RFd − 0.75-block of each antecedent. By using Table 12, these blocks are

[Φ1]0.75 = {Φ1}

[Φ2]0.75 = {Φ2, Φ5, Φ6, Φ7} [Φ4]0.75 = {Φ4} [Φ6]0.75 = {Φ2, Φ6}

[Φ3]0.75 = {Φ3} [Φ5]0.75 = {Φ2, Φ5} [Φ7]0.75 = {Φ2, Φ7}

Analogously, the RFd − 0.75-block of each consequent is given as

[Ψi]0.75 =

{
{Ψ1, Ψ3, Ψ5, Ψ7} if i is odd
{Ψ2, Ψ4, Ψ6} if i is even

Consequently, from these blocks we obtain that Dec+

0.75(S) = {r1, r3, r4, r6} because Φ5, Φ7 ∈ [Φ2]0.75 but Ψ5, Ψ7 /∈

[Ψ2]0.75. For the fourth item of Definition 33 consider the value

max{
⏐⏐POS f

A(x) −

⋁
Φ→Ψ ∈Dec+0.75(S)

∥Φ∥
T
S (x)

⏐⏐ | x ∈ U}

= max{|0.96 − 1|, |0.86 − 0.75|, |0.91 − 1|, |0.91 − 1|, |0.86 − 0.58|,
|0.93 − 1|, |0.93 − 0.54|}

= 0.39

Hence, any value α4 ≥ 0.39 makes Dec(S) preserves the 0.75-consistency of S to degree α4.
Therefore, Dec(S) = DAT (S) is a (α1, α2, α3, α4)α-decision algorithm. In fact, it is easy to see that DAT (S) is a complete

α1, α2, α3, α4)α-decision algorithm since ∥Φi ∧ Ψi∥
T
S (xi) = 1 for all i ∈ {1, 2, . . . , 7}. □

In conclusion, in this section we have presented the fuzzy notion of decision rule and all the rest notions related to it
uch as the relevance indicators which describe them and decision algorithms. It is important to emphasize that all these
otions generalize the classical ones and they present interesting properties thanks to the flexibility the fuzzy framework
ffers. Next, we present an example with real information, to illustrate all of these definitions, showing in detail some
alculus as a sample.

. A toy example

This section applies the developed theory to analyze a real dataset. We include an example based on the knowledge
ystem displayed in Table 13, whose dataset has been extracted from Statistical Yearbook of Zhejiang Province (2016) [20],
n order to optimize of water conservancy project investment decision-making. It is important to mention that the
nowledge system, obtained from the previously mentioned data, was already studied by using classical RST techniques
n [20]. Now, we will carry out its study by using the notions and results obtained in the introduced fuzzy framework.

Specifically, the knowledge system collects eight project evaluations, based on the attributes construction expense
CE), financial income (FI), strategy benefit (SB) and external influence (EI), together with the corresponding decisions
ade by an investor, that is, to make an investment (I), a delayed investment (DI) or not to invest (NI). Every unit in
able 13 correspond to 10.000 yuan. With the goal of applying the proposed fuzzy RST technique, we transform the
ata given in Table 13 into the decision table S = (U,Ad,VAd ,Ad) represented in Table 14, where the set of objects is
= {p1, p2, p3, p4, p5, p6, p7, p8}, the set of attributes is A = {CE, FI, SB, EI}, Va = [0, 1], for all a ∈ A and Vd = {I,NI,DI}.

Notice that, we have applied a normalization factor by columns so that the domain is the interval [0, 1]. As the values
of the first three columns are expected significantly higher than the values of the last one, we have divided by 1000 in
the first case and by 500 in the second one. We could have normalized from the maximum and minimum values in each
column of the decision table. However, we have considered a bigger range in order to have the possibility of taking into
consideration projects with amounts greater and lower than these maximums and minimums.

To begin with, we compute a fuzzy m-decision reduct to degree 1 in order to consider less attributes in the decision
rules, without losing information. The corresponding [0, 1]-valued measure m :P(A) → [0, 1] is the one given in Eq. (2)
17
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Table 13
Knowledge system on water conservancy project investment decision-making.

