
1368 IEEE TRANSACTIONS ON RELIABILITY, VOL. 71, NO. 3, SEPTEMBER 2022

IoT-TEG 4.0: A New Approach 4.0 for Test
Event Generation

Antonio Velez-Estevez , Lorena Gutiérrez-Madroñal , and Inmaculada Medina-Bulo , Member, IEEE

Abstract—The Industry 4.0 (I4.0) is a paradigm settled down by
the introduction of the Internet of things (IoT) into the production
and manufacturing environment. I4.0 promotes the connection of
physical items such as sensors, devices, and enterprise assets, to
each other and to the Internet. The information that flows through
these items is vital because it serves to make relevant decisions.
One of the main features of I4.0 is its adaptability to the human
needs, this means that the items included in the I4.0 network are
heterogeneous and they are large in number. The majority of I4.0
papers, which are focused on testing, describe a specific system
or part of the I4.0 network. We have not found any paper that
undertakes the testing of multiple connected IoT devices that will
receive, process, and make decisions according to the complex and
real data that travel through the network. In this article, we present
IoT-TEG (Test Event Generator) 4.0, which is based on the test
event generator system IoT-TEG [1]. IoT-TEG 4.0 provides two
new main contributions: the generation of test cases, which can
include all the different types of data that the connected I4.0 devices
under study can manage, and real-time testing. Additionally, its
validation using real IoT programs is included and the results show
that IoT-TEG 4.0 allows us to conduct tests that mimic real IoT
system behaviors.

Index Terms—Event generator, Industry 4.0, Internet of things
(IoT), IoT testing, IoT-TEG, testing.

I. INTRODUCTION

DURING the last few years, the number of devices con-
nected to the Internet has significantly increased thanks to

their lower cost. In 2009, Internet of Things (IoT) was defined
as [2].

“A world where physical objects are seamlessly integrated
into the information network, and where the physical objects
can become active participants in business processes. Services
are available to interact with these “smart objects” over the
Internet, query their state and any information associated with

Manuscript received 26 October 2020; revised 21 April 2021; accepted 6 June
2021. Date of publication 1 July 2021; date of current version 1 September
2022. This work was supported in part by the Ministry of Economy and
Competitiveness (Spain) under the National Program for Research, Devel-
opment and Innovation, Societal Challenges Oriented under Project FAME
RTI2018-093608-B-C31 and in part by the Plan Propio de Investigación of the
University of Cadiz and Grupo Energético de Puerto Real S.A., under Project
GANGES PRCI0003. Associate Editor: F. Wotawa. (Corresponding author:
Lorena Gutiérrez-Madroñal.)

The authors are with the Department of Computer Science and Engineer-
ing, University of Cádiz, 11003 Cádiz, Spain (e-mail: antonio.velez@uca.es;
lorena.gutierrez@uca.es; inmaculada.medina@uca.es).

Color versions of one or more figures in this article are available at https:
//doi.org/10.1109/TR.2021.3087781.

Digital Object Identifier 10.1109/TR.2021.3087781

them, taking into account security and privacy issues.” This
technological innovation and customer demand for new tech-
nology and services are leading to unknown challenges, which
is changing the industry. This transformation will influence how
entities and organizations will be managed according to new
incentives, and environmental and context configuration. This
change is being done very quickly, and it is known as the fourth
industrial revolution, I4.0 [3].

Because IoT eases the automation and exchange of infor-
mation, its incorporation is one of the driving forces of the
evolution of the industry to I4.0 [4], [5]. In fact, the critical factor
for I4.0 is its reliance on the interoperability made possible by
IoT [5]. In addition, Rüßmann et al. [6] predicted that the number
of networked sensors and machines will keep increasing, and
more devices, even unfinished products, will enrich the I4.0.
This means that the more information is generated, the more
decentralized will be the analysis and decision-making, and
real-time responses will be needed. The major technical aspects
of I4.0, such as the decentralization of the functionalities and
the allocation of components in the field, are not addressed by
the current testing methods and tools [7]. The validation of I4.0
plays more and more an increasing role and can no longer be
handled by isolated solutions.

Vaidya et al. [8] enumerated the issues and challenges in I4.0.
One of them highlights the necessity to ensure the quality and
integrity of the data recorded from the systems. The annotations
of the data entities are very diverse and it is a growing challenge
to incorporate diverse data with different semantics for data
analysis [9].

Therefore, the main challenge to solve the mentioned issue
is to develop a testing tool capable of generating test cases no
matter the type of I4.0 source. As we mentioned, there is a large
number of heterogeneous devices that can be connected to I4.0.
An I4.0 testing tool must consider all type of data and be capable
to generate it. Other issue to have in mind is the frequency that
the information is sent by each connected I4.0 item; the I4.0
testing tool has to generate not only the specific data but also in
the right moment.

As we mentioned, IoT is responsible for exchanging the
information between the connected I4.0 items. Furthermore,
getting information that is transmitted in the form of events,
is a very important prerequisite for evaluating and assessing IoT
devices [10]. So, the test cases to generate by the I4.0 testing
tool must contain events from different connected IoT devices
as well as sending them with the same frequency that the real
device does.

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

https://orcid.org/0000-0002-0109-0293
https://orcid.org/0000-0002-2214-617X
https://orcid.org/0000-0002-7543-2671
mailto:antonio.velez@uca.es
mailto:lorena.gutierrez@uca.es
mailto:inmaculada.medina@uca.es
https://doi.org/10.1109/TR.2021.3087781

VELEZ-ESTEVEZ et al.: IOT-TEG 4.0: A NEW APPROACH 4.0 FOR TEST EVENT GENERATION 1369

In addition to the mentioned issues, the replication of data
generated by real world processes is difficult because in many
situations the data to be simulated comes from different devices
and/or components, and the behaviors of some of the compo-
nents must be first analyzed in order to replicate this data. For
instance, if the event to be detected is a fall of an elderly person,
the involved measured data includes the acceleration of the body,
the heart rate, and the length of time, and depending on the
type of fall, the body acceleration may have different behaviors.
Additionally, it is very challenging, even dangerous, to obtain
data from some of the critical situations that we would want to
detect, such as adverse environmental conditions, a rise or fall
in blood pressure, and a heart attack, among others.

In this article, we define as events 4.0 the test events that
have to mimic the behavior of IoT systems connected in I4.0.
They have to simulate the data generated from different event
types. Moreover, the generation of distributed events 4.0 over
time may be needed because some of that information may be
used to build another event type. To the best of our knowledge,
these two features are not included in any other testing system
in a general way. The other systems are specific to particular use
cases.

So the goals of this article are to generate test cases, which
cover these events 4.0 as well as sending them mimicking the
connected I4.0 devices; so real-time testing will be available. To
achieve these main goals the following contributions have been
done.

1) Generation of test events 4.0:
1) Definition of events 4.0. New ways of defining event

values are included, allowing any realistic event
instances.

2) Creation of the ExprLang language. This language has
been created to define complex arithmetic operations,
which allow IoT-TEG 4.0 to define events 4.0.

2) Generation of events 4.0 over the time, allowing a
real-time testing:
1) Generation of test events 4.0 that simulate the behav-

iors of IoT systems with regard to the time and different
data types. It has to be taken into account the frequency
of the events 4.0 or if sending an event 4.0 triggers the
sending of another one. The inclusion of this feature
allows a real-time testing.

3) Creation of an I4.0 testing tool:
1) Providing usability: a graphical interface that makes

testing easier.
2) Integrating all the previous contributions to IoT-TEG

4.0.
The results show that IoT-TEG 4.0 allows us to conduct tests

that mimic real IoT system behaviors. In addition, IoT-TEG
4.0 is also multipurpose because it not only allows different
behaviors to be defined but also the defining of different event
structures and formats. So, thanks to all the functionalities of
IoT-TEG 4.0, best testing can be done and more reliable IoT
systems can be developed.

