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Abstract
Let C ⊂ N

p be a finitely generated integer cone and S ⊂ C be an affine semigroup
such that the real cones generated by C and by S are equal. The semigroup S is called
C-semigroup if C \ S is a finite set. In this paper, we characterize the C-semigroups
from their minimal generating sets, and we give an algorithm to check if S is a C-
semigroup and to compute its set of gaps. We also study the embedding dimension
of C-semigroups obtaining a lower bound for it, and introduce some families of C-
semigroups whose embedding dimension reaches our bound. In the last section, we
present a method to obtain a decomposition of a C-semigroup into irreducible C-
semigroups.
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1 Introduction

An affine semigroup S ⊂ N
p is called CS-semigroup if CS \ S is a finite set where

CS ⊂ N
p is the minimal integer cone containing it. These semigroups are a natural

generalization of numerical semigroups, and several of their invariants can be gener-
alized. For a given numerical semigroup G, it is well-known that N \ G is finite; in
fact, G ⊂ N is a numerical semigroup if it is a submonoid of N and N \ G is finite
(for topics related with numerical semigroups see [13] and the references therein). In
general, it does not happen for affine semigroups.

C-semigroups are introduced in [8], where the authors study several properties
about them (for example, an extended Wilf’s conjecture for C-semigroups is given).
These semigroups appear in different contexts: when the integer points in an infinite
family of some homothetic convex bodies in R

p
≥ are considered (see, for instance,

[9], [10] and the references therein), or when the non-negative integer solutions of
some modular Diophantine inequality are studied (see [5]), et cetera. In case the cone
C is Np, Np-semigroups are called generalized numerical semigroups and they were
introduced in [6]. Recently, in [11] it is proved that the minimal free resolution of the
associated algebra to any C-semigroup has maximal projective dimension possible.

In this context, Np-semigroups are characterized in [3], but the general problem
was opened, given any affine semigroup S, how to detect if Sis or not a CS-semigroup?
The primary goal of this work is to determine the conditions that any affine semigroup
given by its minimal set of generators has to verify to be a CS-semigroup. We solve
this problem in Theorem 9, and in Algorithm 1 we provide a computational way to
check it.

Another open problem is to compute the set of gaps of any C-semigroup defined by
its minimal generating set. We solve this problem by means of setting a finite subset
of C containing all the gaps of a given C-semigroup. Algorithm 2 computes the set of
gaps of the given C-semigroup.

In this paper, we also go in-depth to study the embedding dimension of C-
semigroups. In [8,Theorem 11], a lower bound of the embedding dimension of
N

p-semigroups is provided, and some families ofNp-semigroups reaching this bound
are given. Besides, in [8,Conjecture 12], it is proposed a conjecture about a lower
bound for the embedding dimension of any C-semigroup. In Sect. 5, we introduce a
lower bound of the embedding dimension of any C-semigroup, and some families of
C-semigroups whose embedding dimension is equal to this new bound.

An important problem in Semigroup Theory is to determine some decomposition of
a semigroup into irreducible semigroups (for example, see [13,Chapter 3] for numerical
semigroups, or its generalization forNp-semigroups in [2]). We propose an algorithm
to compute a decomposition of any C-semigroup into irreducible C-semigroups.

The results of this work are illustrated with several examples. To this aim,
we have used third-party software, such as Normaliz [4], and the libraries
CharacterizingAffineCSemigroup and Irreducible [7] developed by
the authors in Python [12].

The content of this work is organized as follows. Section 2 introduces the initial
definitions and notations used throughout the paper,mainly related to finitely generated
cones. In Sect. 3, a characterization of C-semigroups is provided, and an algorithm

123



Characterizing affine C-semigroups

to check if an affine semigroup is a C-semigroup. Section 4 is devoted to give an
algorithm to compute the set of gaps of a C-semigroup. Section 5 makes a study of
the minimal generating sets of C-semigroups formulating explicitly a lower bound
for their embedding dimensions. Finally, in Sect. 6 an algorithm for computing a
decomposition of a C-semigroup into irreducible C-semigroups is presented.

2 Preliminaries

The sets of real numbers, rational numbers, integer numbers and the non-negative
integer numbers are denoted by R, Q, Z and N, respectively. Given a subset A of R,
A≥ is the set of elements in A greater than or equal to zero. For any n ∈ N, [n] denotes
the set {1, . . . n}. Given an element x in R

n , ||x ||1 denotes the sum of the absolute
value of its entries, that is, its 1-norm. In this paper we assume the set {e1, . . . , ep} is
the canonical basis of Rp.

For a non empty subset B of Rp
≥, we define the cone generated by B:

L(B):=
{

n∑
i=1

λibi | n ∈ N, {b1, . . . ,bn} ⊂ B, and λi ∈ R≥,∀i ∈ [n]
}

.

Given a real cone C ⊂ R
p
≥, it is well-known that C ∩ N

p is finitely generated if
and only if there exists a rational point in each extremal ray of C. Moreover, any
subsemigroup of C is finitely generated if and only if there exists an element in the
semigroup in each extremal ray of C. A good monograph about rational cones and
affine monoids is [1]. From now on, we assume that the integer cones considered in
this work are finitely generated.