CE FI SB EI Decision (d)

Project 1 (p1) 500 200 690 150 DI
Project 2 (p2) 700 470 650 440 NI
Project 3 (p3) 300 410 500 280 NI
Project 4 (p4) 200 455 550 290 I
Project 5 (p5) 250 260 490 105 DI
Project 6 (p6) 510 380 430 130 DI
Project 7 (p7) 350 550 255 145 I
Project 8 (p8) 650 600 570 120 NI

Table 14
Decision table S = (U,Ad,VAd ,Ad) extracted from Table 13.

CE FI SB EI d

p1 0.5 0.2 0.69 0.3 DI
p2 0.7 0.47 0.65 0.88 NI
p3 0.3 0.41 0.5 0.56 NI
p4 0.2 0.455 0.55 0.58 I
p5 0.25 0.26 0.49 0.21 DI
p6 0.51 0.38 0.43 0.26 DI
p7 0.35 0.55 0.255 0.29 I
p8 0.65 0.6 0.57 0.24 NI

and the a-indiscernibility relation Ra :U × U → [0, 1] is the one given in Eq. (4), for all a ∈ A. For the d-indiscernibility
elation Rd, we define the following mapping, for all x, y ∈ U:

Rd(x, y) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

1 if d̄(x) = d̄(y)

0.5 if d̄(x) = DI and d̄(y) ̸= DI

0 otherwise

It is important to recall that Rd is a symmetrical relation. On the other hand, since we are interested in all attributes have
the same impact in the evaluation of construction projects, we will use the B-indiscernibility relation RB :U × U → [0, 1]
defined, for each B ⊆ A, x, y ∈ U , as:

RB(x, y) =
Rx,y

B (CE) + Rx,y
B (FI) + Rx,y

B (SB) + Rx,y
B (EI)

4

here Rx,y
B (a) was given in Definition 11, for all a ∈ A. Finally, the multi-adjoint fuzzy A-positive region is computed

rom the fuzzy implication given in Eq. (5), considering the following symmetrical mapping τ :U ×U → {1, 3, 5} defined,
for each x, y ∈ U , as:

τ (x, y) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

1 if d̄(x) = d̄(y)

3 if d̄(x) = DI and d̄(y) ̸= DI

5 if d̄(x) = I and d̄(y) = NI

We would like to cushion the relatively big differences between the decision attribute values. For example, if
we consider p2 and p7, we obtain Rd(p2, p7) = 0, which has a great impact in the computation of the implication
Rd(p2, p7) ↖τ (p2,p7) RA(p2, p7), and so in the positive region. Hence, the selection of the implication τ (p2, p7) = 5 reduces
the fact they have some similarity on A and gives a greater value to the implication.

Fig. 2 shows the computed multi-adjoint fuzzy A-positive region. The values of the multi-adjoint fuzzy A-positive
region allow us to compute m(B), for all B ⊆ A. The most remarkable results are also presented in Fig. 2.

We have shown the [0, 1]-valued measure m for all the subsets of three attributes and the three subsets of two
attributes with the greatest [0, 1]-valued measure. It is important to emphasize the relevance of the attribute CE in the
decision table since, as we can see in Fig. 2, it is the only attribute which belongs to the two subsets with two attributes of
greater [0, 1]-valued measure. Therefore, when a project is evaluated to invest or not, it is fundamental to pay attention
to the construction expense, which is also very natural. However, from these values we can conclude that A is the only

fuzzy m-decision reduct to degree 1, so all its attributes are indispensable to process all the information contained in

18
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Fig. 2. Multi-adjoint fuzzy A-positive region.

Table 15
Degree of satisfaction for each antecedent in Dec(S) for each object.

∥Φ1∥
T
S ∥Φ2∥

T
S ∥Φ3∥

T
S ∥Φ4∥

T
S ∥Φ5∥

T
S ∥Φ6∥

T
S ∥Φ7∥

T
S ∥Φ8∥

T
S

p1 1 0.42 0.74 0.7 0.75 0.74 0.565 0.6
p2 0.42 1 0.6 0.5 0.33 0.38 0.41 0.36
p3 0.74 0.6 1 0.9 0.65 0.7 0.73 0.65
p4 0.7 0.5 0.9 1 0.63 0.68 0.705 0.55
p5 0.75 0.33 0.65 0.63 1 0.74 0.71 0.6
p6 0.74 0.38 0.7 0.68 0.74 1 0.825 0.78
p7 0.565 0.41 0.73 0.705 0.71 0.825 1 0.685
p8 0.6 0.36 0.65 0.55 0.6 0.78 0.685 1

Table 16
Degree of satisfaction for each consequent in Dec(S) for each object.

