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a b s t r a c t

For a given graph G, the metric and edge metric dimensions of G, dim(G) and edim(G),
are the cardinalities of the smallest possible subsets of vertices in V (G) such that they
uniquely identify the vertices and the edges of G, respectively, by means of distances. It
is already known that metric and edge metric dimensions are not in general comparable.
Infinite families of graphs with pendant vertices in which the edge metric dimension is
smaller than the metric dimension are already known. In this article, we construct a
2-connected graph G such that dim(G) = a and edim(G) = b for every pair of integers
a, b, where 4 ≤ b < a. For this we use subdivisions of complete graphs, whose metric
dimension is in some cases smaller than the edge metric dimension. Along the way,
we present an upper bound for the metric and edge metric dimensions of subdivision
graphs under some special conditions.

© 2021 Elsevier B.V. All rights reserved.

1. Introduction

The definition of edge metric dimension of graphs appeared first in [4] motivated by the problem of uniquely locating
he connection between two vertices of a graph, that is the edge; and in addition, to giving more insight into the classical
etric dimension.
Given a connected graph G, a vertex v ∈ V (G) and an edge e = xy ∈ E(G), the distance between e and v is dG(e, v)
min{dG(x, v), dG(y, v)}, where dG(x, v) stands for the standard vertex distance in graphs, i.e., the length of a shortest

-v path. A set of vertices S ⊂ V (G) is an edge metric generator for G if for any pair of distinct edges e, f ∈ E(G), there
exists a vertex v ∈ S such that dG(e, v) ̸= dG(f , v). The cardinality of the smallest possible edge metric generator for G
is the edge metric dimension of G, denoted by edim(G). An edge metric generator of cardinality edim(G) is an edge metric
basis of G. Any edge metric generator uniquely identifies (resolves or recognizes) all the edges of the graph. Recent results
concerning edge metric dimension of graphs can be found in [1,2,5,7,9,10].

Concepts of metric generators, metric basis and metric dimension have analogous definitions, if we want to uniquely
recognize the vertices of a graph instead of the edges. These three latter concepts were firstly and independently defined
in [3] and [8]. The metric dimension of a graph G is denoted by dim(G).

Relationships between the metric dimension and the edge metric dimension of graphs attracted the attention of some
researchers from the moment in which the seminal article [4] on edge metric dimension appeared. One reason for this
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attraction is based on the not clear comparability of such parameters. That is, the classical metric dimension can be smaller,
equal to or larger than the edge metric dimension as first proved in [4]. Several different infinite families of graphs having
metric dimension smaller than or equal to the edge metric dimension were already known from [4], and in contrast, only
one infinite family (the torus graphs C4r□C4t ) with metric dimension larger than the edge metric dimension was known
till recently. Moreover, for this family the difference between the metric and edge metric dimensions is just 1. Thus, a
natural question raised up in [4] was regarding finding some other families of graphs G satisfying that edim(G) < dim(G).
From [10], it was also known that the edge metric dimension cannot be bounded from above by a factor of the metric
dimension, and thus, a similar question was there stated for the opposite direction.

The problem of finding some other families of graphs having edge metric dimension smaller than the metric dimension
remained open till recently, when it was shown in [6], that for every a and b, where 2 ≤ b < a, there is a graph G such
that dim(G) = a and edim(G) = b. Hence, the metric dimension cannot be bounded from above by a factor of the edge
metric dimension as well, giving answer to problems described in [4] and [10]. Notwithstanding, the graphs used in [6]
have pendant vertices, which is not happening for the already known torus graphs from [4]. Thus, one may consider the
question of finding families of graphs G for which edim(G) < dim(G), and having no vertices of degree one. Even more
general, one would wonder if there is a relationship between constructing such kind of families of graphs regarding the
k-connectedness, for k ≥ 2, of the graphs of such families. In this work we center our attention in the case of 2-connected
graphs (graphs without cut vertices), and we prove the following statement, which is the main result of this work.

Theorem 1.1. Let a and b be integers, such that 4 ≤ b < a. Then, there exists a 2-connected graph G such that dim(G) = a
and edim(G) = b.

It remains unsolved if there is an analogue of Theorem 1.1 when b = 2 or b = 3. So, we point out the following open
problem. Note that a very particular case b = 2 and a = 3 follows by Lemma 2.6.