IoT-TEG 4.0 is developed based on the IoT-TEG system [1],
which was developed to help programmers generate test events
for testing programs that process events. IoT-TEG has been

used to test queries in event processing language (EPL), a query
language used for managing and running events [11]. Although
IoT-TEG was created to generate different types of test events, it
was limited. The complexity of the event types was bounded to
simple arithmetic operations. Moreover, IoT-TEG did not allow
to define an event using event attributes from other defined event
types, which is essential in the IoT context. Consequently, it was
impossible to define and generate the events 4.0. The output
of IoT-TEG was a file with the desired event type values, and
it was not possible to generate events distributed in time. The
frequency of the events was not taken into account, as well as
relations between events (event A triggers the sending of event
B). Basically, real-time testing could not be done as other tests
where the time is critical. Finally, IoT-TEG runs in console,
and it was not easy for the users to work with the tool. The
inclusion of a graphical interface helps to understand the test
event generation process and eases the use of an I4.0 testing
tool.

The remainder of this article is organized as follows. In Sec-
tion II, we detail the background of the research, basic concepts
about events and the IoT-TEG system. Section III introduces
the ways of the added events 4.0 were defined. Then, Section IV
explains the events 4.0 generation proposed in this article. Sec-
tion V shows the graphical interface of the tool, and Section VI
explains how the validation was achieved. Section VII reviews
the related work. Finally, Section VIII concludes this article.

II. BACKGROUND

This section reviews the basis of the events, their characteris-
tics and how they are handled. In addition, the previous version
of IoT-TEG will be explained.

A. Events

The information transmitted between IoT systems is sent
in the form of events. According to Luckham [12], an event
instance is as follows.

1) Event instance: every situation that may require a reaction
from the system.

2) Event type: classifies the event instances and describes
their conceptual features. Each event instance belongs to
a certain event type.

Luckham [12] also proposed a few recommendations to define
an event type.

1) All events must be instances of an event type.
2) An event has the structure defined by its type.
3) The structure is formed as a collection of event attributes

(an event attribute could have a simple or complex data
type).

The events could have particular structures that depend on the
transmitted information; their structure is defined by the data
that the sensor receives and how the IoT device transforms it.
The generated information, also known as the event, has to be
processed and analyzed, in order to be useful in decision-making.
To do that, new tools have emerged that have been integrated into
critical processes in industry. Luckham [12] tried to address the
problem of making decisions in these contexts by introducing

1370 IEEE TRANSACTIONS ON RELIABILITY, VOL. 71, NO. 3, SEPTEMBER 2022

Fig. 1. IoT-TEG event type specification.

complex event processing (CEP). Later, Luckham identified the
“top worries about future directions,” [13] in which he said,
“higher level languages for event patterns and rules, supporting
a rich selection of event relations (e.g., temporal, causal, and
similarity relations) need to be developed.”

According to this view, Schiefer et al. [14] come to the
conclusion that the specification of a standard language for event
processing is a key issue. Today, there are a few EPLs that share
the same target of processing events.

In [15], several reasons are listed explaining why is problem-
atic accessing real-world events for testing.

1) Their occurrence and their content is hard to control.
2) Exceptional events have a very low frequency or do not

occur at all during the test phase.
3) Sometimes there is not enough event data available.
4) It may be costly to connect to some event sources.
To mitigate these problems of testability of event-driven

processes several test events generators have been created (see
Section VII), as well as IoT data platforms which offer their
channels to save events, the IoT device data (see Section VI).

B. Internet of Things-Test Event Generation

IoT-TEG1 is an open-source tool to help programmers gen-
erate test events to test programs that process events. Fig. 1
shows the event type specification proposed in [1] to gener-
ate test events. This specification fills the lack of event type
structures, providing a way to define event instances using
the event type specification. The specification was proposed
after analyzing more than 500 event types from 10 IoT data
platforms: Xively [16], Buglabs [17], GroveStreams [18], Sen-
sorCloud [19], ThingSpeak [20], and Zetta [21], among others.

As can be seen in Fig. 1, an event type is composed of blocks.
An event type can have as many blocks as the user wants, but one
of them must provide the attribute repeat, which indicates how

1[Online]. Available: https://gitlab.com/ucase/public/iot-teg

many events of that type will be generated. The block can be
formed by fields, where each field determines an event attribute
of the event type that the user is defining. In addition, each field
(that is, each event attribute), if complex, can be composed of
other fields and attributes.

The input of IoT-TEG was an XML file with the event type
definition. Then, that definition was validated and the events
were generated. Example 1 illustrates how a user of IoT-TEG had
to define an event type using XML. The event type SmartHome
has two event attributes: temperature and humidity, which are
defined using the field parameter.

Example 1: SmartHome event type definition.
<?xml version="1.0" encoding="UTF-8"?>
<event_type name="SmartHome">
<block name="values" repeat="150">
<field name="temperature" quotes="true"

type="Integer" min="5" max="45">
</field>
<field name="humidity" quotes="true"

type="Float" precision="3">
</field>

</block>
</event_type>

The result of generating this event type is 150 events of the
SmartHome event type (as pointed in the repeat attribute in the
block tag) in the format selected by the user: XML, CSV, or
JSON. The attribute temperature is an Integer type, and humidity
is a Float type. The values of temperature are within the [5, 45]
range, and humidity is a random value with three decimals, as
indicated in the field precision. An example of a possible result
is shown in Example 2.

Example 2: Possible output for SmartHome event type.
{"temperature": "10,"
"humidity": "4.342"},
{"temperature": "23,"
"humidity": "78.016"},
{"temperature": "11,"
"humidity": "46.985"},{...}

C. Limitations of IoT-TEG

Programmers who test event processing systems usually face
problems such as the following.

1) Lack of specific testing data to cover the different
situations.

2) Waiting for the source of the data to produce it, or even
the absence of data.

3) Not enough data for testing.
4) The event format could be different as a consequence of

heterogeneous sources. The programmers have to develop
the transformation from the source format to the event-
processing program format.

As a solution to solve some of the problems enumerated pre-
viously, IoT-TEG was proposed in [1]. The main functionalities
of IoT-TEG were as follows.

1) Generates specific test data via the fixed generation mode
for each field. Using this mode, fields with a specific value
can be generated.

https://gitlab.com/ucase/public/iot-teg

VELEZ-ESTEVEZ et al.: IOT-TEG 4.0: A NEW APPROACH 4.0 FOR TEST EVENT GENERATION 1371

2) Generates random test data within a range through the
random generation mode for each field, an example is
given in Example 2.

IoT-TEG is continuously evolving, and its purpose is to
perform different types of tests in systems that manage dif-
ferent event types. For example, in [22], a functionality was
implemented to simulate a specific behavior for testing an IoT
fall-detection system. This functionality allows for defining the
values of the event attributes according to the simulation. But
these contributions are not enough to cover the Industry 4.0
testing and some research lines are proposed.

1) Definition of events 4.0. IoT-TEG generates only random
values for the events. In this article, we include sequential
generation for the simple data types: Integer, Float, Long,
String, Alphanumeric, Date, and Time. Moreover the new
injectable generation functionality, that has been included
(see Section III-B), will allow the user to share the values
of the event attributes with other, different, events.

2) Generation of events 4.0. The time is an important variable
in programs that consume events. Therefore, in order to
simulate a real device, it would be interesting that IoT-TEG
produces N events in a T period (seconds, milliseconds,
etc). IoT-TEG only produced results for a single event
type definition in each execution. So, with this new func-
tionality the user would be able to generate many events
concurrently without having to execute IoT-TEG over and
over again.