Definition 1 Given an integer cone C ⊂ N
p, an affine semigroup S ⊂ C is said to be

a C-semigroup if C \ S is a finite set. If the cone C = N
p, a C-semigroup is called

N
p-semigroup.

Fix a finitely generated semigroup S ⊂ N
p, we denote by CS the integer cone

L(S) ∩ N
p. Note that, if S is a C-semigroup, the cone C is CS . Obviously, a unique

cone corresponds to infinite different semigroups.
The cone L(S) is a polyhedron andwedenote by {h1(x) = 0, . . . , ht (x) = 0} the set

of its supported hyperplanes. We suppose L(S) = {x ∈ R
d≥ | h1(x) ≥ 0, . . . , ht (x) ≥

0}. Unless otherwise stated, the considered coefficients of each hi (x) are integers and
relatively primes.

Assume L(S) has q extremal rays denoted by τ1, . . . , τq . Then, each τi is deter-
mined by the set of linear equations Hi :={h

j (i)1
(x) = 0, . . . , h

j (i)p−1
(x) = 0} where

Ji :={ j (i)1 < · · · < j (i)p−1} ⊂ [t] is the index set of the supported hyperplanes contain-
ing τi . So, for each i ∈ [q], there exists the minimal non-negative integer vector ai
such that τi = {λai | λ ∈ R≥}. The set {a1, . . . , aq} is a generating set of L(S).

Note that a necessary condition for S to be a CS-semigroup is the set τi ∩ (CS \ S)

is finite for all i ∈ [q].
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From each extremal ray τi of L(S), we define υi (α) as the parallel line to τi
given by the solutions of the linear equations

⋃
j∈Ji {h j (x) = α j } where α =

(α j1, . . . , α jp−1) ∈ Z
p−1. For every integer point P ∈ Z

p and i ∈ [q], there exists
α ∈ Z

p−1 such that P belongs to υi (α); if P ∈ CS , α ∈ N
p−1. We denote by ϒi (P)

the element (h
j (i)1

(P), . . . , h
j (i)p−1

(P)) ∈ N
p−1 with Ji = { j (i)1 < · · · < j (i)p−1}, P ∈ CS

and i ∈ [q]. Note that for any P ∈ CS , P ∈ υi (α) if and only if α = ϒi (P).
Since all the semigroups appearing in this work are finitely generated, from now

on, we omit the term affine when affine semigroups are considered.

3 An algorithm to detect if a semigroup is a C-semigroup

In this section, we study the conditions that a semigroup has to satisfy to be a C-
semigroup. This characterization depends on the minimal set of generators of the
given semigroup.

Let S ⊂ N
p be the affine semigroup minimally generated by �S =

{s1, . . . , sq , sq+1, . . . , sn} and τ1, . . . , τq be the extremal rays of L(S). Assume that
for every i ∈ [q], τi ∩ (CS \ S) is finite and si is the minimum (respect to the nat-
ural order) element in �S belonging to τi . We denote by fi the maximal element in
τi ∩ (CS \ S) with respect to the natural order in N

p. Recall that ai is the minimal
non-negative integer vector defining τi , and let ci ∈ S be the element fi + ai . In case
τi ∩ (CS \ S) = ∅, we fix fi = −ai . The elements fi and ci are a generalization on
the semigroup τi ∩ S of the concepts Frobenius number and conductor of a numerical
semigroup; for numerical semigroups, the Frobenius number is the maximal natural
number that is not in the semigroup, and the conductor is Frobenius number plus one
(see [13,Chapter 1]). Hence, we call Frobenius element and conductor of the semi-
group τi ∩ S the elements fi and ci , respectively. One easy but important property of
S is for every P ∈ S, P + ci + λai ∈ S for any i ∈ [q] and λ ∈ N.

Note that τi ∩ N
p is equal to {λai | λ ∈ N}. So, there exists Si ⊂ N such that

τi ∩ S = {λai | λ ∈ Si }. If we assume that τi ∩ (CS \ S) is finite, it is easy to prove
that Si is a numerical semigroup.

Lemma 2 The τi -semigroup τi ∩ S is isomorphic to the semigroup Si = {λ ∈ N |
λai ∈ S}. Moreover τi ∩ (CS \ S) is finite if and only if Si is a numerical semigroup.

Proof Consider the isomorphism ϕ : τi ∩ S → Si with ϕ(w):=λ such that w = λai .
The second statement holds since τi ∩ (CS \ S) = {λai ∈ N | λai /∈ S, λ ∈ N}. 	

Corollary 3 Given the semigroup τi ∩ S, fi is equal to f ai and ci = c ai where f
and c are the Frobenius number and the conductor of the numerical semigroup Si ,
respectively.

To test whether τi ∩ (CS \ S) is finite, the following result can be used.

Lemma 4 Let S ⊂ N
p be a semigroup and τ be an extremal ray of L(S) satisfying

τ ∩ N
p = {λa | λ ∈ N} with a ∈ N

p. Then, τ ∩ (CS \ S) is finite if and only if
gcd({λ | λa ∈ τ ∩ �S}) = 1.
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Proof Assume that τ ∩ (CS \ S) is finite and suppose that gcd({λ | λa ∈ τ ∩ �S}) =
n �= 1. Hence, every element λa with gcd(n, λ) = 1 does not belong to S, and then
τ ∩ (CS \ S) is not finite.