Problem 1. Are there graphs G with edim(G) = b and dim(G) = a for each b ∈ {2, 3} and b < a?

Observe that the torus graphs are 3-connected. In this sense, if there exist 3-connected graphs G with edim(G) = 6
and dim(G) = 7, in which some edge metric basis is a subset of a metric basis, then by using the technique presented in
this paper, and in [6], there may be a chance to construct other 3-connected graphs satisfying similar conclusions as in
Theorem 1.1 (probably with a little bit worse lower bound on b), for this particular case. Unfortunately, at the moment
the only known 3-connected graphs whose edge metric dimension is smaller than the metric dimension are the above
mentioned torus graphs, for which dim(G) = 4 and edim(G) = 3. In consequence, we next state the following problem.

Problem 2. Let b ≥ 6. Are there 3-connected graphs Gb such that dim(Gb) = b+1 and edim(Gb) = b which have an edge
metric basis which is a subset of some metric basis?

And more generally:

Problem 3. For which k there exist k-connected graphs G with dim(G) > edim(G)?

In the next section, we present several results that are then used to prove Theorem 1.1.

2. Metric and edge dimensions of subdivision graphs

The smallest value of n, n ≥ 3, for which there exist graphs of order n with edge metric dimension smaller than the
metric dimension, is n = 10, see [6]. From [6, Figure 1], we observe that there is just one 2-connected graph with such
order, which is indeed a subdivision of K4. In this sense, we consider the class of subdivision graphs, since it seems that
they could be good candidates for graphs which have edge metric dimension strictly smaller than the metric dimension.

Given a graph G, by subdividing one edge uv, we mean removing the edge uv, and adding an extra vertex w and the
edges uw and wv. A subdivision graph is obtained from a graph G by subdividing all its edges, and is denoted by S(G).
Note that, if G has n vertices and m edges, then S(G) is a bipartite graph with n + m vertices and 2m edges. In order to
prove Theorem 1.1, we first need the following results, which are bounds for the metric and edge metric dimensions of
subdivision graphs, under some restrictions for the original not subdivided graphs. The bounds themselves are of interest
based on the fact that tight useful bounds for the metric and edge metric dimensions of graphs are not commonly existing.

Theorem 2.1. Let G be a graph on n vertices. If G contains
⌊ n

3

⌋
vertex-disjoint paths of length 2, then dim(S(G)) ≤

⌈ 2n
3

⌉
.

roof. We construct a set T of the required cardinality and show that such T is a metric generator for S(G). Denote
he vertices of G by v1, v2, . . . , vn, so that the

⌊ n
3

⌋
vertex-disjoint paths of length 2 are v1v2v3, v4v5v6, . . . , vα−2vα−1vα ,

where α = 3⌊ n
3⌋. Further, if vivj ∈ E(G), then denote by xi,j the vertex of degree 2 connected to vi and vj in S(G). Let

T ′
= {x1,2, x2,3, x4,5, x5,6, . . . , xα−2,α−1, xα−1,α}. Now, let T = T ′ if n ≡ 0 (mod 3), T = T ′

∪ {vn} if n ≡ 1 (mod 3), and
T = T ′

∪ {v , v } if n ≡ 2 (mod 3). Obviously, |T | = ⌈
2n

⌉. So, it remains to show that T is a metric generator for S(G).
n−1 n 3
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Consider the vertex x1,2 of T . This vertex partitions the set of vertices of S(G) into several sets according to their distance
rom x1,2. Clearly, x1,2 distinguishes any two vertices belonging to two different such sets. Thus, it suffices to examine pairs
f vertices, say y and z, belonging to a common set. Since there is only one vertex at distance 0 from x1,2, we consider
he sets of vertices at distances 1 and 2 from x1,2. As will be shown below, it is not necessary to consider sets of vertices
t larger distance from x1,2.

ase 1: d(x1,2, y) = d(x1,2, z) = 1. Then y = v1 and z = v2. We have d(x2,3, v1) = 3 and d(x2,3, v2) = 1, and so y, z are
dentified by x2,3.

