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Abstract
This paper deals with an inverse data envelopment analysis (DEA) based on the 
non-radial slacks-based model in the presence of uncertainty employing both integer 
and continuous interval data. To this matter, suitable technology and formulation 
for the DEA are proposed using arithmetic and partial orders for interval numbers. 
The inverse DEA is discussed from the following question: if the output of DMU

o
 

increases from Y
o
 to �

o
 , such the new DMU is given by (�∗

o
, �) belongs to the tech-

nology, and its inefficiency score is not less than t-percent, how much should the 
inputs of the DMU increase? A new model of inverse DEA is offered to respond to 
the previous question, whose interval Pareto solutions are characterized using the 
Pareto solution of a related multiple-objective nonlinear programming (MONLP). 
Necessary and sufficient conditions for input estimation are proposed when output is 
increased. A functional example is presented on data to illustrate the new model and 
methodology, with continuous and integer interval variables.
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1 Introduction

Data envelopment analysis is a practical non-parametric methodology to measure 
the efficiency of Decision Making Units (DMUs) by consuming inputs to produce 
outputs. DEA method was first proposed by Charnes et  al. (1978), developed by 
Banker et al. (1984).

Also, some researchers have considered the applications of DEA, for example, 
Hadi-Vencheh et  al. (2018) studied sustainable airline operations. They utilized a 
modified slack-based measure model to account for CO2 emissions. Yousefi and 
Hadi-Vencheh (2016) compared three techniques to investigate six sigma optimized 
projects. They used Analytic Hierarchy Process (AHP), the Technique for Order 
Preference by Similarity to an Ideal Solution (TOPSIS), and Data Envelopment 
Analysis (DEA). Finally, as DEA is a good indicator for evaluating the optimized 
units they opted DEA.

Also, Tan et al. (2021) considered hotel performance. They investigated the role 
of information entropy in feedback processes between input and output management 
as well as evaluated the level of super efficiency with negative values and liquidity 
variables.

The concept of the inverse DEA model is firstly introduced by Zhang and Cui 
(1999). They study the input increases of a DMU are evaluated for its given output 
increases under the CCR efficiency fixed constraints. Inverse DEA is formally stud-
ied by Wei et al. (2000). They considered the first question in inverse DEA (output-
estimation). “If the inputs of DMUo increase, how much should the outputs of DMUo 
increase to preserve the efficiency score of DMUo ?” Wei et al. (2000) proposed a 
linear programming problem when DMUo is weakly efficient and a multiple-objec-
tive linear programming (MOLP) problem when DMUo is inefficient to answer this 
question. The second question in inverse DEA (input-estimation) was considered by 
Hadi-Vencheh and Foroughi (2006). “If the outputs of DMUo increase, how much 
should the outputs of DMUo increase to preserve the efficiency score of DMUo?”

Input-estimation and output-estimation were studied by Jahanshahloo et  al. 
(2004), provided that DMUo maintains or improves the efficiency score. Also, both 
questions were investigated under inter-temporal dependence by Jahanshahloo et al. 
(2015). The third question in inverse DEA (input–output estimation) is considered 
by Jahanshahloo et  al. (2014). “If the inputs and outputs of DMUo increase, how 
much should the inputs and outputs of DMUo increase to preserve the efficiency 
score of DMUo ?” This question was answered only for the efficient DMUo . They 
applied MOLP for input–output estimation. In addition to these, Chen and Wang 
(2021) studied the limitation of inputs and outputs in the inverse DEA method under 
variable returns to scale (VRS), because the inverse DEA method often has no feasi-
ble solution under VRS. Also, Chen et al. (2021) applied inverse DEA to the trans-
portation science which is one of the most popular applications of DEA and inverse 
DEA. They introduced an objective constraints to extend an inverse DEA method 
with undesirable output to find the optimal realization path.