III. DEFINING EVENTS 4.0

An event type structure depends on the devices and com-
ponents that are connected to the IoT system’s network. The
connected elements emit a large volume of information, which
is filtered. That filtered data also affects the event type structure;
for instance, an event type structure can be composed of the
values of filtered data from one or more devices. Considering
these requirements, the event type definition has to be abstract
and contemplate a variety of options. The greater the abstraction,
the more event type definitions can be designed.

Our main goal is to generate test events that could not be
taken apart from the ones generated by the original source of the
IoT system that is under test. The importance of the events and
their attributes has been reflected in several studies, where their
relevance and possible purposes are highlighted.

A. Defining Events Following a Linear Pattern

Luckham et al. [23] revealed that complex event processing
operates on sets of events and on the relationships between
events. Relationships between events can be specified in event
patterns in maps and filters. Events can have various relation-
ships to one another; one of them, is time with respect to a system
clock: say that event A happened before event B. Usually, timing
is represented by timestamps (using Time data type or Time and
Date data types). Furthermore, a sequence of timestamps could
be needed to test, while another sequence of data could be also
needed: an ordered list of items, the assignation of plate numbers
to cars, and so on.

This way of defining event 4.0 types allows us to simulate
linear patterns in the attributes of the generated events 4.0, and
we have tried to cover all the sequence possibilities. To develop
this functionality four new parameters have been added to the
field specification shown in Fig. 1.

1) begin defines the initial value of the sequence.
2) step defines the value of the increment or decrement within

the sequence.
3) end defines the maximum value of the sequence.
4) unit defines the unit of the last three parameters. It is valid

only when dealing with Time and Date sequences.
The sequential generation has been added for the following

types.
1) Types-Integer, Long, and Float: The IoT-TEG 4.0 behav-

ior while is generating these types is as follows.
1) The generation starts with the begin value.
2) The generator increments or decrements the begin value

according to step.
3) If the generated value overcomes the end value, the gen-

eration is restarted by giving begin its original value.
An example of this generation, in JSON format, can be seen

in Example 3. The parameter values for this example are step =
10, begin = 0, and end = 30.

Example 3: Integer sequential generation example.
{"integerSequence": 0 },
{"integerSequence": 10},
{"integerSequence": 20},
{"integerSequence": 30},
{"integerSequence": 0 },
...(depending on the repeat attribute

in the block)
2) Types - String and Alphanumeric: For these types the

generation will behave as previously, but with the following
differences.

1) The begin and end values need to be of the String
type.

2) The begin and end values must match the alphabets of
the String and Alphanumeric types, which are [A− Z]
and [0− 9A− Z], respectively.

See Example 4, which is an example using the values begin =
A, step = 2, end = F .

Example 4: String sequential generation example.
{"stringSequence": "A" },
{"stringSequence": "C" },
{"stringSequence": "E" },
{"stringSequence": "A" },
...(depending on the repeat attribute

in the block)
3) Types-Time and Date: The IoT-TEG 4.0 behavior is the

same as before. The difference is the addition of the new param-
eter unit, which will state if the step would be in days, hours,
and so on. Furthermore, the introduced value for begin and end
must match the given format attribute, which is indicated in
the field that is being generated.

In Example 5, a Time type example is shown. The values are
begin = 10:42, step = 5, end = 10:53, unit = MINUTES,
and format hh:mm.

1372 IEEE TRANSACTIONS ON RELIABILITY, VOL. 71, NO. 3, SEPTEMBER 2022

Fig. 2. Injectable generation.

Example 5: Time sequential generation example.
{"timeSequence": "10:42" },
{"timeSequence": "10:47" },
{"timeSequence": "10:52" },
{"timeSequence": "10:42" },
...(depending on the repeat attribute

in the block)

B. Injectable Generation

Ahn and Kim [24] defined context as a set of interrelated
events or component events with logical and temporal relation-
ships. They explain that “a context detecting fire occurrence”
can be detected by inspecting two component events: for in-
stance, the temperature and carbon monoxide content in the air.
The component events are interrelated thanks to their structure
and their related attributes. This is another type of relationship
between events; two attributes A1 and B1 of two different event
types A and B are necessary to create a new event type C to
trigger a condition, the fire occurrence. Expanding IoT-TEG with
this functionality requires keeping a shared generation context
among the difierent event types in a channel. A channel is a
structure introduced in IoT-TEG 4.0, which represents sets of
semantically interrelated event types.

The idea is to inject an event type generated value in another
event type that has a different distribution in time (explained in
Section IV). For instance, in Fig. 2, we can see a channel with
the following circumstances.

1) TemperatureSensor event type with
1) a time planification {delay = 0, period = 2 and

unit = “seconds"}.
2) a field temperature, Integer type and [0–10]random

generation.
2) HumiditySensor event type with

1) a time planification {delay = 0, period = 1 and
unit = “seconds"}.

2) a field humidity, Float type and [0–20]random
generation.

3) SmartHome event type with
1) a time planification {delay = 0, period = 3 and

unit = “seconds"}.

Fig. 3. SmartHomeEvent fields definitions using IoT-TEG 4.0.

2) a field description, String type with fixed generation
and two injected fields: temperature and humidity.

Once the time distributed generation for these three event
types starts, the generator will act as follows.

1) In second 1, a HumiditySensorEvent event type will be
generated. The value for humidity will be, for instance, 4.

2) In second 2, TemperatureSensorEvent and HumiditySen-
sorEvent event types are generated. Their values are, for
instance, four and two, respectively.

3) In second 3, HumiditySensorEvent and SmartHomeEvent
event types are generated. The SmartHomeEvent includes
a description and two injected values from two event types
with different planifications: humidity and temperature.

Fig. 3 shows the SmartHomeEvent fields definition using IoT-
TEG 4.0. This event type contains three fields, two of which
are injectables. The humidity field defined as injectable in the
HumiditySensorEvent event, and the temperature, also defined
as injectable in the TemperatureSensorEvent event.

This functionality could be used, for example, as a way of
collecting data for a dashboard from other event types with
different time distributions.

C. Improvement of Custom Behavior Functionality With an
Arithmetic Language

Robins indicates in [25] that a large part of CEP is pattern
matching, which consists not only of filtering, but also of extract-
ing properties from the event that can be combined with higher
level events that compose the output. Those properties can be
extracted to be combined or used to identify specific behaviors
or classifications. For instance, the functionality implemented
to test a fall-detection IoT system not only allows the generation
of events that simulate a fall but can also be used to generate a
specific type of fall [22]. In the literature, studies focusing on
different types of falls can be found, and it is necessary to identify
all of them in order to tell them apart from a nonfall. The custom
behavior functionality incorporates a specific syntax to perform
simple arithmetic expressions in order to meet the necessary
requirements. As we can see in Example 6, we have to define
variables with values, and then we can use those variables in the
rules to create a simulation. A rule, which is composed by a set
of parameters, helps us define, partially or totally, the behavior

VELEZ-ESTEVEZ et al.: IOT-TEG 4.0: A NEW APPROACH 4.0 FOR TEST EVENT GENERATION 1373

of an event attribute. The rule definition order affects the event
attribute definition. The order of the rules plays a role in the
event attribute definition. In Example 6, the set of rules defines
the behavior of the acceleration, an event attribute, in a fall.