ase 2: d(x1,2, y) = d(x1,2, z) = 2. We may assume that y, z ̸= x2,3, otherwise x2,3 distinguishes y and z. If y = x1,j and
= x2,k, then d(x2,3, z) = 2 while d(x2,3, y) ≥ 2 and the equality is attained only if j = 3. But, in that case vk is at

distance at most 1 from a vertex of T and this vertex distinguishes y and z. So, we may consider the case when y = x2,j
and z = x2,k, where j < k. The case when y = x1,j and z = x1,k can be solved analogously. We also assume that j, k ̸= 3,
otherwise x2,3 distinguishes y and z. If vk ∈ T , then this vertex distinguishes y and z. Thus, it remains to consider the case
when vj and vk are at distance 1 from vertices of T ′. But then there is such a vertex of T ′ which is at distance 1 from one
of vj, vk and at distance at least 3 from the other. And this vertex distinguishes y and z. This establishes the case.

Using analogous arguments for the remaining vertices of T ′, we see that the only vertices of S(G) which may not be
distinguished by T are at distance at least 3 from every vertex of T ′. However, there is not such a vertex if n ≡ 0 (mod 3).
If n ≡ 1 (mod 3), then there is just one such vertex, namely vn. Finally, if n ≡ 2 (mod 3) it remains to consider three
vertices (or two if vn−1vn /∈ E(G)), namely vn−1, xn−1,n and vn. But these vertices are distinguished by either of vn−1 or vn.
And since vn−1, vn ∈ T , the set T is a metric generator for S(G) also in this case. This concludes the proof. □

We next present an analogous result of the previous one, for the edge metric dimension.

Theorem 2.2. Let G be a graph on n vertices. If G contains ⌊
n−1
3 ⌋ vertex-disjoint paths of length 2, then edim(S(G)) ≤ ⌈

2n−2
3 ⌉.

roof. Analogously as in the proof of Theorem 2.1, we construct a set T of the required size, and show that T is an edge
etric generator for S(G). As in Theorem 2.1, we use a similar notation for the vertices of G, S(G), and the set T ′, but now

considering α = 3⌊ n−1
3 ⌋. That is, we now consider T ′

= {x1,2, x2,3, x4,5, x5,6, . . . , xα−2,α−1, xα−1,α}. Now, let T = T ′ if n ≡ 1
(mod 3); T = T ′

∪ {vn−1} if n ≡ 2 (mod 3); and T = T ′
∪ {vn−2, vn−1} if n ≡ 0 (mod 3). Then vn is not in T and it is not

adjacent to a vertex of T . Obviously, |T | = ⌈
2n−2

3 ⌉. It remains to show that T is a metric generator for S(G).
Consider the vertex x1,2 of T . This vertex partitions the set of edges of S(G) into several sets according to their distance

rom x1,2. Obviously, x1,2 distinguishes edges belonging to different sets. Thus, we examine pairs of edges, say e and f ,
elonging to a common set. It suffices to consider the following three cases.

ase 1: d(x1,2, e) = d(x1,2, f ) = 0. Hence, e = v1x1,2 and f = v2x1,2. We have d(x2,3, e) = 2 and d(x2,3, f ) = 1, and so x2,3
distinguishes e, f .

Case 2: d(x1,2, e) = d(x1,2, f ) = 1. If e = v1x1,j and f = v2x2,k, then d(x2,3, f ) = 1 and d(x2,3, e) ≥ 2, and so, again x2,3
distinguishes e, f . Assume that e = v2x2,j and that f = v2x2,k, where j < k. The case when both e and f are incident to
v1 is analogous. We may assume that j, k ̸= 3, otherwise x2,3 distinguishes e and f . If k = n, then there is a vertex z ∈ T
hich is at distance at most 1 from vj and this vertex distinguishes e and f . If vk ∈ T , then vk distinguishes e and f . Thus,

t remains to consider the case when vj and vk are at distance 1 from vertices of T ′. But then there is a vertex in T ′ which
is at distance 1 from one of vj, vk and at distance at least 3 from the other. And this vertex distinguishes e and f .