Conversely if gcd({λ | λa ∈ τ ∩ �S}) = 1, then the semigroup S′ = {λ ∈ N |
λa ∈ S} is a numerical semigroup. From the proof of Lemma 2, S′ is isomorphic to
τ ∩ S. Therefore, τ ∩ (CS \ S) is finite. 	


To introduce the announced characterization, we need to define some subsets of
L(S) and prove some of their properties. Associated to the integer coneCS , consider the
sets A:={∑i∈[q] λiai | 0 ≤ λi ≤ 1} ∩ N

p and D:={∑i∈[q] λi si | 0 ≤ λi ≤ 1} ∩ N
p.

Lemma 5 Given P ∈ CS, there exist Q ∈ A and β ∈ N
q such that P = Q +∑

i∈[q] βiai . Moreover, ϒ j (P) = ϒ j (Q) + ∑
i∈[q] βiϒ j (ai) for every j ∈ [q].

Proof Since P ∈ CS , P = ∑
i∈[q] μiai with μi ∈ Q≥. For each μi there exists

λi ∈ [0, 1) satisfying μi = �μi� + λi . Hence, P = Q + ∑
i∈[q]�μi�ai where

Q = ∑
i∈[q] λiai = P − ∑

i∈[q]�μi�ai ∈ A. Trivially, ϒ j (P) is equal to ϒ j (Q) +∑
i∈[q] βiϒ j (ai ) for every j ∈ [q]. 	


For every i ∈ [q], consider Ti ⊂ N
p−1 the semigroup generated by the finite set

{ϒi (Q) | Q ∈ A} and let 
i be its minimal generating set. Note that the setsA, Ti and

i only depend on the cone CS , and 0 ∈ Ti , since ai ∈ A. The relationships between
the elements in CS and S, and the elements belonging to Ti and 
i are explicitly
determined in the following results for each i ∈ [q].
Lemma 6 Let P be an element in CS such that P ∈ υi (α) for some α ∈ N

p−1, then
α ∈ Ti .

Proof By definition, P ∈ υi (α) means that α = ϒi (P). Using Lemma 5, P =
Q + ∑

j∈[q] β ja j with Q, a1, . . . , aq ∈ A and β1, . . . , βq ∈ N. Therefore, ϒi (P) =
ϒi (Q) + ∑

j∈[q] β jϒi (a j ) ∈ Ti . 	

Corollary 7 For every α ∈ Ti , CS ∩ υi (α) �= ∅ if and only if CS ∩ υi (β) �= ∅ for all
β ∈ 
i .

Proof Since 
i ⊂ Ti , if for all α ∈ Ti , CS ∩ υi (α) �= ∅ then CS ∩ υi (β) �= ∅ for all
β ∈ 
i .

Assume that CS ∩ υi (β) �= ∅ for all β ∈ 
i and let α be an element in Ti . Then,
there exist β1, . . . , βk ∈ 
i , μ1, . . . , μk ∈ N and Q1, . . . , Qk ∈ A such that α =∑

j∈[k] μ jβ j and ϒi (Q j ) = β j for j ∈ [k]. Note that P = ∑
j∈[k] μ j Q j ∈ CS

belongs to υi (α). 	

Corollary 8 For every α ∈ Ti , S ∩ υi (α) �= ∅ if and only if S ∩ υi (β) �= ∅ for all
β ∈ 
i .

Proof Since S ∩ υi (β) �= ∅ for all β, then there exists Q1, . . . , Qk ∈ A such that
ϒi (Q j ) = β j for j ∈ [k]. Thus, the proof of this corollary is analogous to the proof
of Corollary 7. 	
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Note that if P ∈ S ∩ υi (α) for some α ∈ N
p−1 and i ∈ [q], then P + ci + λai ∈ S

and ϒi (P + ci + λai ) = α for all λ ∈ N.
Now, we introduce a characterization of C-semigroups. This characterization

depends on the minimal generating set of the given semigroup. Besides, from its
proof, we provide an algorithm for checking if a semigroup is a C-semigroup (Algo-
rithm 1). Note that most of the parts of Algorithm 1 can be parallelized at least in q
stand-alone processes.

Theorem 9 A semigroup S minimally generated by �S = {s1, . . . , sn} is a CS-
semigroup if and only if:

1. τi ∩ (CS \ S) is finite for all i ∈ [q].
2. �S ∩ υi (α) �= ∅ for all α ∈ 
i and i ∈ [q].
Proof Let S be a CS-semigroup. Trivially, τi ∩ (CS \ S) is finite for all i ∈ [q]. Now
let i ∈ [q] and α ∈ 
i , we probe that �S ∩ υi (α) �= ∅. Since α ∈ 
i , there exists
Q ∈ A such that α = ϒi (Q). Besides, Q + λai ∈ CS and ϒi (Q + λai ) = α for
all λ ∈ N. For some λ ∈ N, Q + λai has to be in S (S is CS-semigroup), that is to
say, Q + λai = ∑

j∈[n] μ j s j with μ1, . . . , μn ∈ N. Therefore, α = ϒi (Q + λai ) =∑
j∈[n] μ jϒi (s j ). By Lemma 5, for all j ∈ [n], s j = Q j + ∑

k∈[q] β jkak for some
Q j ∈ A and β j1, . . . , β jq ∈ N. So, α = ∑

j∈[n] μ jϒi (Q j + ∑
k∈[q] β jkak) =∑

j∈[n] μ jϒi (Q j ) + ∑
j∈[n]

∑
k∈[q] μ jβ jkϒi (ak). Since α is a minimal generator of

Ti ,
∑

j∈[n] μ j + ∑
j∈[n]

∑
k∈[q]\{i} μ jβ jk = 1. So β jk = 0 for all j ∈ [n] and for all

k ∈ [q] \ {i}, and there exists l ∈ [n] such that μl = 1 and μ j = 0 for all j ∈ [n] \ {l}.
Hence, there exists s ∈ �S such that ϒi (s) = α and then �S ∩ υi (α) �= ∅.