Example 6: Rules to define a fall.
<?xml version="1.0" encoding="UTF-8"?>
<custom_conditions simulations="5">
<variables>
<variable name="Base" value="9.81"/>

</variables>
<rules>
<rule weight="0.25" min="$(Base)-0.25"

max="$(Base)+0.25"/>
<rule weight="1" min="$(Base)*2"

max="$(Base)*6"/>
<rule weight="1" min="0.0"

max="$(Base)/5"/>
<rule weight="0" min="$(Base)-0.25"

max="$(Base)+0.25"/>
</rules>

</custom_conditions>
Nevertheless, the rule expressions syntax was simple and,

depending on the fall type, the involved elements to be measured
in a fall increase in complexity. The implemented functionality
only could manage arithmetic binary expressions {+, -, *, /} and
only supported two variables in an expression. Consequently,
the functionality had to be improved.

The syntax has been improved by creating a language called
ExprLang to perform these arithmetic operations. With this
language, IoT-TEG 4.0 is capable of defining behaviors using
the following.

1) Multiple variables without limit.
2) Arithmetic functions with two parameters: pow, min, max,

copySign, IEEEremainder, hypot, nextAfter, and atan2.
3) Single parameter arithmetic functions are: abs, sin, cos,

tan, sqrt, log, log10, exp, getExponent, signum, asin,
acos, atan, toRadians, toDegrees, cbrt, ceil, floor, rint,
round, ulp, sinh, cosh, tanh, expm1, log1p, nextUp, and
nextDown.

4) Parentheses indicate priority in the expressions.

IV. GENERATING EVENTS 4.0

In this section, we are going to present the ways of generating
test events 4.0, as well as their importance and relevance in IoT
testing.

A. Time-Distributed Event Generation

As mentioned in Section III-A, Luckhamand and Frasca [23]
indicated the importance of the relationships between events,
one of which is time. Critical systems always tend to use time as
one of the variables for detecting patterns in an event stream. To
simulate the events that the event producer systems would emit,
a planification for the generation of the events has to be defined.
That planification consists of the following.

1) Period. This attribute describes how often an event will be
generated.

Fig. 4. Time-distributed generation.

Algorithm 1: Formal Description: Time-Distributed Event
Generation Algorithm.

Define ScheduledThreadPoolExecutor pool;
Define channelType ct;
Define attributes a(v1, v2,..., vn);
Define event type et(ct, a);
Define time-planning tp(et);
Define IoT-TEG 4.0 EventGenerator eg (et);
Add (eg, tp) to pool;
Execute pool;

2) Delay. This attribute describes how much time IoT-TEG
4.0 has to wait until the first event is generated.

3) Unit. This denotes if the last two attributes are in seconds,
minutes, and so on.

In Fig. 4, the event has {delay = 2, period = 1, and unit =
seconds}. This method of event 4.0 generation helps to do a
real simulation of the time relationship between events for the
testing of IoT systems. In order to use the time distributed event
generation in other event processing programs, which want to be
tested, a new mechanism has to be developed. This mechanism
is needed to communicate that a new event has been gener-
ated. This mechanism fits perfectly with the producer-consumer
model. In that model, publishers do not send the messages to a
specific subscriber. On the contrary, they classify them and send
them to a message broker, which is responsible for knowing
which are subscribed to a certain type of message. In this case,
a topic classifier has been used.

This has been developed using a ScheduledThreadPoolEx-
ecutor [26] in order to submit the event generation tasks with
a defined schedule and using the parameters explained previ-
ously. The Mosquitto broker [27] has been used as a message
broker. Mosquitto uses the MQTT protocol [28], which is a
publish/subscribe-based messaging protocol. It has been chosen
because MQTT is widely used in the IoT context, and it aligns
with the model explained earlier. The formal description of the
algorithm to generate time distributed events is as follows, see
Algorithm 1.

First of all, the ScheduledThreadPoolExecutor and the chan-
nelType have to be defined. Then, the event attributes are defined,
which are event fields v1, v2... vn that can be any of the provided
IoT-TEG 4.0 field types, see Fig. 1. The event type is defined
using the channelType and the attributes. The time-planning is
established according to the event type as well as the IoT-TEG
4.0 EventGenerator. These two elements are added to the pool
which is executed according to the defined time-planning.

1374 IEEE TRANSACTIONS ON RELIABILITY, VOL. 71, NO. 3, SEPTEMBER 2022

Fig. 5. Example of concurrently generated events.

Algorithm 2: Formal Description: Concurrent Event Gen-
eration Algorithm.

/*... same as algorithm 1... */ Add (eg1, tp1) to pool;
Add (eg2, tp2) to pool;
/*...*/ Add (egN, tpN) to pool;
Execute pool;

For instance, the event type HumiditySensor presented in the
following section, is defined within the channelType Channel.
Then, the set of attributes, in this case, is composed by a single
field of type Float with random generation within a range from 0
to 20. After that, we define the time planning to one second. Once
the event type and the time planning are defined, an instance of
the generator is created for that event type. Finally, the event
generator with the time planning are added to the pool and the
pool is executed. The ScheduledThreadPoolExecutor will use
the time planning to call the generator for that event type every
second, according to the time planning frequency.

B. Concurrent Event Generation

Luckham and Frasca [23] discussed how cause is another
relationship, such as, for instance, event A caused event B
to happen. If this relationship occurs several times within a
particular time period, a concurrent generation is needed. The
changes introduced in the previous sections have made it pos-
sible for IoT-TEG 4.0 to generate a huge number of events 4.0
concurrently without the need for executing the program over
and over again for each defined event type. This feature allows
the user to simultaneously test programs that handle different
event types.

For the sake of clarity, an example is provided in the Fig. 5.
1) Event 1 (black dotted line): delay of 2, period of 1, and

the unit is second.
2) Event 2 (blue solid line): delay of 0.5, period of 2, and the

unit is second.
The concurrent event generation algorithm is similar to the

time distributed generation algorithm, see Algorithm 2. The only
difference is that to allow different event types to be generated
concurrently, two or more tasks have need to be added to the
pool, with the same or different time plannings.

V. PROVIDING USABILITY

One of the changes made to IoT-TEG was providing it with
a graphical interface, which was accomplished by using a Web

Fig. 6. Inside event type.

Fig. 7. Definition of a field.

Interface. IoT-TEG 4.0 allows the definition of test events with-
out knowing how the event type is implemented or the generation
of test events 4.0. In order to illustrate how the graphical interface
works, we have included the more representative parts in Fig. 6.
The “Inside event type” screen allows for the modification of
event type definitions, starting the time distributed generation
and downloading the generated events to a file. Also shown is
the screen that allows for the definition of a new field of an
event type with regard to its type generation mode and different
parameters.

With the IoT-TEG 4.0 graphical interface, we avoid the te-
dious task of having to define event types via XML (see Sec-
tion II), giving a more usable experience. This may be checked
by comparing the SmartHome event type definitions from Ex-
ample 1, where a previous version of IoT-TEG was used, with
figures Figs. 6 and 7, where IoT-TEG 4.0 was used. Moreover,
the graphical interface gives us the option to effortlessly inject
fields from already defined event types, such as in the example

VELEZ-ESTEVEZ et al.: IOT-TEG 4.0: A NEW APPROACH 4.0 FOR TEST EVENT GENERATION 1375

in Section III-B, where the temperature and humidity fields were
previously defined in TemperatureSensor and HumiditySensor,
respectively.

The graphical interface facilitates the definition of events
4.0, and, hence, their generation. The integration of all these
contributions gives rise to the 4.0 test event generator system,
IoT-TEG 4.0. IoT-TEG 4.0. is an Open Source Software and
its source code can be found in the UCASE Research Group
repository2.

VI. VALIDATION

An analysis of real events 4.0 was performed using the
following IoT data platforms: Xively [16], Buglabs [17],
GroveStreams [18], SensorCloud [19], ThingSpeak [20], and
Zetta [21]. These IoT data platforms allow users to connect
devices and lodge their data in channels.