Case 3: d(x1,2, e) = d(x1,2, f ) = 2. This case can be solved analogously as the previous one, so we omit the discussion.
Using analogous arguments for the remaining vertices of T ′, we see that the only edges of S(G) which may not be

distinguished by T are at distance at least 3 from every vertex of T ′. However, there is not such an edge if n ≡ 1
(mod 3). If n ≡ 2 (mod 3), then the edges are vn−1xn−1,n and vnxn−1,n (if vn−1vn ∈ E(G)), and since vn−1 ∈ T , these
edges are distinguished by T . Finally, if n ≡ 0 (mod 3), then there are at most three edges connecting pairs of vertices of
{vn−2, vn−1, vn} in G. If all the three edges vn−2vn−1, vn−2vn and vn−1vn are in G, then it remains to consider six edges of the
6-cycle C = vn−2xn−2,n−1vn−1xn−1,nvnxn−2,n in S(G). Since vn−2, vn−1 ∈ T and these two vertices form an edge metric basis
for C , the set T is an edge metric generator for S(G). The other cases (when 0, 1 or 2 edges of vn−2vn−1, vn−2vn, vn−1vn
are in G) are even simpler. □

The bounds in Theorems 2.1 and 2.2 can be violated if G does not contain a required number of vertex-disjoint paths.
For instance, the complete bipartite graph Kn−1,1 has n vertices and there are not two vertex-disjoint paths of length 2 in
Kn−1,1. It is easy to see that dim(S(Kn−1,1)) = edim(S(Kn−1,1)) = n − 2 > ⌈

2n
3 ⌉ if n ≥ 9.

.1. Subdivisions of complete graphs minus a matching

Next we show that there are graphs of order n for which the bounds in Theorems 2.1 and 2.2 are sharp. If n ̸≡ 0
mod 3), then these graphs have edge metric dimension smaller than the metric dimension.

Let K k
n be a graph obtained from the complete graph Kn on n vertices by deleting k independent edges. We have the

following statement.
456
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Theorem 2.3. Let k ≥ 0 and let n ≥ max{4, 3k + 4ℓ − 2}, where ℓ = n (mod 3). Then edim(S(K k
n )) =

⌈ 2n−2
3

⌉
and

im(S(K k
n )) =

⌈ 2n
3

⌉
.

roof. In order to simplify the notation, let us denote S(K k
n ) by G. We begin with edim(G), so let S be an edge metric

enerator for G. We construct an auxiliary graph H containing some of the vertices of degree at least n − 2 in G (or
quivalently from the original vertices of V (K k

n )). If v ∈ S and the degree of v, degG(v), in G is at least n − 2 (v is an
original vertex from V (K k

n )), then we put the vertex v to H . If x ∈ S and degG(x) = 2 (x is one of the subdivision vertices),
then we put to H the two neighbors of x, together with the edge joining them in K k

n . Hence, if S contains s1 vertices of
degree at least n − 2 and s2 vertices of degree 2, then H contains exactly s2 edges and at most s1 + 2s2 vertices, since
ome vertices of degree at least n−2 in S can be adjacent to vertices of degree 2 in S and some pairs of vertices of degree
in S can have distance 2 in G. We prove two claims about H (note that both claims are satisfied for every n ≥ 5).

laim 1. H contains at least n − 1 vertices.

Suppose that there are 2 vertices of degree at least n − 2 in G, which are not in H . Denote these vertices by u and v.
y the assumption on n in the statement, there is w ∈ V (K k

n ) such that uw, vw ∈ E(K k
n ). Let y (resp. z) be the vertex of

egree 2 adjacent to both w and u (resp. v). Denote e = yw and f = zw.
If s ∈ S and degG(s) = 2, then either s is adjacent to w, in which case dG(s, e) = dG(s, f ) = 1; or s is not adjacent to

, in which case dG(s, e) = dG(s, f ) = 3, since one of the two neighbors of s is connected to w by an edge in K k
n and s

s adjacent to neither u nor v. On the other hand, if s ∈ S and degG(s) ≥ n − 2, then either sw ∈ E(K k
n ), in which case

G(s, e) = dG(z, f ) = 2; or sw /∈ E(K k
n ), in which case dG(s, e) = dG(z, f ) = 3, since su, sv ∈ E(K k

n ). Consequently, e, f are
not distinguished by S, a contradiction. This proves the claim.

Claim 2. If uv ∈ E(H), then either S contains one of u or v, or there is another edge adjacent to uv in H.