Conversely, we assume that ∀i ∈ [q] and ∀α ∈ 
i , τi ∩ (CS \ S) is finite and
�S∩υi (α) �= ∅ (recall that ci = fi+ai ). Let Q be an element inD. ByLemmas 5 and 6,
Q ∈ αi (ϒi (Q)) andϒi (Q) ∈ Ti . If Q ∈ τi for some i ∈ [q], then vi (ϒi (Q)) = τi and,
by the first condition, S∩vi (ϒi (Q)) �= ∅. If Q is not in any ray, by the second condition
and Corollary 8, S ∩ vi (ϒi (Q)) �= ∅. Therefore, for every Q ∈ D, the line υi (ϒi (Q))

includes a unique non zero minimum (respect 1-norm) point belonging to S. Denote
by {mi1, . . . ,midi } the set obtained from the union of above points for the different
elements inD (some of these elements belong to�S). Note thatmi j +ci +λai ∈ S for
all j ∈ [di ] and λ ∈ N. Consider ni :=max{||mi1 + ci ||1, . . . , ||midi + ci ||1}, and xi
the minimum element (respect to the 1-norm) in τi ∩ S such that ||xi ||1 is greater than
or equal to ni . The set Di :=D + xi satisfies that Di ∩ S = Di ∩ CS = Di . Consider
a ∈ xi + CS , proceeding as in the proof of Lemma 5, a = xi + P + ∑

j∈[q] β j s j for
some P ∈ D and β1, . . . , βq ∈ N, and hence, xi + CS ⊂ S. We define the bounded
set X :={∑i∈[q] λixi | 0 ≤ λi ≤ 1}. Since xi + CS ⊂ S for every i ∈ [q] and
L(CS) = {∑i∈[q] λixi |λi ∈ R≥}, CS \ S ⊂ X . Therefore, S is a CS-semigroup. 	


Example 10 illustrates Theorem 9 and Algorithm 1.

Example 10 Let S ⊂ N
3 be the semigroup minimally generated by

�S = {(2, 0, 0), (4, 2, 4), (0, 1, 0), (3, 0, 0), (6, 3, 6), (3, 1, 1), (4, 1, 1),
(3, 1, 2), (1, 1, 0), (3, 2, 3), (1, 2, 1)}.
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Algorithm 1: Test if a semigroup S is a CS-semigroup.
Input: The minimal generating set �S of a semigroup S ⊂ N

p .
Output: Check if S is a CS -semigroup.
begin

q ← number of extremal rays of L(S);
if τi ∩ (CS \ S) is not finite for some i ∈ [q] then

return S is not a CS -semigroup.

Compute the set {a1, . . . , aq } from L(S);
A ← {∑i∈[q] λiai | 0 ≤ λi ≤ 1} ∩ N

p ;

forall the i ∈ [q] do

i ← the minimal generating set of Ti obtained from the finite set ϒi (A);

if �S ∩ υi (α) �= ∅ for all α ∈ 
i and i ∈ [q] then
return S is a CS -semigroup.

return S is not a CS -semigroup.

The cone L(S) is 〈(1, 0, 0), (2, 1, 2), (0, 1, 0)〉R≥ and its supported hyperplanes are
h1(x, y, z) ≡ 2y − z = 0, h2(x, y, z) ≡ x − z = 0 and h3(x, y, z) ≡ z = 0.
Recall CS = L(S) ∩ N

3. By a1, a2 and a3 we denote the vectors (1, 0, 0), (2, 1, 2)
and (0, 1, 0) respectively, and τ1, τ2 and τ3 are the extremal rays with sets of defining
equations {h1(x, y, z) = 0, h3(x, y, z) = 0}, {h1(x, y, z) = 0, h2(x, y, z) = 0} and
{h2(x, y, z) = 0, h3(x, y, z) = 0}, respectively. Hence, S1 = (τ1 \ {(1, 0, 0)}) ∩ N

3,
S2 = τ2 \ {(2, 1, 2)} ∩ N

3 and S3 = τ3 ∩ N
3, and the first condition in Theorem 9

holds.
The set A is equal to

{(0, 0, 0), (0, 1, 0), (1, 0, 0), (1, 1, 0), (1, 1, 1), (2, 1, 1), (2, 1, 2),
(2, 2, 2), (3, 1, 2), (3, 2, 2)}, (1)

and

ϒ1(A) = {(0, 0), (0, 2), (1, 1), (2, 0), (2, 2)},
ϒ2(A) = {(0, 0), (0, 1), (1, 0), (1, 1), (2, 0), (2, 1)},
ϒ3(A) = {(0, 0), (0, 1), (0, 2), (1, 0), (1, 1), (1, 2)}.