∥Ψ1∥
T
S ∥Ψ2∥

T
S ∥Ψ3∥

T
S ∥Ψ4∥

T
S ∥Ψ5∥

T
S ∥Ψ6∥

T
S ∥Ψ7∥

T
S ∥Ψ8∥

T
S

p1 1 0.5 0.5 0.5 1 1 0.5 0.5
p2 0.5 1 1 0 0.5 0.5 0 1
p3 0.5 1 1 0 0.5 0.5 0 1
p4 0.5 0 0 1 0.5 0.5 1 0
p5 1 0.5 0.5 0.5 1 1 0.5 0.5
p6 1 0.5 0.5 0.5 1 1 0.5 0.5
p7 0.5 0 0 1 0.5 0.5 1 0
p8 0.5 1 1 0 0.5 0.5 0 1

Table 14. As a consequence, to evaluate projects in this framework it is necessary to take into account the whole set of
attributes to make a decision. We obtain the following decision rules:

r1 : (CE, 0.5) ∧ (FI, 0.2) ∧ (SB, 0.69) ∧ (EI, 0.3) → (d,DI)
r2 : (CE, 0.7) ∧ (FI, 0.47) ∧ (SB, 0.65) ∧ (EI, 0.88) → (d,NI)
r3 : (CE, 0.3) ∧ (FI, 0.41) ∧ (SB, 0.5) ∧ (EI, 0.56) → (d,NI)
r4 : (CE, 0.2) ∧ (FI, 0.455) ∧ (SB, 0.55) ∧ (EI, 0.58) → (d, I)
r5 : (CE, 0.25) ∧ (FI, 0.26) ∧ (SB, 0.49) ∧ (EI, 0.21) → (d,DI)
r6 : (CE, 0.51) ∧ (FI, 0.38) ∧ (SB, 0.43) ∧ (EI, 0.26) → (d,DI)
r7 : (CE, 0.35) ∧ (FI, 0.55) ∧ (SB, 0.255) ∧ (EI, 0.29) → (d, I)
r8 : (CE, 0.65) ∧ (FI, 0.6) ∧ (SB, 0.57) ∧ (EI, 0.24) → (d,NI)

We denote this set of decision rules as Dec(S). The degree of satisfaction for each antecedent and consequent, for each
object, is computed by using the family of separable [0, 1]-fuzzy tolerance relations T = {Ta : Va × Va → [0, 1] | a ∈ Ad}
defined as Ta(ā(x), v) = 1 − |ā(x) − v|, for all a ∈ A, Td = Rd, x ∈ U and v ∈ [0, 1]. All the results are shown in Tables 15
and 16.

Now, we compute the T -support, T -strength, T -certainty and T -coverage of each decision rule, which are values
obtained from new measures presented in this paper, that could not be taken into account in the framework of [20],
and that offer more information about the set of decision rules. The results are presented in Table 17.

From Table 17 we can extract some conclusions. First of all, we can detect that the rules with largest T -support are
r1, r5 and r6, whose decision attribute takes the value DI . This fact arises because of the three rules have DI as decision
attribute value and DI has a level of similarity with the other decision attribute values. Moreover, these rules have also
the largest T -certainty, showing that the decision DI is the best one to recommend in case of doubt about the investment.
19
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Table 17
T -support, T -strength, T -certainty and T -coverage of each rule in Dec(S).
Rule suppTS σ T

S cerTS covT
S

r1 4.91 0.61 0.89 0.89
r2 3.09 0.39 0.77 0.69
r3 3.75 0.47 0.63 0.83
r4 3.21 0.4 0.57 0.92
r5 4.82 0.6 0.89 0.88
r6 4.86 0.61 0.83 0.88
r7 3.21 0.4 0.57 0.92
r8 3.51 0.44 0.67 0.78

Table 18
Relation between each pair of antecedents of Dec(S).
RFd Φ1 Φ2 Φ3 Φ4 Φ5 Φ6 Φ7 Φ8

Φ1 1 0.42 0.74 0.7 0.75 0.74 0.565 0.6
Φ2 0.42 1 0.6 0.5 0.33 0.38 0.41 0.36
Φ3 0.74 0.6 1 0.9 0.65 0.7 0.73 0.65
Φ4 0.7 0.5 0.9 1 0.63 0.68 0.705 0.55
Φ5 0.75 0.33 0.65 0.63 1 0.74 0.71 0.6
Φ6 0.74 0.38 0.7 0.68 0.74 1 0.825 0.78
Φ7 0.565 0.41 0.73 0.705 0.71 0.825 1 0.685
Φ8 0.6 0.36 0.65 0.55 0.6 0.78 0.685 1