Suppose that degG(q) = 2 and q ∈ S. Let u and v be the vertices of degree at least n − 2 adjacent to q. Moreover,
uppose that S does not contain u, v and S does not contain a vertex of degree 2 adjacent to u or v other than q. By the
ssumption on n in the statement, there is w ∈ V (K k

n ) such that uw, vw ∈ E(K k
n ). Let y (resp. z) be the vertex of degree 2

adjacent to both w and u (resp. v). Denote e = yw and f = zw. We proceed analogously as above.
If s ∈ S \ {q} and degG(s) = 2, then either s is adjacent to w, in which case dG(s, e) = dG(s, f ) = 1; or s is not adjacent

o w, in which case dG(s, e) = dG(s, f ) = 3, since one of the two neighbors of s is connected to w by an edge in K k
n ,

and s is neither adjacent to u nor to v. On the other hand, if s ∈ S and degG(s) ≥ n − 2, then either sw ∈ E(K k
n ), in

which case dG(s, e) = dG(s, f ) = 2; or sw /∈ E(K k
n ), in which case dG(s, e) = dG(s, f ) = 3, since su, sv ∈ E(K k

n ). Since
dG(q, e) = dG(q, f ) = 2, we obtain that e, f are not identified by S, which is a contradiction. This establishes the claim.

Now, let C be a connected component of H . If C has only one vertex, then C was created by using one vertex of degree
at least n − 2 in S. If C has two vertices, then it was created by using one vertex of degree 2 in S, and at least one vertex
of degree at least n − 2 in S, by Claim 2. If C has t vertices, t ≥ 3, then C was created by using at least t − 1 vertices of
degree 2 in S and maybe some vertices of degree at least n − 2 in S.

In consequence, if C1, C2, . . . , Ct are all the components of H and r of these components have at most 2 vertices, then

|S| ≥

t∑
i=1

(|V (Ci)| − 1) + r =

t∑
i=1

|V (Ci)| − t + r ≥ (n − 1) − t + r,

since H has at least n − 1 vertices, by Claim 1. The right-hand side of such inequality chain attains a minimum value if
there is a maximum possible number of components on at least 3 vertices, and so |S| ≥ (n − 1) − ⌊

n−1
3 ⌋ = ⌈2 n−1

3 ⌉.
To prove that edim(G) ≤ ⌈

2n−2
3 ⌉ it suffices to show that there are ⌊

n−1
3 ⌋ vertex disjoint paths of length 2 in G, by

Theorem 2.2. But this is a consequence of the fact that K k
n has a Hamiltonian cycle (by using the Dirac theorem).

We next consider dim(G), so let S be a metric generator for G. Let H be an auxiliary graph constructed as above. We
prove three claims about H as before, where the first two are similar as before, including the condition of n ≥ 5.

Claim 3. H contains at least n − 1 vertices

Suppose that there are 2 vertices u and v of degree at least n − 2 in G, which are not in H . By the assumption on n in
the statement, there is w ∈ V (K k

n ) such that uw, vw ∈ E(K k
n ). Let y (resp. z) be the vertex of degree 2 adjacent to both w

nd u (resp. v).
If s ∈ S and degG(s) = 2, then either s is adjacent to w, in which case dG(s, y) = dG(s, z) = 2; or s is not adjacent to

w, in which case dG(s, y) = dG(s, z) = 4, since one of the two neighbors of s is connected to w by an edge in K k
n and s

is adjacent to neither u nor v. On the other hand, if s ∈ S and degG(s) ≥ n − 2, then either sw ∈ E(K k
n ), in which case

G(s, y) = dG(s, z) = 3; or sw /∈ E(K k
n ), in which case dG(s, y) = dG(s, z) = 3, since su, sv ∈ E(K k

n ). Consequently, y, z are
ot identified by S, a contradiction. This proves the claim.