Therefore, 
1 = {(0, 2), (1, 1), (2, 0)} and 
2 = 
3 = {(0, 1), (1, 0)}.
Since ϒ1({(3, 1, 1), (3, 1, 2), (1, 1, 0)}) = 
1, ϒ2({(3, 1, 2), (3, 2, 3)}) = 
2, and

ϒ3({(1, 1, 0), (1, 2, 1)}) = 
3, S satisfies the second condition in Theorem 9. Hence,
S is a CS-semigroup.

By using our implementation of Algorithm 1, we can confirm that S is a
CS-semigroup,

In [1]: IsCsemigroup([[2,0,0],[4,2,4],[0,1,0],[3,0,0],
[6,3,6],[3,1,1],[4,1,1],[3,1,2],[1,1,0],[3,2,3],

[1,2,1]])
Out[1]: True
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To finish this section, it should be pointed out that there exist some special cases of
semigroups where Theorem 9 can be simplified:Np-semigroups and two-dimensional
case.

Note that, if the integer cone CS is N
p, its supported hyperplanes are {x1 =

0, . . . , xp = 0}. Moreover, since its extremal rays are the axes, τi ≡ {λei | λ ∈ Q≥}
is determined by the equations ∪ j∈[p]\{i}{x j = 0}, and for any canonical generator e
of Np−1, there exists P in N

p such that ϒi (P) = e. Furthermore, ∪ j∈[p]\{i}{ϒi (e j )}
is the canonical basis of Np−1. Hence, 
1 = · · · = 
p is the canonical basis of
N

p−1. From previous considerations, the same characterization of Np-semigroups in
[3,Theorem 2.8] is obtained from Theorem 9.

Corollary 11 A semigroup S minimally generated by �S is an N
p-semigroup if and

only if:

1. for all i ∈ [p], the non null entries of the elements in τi ∩ �S are coprime, or
si = ei .

2. for all i, j ∈ [p] with i �= j , ei + λ je j ∈ �S for some λ j ∈ N.

Focus on two dimensional case, note that the extremal rays and the supported
hyperplanes of a cone are equal. Since for each extremal ray the coefficients of its
defining linear equation are relatively primes, the linear equations h1(x, y) = 1 and
h2(x, y) = 1 always have non-negative integer solutions. So, any semigroup S ⊂ N

2

is a CS-semigroup if and only if τi ∩ (CS \ S) is finite for i = 1, 2, and both sets
�S ∩ {h1(x, y) = 1} and �S ∩ {h2(x, y) = 1} are non empty.

4 Set of gaps of C-semigroups

This section gives an algorithm to compute the set of gaps of a C-semigroup, i.e. the
setH(S) = CS \ S. This algorithm is obtained from Theorem 9. To introduce such an
algorithm, let us start by redefining some objects used to prove that theorem.

Given S aCS-semigroupwith q extremal rays, for any i ∈ [q], let ci be the conductor
of the semigroup τi ∩ S. By Corollary 8, for any α ∈ ϒi (D) the intersection υi (α)∩ S
is not empty. Hence, set m(i)

α the element in υi (α) ∩ S with minimal 1-norm and
α ∈ ϒi (D) \ {0}. Note that m(i)

α + ci + λai ∈ S for all λ ∈ N. Let ni :=||ci ||1 +
max

({||m(i)
α ||1 | α ∈ ϒi (D) \ {0}}), and xi the minimal element in τi ∩ S such that

||xi ||1 is greater than or equal to ni . The vector xi can be computed as follows: let Q be
the non-negative rational solution of the systems of linear equations {x1 + · · · + xp =
ni , h j (i)1

(x) = 0, . . . , h
j (i)p−1

(x) = 0} (recall that h
j (i)1

(x) = 0, . . . , h
j (i)p−1

(x) = 0 are

the equations defining τi ), then xi =
⌈ ||Q||1||ai ||1

⌉
ai .

By the proof of Theorem 9, CS \ S ⊂ X , with X = {∑i∈[q] λixi | 0 ≤ λi ≤ 1}.
Algorithm 2 shows the process to computed the set of gaps of S. Note that several of
its steps can be computed in a parallel way.

We illustrate Algorithm 2 in the following example. Besides, we confirm our
handmade computations by using our free software [7].
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Algorithm 2: Computing the set of gaps of a C-semigroup.
Input: The minimal generating set �S of a C-semigroup S ⊂ N

p .
Output: Set of gaps of S.
begin

H ← ∅;
q ← number of extremal rays of L(S);
forall the i ∈ [q] do

ci ← conductor of τi ∩ S;

D ← {∑i∈[q] λi si | 0 ≤ λi ≤ 1} ∩ N
p ;

forall the i ∈ [q] do
ϒ = {α1, . . . , α j } ← ϒi (D) \ {0};
forall the h ∈ [ j] do

mh ← the element in υi (αh) ∩ S with minimal 1-norm;

n ← ||ci ||1 + max
({||m1||1, . . . , ||m j ||1}

)
;

xi ← minimal element in τi ∩ S with n ≤ ||xi ||1;
X ← {∑i∈[q] λixi | 0 ≤ λi ≤ 1} ∩ N

p ;

while X �= ∅ do
Q ← First(X );
if Q /∈ S then

H ← H ∪ {Q}
X ← X \ {Q};

return H set of gaps of S.