Depending on the IoT data platforms, the data are offered in
different formats such as JSON, XML, and CSV. If the user wants
to obtain the file with the event values, it can be downloaded or
the program can be modified to get the event values from the
channel and use them as its input. This last option is not always
available.

Our first step was to check if the generated test events 4.0 could
be differentiated from the ones that the connected sensors and
devices were sending to the network. So, we analyzed more than
500 event types from the mentioned IoT data platforms: their
structures and their values. Next, each event type was defined
using IoT-TEG 4.0, and several test cases were generated.

After checking the transmitted events and comparing them
with the IoT-TEG 4.0 test generated events, we can confirm that
there were no differences between the real and the generated
events. We have compared not only the event type structure but
also the possible range of values of the event attributes.

A. Esper Demo Nuclear Case Study

In addition, we took a further step in the validation of IoT-
TEG 4.0 and generated events to test the following programs:
terminal self-service [29], Transaction [30], DENMEvaP [31],
Domotic [32], and Esper Demo Nuclear [33]. All of them worked
as expected when tested with IoT-TEG 4.0 generated events. If
we look at the Esper Demo Nuclear test case, we can see that this
program uses EPL queries to process the incoming events in an
EsperTech engine [34]. To test this program, a time-distributed
event generation is needed. The program measures the tempera-
ture in place through a reading of the core temperature taken
every second, and it sends the data to a central monitoring
system. The data are Temperature events in degrees Celsius.
The program generates random Temperature events and sends
them through the Esper processor, where the program has three
types of alerts.

1) Monitor. This computes the average temperature every
10 s.

2) Warning. A warning is sent if there are two consecutive
temperatures above 400 ◦C.

2[Online]. Available: https://gitlab.com/ucase/public/iot-teg

3) Critical. It emit an alert if there are four consecutive events
and each subsequent one is greater than the previous,
where the last is 1.5 times greater than the first and where
the first was greater than 100 ◦C.

To perform the validation, we modified Esper Demo Nuclear
program to listen to the broker where IoT-TEG 4.0 sends the
generated events 4.0 (see Section IV-A). This modification al-
lowed us to simulate the sensors to test if the alerts were emitted
correctly, so we prepared one test case to test if the three alerts
were correctly emitted. The created event type for this test case
consists of the event type Inside, with a frequency of 2 s. The
Inside event type has a block named “block” with one repetition,
and the block has a field, “temperature,” which is an Integer type
that has a sequential generation with the parameters begin =
10, end = 600, and step = 50. We could randomly generate the
events as with the original program, but the goal of the test was to
check if the three alerts were be correctly emitted. So we decided
to simulate a more realistic behavior, where the temperature
would increase or decrease steadily. Once the generation started,
IoT-TEG 4.0 sent the generated events to the message broker,
and Esper Demo Nuclear received those events, producing the
three alerts (see Table I). This way, we can define test event types
to trigger specific alerts, providing us a quick method of testing
consumer systems.

Table I shows the Temperature events generated by IoT-TEG
4.0 and those generated by the original software. IoT-TEG 4.0
sent events every 2 s, and the original program sent Temperature
events randomly, so the number of Temperature events generated
is different. Given that the main goal was to test that the three
alerts appeared according to their implementation, we needed to
focus on the time and Temperature event values. The columns
Temperature show the value of the Temperature event from
IoT-TEG 4.0 and the originals, respectively. As we mentioned,
the values of the original events where randomly generated and
the IoT-TEG 4.0 events were generated increasing its value, a
more realistic behavior. The 10-s average is shown in the Monitor
column. The alert in this column appears every 10 s, and shows
the average temperature according to the received Temperature
event values in the 10 s range. In the Warning and Critical
columns, an X indicates when that alert was triggered. As it can
be seen, there is an X in the Warning alert after receiving the two
consecutive values greater than 400, this occurs using either real
or IoT-TEG 4.0 generated events. An X appears in the Critical
column in the IoT-TEG 4.0 scenario, when the received values
are 110, 160, 210, 260; the system detects four consecutive
events, all are greater than the previous and the last is at least 1.5
times higher than the first which, is also greater than 100. The
same happens in the original scenario after receiving the values
133, 196, 391, 395. So, it can be checked that the three alerts
were correctly emitted.

B. Fall Detection Case Study

As we mentioned in Section III-C, the custom behavior func-
tionality has been improved using ExprLang. This functionality
was incorporated into IoT-TEG when the fall detection system
prototype [22] needed to be tested. In that first version of

https://gitlab.com/ucase/public/iot-teg

1376 IEEE TRANSACTIONS ON RELIABILITY, VOL. 71, NO. 3, SEPTEMBER 2022

TABLE I
“ESPER DEMO NUCLEAR” EVENT COMPARISON

Fig. 8. FAW falls comparison.

the fall detection system prototype, one specific type of fall
was detected. The generated by IoT-TEG test events helped to
validate the prototype.

A second version of the fall detection system prototype has
been developed, and with it, a more complex type of fall needs
to be detected [35]. The type of fall considered in the second
prototype consists of the impact of a person against a wall,
followed by that person falling to their knees and then hitting
the floor with their chest or back, i.e., a fall against a wall
(FAW). The test events to generate using IoT-TEG 4.0 have
to simulate the acceleration of a person when a FAW fall is
produced. In order to analyze the acceleration during a FAW
fall, some volunteers replicated this type of fall. The goal is to
study the acceleration behavior during a FAW fall to generate test
events; thus, the acceleration values are conformed to standard
gravity g (1 g = 9.81 m/s2). There are two peaks during a FAW.
The first one is the impact of the person against the wall and
the second one occurs when the person hits the floor. A peak is
considered a variation in the acceleration greater than 2 g in a
time period of up to one second. Fig. 8 shows several examples
of the acceleration behavior during a FAW fall.

Once the fall acceleration behavior has been observed, the
next step is to define the fall event to generate test events with
IoT-TEG 4.0. It is essential to emphasize that to define the
behavior of the standard gravity acceleration, several tests must
be performed using the custom behavior functionality. The used
variables and rules to define a FAW fall using the improved
functionality are depicted in Table II and Table III. As we can

TABLE II
VARIABLES FOR FAW FALL DEFINITION

TABLE III
RULES FOR FAW FALL DEFINITION

observe, the complexity of this type of fall is greater than the
one explained in Example 6. In the following lines how the FAW
fall was defined in IoT-TEG 4.0 is explained.

There are three variables involved in Table II, one is the base
of the movement, the standard gravity g, and its value, which is
9.81m/s2, 1 g. The other two variables represent the two impacts
during the FAW fall: hits against the wall and the floor. Their
values are calculated once at the beginning of the generation and
the value range is from Base+ (Base ∗ 0.7) to Base ∗ 3.

Six rules are needed to define a FAW fall, see Table III. The
weight determines the number of events to be generated that will
follow the rule. For instance, if 20 events are going to be used to
define a FAW fall, there will be 5 events that follow the first rule,
5 events following the second rule, 1 event representing the wall
impact (third rule), 5 events for the fourth rule, 1 event with the
floor impact value (fifth rule), and the 3 rest of events will unitil
20 generated following the last rule.

It is needed to highlight that ImpactWall and Impact variable
definitions, as well as the sixth rule definition were not possible
in the previous version of the custom behavior functionality. The
arithmetic functions were limited, and the parentheses could not
be used.