Table 19
Relation between each pair of consequents of Dec(S).
RFd Ψ1 Ψ2 Ψ3 Ψ4 Ψ5 Ψ6 Ψ7 Ψ8

Ψ1 1 0.5 0.5 0.5 1 1 0.5 0.5
Ψ2 0.5 1 1 0 0.5 0.5 0 1
Ψ3 0.5 1 1 0 0.5 0.5 0 1
Ψ4 0.5 0 0 1 0.5 0.5 1 0
Ψ5 1 0.5 0.5 0.5 1 1 0.5 0.5
Ψ6 1 0.5 0.5 0.5 1 1 0.5 0.5
Ψ7 0.5 0 0 1 0.5 0.5 1 0
Ψ8 0.5 1 1 0 0.5 0.5 0 1

On the other hand, the rules r4 and r7, which correspond to the decision I , have the lowest values in the T -certainty. This
s due to the fact that no project presents properties that make it a safe investment, since the objects associated with
hese rules are similar to others with a different decision. However, these rules have the greatest T -coverage because, in
ase that having to invest in some projects, they are the best candidates according to their condition attributes. Finally,
he decision rules with lowest T -coverage are r2, r3 and r8, in which their decision attribute is NI . This fact shows that
here are reasons not to invest in the projects related to the rules r2, r3 and r8.

Now, we are going to prove whether the considered set of decision rules forms a decision algorithm (Definition 33)
nd, in affirmative case, the associated thresholds (α1, α2, α3, α4) will be analyzed, if the tolerance value is fixed at 0.75.
he relationship between each pair of antecedents and consequents is computed based on Definition 30. The obtained
esults are shown in Tables 18 and 19.

As in Example 38, we have set the tolerance value α = 0.75 to compute the RFd − α-blocks of the antecedents and
onsequents. By using Tables 15 and 16, it can be checked that these blocks are the following:

[Φ1]0.75 = {Φ1, Φ5} [Φ4]0.75 = {Φ3, Φ4}

[Φ2]0.75 = {Φ2} [Φ5]0.75 = {Φ1, Φ5}

[Φ3]0.75 = {Φ3, Φ4} [Φ6]0.75 = {Φ6, Φ7, Φ8}

[Φ7]0.75 = {Φ6, Φ7}

[Φ8]0.75 = {Φ6, Φ8}

[Ψ1]0.75 = [Ψ5]0.75 = [Ψ6]0.75 = {Ψ1, Ψ5, Ψ6}

[Ψ2]0.75 = [Ψ3]0.75 = [Ψ8]0.75 = {Ψ2, Ψ3, Ψ8}

[Ψ4]0.75 = [Ψ7]0.75 = {Ψ4, Ψ7}

Consequently, by Definition 32, we deduce that Dec+

0.75(S) = {r1, r2, r5}. Following an analogous procedure to the one
iven in Example 38, we obtain that Dec(S) is a (α1, α2, α3, α4)0.75-decision algorithm, with α1 ≥ 0.9, α2 ≥ 0.5, α3 < 3.09
nd α4 ≥ 0.21. From the bound α1 we deduce that it is difficult to discern objects of the table, which shows the complexity
n the decision-making process for these evaluation projects. In fact, by Table 18 we know this value has been obtained
rom ∥Φ3 ∧ Φ4∥

T
S (p3) = 0.9, where Ψ3 = (d,NI) and Ψ4 = (d, I), which are totally contrary decisions. Therefore, this
dataset presents inconsistencies, which were not detected in [20].
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Table 20
Degree of satisfaction for each antecedent in Dec(S ′) for each object.