laim 4. If uv ∈ E(H), then either S contains one of u or v, or there is another edge adjacent to uv in H.
457
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Suppose that degG(q) = 2 and that q ∈ S. Let u and v be the vertices of degree at least n − 2 adjacent to q. Moreover,
suppose that S does not contain u, v and S does not contain a vertex of degree 2 adjacent to u or v other than q. By the
ssumption on n in the statement, there is w ∈ V (K k

n ) such that uw, vw ∈ E(K k
n ). Let y (resp. z) be the vertex of degree 2

djacent to both w and u (resp. v). We proceed analogously as above.
If s ∈ S \ {q} and degG(s) = 2, then either s is adjacent to w, in which case dG(s, y) = dG(s, z) = 2; or s is not adjacent

o w, in which case dG(s, y) = dG(s, z) = 4, since one of the two neighbors of s is connected to w by an edge in K k
n

nd s is neither adjacent to u nor to v. On the other hand, if s ∈ S and degG(s) ≥ n − 2, then either sw ∈ E(K k
n ), in

hich case dG(s, y) = dG(s, z) = 3; or sw /∈ E(K k
n ), in which case dG(s, y) = dG(s, z) = 3, since su, sv ∈ E(K k

n ). Since
G(q, y) = dG(q, z) = 2, we have that y, z are not distinguished by S, a contradiction. This proves the claim.

laim 5. If there is a vertex of K k
n which is not in H, then H can contain at most k components with exactly two edges whose

nd vertices are not in S.

Suppose that there is a vertex of K k
n , say r , which is not in H . Let C be a connected component of H containing exactly

edges and let V (C) ∩ S = ∅. Denote the edges of C by uv and vw.
Suppose first that uw, vr ∈ E(K k

n ). Denote by y the vertex of degree 2 adjacent to u and w, and denote by z the vertex
f degree 2 adjacent to v and r in G. For any s ∈ S, we consider two possibilities. First, if degG(s) = 2, then either s is one
f the two vertices which caused an edge of C , in which case dG(s, y) = dG(s, z) = 2; or s is not adjacent to a vertex of
u, v, w, r}, in which case dG(s, y) = dG(s, z) = 4, since one of the two neighbors of s is connected to r (and one of them is
onnected to u) by an edge in K k

n . Second, if s ∈ S and degG(s) ≥ n− 2, then sv ∈ E(K k
n ) or sr ∈ E(K k

n ), and also su ∈ E(K k
n )

r sw ∈ E(K k
n ), which implies dG(s, y) = dG(s, z) = 3. Thus, in both possibilities, we conclude that y, z are not identified

y S, a contradiction.
This means that at least one of the edges uw or vr must be missing in K k

n . Observe that, if H has another component
′ on two edges, say u′v′ and v′w′, with V (C ′)∩ S = ∅, then for the pairs u′w′ and v′r we have {u′w′, v′r} ∩ {uw, vr} = ∅.
ince there are only k pairs of vertices which are not connected by an edge in K k

n , H can have at most k components with
xactly two edges whose end vertices are not in S. This proves Claim 5.
In consequence, there are two cases to consider. If |V (H)| = n, then analogously as before (the paragraph following

he proof of Claim 2), we get |S| = β = ⌈2 n
3⌉. On the other hand, if |V (H)| = n − 1, then by Claim 5 there are at

ost k components of H with exactly 3 vertices created by only two vertices of S, and by a similar argument, we get
≥ γ = 2k + ⌈3 n−3k−1

4 ⌉. Observe that β ≤ γ is equivalent with⌈
2n
3

⌉
− 1 <

⌈
3n − k − 3

4

⌉
. (1)

Let n = 3t + ℓ, where ℓ = n mod 3. Then (1) is equivalent with

2t + ℓ − 1 <
9t + 3ℓ − k − 3

4
,

and consequently with

k + ℓ − 1 < t.

Thus, β ≤ γ is equivalent with 3k + 4ℓ − 3 < 3t + ℓ = n, and so with n ≥ 3k + 4ℓ − 2. By the assumption on n in the
tatement we get |S| ≥ ⌈

2n
3 ⌉.

To prove dim(S(K k
n )) ≤ ⌈

2n
3 ⌉ it suffices to show that there are ⌊

n
3⌋ vertex disjoint paths of length 2 in K k

n , by Theorem 2.1.
nalogously as above, this is a consequence of the fact that K k

n has a Hamiltonian cycle. □

Since 3k + 4ℓ − 2 ≤ 3k + 6, we have the following corollary of Theorem 2.3.

orollary 2.4. Let k ≥ 1 and let n ≥ 3k + 6. Then dim(S(K k
n )) = edim(S(K k

n )) if n ≡ 0 (mod 3) and dim(S(K k
n )) =

dim(S(K k
n )) + 1 otherwise.