Most of the studies was done on radial inverse DEA. When slacks are of impor-
tance, radial inverse DEA may mislead to answer questions in inverse DEA. 
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Therefore, some researchers try to consider inverse DEA based on non-radial mod-
els. To the best of our knowledge, Jahanshahloo et al. (2014) introduced a non-radial 
inverse DEA based on the Enhanced Russel model. They assume that the efficiency 
scores of each dimension remain unchanged. Then Zhang and Cui (2020) proposed 
a non-radial inverse DEA model, supposing that the overall efficiency score remains 
unchanged, covering all radial and non-radial measures that are monotonous. In 
other words, they introduced a basic form of all inverse DEA models because mono-
tonicity is one of the main properties of DEA measures.

Regarding integer DEA, Lozano and Villa (2006) firstly proposed integer DEA. 
Directional Distance Function (DDF), super-efficiency, flexible measures or con-
gestion are type of advanced DEA models. Integer DEA has much application, for 
example, hotel performance, sports, and transportation.

Regarding interval DEA, there have also been many types of research, for exam-
ple, radial multiplier formulations, additive imprecise DEA approaches, FDH 
interval DEA models, non-radial, non-oriented imprecise DEA approaches, ideal 
point approaches, inverted DEA approaches, interval DEA with negative data, 
flexible measure interval DEA approaches, and common weights imprecise DEA 
approaches. Manufacturing industry, banks and bank branches, power plants are the 
applications of interval values.

In this paper, we extend our previous work in Arana-Jiménez et al. (2021) from 
interval integer DEA to integer interval inverse DEA. To the best of our knowledge, 
there are a few literature that address inverse DEA with imprecise data, for instance, 
Hadi-Vencheh et al. (2014) and Ghobadi (2021) proposed Inverse DEA under inter-
val data, They considered only continuous data while we use integer and continuous. 
Also, there is only one publication about integer inverse DEA. Shinto and Sushama 
(2019) considered inverse DEA with integer restriction while we apply inverse DEA 
to integer interval data. As previously mentioned, the closet existing non-radial 
inverse DEA is Zhang and Cui (2020), which is different from our approach. While 
they consider crisp input/output, we study uncertainty in data. Also, while they use 
continuous data, we apply hybrid scenario, containing both continuous and integer 
data. Therefore, the contribution of this research is vast.

The aim contribution of this paper is to consider prevailing methods with non-
radial slacks-based measure, which has more properties than radial models, on inte-
ger interval framework. We consider the following question: "If the output of DMUo 
increases such that its inefficiency score is not less than t-percent, how much should 
the input of DMUo increase?" To answer this question, we propose, and apply a non-
radial inverse DEA model involving integer and continuous interval data.

The structure of the paper is as follows. In Sect. 2, the basic ideas of the inverse 
DEA and slacks-based inverse DEA model are reviewed. Section 3, some concepts 
on integer intervals are introduced. The concepts in Sect.  4 are used to propose 
some theoretical extensions of inverse DEA with integer intervals. Necessary and 
sufficient conditions for input estimation are proposed when output is increased. 
In Sect.  5, numerical examples are presented. Finally, Sect.  6 indicates some 
conclusions.
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2  Inverse DEA models with crisp data

Let us assume a set of N DMUs in which each DMUj , j ∈ J = {1,… ,N} , consume 
M inputs Xj = (x1j,… , xMj) ∈ ℝ

M to produces S outputs Yj = (y1j,… , ySj) ∈ ℝ
S . In 

the classic (Charnes et al., 1978) DEA model, the production possibility set (PPS) or 
technology, defined by T, satisfies in the following axioms: 

 (A1) Envelopment: (Xj, Yj) ∈ T  , for all j ∈ J.
 (A2) Free disposability: (X, Y) ∈ T , (X�, Y �) ∈ ℝ

M+S , X′ ≧ X , Y � ≦ Y ⇒ (X�, Y �) ∈ T .

 (A3) Convexity: (X, Y), (X�, Y �) ∈ T  , then �(X, Y) + (1 − �)(X�, Y �) ∈ T  , for all 
� ∈ [0, 1].

 (A4) Scalability: (X, Y) ∈ T ⇒ (�X, �Y) ∈ T  , for all � ∈ ℝ+.