Example 12 Consider the CS-semigroup S defined in example 10. So, s1 = c1 =
(2, 0, 0), s2 = c2 = (4, 2, 4), s3 = (0, 1, 0) and c3 = (0, 0, 0). The set D is

{(0, 0, 0), (0, 1, 0), (1, 0, 0), (1, 1, 0), (1, 1, 1), (2, 0, 0), (2, 1, 0), (2, 1, 1),
(2, 1, 2), (2, 2, 2), (3, 1, 1), (3, 1, 2), (3, 2, 2), (3, 2, 3), (4, 1, 2), (4, 2, 2),

(4, 2, 3), (4, 2, 4), (4, 3, 4), (5, 2, 3), (5, 2, 4), (5, 3, 4), (6, 2, 4), (6, 3, 4)}.

For example, for the extremal ray τ1, ϒ1(D) is the set

{(0, 0), (0, 2), (0, 4), (1, 1), (1, 3), (2, 0), (2, 2), (2, 4)},

and ∪α∈ϒ1(D)\{0}{m(1)
α } is

{(0, 1, 0), (3, 1, 1), (3, 1, 2), (3, 2, 2), (3, 2, 3), (4, 2, 4), (4, 3, 4)}

For τ2 and τ3,

∪α∈ϒ2(D)\{0}{m(2)
α } = {(0, 1, 0), (3, 1, 2), (1, 1, 0), (3, 2, 3), (2, 0, 0),

(2, 1, 0), (6, 3, 5), (3, 1, 1)}
∪α∈ϒ3(D)\{0}{m(3)

α } = {(1, 1, 0), (1, 2, 1), (2, 0, 0), (2, 3, 1), (2, 4, 2),
(3, 1, 1), (3, 1, 2), (3, 2, 3), (4, 2, 2), (4, 3, 3), (4, 2, 4), (5, 3, 4), (6, 2, 4)}
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Then n1 = 13, n2 = 24 and n3 = 12, and x1 = (14, 0, 0), x2 = (10, 5, 10) and
x3 = (0, 13, 0). Therefore, the set of gaps of S is,

{(1, 0, 0), (1, 1, 1), (2, 1, 1), (2, 1, 2), (2, 2, 1), (2, 2, 2), (2, 3, 2),
(4, 1, 2), (4, 2, 3), (5, 2, 4), (5, 3, 5), (8, 4, 7)}.

By using our implementation of Algorithm 2, we obtain the same gaps:

In [1]: ComputeGaps([[2,0,0],[4,2,4],[0,1,0],[3,0,0],
[6,3,6],[3,1,1],[4,1,1],[3,1,2],[1,1,0],[3,2,3],
[1,2,1]])

Out[1]: [[1,0,0], [1,1,1], [2,1,1], [2,1,2],
[2,2,1], [2,2,2],[2,3,2], [4,1,2], [4,2,3],
[5,2,4], [5,3,5], [8,4,7]]

5 Embedding dimension of C-semigroups

In [8], it is proved that the embedding dimension of an N
p-semigroup is greater than

or equal to 2p, and this bound holds. Furthermore, a conjecture about a lower bound of
embedding dimension of any C-semigroup is proposed. In this section, we determine a
lower bound of the embedding dimension e(S) of a given C-semigroup S by studying
its elements belonging to A.

As in previous sections, let C ⊂ N
p be a finitely generated cone and τ1, . . . , τq

its extremal rays. For any i ∈ [q], ai is the generator of τi ∩ N
p, A is the finite

set {∑i∈[q] λiai | 0 ≤ λi ≤ 1} ∩ N
p and 
i denotes the minimal generating set of

the semigroup Ti ⊂ N
p−1 generated by ϒi (A). Given a C-semigroup S, consider

�′
S :={st1, . . . , stk } the set of minimal generators of S belonging to A\ ∪i∈[q] τi , and

Ml :={i ∈ [q] | ϒi (stl ) ∈ 
i } for l ∈ [k].
The following result provides us with a lower bound for the embedding dimension

of any C-semigroup.

Proposition 13 Given a C-semigroup S ⊂ N
p, then

e(S) ≥
∑
i∈[q]

(e(Si ) + e(Ti )) + k −
∑
i∈[k]

�(Mi ). (2)

Proof From Theorem 9, for any i ∈ [q], there exist e(Si ) minimal generators of
S in τi . Moreover, for each element γ ∈ 
i , there is at least an element of �S in
υi (γ ). Note that, for every s ∈ �S \ A, there is no γ ∈ 
i and γ ′ ∈ 
 j such that
s ∈ υi (γ ) ∩ υ j (γ

′), since for any i, j ∈ [q], γ ∈ 
i and γ ′ ∈ 
 j , the intersection
υi (γ ) ∩ υ j (γ

′) is empty or belongs to A. However, if s ∈ �′
S , then it is possible that

s belongs to two (or more) different lines υi (γ ) and υ j (γ
′) with γ ∈ 
i and γ ′ ∈ 
 j

(in that case, υi (γ ) ∩ υ j (γ
′) = {s}). Thus, the value of �(Ml) indicates the number

of different lines vi (γi ) with γi ∈ 
i to which stl ∈ �′
S belongs. So, counting the

minimal amount of elements needed to have at least one minimal generator in each
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line υi (γ ) for each γ ∈ 
i and i ∈ [q], we have that the embedding dimension of S
is greater than or equal to

∑
i∈[q](e(Si ) + e(Ti )) + k − ∑

i∈[k] �(Mi ). 	