And for S(Kn) we have the following statement.

roposition 2.5. Let n ≥ 4. Then edim(S(Kn)) = ⌈
2n−2

3 ⌉ and dim(S(Kn)) = ⌈
2n
3 ⌉, with the unique exception when

im(S(K5)) = 3 instead of 4.

roof. For n ̸= 5 the statement is a direct consequence of Theorem 2.3. For n = 5 the only problem is that 4 = γ > β = 3
in this case (see the proof of Theorem 2.3). Using the notation of Theorem 2.1, let T = {x1,2, x1,3, x1,4}. Then the
corresponding graph H has 4 vertices and it is easy to check that T is a metric generator for S(K5). □

By Proposition 2.5, we have edim(S(K3t+1)) = 2t and dim(S(K3t+1)) = 2t+1 for every t ≥ 1, and also edim(S(K3t+2)) =

t + 1 and dim(S(K3t+2)) = 2t + 2 for every t ≥ 2. Hence, we have the following statement.

Lemma 2.6. For every c1 ≥ 2, c1 ̸= 3, there is an integer q such that edim(S(Kq)) = c1 and dim(S(Kq)) = c1 + 1.
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d
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Fig. 1. A sketch of a graph Gc1,c2 for some c1, c2 as described above. Note that only those vertices and edges which have influence on the construction
ave been drawn. Also, recall that Gk might be different from the remaining Gi .

. Proof of Theorem 1.1

Clearly, Lemma 2.6 shows that Theorem 1.1 is true for the case when dim(G) − edim(G) = 1. In the following we
onsider the case with a larger difference.
Let c1 ≥ 4 and c2 ≥ c1 + 2 be two integers. We aim to construct a graph Gc1,c2 for which edim(Gc1,c2 ) = c1 and

im(Gc1,c2 ) = c2. Let k = c2 − c1 and observe that k ≥ 2. We first take k graphs G1,G2, . . . ,Gk and connect them into a
tructure that resembles a path. The graphs G1,G2, . . . ,Gk−1 are isomorphic to S(K7), while Gk is isomorphic to a graph
S(Kq), for some integer q, satisfying edim(S(Kq)) = c1. Since c1 ≥ 4, by Lemma 2.6, there always exists the required integer
q.

Now we denote the vertices of degree at least 3 in Gi by vi
1, v

i
2, . . . v

i
|V (Gi)|

, and we denote the vertex of degree 2 adjacent
to vi

a and vi
b by xia,b. By using this notation, we add to the disjoint union of G1,G2, . . . ,Gk the edges xi1,2x

i+1
2,3 and xi4,5x

i+1
5,6 ,

1 ≤ i ≤ k − 1, see Fig. 1 for a sketch of the construction.
In the proof of edim(Gc1,c2 ) = c1 and dim(Gc1,c2 ) = c2 we use the following lemma.

Lemma 3.1. Let G be a graph with a subgraph H. Let z1, z2, . . . , zt be all that vertices of H that have at least one neighbor in
V (G) \ V (H). If dim(H) = c (resp. edim(H) = c), then every (resp. edge) metric generator for G contains at least c − t vertices
of V (H) \ {z1, z2, . . . , zt}.

Proof. We present the proof for dim(G) only, since for edim(G) it is almost the same. Consider the equivalence classes
of V (H) formed by distances from z1, z2, . . . , zt . Two vertices, say u1 and u2, are in the same equivalence class if
d(u1, zi) = d(u2, zi) for every i, 1 ≤ i ≤ t .

Now take two vertices, say y1 and y2, from the same equivalence class, and take a vertex z ∈ V (G) \ V (H). Denote
ai = d(z, zi) and bi = d(zi, y1) (= d(zi, y2)), 1 ≤ i ≤ t . Then d(z, y1) = min{ai + bi; 1 ≤ i ≤ t} = d(z, y2). Hence, no vertex
outside H can separate y1 and y2 by means of distances. Thus, even if all the vertices of (V (G) \ V (H)) ∪ {z1, z2, . . . , zt}
are in a metric generator, they will not distinguish vertices of H which are not distinguished by the set {z1, z2, . . . , zt}
alone. Consequently, since dim(H) = c , to distinguish vertices of H every metric generator for G must have at least c − t
vertices of V (H) \ {z1, z2, . . . , zt}. □

Now we determine the metric and edge metric dimensions of Gc1,c2 , which shall complete the proof of Theorem 1.1.