∥Φ ′

1∥
T
S ∥Φ ′

2∥
T
S ∥Φ ′

3∥
T
S ∥Φ ′

4∥
T
S ∥Φ ′

5∥
T
S ∥Φ ′

6∥
T
S ∥Φ ′

7∥
T
S ∥Φ ′

8∥
T
S

p1 1 0.42 0.74 0.7 0.75 0.82 0.65 0.6
p2 0.42 1 0.6 0.5 0.33 0.38 0.41 0.36
p3 0.74 0.6 1 0.9 0.65 0.7 0.73 0.65
p4 0.7 0.5 0.9 1 0.63 0.68 0.71 0.55
p5 0.75 0.33 0.65 0.63 1 0.74 0.71 0.6
p6 0.82 0.38 0.7 0.68 0.74 1 0.83 0.78
p7 0.65 0.41 0.73 0.71 0.71 0.83 1 0.7
p8 0.6 0.36 0.65 0.55 0.6 0.78 0.7 1

Table 21
T -support, T -strength, T -certainty and T -coverage of each rule in Dec(S ′).
Rule suppTS σ T

S cerTS covT
S

r ′

1 4.99 0.62 0.88 0.91
r ′

2 3.09 0.39 0.77 0.69
r ′

3 3.75 0.47 0.63 0.83
r ′

4 3.21 0.4 0.57 0.92
r ′

5 4.82 0.6 0.89 0.88
r ′

6 4.94 0.62 0.83 0.9
r ′

7 3.21 0.4 0.56 0.92
r ′

8 3.51 0.44 0.67 0.78

On the other hand, due to the decision attribute is not fuzzy, it is easy to discern objects with different decisions, as
the bound α2 shows. With respect to the bound α3, it illustrates that all the rules have a high level of T -support, taking
into account the reduced number of objects. This aspect is in line with the similarity in the values of the attributes. Notice
that the T -support will be reduced if the normalization is done through the maximum and the minimum values in the
decision table. However, as we previously commented, we have considered the range from 0 to 1.000 in order to have the
possibility of taking into consideration projects with amounts lower than 2 millions of yuan and greater than 7 millions
of yuan. Finally, α4 exposes that the consistency of the dataset, provided by the fuzzy positive region, and the consistency
of the considered set of decision rules in the algorithm is similar, taking into account that the tolerance value has been
set in α = 0.75. As a consequence, the chosen decision algorithm is suitable to study the corresponding dataset.

Notice that, if we avoid the inclusion of the decision rule associated with the object p4 (a similar study can be done
ith respect to object p3), then the inconsistency decreases. Specifically, the new obtained thresholds are: α1 ≥ 0.83,
2 ≥ 0.5, α3 < 3.09 and α4 ≥ 0.29. However, the new set of rules does not form an algorithm, because of no formula Φ

xists such that ∥Φ∥
T
S (p4) = 1, and so the new set of rules does not cover U .

Although we remarked previously that only the set A is a fuzzy m-decision reduct to degree 1, we also showed the
mportance of the set of attributes B = {CE, FI, EI}. In fact, it can be checked that it is a fuzzy m-decision reduct to degree α
ith 0.94 < α ≤ 0.98. Therefore, we will also study the set of decision rules in which the antecedents are the conjunction
f the attributes of B, comparing the obtained results with those of the previous rules. The new set of rules is as follows:

r ′

1 : (CE, 0.5) ∧ (FI, 0.2) ∧ (EI, 0.3) → (d,DI)
r ′

2 : (CE, 0.7) ∧ (FI, 0.47) ∧ (EI, 0.88) → (d,NI)
r ′

3 : (CE, 0.3) ∧ (FI, 0.41) ∧ (EI, 0.56) → (d,NI)
r ′

4 : (CE, 0.2) ∧ (FI, 0.455) ∧ (EI, 0.58) → (d, I)
r ′

5 : (CE, 0.25) ∧ (FI, 0.26) ∧ (EI, 0.21) → (d,DI)
r ′

6 : (CE, 0.51) ∧ (FI, 0.38) ∧ (EI, 0.26) → (d,DI)
r ′

7 : (CE, 0.35) ∧ (FI, 0.55) ∧ (EI, 0.29) → (d, I)
r ′

8 : (CE, 0.65) ∧ (FI, 0.6) ∧ (EI, 0.24) → (d,NI)

This set of decision rules will be denoted as Dec(S ′), where S ′ is the decision table obtained from S removing the
ttribute SB. Considering the same family of separable [0, 1]-fuzzy tolerance relations T that in the previous study, all the
egrees of satisfaction for each antecedent in Dec(S ′) and object are shown in Table 20.
Notice that, the degrees of satisfaction for the consequents do not change due to the same decision attribute is

onsidered. Table 21 shows the T -support, T -strength, T -certainty and T -coverage of the decision rules of Dec(S ′).
Comparing Tables 17 and 21 we notice very similar values, emphasizing the increment of the T -support of some rules,

iven that we have considered three attributes for the antecedents of the rules instead of the four, increasing the degrees
f satisfaction for the antecedents.
Analogously, we compute the relationship between each pair of antecedents of the rules of Dec(S ′). The results are
shown in Table 22.
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Table 22
Relation between each pair of antecedents of decision rules of Dec(S ′).
RFd Φ ′