Example 14 Consider the CS-semigroup S given in example 10. In that case, �′
S =

{(3, 1, 2), (1, 1, 0)}, �(M1) = 2 (i.e. ϒi (3, 1, 2) ∈ 
i for i = 1, 2), and �(M2) =
2 (ϒ1(1, 1, 0) ∈ 
1 and ϒ2(1, 1, 0) ∈ 
3). So,

∑
i∈[q](e(Si ) + e(Ti )) + k −∑

i∈[k] �(Mi ) = 5 + 7 + 2 − 2 − 2 = 10 that is smaller than e(S) = 11.

Given any bound, the first interesting question about it is if the bound is reached
for some C-semigroup. The answer is affirmative for (2), and this fact is formulated
as follows.

Lemma 15 Let C ⊂ N
p be an integer cone generated by {a1, . . . , aq} and

let S1, . . . , Sq be the non proper numerical semigroups minimally generated by

{n(i)
1 , . . . , n(i)

e(Si )
} for each i ∈ [q]. Let �′′ ⊂ C \ ∪i∈[q]τi be a finite set satisfying:

• for every γ ∈ 
i and i ∈ [q], there exists a unique d ∈ �′′ such that ϒi (d) = γ ,
• for every d ∈ �′′, ϒi (d) ∈ 
i for some i ∈ [q].

Then, the embedding dimension of the C-semigroup S generated by

�′′ ∪
⋃
i∈[q]

{n(i)
1 ai , . . . , n

(i)
e(Si )

ai }

is

∑
i∈[q]

(e(Si ) + e(Ti )) + k −
∑
i∈[k]

�(Mi ),

where k is the cardinality of �′
S = {s1, . . . , sk}, the set of minimal generators of S

belonging to A \ ∪i∈[q]τi , and Ml = {i ∈ [q] | ϒi (sl) ∈ 
i } for l ∈ [k].
Proof By the hypothesis, there are exactly

∑
i∈[q] e(Ti ) + k − ∑

i∈[k] �(Mi ) minimal
generators of S outside its extremal rays, and

∑
i∈[q] e(Si ) belonging to its extremal

rays. 	

Example 16 Let S ⊂ N

3 be the semigroup minimally generated by

�S = {(2, 0, 0), (4, 2, 4), (0, 2, 0), (3, 0, 0), (6, 3, 6), (0, 3, 0), (3, 1, 1),
(3, 1, 2), (1, 1, 0), (3, 2, 3), (1, 2, 1)}.

Note that the coneCS is the same as the cone in example 10. So,A,
1,
2 and
3 are the
sets given in that example. For the semigroup S, ϒ1({(3, 1, 1), (3, 1, 2), (1, 1, 0)}) =

1, ϒ2({(3, 1, 2), (3, 2, 3)}) = 
2 and ϒ3({(1, 1, 0), (1, 2, 1)}) = 
3. Since
(1, 1, 0), (3, 1, 2) ∈ A, e(S) = 11 = 6 + 7 + 2 − 2 − 2 = ∑

i∈[3](e(Si ) + e(Ti )) +
2 − ∑

i∈[2] �(Mi ).
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Fix a cone C, studying the different possibilities to select sets of points K ⊂ C such
that ∪i∈[q]
i is the union of the minimal generating set of the semigroup given by
∪Q∈Kϒi (Q) (for i from 1 to q), we can state results like the following:

Corollary 17 Let S1, . . . , Sq be the non proper numerical semigroups minimally gen-

erated by {n(i)
1 , . . . , n(i)

e(Si )
} for each i ∈ [q], and �′′ ⊂ C satisfying the hypothesis of

Lemma 15. Thus, if �′′ ⊂ C \ A, then the embedding dimension of the C-semigroup
generated by �′′ ∪ ⋃

i∈[q]{n(i)
1 ai , . . . , n

(i)
e(Si )

ai } is ∑
i∈[q](e(Si ) + e(Ti )).

Finally, we illustrate the above result with an example.

Example 18 Let S ⊂ N
3 be the semigroup minimally generated by

�S = {(2, 0, 0), (4, 2, 4), (0, 2, 0), (3, 0, 0), (6, 3, 6), (0, 3, 0), (3, 1, 1),
(4, 1, 2), (5, 2, 4), (2, 1, 0), (1, 2, 0), (3, 2, 3), (1, 2, 1)}.

Again, the cone CS is the cone appearing in example 10.Note that the elements (2, 0, 0)
and (3, 0, 0) are in S1, (4, 2, 4) and (6, 3, 6) belong to S2, and (0, 2, 0) and (0, 3, 0) are
in S3. Moreover, ϒ1({(3, 1, 1), (4, 1, 2), (2, 1, 0)}) = 
1, ϒ2({(5, 2, 4), (3, 2, 3)}) =

2,ϒ3({(1, 2, 0), (1, 2, 1)}) = 
3, and�S \∪i∈[q]τi ⊂ CS \A. As previous corollary
asserts, e(S) = 13 = 6 + 7 = ∑

i∈[3](e(Si ) + e(Ti )).