Once we obtain the desired results, the test events are gen-
erated as needed. Fig. 8 shows the acceleration values of some
of the FAWs generated using IoT-TEG 4.0 with the improved

VELEZ-ESTEVEZ et al.: IOT-TEG 4.0: A NEW APPROACH 4.0 FOR TEST EVENT GENERATION 1377

Example 7: EPL output detecting a FAW fall.
...
[PersonID, accelS1, accelS2, TimeStamp] [1, 5.63002557906268, 30.5415550991252, 34739]
===== Acceleration variation detected:{a1.accelS1=4.2334213623026,
a1.accelS2=6.46860718110166, a2.accelS2=30.5415550991252, a2.accelS1=5.63002557906268}
[PersonID, accelS1, accelS2, TimeStamp] [1, 7.66452355613185, 33.9375273406033, 34788]
[PersonID, accelS1, accelS2, TimeStamp] [1, 7.66452355613185, 33.9375273406033, 34790]
[PersonID, accelS1, accelS2, TimeStamp] [1, 27.7464087982103, 19.9658372946816, 34835]
===== Acceleration variation detected:{a1.accelS1=4.2334213623026,
a1.accelS2=6.46860718110166, a2.accelS2=19.9658372946816, a2.accelS1=27.7464087982103}
[PersonID, accelS1, accelS2, TimeStamp] [1, 27.7464087982103, 33.2498137705071, 34836]
...

custom behavior functionality and two real FAW falls from two
volunteers.

Fig. 8 illustrates that the IoT-TEG 4.0 generated falls (G.
FAW) cannot be taken apart from two real FAW falls. With the
aim of testing the second version of the fall detection system
prototype not only the real FAW falls were used but also the IoT-
TEG 4.0 generated ones. Thanks to IoT-TEG 4.0 generated FAW
falls nobody has to replicate a FAW fall anymore. Moreover,
false falls as well as noise data can be included in the test cases.
The second prototype is a wearable belt with four-sensor-node
body area network. The system receives the acceleration from
the four sensors. If any of received data contains an acceleration
variation, the EPL query of the prototype triggers a message, see
Example 7.

For the sake of clarity, the example only uses two sensors in
the EPL query instead of four. The EPL query sends informa-
tion about the events that are being processed in real time. In
Example 7, the information from each event is shown: a person
identification, PersonID, the acceleration from sensor 1 and
sensor 2, accelS1 and accelS2, and the time stamp, TimeStamp.
When an acceleration variation is detected, the message shows
the acceleration values that meet the constraints. For instance,
sensor 2 acceleration value is 6.468 and, during one second
range, the next value of sensor 2 is 30.541; the acceleration
variation, in that range, is greater than 2 g (19.62 m/s2). In the
next detected acceleration variation, the first value of sensor 1 is
4.233 and the second value, during one second range, is 27.746;
again, the acceleration variation is greater than 2 g. The second
fall system prototype [35] was validated using the real FAW fall
events and the ones generated using IoT-TEG 4.0 [36].

VII. RELATED WORK

A review of current event generators shows that almost all of
them are specific to particular use cases. We will briefly comment
on and compare the following four event generators with IoT-
TEG (see Section II-B).

1) Unicorn [37] is an event processing platform developed
by Business Process Technology. It provides services
that capture and process real-world events from sources.
Unicorn includes an event generator component used to
test event-driven applications. The generated events are
instances of an event type that was previously defined,
and the generated data are random, with two types of
distributions: normal and uniform.

2) The timing system [38] provides a timing distribution
system that includes timing signal generation. The event
generator in this tool is responsible for creating and send-
ing timing events to an array of event receivers.

3) Starcom systems [39] developed an event generator to
deal with huge numbers of events. They ensure that their
generator can control the end event action so the tool can
filter the exact needed requirements.

4) WebLogic integration solutions [40] allows for the man-
agement and monitoring of entities and resources required
for WebLogic Integration applications. This software in-
cludes an event generator module that can trigger events
in associated systems.

These four event generators are specific to their use cases.
For instance, Unicorn is focused on business process, road, and
airfreight transportation. The timing system as well as starcom
systems event generators have a commercial purpose, so de-
pending on the client necessities and the business systems to be
tested, the events will be generated. The WebLogic Integration
Solutions users may integrate a built-in event generator into their
projects. This event generator has to be modified afterwards in
order to fit the needs of the user and the event. IoT-TEG 4.0 is
multipurpose because it not only allows different behaviors to be
defined but also the definition of different event structures and
formats. Moreover, it lets us simulate the emission of events 4.0
(see Section III). The differences of the aforementioned event
generators can be seen in Table IV.

Table IV compares the main features that we have considered
as necessary for an I4.0 testing tool after analyzing several
works in the literature. The authors highlight the necessity to
incorporate diverse data with different semantics [7]–[10]. That

1378 IEEE TRANSACTIONS ON RELIABILITY, VOL. 71, NO. 3, SEPTEMBER 2022

TABLE IV
EVENT GENERATORS COMPARISON

is why the customization of the event type definition is important,
the custom event schema feature. Related to the event definition,
in order to mimic the events from the heterogeneous connected
I4.0 devices, the tools have to allow: linear pattern definition, in-
jectable generation, and a language to define custom behaviors.
These features enable to incorporate in the event definitions the
events relationships defined by Luckham and Frasca [23] and
Ahn and Kim [24], as well as the event properties studied by
Robins [25]. Moreover, another challenge is to send the infor-
mation according to the frequency of each connected I4.0 item,
an issue identified in [23]. This is solved by allowing different
event generations: time-distributed generation and concurrent
event generation. A graphical interface whose main purpose is
to ease the event definition and generation. The analyzed event
generators are listed and an X indicates if they include the feature
or not.

Testbeds for IoT can be found in the literature. In fact, a survey
of the available testbeds for IoT is presented in [41], where
its authors examine different aspects of testbeds. However, the
one we are going to focus our attention on is the emulation of
sensor events by attaching digital-to-analogue converters. The
following testbeds emulate sensor events.

1) w-iLab.t testbeds provide environmental emulators. These
emulators trigger sensor readings on the individual sensor
nodes that correspond to emulated environmental events.
This also allows replaying of sensor events obtained from
a real-world environment on the testbed [42].

2) FlockLab 2 an extension of FlockLab [43]. FlockLab
2 architecture consists of a testbed server hosting data
services and the web interface. A multiplexer crossbar
manages the target device. This allows running tests on
different target device architectures [44].

3) SensLAB testbeds are used for hardware components as
well as its software, allowing experiments to be conducted
that can also emulate channel characteristics between IoT
nodes [45].

4) Kansei testbeds support sensor data generation as well as
real-time data and event injection [46].

Bouckaert et al. [42] recognized that it is hard to represent
a real networking environment, even with the most advanced
simulation models or desktop testbeds. But their data cannot
be adapted to the needs of the different types of tests, such
as functional, negative, integration, stress, etc. For instance,
IoT-TEG 4.0 can generate specific event types in order to test

if the I4.0 connected device processes them correctly (see Sec-
tion VI-B). The negative testing consists of analyzing how the
connected I4.0 devices react when the received event contains a
nonexpected value type (a string instead of an integer). IoT-TEG
4.0 could generate the expected event type changing the type
of one or more event attributes. For the integration testing,
IoT-TEG 4.0 generates test events like the ones that the I4.0 to
be connected device will be sending. The mentioned type of test
may be done using a real-time testing or not, but the stress test,
in the I4.0 context, should be performed in real-time. IoT-TEG
4.0 can generate a huge and large number of events to simulate
different connected I4.0 devices. Moreover, these events can be
generated with a short period of time and with a short delay, so
the I4.0 system under test can be stressed.

VIII. CONCLUSION

In this article, we presented IoT-TEG 4.0, a system that
integrates the events 4.0 definition and a graphical interface that
eases event generation. The obtained test events 4.0 allow us to
be more accurate while testing IoT systems. They can mimic the
data that enriches Industry 4.0, such as events that are distributed
over time, different types of event, events built with the injection
of other values, and so on. IoT-TEG 4.0 covers a wider number
of use cases and different types of tests.