According to the minimum extrapolation principle in Banker et al. (1984), the DEA 
PPS, which contains all the feasible input–output bundles, is the intersection of all 
the sets that satisfy axioms (A1)-(A4) and can be defined as

Let us recall that a DMUo is said to be efficient if and only if for any (X, Y) ∈ TDEA 
such that X ≦ Xo and Y ≧ Yo , then (X, Y) = (Xo, Yo) . This can be got solving the fol-
lowing normalized slacks-based DEA model.

Where �j , j = 1,… ,N , are the intensity variables used for defining the correspond-
ing efficient target of DMUo . The inefficiency measure I∗(Xo, Yo) is units invariant 
and non-negative. Furthermore, a DMUo is efficient if and only if I∗(Xo, Yo) = 0.

Now, the following question is considered based on investigations carried out in 
previous literature. If the outputs of DMUo increase, how much should the inputs 
of the DMUo increase to decrease the inefficiency score of DMUo to the amount of 
t-percent. The aim of the question is to calculate the minimum increase of input (�∗

o
) 

if the output of DMUo increase from Yo to �o = Yo +△Yo , where △Yo ≩ 0 provided 
that the inefficiency score of DMUo decrease to the amount of t-percent. In fact,

TDEA =

{

(X, Y) ∈ ℝ
M+S
+

∶ X ≧

N
∑

j=1

�jXj, Y ≦

N
∑

j=1

�jYj, �j ≥ 0,∀j

}

.

(1)

(DEA) I
∗(X

o
, Y

o
) =Max

M
∑
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s
x

i

x
io

+

S
∑

r=1

s
y

r

y
ro

s.t.

N
∑

j=1

�
j
x
ij
≤ x

io
− s

x

i
, i = 1,… ,M,

N
∑

j=1

�
j
y
rj
≥ y

ro
+ s

y

r
, r = 1,… , S,

�
j
≥ 0, j = 1,… ,N,

s
x

i
, sy

r
≥ 0, i = 1,… ,M, r = 1,… , S.
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Furthermore, we consider that the new DMU belongs to the technology. For the sake 
of simplicity, assume that the new DMU represents DMUo . After modification of 
inputs and outputs, the following model is presented to estimate the inefficiency of 
the new DMU:

Definition 1 (1) If the optimal values of the model (1) and (2) are equal, it is said to 
be the inefficiency score remains unchanged; that is, I∗(�∗

o
, �0) = I∗(Xo, Yo).

(2) If the optimal values of the model (1) are less than model (2), it is 
said to be the inefficiency score decrease to the amount of t-percent; that is, 
I∗(�∗

o
, �0) = (1 − t)I∗(Xo, Yo).

To solve the above question, the following MONLP model is considered:

Where I∗ is the optimal value of problem (1) and 0 ≤ t ≤ 1 , note that when 
t = 1 , I∗(�∗

o
, �o) = 0 , which means the new DMU is efficient and when t = 0 , 

I∗(�∗
o
, �o) = I∗(Xo, Yo) . Therefore, when t increases, the inefficiency score decreases.

𝛼∗

o
= (𝛼∗

1o
, 𝛼∗

2o
, ..., 𝛼∗

Mo
)t = Xo +△Xo, △ Xo ≩ 0.

(2)

(DEA) I
∗(�∗

o
, �

o
) =Max

M
∑

i=1

s
x

i

�∗
io

+

S
∑

r=1

s
y

r

�
ro

s.t.

N
∑

j=1

�
j
x
ij
≤ �∗

io
− s

x

i
, i = 1,… ,M,

N
∑

j=1

�
j
y
rj
≥ �

ro
+ s

y

r
, r = 1,… , S,

�
j
≥ 0, j = 1,… ,N,

s
x

i
, sy

r
≥ 0, i = 1,… ,M, r = 1,… , S.

(3)

(MONLP) Min (�1o, ..., �Mo)

s.t.