6 On the decomposition of a C-semigroup in terms of irreducible
C-semigroups

We define the set of pseudo-Frobenius of a C-semigroup S as PF(S) = {a ∈ H(S) |
a + (S \ {0}) ⊂ S} (recall that H(S) = C \ S), and the set of special gaps of S as
SG(S) = {a ∈ PF(S) | 2a ∈ S}. Note that the elements a of SG(S) are those elements
in C \ S such that S ∪ {a} is again a C-semigroup.

A C-semigroup is C-reducible (simplifying reducible) if it can be expressed as an
intersection of two C-semigroups containing it properly (see [11]). Equivalently, S is
C-irreducible (simplifying irreducible) if and only if |SG(S)| ≤ 1. A decomposition
of a C-semigroup S in terms of irreducible C-semigroups is to express S as intersection
of irreducible C-semigroups. This definition generalizes the definitions of irreducible
numerical semigroups (see [13]) and irreducible Np-semigroups (see [2]).

Our decomposition method into irreducible is based on adding to a C-semigroup
elements of SG(S). If we repeat this operation, we always reach an irreducible C-
semigroup or the cone C. Since the set of gaps H(S) is finite, this process can be
performed only a finite number of times. This allows us to state the following algorithm
inspired by [13,Algorithm 4.49].

By definition, the set SG(S) is obtained from PF(S). If S is determined by its
minimal generating set, then PF(S) can be computed from the setH(S) obtained with
Algorithm 2, or using the two different ways given in [11,Corollary 9 and Example
10].

Example 19 Consider the C-semigroup S given in examples 10 and 12. It is minimally
generated by
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Algorithm 3: Computing a decomposition into C-semigroups.
Input: The minimal generating set �S of a C-semigroup S ⊂ N

p .
Output: A decomposition of S into irreducible C-semigroups.
begin

I ← ∅;
C ← {S};
while C �= ∅ do

B ← {S′ ∪ {a} | S′ ∈ C, a ∈ SG(S′)};
B ← B \ {S′ ∈ B | ∃S̄ ∈ I with S̄ ⊂ S′};
I ← I ∪ {S′ ∈ B | S′ is irreducible};
C ← {S′ ∈ B | S′ reducible};

return I .

�S = {(2, 0, 0), (4, 2, 4), (0, 1, 0), (3, 0, 0), (6, 3, 6), (3, 1, 1), (4, 1, 1),
(3, 1, 2), (1, 1, 0), (3, 2, 3), (1, 2, 1)},

with

H(S) = {(1, 0, 0), (1, 1, 1), (2, 1, 1), (2, 1, 2), (2, 2, 1), (2, 2, 2), (2, 3, 2),
(4, 1, 2), (4, 2, 3), (5, 2, 4), (5, 3, 5), (8, 4, 7)}.

Hence, PF(S) = {(2, 2, 1), (2, 3, 2), (4, 1, 2), (8, 4, 7)}, and SG(S) is equal to PF(S).
Applying Algorithm 3 to S, we obtain the decomposition into six irreducible C-

semigroups, S = S1 ∩ · · · ∩ S6 where

• S1 = 〈(3, 0, 0), (2, 0, 0), (1, 1, 0), (0, 1, 0), (4, 1, 1), (3, 1, 1), (3, 1, 2), (4, 1, 2),
(1, 2, 1), (2, 2, 1), (2, 2, 2), (3, 2, 3), (4, 2, 4), (6, 3, 6)〉;

• S2 = 〈(3, 0, 0), (2, 0, 0), (1, 1, 0), (0, 1, 0), (4, 1, 1), (3, 1, 1), (2, 1, 2), (3, 1, 2),
(1, 2, 1), (2, 2, 1), (3, 2, 3)〉;

• S3 = 〈(1, 0, 0), (0, 1, 0), (2, 1, 1), (3, 1, 2), (1, 2, 1), (3, 2, 3), (4, 2, 4), (5, 3, 5),
(6, 3, 6)〉;

• S4 = 〈(3, 0, 0), (2, 0, 0), (1, 1, 0), (0, 1, 0), (2, 1, 1), (1, 1, 1), (3, 1, 2), (4, 1, 2),
(3, 2, 3), (4, 2, 4), (6, 3, 6)〉;

• S5 = 〈(3, 0, 0), (2, 0, 0), (1, 1, 0), (0, 1, 0), (2, 1, 1), (1, 1, 1), (3, 1, 2), (3, 2, 3),
(4, 2, 4), (5, 2, 4), (6, 3, 6)〉;

• S6 = 〈(3, 0, 0), (2, 0, 0), (1, 1, 0), (0, 1, 0), (4, 1, 1), (3, 1, 1), (2, 1, 2), (3, 1, 2),
(1, 2, 1), (3, 2, 3), (4, 2, 3)〉;
To get these semigroups we have used our implementation in [7] by typing the

following

Csemigroup([[2,0,0],[4,2,4],[0,1,0],[3,0,0],[6,3,6],
[3,1,1],[4,1,1],[3,1,2],[1,1,0],[3,2,3],[1,2,1]]).
DecomposeIrreducible()
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