Future work: IoT-TEG 4.0 generates time-distributed events
and sends them to a queue using the MQTT protocol. Then, the
software tested has to wait for the event generation. Future work
involves using discrete event simulation (DES) to generate test
cases supported by a simulation model. DES would be managed
by a controlled clock in which the state variables of the model
evolves over time [47]. The DES-based event generator would
allow to implement the following features.

1) Aperiodical events. Only at an specific date or randomly
within an interval of time scheduled each week, month,
i.e.: every Monday among 15:00 and 18:00 CET generate
an instance of TemperatureEventType.

2) Test a system with a set of events previously generated.
3) Model an IoT system with different types of events emitted

by several devices to use it as fake input. The generated
data provided by IoT-TEG 4.0 would allow the devel-
opment of other system without deploying the whole
physical IoT platform.

In addition, the model could be defined with a graphical tool as
it has been done in the work by Boubeta et al. [32]. To achieve

VELEZ-ESTEVEZ et al.: IOT-TEG 4.0: A NEW APPROACH 4.0 FOR TEST EVENT GENERATION 1379

the mentioned approach, the first step is to develop the meta-
model of the possible event types IoT-TEG 4.0 offers. Then, an
approach to do it is to use the eclipse modeling framework [48]
to build a meta-model and corresponding graphic tool such as
the work previously mentioned.

APPENDIX

APPENDIX A DATASETS

This[36] is a dataset repositorythat contains fall simulation
data, fall analysis, IoT-TEG 4.0 generated test events, a JAVA
simulator with the EPL query to detect FAW falls, and fall
simulation video clips.

REFERENCES

[1] L. Gutiérrez-Madroñal, I. Medina-Bulo, and J. Domínguez-Jiménez, “IoT-
TEG: Test event generator system,” J. Syst. Softw., vol. 137, pp. 784–803,
2018.

[2] S. Haller, S. Karnouskos, and C. Schroth, “The internet of things in an
enterprise context,” in Future Internet - FIS2008, J. Domingue, D. Fensel,
and P. Traverso, Eds. Berlin, Heidelberg: Springer, 2009, pp. 14–28.

[3] L. Barreto, A. Amaral, and T. Pereira, “Industry 4.0 implications
in logistics: An overview,” Procedia Manuf., vol. 13, pp. 1245–1252,
2017. [Online]. Available: https://www.sciencedirect.com/science/article/
pii/S2351978917306807

[4] E. Hofmann and M. Rüsch, “Industry 4.0 and the current status as well
as future prospects on logistics,” Comput. Ind., vol. 89, pp. 23–34, Aug.
2017.

[5] Y. Lu, “Industry 4.0: A survey on technologies, applications and open
research issues,” J. Ind. Inf. Integration, vol. 6, pp. 1–10, 2017.

[6] M. Rüßmann et al., “Industry 4.0: The future of productivity and growth
in manufacturing industries,” Boston Consulting Group, vol. 9, no. 1,
pp. 54–89, 2015.

[7] T. Glock, B. Sillman, M. Kobold, S. Rebmann, and E. Sax, “Model-based
validation and testing of industry 4.0 plants,” in Proc. Annu. IEEE Int.
Syst. Conf., 2018, pp. 1–8.

[8] S. Vaidya, P. Ambad, and S. Bhosle, “Industry 4.0 - a glimpse,” Procedia
Manuf., vol. 20, pp. 233–238, 2018.

[9] K.-D. Thoben, S. Wiesner, and T. Wuest, “”industrie 4.0” and smart
manufacturing - a review of research issues and application examples,”
Int. J. Automat. Technol., vol. 11, pp. 4–19, Jan. 2017.

[10] H. Foidl and M. Felderer, “Data science challenges to improve quality
assurance of internet of things applications,” in Proc. Int. Symp. Leveraging
Appl. Formal Methods, Springer, 2016, pp. 707–726.

[11] L. Gutiérrez-Madroñal, A. García-Domínguez, and I. Medina-Bulo, “Evo-
lutionary mutation testing for IoT with recorded and generated events,”
Softw., Pract. Experience, vol. 49, no. 4, pp. 640–672, 2019.

[12] D. Luckham, Event Processing for Business: Organizing the Real-Time
Enterprise. New York, NY, USA: Wiley, 2011. [Online]. Available: https:
//books.google.es/books?id=TTePtrngMTIC

[13] D. Luckham, “A view of the current state of event processing,” 2006.
Accessed: Jun. 2021. [Online]. Available: http://complexevents.com/wp-
content/uploads/2006/03/dluckham-workshop-03-2006.pdf

[14] J. Schiefer, S. Rozsnyai, C. Rauscher, and G. Saurer, “Event-driven rules
for sensing and responding to business situations,” in Proc. Inaugural Int.
Conf. Distrib. Event-Based Syst., 2007, vol. 233, pp. 198–205.

[15] M. Völker, S. Mandal, and M. Hewelt, “Testing event-driven applications
with automatically generated events,” in BPM, 2017.

[16] Xively, “Xively Website.” Accessed: Jun. 2021. [Online]. Available: https:
//cloud.google.com/solutions/iot

[17] Buglabs, “Buglabs Website.” Accessed: Jun. 2021. [Online]. Available:
https://www.buglabs.net/

[18] Grovestreams, “Grovestreams Website.” Accessed: Jun. 2021. [Online].
Available: https://grovestreams.com/index.html

[19] Sensorcloud, “Sensorcloud Website,” Accessed Jun. 2021. [Online]. Avail-
able: http://sensorcloud.com/

[20] ThingSpeak, “Thingspeak Website.” Accessed: Jun. 2021. [Online]. Avail-
able: https://thingspeak.com

[21] Zettajs, “Zettajs Website.” Accessed: Jun. 2021. [Online]. Available: http:
//www.zettajs.org/

[22] L. Gutiérrez-Madroñal, L. La Blunda, M. F. Wagner, and I. Medina-Bulo,
“Test event generation for a fall-detection IoT system,” IEEE Internet
Things J., vol. 6, no. 4, pp. 6642–6651, Aug. 2019.

[23] D. C. Luckham and B. Frasca, “Complex event processing in distributed
systems,” Computer Systems Laboratory, Stanford University, Stanford,
CA, USA, Technical Report CSL-TR-98-754, 1998.

[24] S. Ahn and D. Kim, “Proactive context-aware sensor networks,” in Proc.
Eur. Workshop Wirel. Sensor Netw., Springer2006, pp. 38–53.

[25] D. Robins, “Complex Event Processing,” in Proc. 2nd Int. Workshop Educ.
Technol. Comput. Sci., Citeseer, 2010, pp. 1–10.

[26] Oracle, “Java SE8 ScheduledThreadPoolExecutor.” Accessed: Jun. 2021.
[Online]. Available: https://docs.oracle.com/javase/8/docs/api/java/
util/concurrent/ScheduledThreadPoolExecutor.html

[27] Eclipse, “Mosquitto.” Accessed: Jun. 2021. [Online]. Available: https://
mosquitto.org

[28] OASIS, “MQTTStandart.” Accessed: Jun. 2021. [Online]. Available: http:
//mqtt.org/

[29] EsperTech, “Self-service terminal.” Accessed: Jun. 2021 [Online].
Available: http://esper.espertech.com/release-5.4.0/esper-reference/html/
examples.html#examples-terminalsvc-J2EE

[30] EsperTech, “Transaction.” Accessed: Jun. 2021 [Online]. Available:
http://esper.espertech.com/release-5.4.0/esper-reference/html/examples.
html#examples-transaction-3-event-challenge

[31] R. Gad, “Event-driven principles and complex event processing for self-
adaptive network analysis and surveillance systems,” Ph.D. dissertation,
Univ. Appl. Sci. Frankfurt am Main, Frankfurt, Germany, 2015.