N
∑

j=1

�jxij ≤ �io − sx
i
, i = 1,… ,M,

N
∑

j=1

�jyrj ≥ �ro + sy
r
, r = 1,… , S,

M
∑

i=1

sx
i

�io
+

S
∑

r=1

s
y
r

�ro
= (1 − t)I∗
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Definition 2 (see Zhang and Cui (2020)). Let (�∗, �∗
0
, sx∗, sy∗) be a feasible solution 

to the problem (3). (�∗, �∗
0
, sx∗, sy∗) is said to be a Pareto (efficient) solution to the 

problem (3) if there isn’t feasible solution (�, �0, sx, sy) of (3) such that �io ≤ �∗
io

 for 
all i = 1, 2, ...,M and 𝛼io < 𝛼∗

io
 for at least one i.

Definition 3 (see Zhang and Cui (2020)). Let (�∗, �∗
0
, sx∗, sy∗) be a feasible solution 

to the problem (3). (�∗, �∗
0
, sx∗, sy∗) is said to be a weakly Pareto (weakly efficient) 

solution to the problem (3) if there isn’t feasible solution (�, �0, sx, sy) of (3) such 
that �io ≤ �∗

io
 for all i = 1, 2, ...,M.

There are different methods to generate weakly Pareto (weakly efficient) solu-
tions of MOLP and MONLP. One of the most usual methods is weighted sum prob-
lems (see Arana-Jiménez (2010) and Arana-Jiménez and Antczak (2017)). Fol-
lowing formulation is this type of optimization problem. Given MONLP (3) and 
w = (w1,w2,⋯ ,wM) ∈ ℝ

M , wi > 0 , 
∑M

i=1
wi = 1 , We define the related sum problem 

as follows.

Theorem  1 Assume that I∗(Xo, Yo) be the inefficiency score of DMUo under the 
monotonous measure in the problem (1) and the outputs of DMUo are increased 
from Y0 to �0 = Y0 +△Yo(△Yo ≦ 0) . 

(1) Let (�∗, �∗
o
, sx∗, sy∗) be a Pareto solution to the problem (3) then inefficiency score 

of the DMUo under new inputs and outputs decrease to the amount of t-percent.
(2) Conversely, let (�∗, �∗

o
, sx∗, sy∗) be a feasible solution to the problem (3). If the 

inefficiency score of the new DMU decreases to the amount of t-percent, then 
(�∗, �∗

o
, sx∗, sy∗) must be a Pareto solution to the problem (3).

(4)

(MONLP)w Min

M
∑

i=1

wi�io

s.t.

N
∑

j=1

�jxij ≤ �io − sx
i
, i = 1,… ,M,

N
∑

j=1

�jyrj ≥ �ro + sy
r
, r = 1,… , S,

M
∑

i=1

sx
i

�io
+

S
∑

r=1

s
y
r

�ro
= (1 − t)I∗,

�io ≥ xio, i = 1,… ,M,

�j ≥ 0, j = 1,… ,N,

sx
i
, sy

r
≥ 0, i = 1,… ,M, r = 1,… , S.
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Note that there is a similar resulting. If the input of DMUo increases, how much 
should the output of DMUo increase to decrease to the amount of t-percent the inef-
ficiency score of DMUo . In other words, we calculate I∗(�o, �∗o ).

3  Notation and preliminaries on integer intervals

In this paper, in order to present uncertainty on the production possibility set by 
modelling the corresponding inequality relationship using partial orders on fuzzy 
intervals, we introduce the following notations and results.

Let ℝ be the real number set. We denote by KC =
{[

a, a
]

| a, a ∈ ℝ and a ≤ a
}

 
the family of all bounded intervals in ℝ and KC+

⊆ KC is the set of non-negative 
bounded intervals in ℝ , KC+

=
{[

a, a
]

| a, a ∈ ℝ and 0 ≤ a ≤ a
}

 . Usual arithmetic 
between intervals is the following (see, for instance, (Stefanini & Arana-Jiménez, 
2019) and the bibliography therein).

Definition 4 Let A = [a, a] ∈ KC , B = [b, b] ∈ KC.