Lemma 3.2. For every pair of integers c1 and c2, such that c1 ≥ 4 and c2 ≥ c1 + 2, we have edim(Gc1,c2 ) = c1 and
) = c .
dim(Gc1,c2 2
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Proof. We first prove the lower bound. Since it is satisfied dim(S(K7)) = 5 and dim(S(Kq)) = c1+1, every metric generator
or Gc1,c2 must contain at least 3 vertices of V (G1)\{x11,2, x

1
4,5}, at least 1 vertex of V (Gi)\{xi1,2, x

i
2,3, x

i
4,5, x

i
5,6}, 2 ≤ i ≤ k−1,

and at least c1 − 1 vertices of V (Gk) \ {xk2,3, x
k
5,6}, by Lemma 3.1. Thus, every metric generator for Gc1,c2 must have at least

3 + (k−2) + (c1−1) = c2 vertices, and so dim(Gc1,c2 ) ≥ c2.
Analogously, since edim(S(K7)) = 4 and edim(S(Kq)) = c1, every edge metric generator for Gc1,c2 must contain at least

2 vertices of V (G1) \ {x11,2, x
1
4,5} and at least c1 − 2 vertices of V (Gk) \ {xk2,3, x

k
5,6}, by Lemma 3.1. Thus, edim(Gc1,c2 ) ≥ c1.

For the upper bound we use the bases defined in the proofs of Theorems 2.1 and 2.2. Observe that Gi ∼= S(Kr )
where r ≥ 7, so that all these bases contain xi1,2, x

i
2,3, x

i
4,5, x

i
5,6 in Gi. We start with edim(Gc1,c2 ). Thus, we show that

T = {x12,3, x
1
5,6, x

k
1,2, x

k
4,5, . . . } is an edge metric basis in Gc1,c2 (observe that T is composed by vertices only from G1 and

Gk). For this we show that the partition of edges of G1 via distances from x11,2 can be modeled by distances from xk1,2
and xk4,5. And, by symmetry we can have a similar statement for x14,5. Indeed, let d(x

k
1,2, x

1
1,2) = a. In fact, a = 3(k − 1).

Then d(xk4,5, x
1
4,5) = a as well and d(xk1,2, x

1
4,5) = d(xk4,5, x

1
1,2) = a + 2. Thus, edges of G1 at distance 0 from x11,2 are those

which are in G1 (see below) and at distance a from xk1,2. Edges of G1 at distance 1 from x11,2 are those which are in G1

and at distance a + 1 from xk1,2. Finally (it suffices to consider edges at distances 0, 1 and 2 from x11,2; see the proof of
Theorem 2.2), edges of G1 at distance 2 from x11,2 are those which are in G1, at distance a + 2 from xk1,2 and at distance
greater than a from xk4,5 (to avoid the two edges at distance 0 from x14,5). Analogously, we can reconstruct the partition of
E(Gi) from any one of the vertices of Gi which have a neighbor outside Gi, 1 ≤ i ≤ k.

Hence, it remains to show how the distances from x12,3, x
1
5,6, x

k
1,2 and xk4,5 can be used to detect edges of Gi and how

to identify the edges connecting Gi with Gi+1, 1 ≤ i ≤ k − 1. As regards the edges connecting Gi with Gi+1, observe that
xi1,2x

i+1
2,3 (resp. xi4,5x

i+1
5,6 ) is the unique edge at distance 2 + 3(i−1) from x12,3 (resp. x15,6) and at distance 2 + 3(k−i−1) from

xk1,2 (resp. xk4,5). Finally, edges of G1 are those which are at distance at most 3 from both x12,3 and x15,6; edges of G2 are those
which are not in E(G1) ∪ {x11,2x

2
2,3, x

1
4,5x

2
5,6} and at distance at most 6 from both x12,3 and x15,6; etc. Hence, T distinguishes

all edges of Gc1,c2 . Since |T | = c1, we have edim(Gc1,c2 ) ≤ c1.
The proof of dim(Gc1,c2 ) ≤ c2 is analogous. □
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