[32] J. Boubeta-Puig, G. Ortiz, and I. Medina-Bulo, “MEdit4CEP: A Model-
driven solution for real-time decision making in soa 2.0,” Knowl.-Based
Syst., vol. 89, pp. 97–112, 2015.

[33] A. Milne, “Esper demo nuclear.” Accessed: Jun. 2021. [Online]. Available:
https://github.com/adrianmilne/esper-demo-nuclear

[34] EsperTech, “Esper.” Accessed: Jun. 2021. [Online]. Available: http://
www.espertech.com/esper/

[35] L. La Blunda, L. Gutiérrez-Madroñal, M. F. Wagner, and I. Medina-Bulo,
“A wearable fall detection system based on body area networks,” IEEE
Access J., vol. 8, pp. 193060–193074, 2020.

[36] L. Gutiérrez-Madroñal, “Gitlab Repository - Fall Detection,” Ac-
cessed: Jun. 2021. [Online]. Available: https://gitlab.com/lorgut/fall-
events-validation.

[37] B. P. T. Group, “UNICORN.” Accessed: Jun. 2021. [Online]. Available:
https://bptlab.github.io/Unicorn/

[38] Micro-Research_Finland_Oy, “Timing System.” Accessed: Jun. 2021.
[Online]. Available: http://www.mrf.fi/index.php/timing-system

[39] Starcom_Systems, “The event generator.” Accessed: Jun. 2021.
[Online]. Available: https://www.starcomsystems.com/2012/03/26/the-
event-generator/

[40] Oracle, “Oracle web logic integration.” Accessed: Jun. 2021. [Online].
Available: https://www.oracle.com/middleware/technologies/weblogic-
integration.html#learning

[41] A. Gluhak, S. Krco, M. Nati, D. Pfisterer, N. Mitton, and T. Razafind-
ralambo, “A survey on facilities for experimental internet of things re-
search,” Commun. Mag., Inst. Elect. Electron. Engineers, vol. 49, no. 11,
pp. 58–67, 2011.

[42] S. Bouckaert, W. Vandenberghe, B. Jooris, I. Moerman, and P. Demeester,
“The w-ilab.t testbed,” in Testbeds and Research Infrastructures. Devel-
opment of Networks and Communities. New York, NY, USA: Springer,
2011, pp. 145–154.

[43] R. Lim, F. Ferrari, M. Zimmerling, C. Walser, P. Sommer, and J. Beutel,
“Flocklab: A testbed for distributed, synchronized tracing and profiling of
wireless embedded systems,” in Proc. ACM/IEEE Int. Conf. Inf. Process.
Sensor Netw., Association for Computing Machinery, 2013, pp. 153–165.

[44] R. Trüb et al., “Flocklab 2: Multi-modal testing and validation for wireless
Iot,” Zurich: ETH Zurich, Comput. Eng. Netw. Lab., 2020.

[45] C. Burin des Roziers et al., “Using senslab as a first class scientific tool
for large scale wireless sensor network experiments,” in Proc. Int. Conf.
Res. Netw., Springer, 2011, pp. 147–159.

[46] A. Arora, E. Ertin, R. Ramnath, M. Nesterenko, and W. Leal, “Kansei:
A high-fidelity sensing testbed,” IEEE Internet Comput., vol. 10, no. 2,
pp. 35–47, Mar./Apr. 2006.

[47] A. M. Law and W. D. Kelton, Simulation Modeling & Analysis, 2nd ed.
Singapore: McGraw-Hill, 1991.

[48] E. Foundation, “Eclipse modeling framework,” Accessed: Jun. 2021.
[Online]. Available: https://www.eclipse.org/modeling/emf/

https://www.sciencedirect.com/science/article/pii/S2351978917306807
https://books.google.es/books{?}id$=$TTePtrngMTIC
http://complexevents.com/wp-content/uploads/2006/03/dluckham-workshop-03-2006.pdf
https://cloud.google.com/solutions/iot
https://www.buglabs.net/
https://grovestreams.com/index.html
http://sensorcloud.com/
https://thingspeak.com
http://www.zettajs.org/
https://docs.oracle.com/javase/8/docs/api/java/
https://mosquitto.org
http://mqtt.org/
http://esper.espertech.com/release-5.4.0/esper-reference/html/examples.html#examples-terminalsvc-J2EE
http://esper.espertech.com/release-5.4.0/esper-reference/html/examples.html#examples-transaction-3-event-challenge
https://github.com/adrianmilne/esper-demo-nuclear
http://www.espertech.com/esper/
https://gitlab.com/lorgut/fall-events-validation
https://bptlab.github.io/Unicorn/
http://www.mrf.fi/index.php/timing-system
https://www.starcomsystems.com/2012/03/26/the-event-generator/
https://www.oracle.com/middleware/technologies/weblogic-integration.html#learning
https://www.eclipse.org/modeling/emf/

1380 IEEE TRANSACTIONS ON RELIABILITY, VOL. 71, NO. 3, SEPTEMBER 2022

Antonio Velez-Estevez received the bachelor’s de-
gree in computer science and the master’s degree in
research in systems and computer engineering in 2019
and 2020, respectively, from the University of Cadiz,
Cádiz, Spain, where he is currently working toward
the Ph.D. degree.

He is a R&D Support and Management Techni-
cian with the University of Cadiz. His main interests
include data science, scientometrics, artificial intelli-
gence, and software engineering.

Mr. Velez-Estevez is member of the IntellSOK
Intelligent Social Knowledge Based Systems research group.

Lorena Gutierrez-Madroñal received the first-class
honor’s degree in computer systems management,
and the B.Sc., M.A.S., and Ph.D. degrees in computer
science from the University of Cádiz, Cádiz, Spain,
in 2007, 2009, 2010, and 2017, respectively.

She has been working with the Department of
Computer Science and Engineering as a Full Time
Lecturer since 2009. To prove the usability of the
test-generated events, she uses them to apply mutation
testing to EPL query languages, such as the event
processing language. She has participated in research

projects with software-engineering-related aspects. She was in programs and
organizing committees at different conferences. She is a Researcher of the
UCASE Software Engineering Research Group. Her research is focused on the
Internet of Things and test event generation for any event-processing program.

Inmaculada Medina-Bulo (Member, IEEE) re-
ceived the Ph.D. degree in computer science from
the University of Seville, Seville, Spain, in 2003.

She has been an Associate Professor with the
Department of Computer Science and Engineering,
University of Cádiz, Spain, since 1999. She has been
a member of the Council of the School of Engineering
as well as a Socrates/Erasmus Program Coordinator
for several years. From July 2010 to 2011, she was
appointed Degree Coordinator for the Computer Sci-
ence Studies and a member of the Board of the ESI.

From September 2013 to July 2019, she was Chief Information Officer of the
university. Her research was supported by research stays in the USA, the U.K.,
and Germany. She has served in program or organizing committees at different
conferences and for differently journals. She has coordinated the development
of several open-source testing tools, such as the MuBPEL mutation testing tool
for WS-BPEL, the GAmeraHOM tool for locating “hard-to-kill” mutants, the
Rodan test case generation tool and the Takuan dynamic invariant generator
for WS-BPEL. She has participated in and led research projects all involved in
software-engineering-related aspects. She has authored and coauthored numer-
ous papers in international journals, and international conferences and workshop
proceedings. She is the main Researcher of the UCASE Software Engineering
Research Group. Her main research interests include software verification,
software testing, web service compositions, model-driven engineering, and
complex event processing.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 900
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.00111
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 1200
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.00083
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00063
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