• Addition: A + B ∶= {a + b ∣ a ∈ A, b ∈ B} = [a + b, a + b],

• Opposite value: −A = {−a ∶ a ∈ A} = [−a,−a],

• Multiplication: A ⋅ B ∶= {a ⋅ b ∣ a ∈ A, b ∈ B} = [min(AB),max(AB)],

  where AB = {a ⋅ b, a ⋅ b, a ⋅ b, a ⋅ b},
• Multiplication by scalar: for any � , 

Apt and Zoeteweij (2004) defined some arithmetic operations on integer inter-
vals. Recently, Arana-Jiménez et  al. (2021) have extended them and established a 
new notation, as following.

Let ℤ be the integer set. Given a, a ∈ ℤ , a ≤ a , we say that 
[a, a]

ℤ
= {a ∈ ℤ ∶ a ≤ a ≤ a} is an integer interval in ℤ We denote by 

K
ℤ
=
{[

a, a
]

ℤ
| a, a ∈ ℤ and a ≤ a

}

 the set of bounded integer interval and 
KZ+

⊆ KZ is the set of non-negative bounded integer intervals in ℤ , that is, 
KZ+

=
{[

a, a
]

| a, a ∈ ℤ and 0 ≤ a ≤ a
}

.

Definition 5 Let A = [a, a] ∈ K
ℤ
 , B = [b, b] ∈ K

ℤ
.

• Addition: [a, a]
ℤ
+ [b, b]

ℤ
= [a + b, a + b]

ℤ
,

• Subtraction: [a, a]
ℤ
− [b, b]

ℤ
= [a − b, a − b]

ℤ
,

• Multiplication: [a, a]
ℤ
⋅ [b, b]

ℤ
= [min(AB),max(AB)]

ℤ
,

  where AB = {a ⋅ b, a ⋅ b, a ⋅ b, a ⋅ b}.
• Multiplication by scalar: for any integer � , 

𝜆 ⋅ A ∶=

{

[𝜆 ⋅ a, 𝜆 ⋅ a] 𝜆 ≥ 0,

[𝜆 ⋅ a, 𝜆 ⋅ a] 𝜆 < 0.
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Example 1 Consider the following examples of the above operations for inte-
ger intervals. [4, 5]

ℤ
+ [−1, 2]

ℤ
= [3, 7]

ℤ
 , [−4, 5]

ℤ
− [−1, 2]

ℤ
= [−6, 4]

ℤ
 , 

[2, 4]
ℤ
⋅ [4, 6]

ℤ
= [8, 24]

ℤ
 , 3 ⋅ [2, 4]

ℤ
= [6, 12]

ℤ
 . It can be seen that the arithmetic 

operations for integer intervals defined above always produce integer intervals.

It is also useful to define the continuous extension of an integer interval [a, a]
ℤ
 

as C([a, a]
ℤ
) = [a, a] . Conversely, given a ≤ a with a, a ∈ ℤ , we define the integer 

projection of [a, a] ∈ KC as ℤ([a, a]) = [a, a]
ℤ
∈ K

ℤ
 ; and in this case, it is said that 

[a, a] ∈ KC→ℤ
 . In other words, KC→ℤ

 is the set of intervals whose endpoints are inte-
ger. Note also that ℤ(C([a, a]

ℤ
)) = [a, a]

ℤ
.

With respect to partial order relationship between integer intervals, Arana-
Jiménez et  al. (2021) have proposed an adaptation of LU-fuzzy partial orders on 
intervals.

Definition 6 Given two intervals A = [a, a],B = [b, b] ∈ KC , we say that: 

 (i)  if and only if a ≤ b and a ≤ b.
 (ii) [a, a] ≺ [b, b] if and only if a < b and a < b.

Definition 7 Given two integer intervals A = [a, a]
ℤ
,B = [b, b]

ℤ
∈ K

ℤ
 , we say that: 

 (i)  if and only if a ≤ b and a ≤ b.
 (ii) [a, a]

ℤ
≺ [b, b]

ℤ
 if and only if a < b and a < b.