1 Φ ′

2 Φ ′

3 Φ ′

4 Φ ′

5 Φ ′

6 Φ ′

7 Φ ′

8

Φ ′

1 1 0.42 0.74 0.7 0.75 0.82 0.65 0.6
Φ ′

2 0.42 1 0.6 0.5 0.33 0.38 0.41 0.36
Φ ′

3 0.74 0.6 1 0.9 0.65 0.7 0.73 0.65
Φ ′

4 0.7 0.5 0.9 1 0.63 0.68 0.71 0.55
Φ ′

5 0.75 0.33 0.65 0.63 1 0.74 0.71 0.6
Φ ′

6 0.82 0.38 0.7 0.68 0.74 1 0.83 0.78
Φ ′

7 0.65 0.41 0.73 0.71 0.71 0.83 1 0.7
Φ ′

8 0.6 0.36 0.65 0.55 0.6 0.78 0.7 1

Once again, we consider the value α = 0.75 to compute the RFd−α-blocks of the antecedents, which are the following:[
Φ ′

1

]
0.75 = {Φ ′

1, Φ ′

5, Φ ′

6}
[
Φ ′

4

]
0.75 = {Φ ′

3, Φ ′

4}[
Φ ′

2

]
0.75 = {Φ ′

2}
[
Φ ′

5

]
0.75 = {Φ ′

1, Φ ′

5}[
Φ ′

3

]
0.75 = {Φ ′

3, Φ ′

4}
[
Φ ′

6

]
0.75 = {Φ ′

1, Φ ′

6, Φ ′

7, Φ ′

8}

[
Φ ′

7

]
0.75 = {Φ ′

6, Φ ′

7}[
Φ ′

8

]
0.75 = {Φ ′

6, Φ ′

8}

It can be checked that Dec+

0.75(S
′) = {r ′

1, r
′

2, r
′

5} and that Dec(S ′) is a (α1, α2, α3, α4)0.75-decision algorithm with α1 ≥ 0.9,
2 ≥ 0.5, α3 < 3.09 and α4 ≥ 0.21. These bounds are the same that in the algorithm Dec(S). This fact shows that we
o not lose relatively much information considering in the antecedents of the rules the attributes {CE, FI, EI} instead of
CE, FI, SB, EI}. As a consequence, it is possible not to take into account the attribute SB to decide whether to invest or
ot in these kinds of projects, taking into account the tolerance value α = 0.75, which can be increased to reduce this
olerance. Moreover, recall that {CE, FI, EI} is not a fuzzy m-decision reduct to degree 1, so that from this point of view,
some information can also be lost. Although this loss of information has not impact in the obtained decision algorithms.
In the future, the relationships between the degree of the m-reducts, the tolerance value and the decision algorithms will
be studied in depth.

6. Conclusions and future work

Decision rules and decision algorithms have been studied in the fuzzy environment in this paper. In particular, a
generalization to the fuzzy framework of the classic notions related to decision rules, including the support, strength,
certainty and coverage have been introduced. Furthermore, the fuzzy notion of decision algorithms have also been
presented. This notion will allow us to study the efficiency of a decision algorithm in this framework, which will
be developed in future works. In addition, some examples have been introduced in order to illustrate all these new
definitions.

In the future, we are interested in studying a generalized notion of efficiency which can be used to compare different
decision algorithms. In addition, the results shown in this work can be applied to the decision rules obtained from mixed
contexts [27]. However, the obtained algorithms would not take into account the attribute dependency given in this kind
of contexts. Therefore, the consideration of mixed contexts will also be studied in the future. Moreover, we will apply
the obtained theoretical developments in real examples whose decision attribute is not boolean. In order to evaluate
the usefulness of the new notion of decision algorithm we will explore diverse examples that contain a large number of
decision rules. In addition, it will be compared and complemented with other notions in the literature frameworks, such
as logic program in fuzzy logic programming [28,29] and attribute implicational system in formal concept analysis [30,31].
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