In a similar manner, we define the relationships  and A ≻ B for intervals and 
integer intervals, which really means  and B ≺ A , respectively. Note that, for 
the sake of simplicity, we use the same symbols of partial orders to compare inter-
vals in KC as to compare integer intervals in K

ℤ
 . Furthermore, in the next section, to 

define the corresponding DEA technology, we will need to relate intervals and inte-
ger intervals. To this matter, We will use the properties that [a, a]

ℤ
⊆ [a, a] ∩ ℤ for 

all a ≤ a with a, a ∈ ℤ , as well as that given a ≤ a, b ≤ b with a, a, b, b ∈ ℤ , then 
 if and only if 

4  Inverse DEA models with integer and continuous interval data

In this section, the non-radial slacks-based model is extended to an integer interval 
framework, which is considered by Arana-Jiménez et al. (2021). in other words, we 
provide the question, which is mentioned in previous sections, in the presence of 
integer interval data using a non-radial slacks-based model.

𝜆 ⋅ A ∶=

{

[𝜆 ⋅ a, 𝜆 ⋅ a]
ℤ

𝜆 ≥ 0,

[𝜆 ⋅ a, 𝜆 ⋅ a]
ℤ

𝜆 < 0.
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Let us assume a set of N DMUs, j ∈ J = {1,… ,N} , in which each DMUj con-
sumes M inputs denoted by Xj = (x1j,… , xMj) ∈ (K

ℤ+)M , with xij = [xij, xij]ℤ ∈ K
ℤ+ 

for i ∈ {1,… ,M} to produces S outputs denoted by Yj = (y1j,… , ySj) ∈ (K
ℤ+)S , with 

yrj = [yrj, yrj]ℤ ∈ K
ℤ+ for r ∈ {1,… , S} . Their continuous extensions are 

C(Xj) =
(

C(x1j),… ,C(xMj)
)

∈ (KC+)M and C(Yj) =
(

C(y1j),… ,C(ySj)
)

∈ (KC+)S.
Let us consider the following axioms, which are corresponding to (A1)-(A4) in 

Section 2, but considering integer fuzzy inputs and outputs and utilizing the corre-
sponding partial order introduced in Definitions 6 and 7: 

 (B1) Envelopment: (Xj, Yj) ∈ T  , for all j ∈ J.
 (B2) Free  d i sposabi l i t y :  (X, Y) ∈ T  ,  (X�,Y �) ∈ (K

ℤ+)M+S  ,  such  tha t 
.

 (B3)  Convexity: (X, Y), (X�, Y �) ∈ T  , � ∈ [0, 1] , such that �(C(X),C(Y))+
(1 − �)(C(X�),C(Y �)) ∈ (K

C→Z
)M+S ⇒ (X��

,Y
��) = ℤ(�(C(X),C(Y)) + (1 − �)

(C(X�),C(Y �))) ∈ T.
 (B4)  Scalabili ty:  (X, Y) ∈ T  ,  � ≥ 0 ,  and �(C(X),C(Y)) ∈ (Kc→z)

M+S  ⇒ 
(X��, Y ��) = ℤ(�(C(X),C(Y))) ∈ T .

Theorem  2 Under axioms (B1), (B2), (B3) and (B4), the interval production  
possibility set that results from the minimum extrapolation principle is 

After the characterization result for the TIIDEA given in Theorem  2, the follow-
ing integer interval DEA (IIDEA) model, which is a slacks-based measure of inef-
ficiency, can be extended from the non-radial slacks-based model.

where inputs xij and outputs yrj belong to K
ℤ
 , i.e.,

(5)

xij =[xij, xij]ℤ, i = 1,… ,M, j = 1,… ,N,

yrj =[yrj, yrj]ℤ, r = 1,… , S, j = 1,… ,N.
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A feasible solution for (IIDEA) is denoted by (sx∗, sy∗,�∗) , where 
s
x∗ = (sx∗

1
,… , sx∗

M
) ∈ (Kz)

M , s
y∗ = (s

y∗

1
,… , s

y∗

S
) ∈ (Kz)

S , and 
�
∗ = (�∗

1
,… , �∗

N
) ∈ ℝ

N . Moreover, (IIDEA) model will deal directly without any 
ranking function. Also, its objective function is a real number, i.e. II(Xo, Yo) ∈ ℝ.

Definition 8 A DMUo is considered to be efficient if and only if (x, y) ∈ TIFDEA , 
 and  implies (x, y) = (Xo, Yo).

Theorem 3 If DMUo is efficient, then II(Xo, Yo) = 0.

Arana-Jiménez et  al. (2021) extended the previous axioms, interval production 
possibility set, and result to the hybrid data scenario, that is, with integer and contin-
uous integer data. The extended and corresponding non-radial slacks-based model is 
the following:

with OXI and OXNI the index sets for integer input variables and continuous input 
variables, respectively, OYI and OYNI the index sets for integer output variables 
and continuous output variables, respectively, with XI + XNI = M , YI + YNI = S , 
OX = OXI ∪ OXNI = {1,… ,M} , OY = OYI ∪ OYNI = {1,… , S} . Let us write the 
above model in parameterized form as follows:

(6)
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The first four sets of constraints are just the corresponding transformation of the 
inputs/outputs constraints from the model (6), with regard to the partial order rela-
tion for integer interval numbers, considering in Definition 7. The two last con-
straints certify the integer and continuous slacks. Therefore, it is not difficult to 
derive the following proposition, which establishes the relationship between the 
(HIDEA) and (PHIDEA) solutions.

Proposition 1 (sx∗, sy∗,�∗) with s
x∗ ∈ (K

ℤ+
)XI ∗ (KC)

XNI ,XI + XNI = M , 
s
y∗ ∈ (K

ℤ+
)YI ∗ (KC)

YNI , YI + YIN = S and �∗ ∈ ℝ
N
+

 is an optimal solution of 
(HIDEA) if and only if its corresponding components or parameterization 
(sx∗

1
, sx∗

1
,… , sx∗

M
, sx∗

M
, s

y∗

1
, s

y∗

1
,… , s

y∗

S
, s

y∗

S
�∗
1
,… , �∗

N
) , with �∗

j
∈ ℝ+ , j = 1,… ,N , 

sx∗
i
, sx∗

i
, s

y∗
r , s

y∗
r ∈ ℤ+ for i ∈ OXI , r ∈ OYI and sx∗

i
, sx∗

i
, s

y∗
r , s

y∗
r ∈ ℝ+ for 

i ∈ OXNI , r ∈ OYNI , is an optimal solution of (PHIDEA).

In this new framework with integer and continuous interval data, we reconsider the 
inverse DEA concept from the classic concept under continuous crisp data discussed 
in Section 2. It is known that, in general, given a real number, it is not guaranteed that 
one can attain such a real number utilizing an arithmetic combination of a finite col-
lection of integer numbers. The latter makes that, in general, given �0 an increase of 
a Y0 , there exists no �0 an increase of X0 such that inefficiency II∗(X0, Y0) or a given 

(7)

(PHIDEA) II
∗(X

o
, Y

o
) =Max

M
∑

i=1

s
x

i
+ s

x

i

x
io
+ x

io

+

S
∑

r=1

s
y

r + s
y

r

y
ro
+ y

ro

s.t.

N
∑

j=1

�
j
x
ij
≤ x

io
− s

x

i
, i ∈ O

X ,

N
∑

j=1

�
j
x
ij
≤ x

io
− s

x

i
, i ∈ O

X ,

N
∑

j=1

�
j
y
rj
≥ y

ro
+ s

y

r
, r ∈ O

Y ,

N
∑

j=1

�
j
y
rj
≥ y

ro
+ s

y

r , r ∈ O
Y ,

s
x

i
≤ s

x

i
, i ∈ O

X ,

s
y

r
≤ s

y

r , r ∈ O
Y ,

�
j
≥ 0, j = 1,… ,N,

s
x

i
, sx

i
, sy

r
, s

y

r ∈ ℤ+, i ∈ O
XI , r ∈ O

YI ,

s
x

i
, sx

i
, sy

r
, s

y

r ≥ 0, i ∈ O
XNI , r ∈ O

YNI .
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t-percent of it is attained, i.e., II∗(�∗
0
, �0) = (1 − t)II∗(X0, Y0) . Furthermore, transfor-

mations of a formulation of DEA problems via change of variables are, in general, 
not consistent with the integer condition of the original variables; that is, the result 
of a transformed integer variable is not necessarily an integer. In this regard, if one 
follows the procedure proposed by Zhang and Cui (2020) applied to our hybrid DEA 
model using a variable, with the division between variables, then an integer variable 
becomes a non necessarily integer variable. These remarks make us approach the 
question of inverse DEA as follows. The aim of the question is to estimate the mini-
mum increase of input, (�∗

o
) , if the output of DMUo increases from Yo to �o , such the 

new DMU is given by (�∗
o
, �) belongs to the technology, and its inefficiency score of is 

not less than t-percent. Here, �∗
o
= (�∗

1o
, �∗

2o
, ..., �∗

Mo
) ∈ (KZ+)

XI ∗ (KC)
XNI , , 

�∗
o
= (�∗

1o
, �∗

2o
, ..., �∗

So
) ∈ (KZ+)

YI ∗ (KC)
YNI , . After these previous considera-

tions, the following slacks-based model estimate the inefficiency of the new DMU:

To solve integer interval problem, the following (IP) problem is established:

(8)

(PHIDEA) II
∗(�∗

o
, �

o
) = Max

M
∑

i=1

s
x

i
+ s

x

i

�∗

io
+ �∗

io

+

S
∑

r=1

s
y

r
+ s

y

r

�
ro
+ �

ro

s.t.

N
∑

j=1

�
j
x
ij
≤ �∗

io
− s

x

i
, i ∈ O

X ,

N
∑

j=1

�
j
x
ij
≤ �∗

io
− s

x

i
, i ∈ O

X ,

N
∑

j=1

�
j
y
rj
≥ �

ro
+ s

y

r
, r ∈ O

Y ,

N
∑

j=1

�
j
y
rj
≥ �

ro
+ s

y

r , r ∈ O
Y ,

s
x

i
≤ s

x

i
, i ∈ O

X ,

s
y

r
≤ s

y

r , r ∈ O
Y ,

�
j
≥ 0, j = 1,… ,N,

s
x

i
, sx

i
, sy

r
, s

y

r ∈ ℤ+, i ∈ O
XI , r ∈ O

YI ,

s
x

i
, sx

i
, sy

r
, s

y

r ≥ 0, i ∈ O
XNI , r ∈ O

YNI .

(9)
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Definition 9 Let �∗
o
∈ (KZ+)

XI ∗ (KC)
XNI be a feasible solution to the problem (9). It 

is said to be an interval Pareto solution to the problem (9) if there isn’t feasible solu-
tion �o of (9) such that 

Definition 10 Let �∗
o
∈ (KZ+)

XI ∗ (KC)
XNI be a feasible solution to the problem (9). 

It is said to be an interval weakly Pareto solution to the problem (9) if there isn’t fea-
sible solution �o of (9) such that 

After parametrization of (IP), the following (MONLP) problem is established:

where II∗ is the optimal value of problem (7) and 0 ≤ t ≤ 1.
Given MONLP (10) and w = (w1,w2,⋯ ,w2M) ∈ ℝ

2M , wi > 0 , 
∑2M

i=1
wi = 1 , We 

introduce the following related sum problem.

(10)

(MONLP) Min (�1o, �1o, ..., �Mo, �Mo)

s.t.

N
∑

j=1

�jxij ≤ �io − sx
i
, i ∈ OX ,

N
∑

j=1

�jxij ≤ �io − sx
i
, i ∈ OX ,

N
∑

j=1

�jyrj ≥ �ro + sy
r
, r ∈ OY ,

N
∑

j=1

�jyrj ≥ �ro + s
y
r , r ∈ OY ,

M
∑

i=1

sx
i
+ sx

i

�io + �io
+

S
∑

r=1

s
y
r + s

y
r

�ro + �ro

≥ (1 − t)II∗,

�io ≥ xio, i ∈ OX , �io ≥ xio, i ∈ OX ,

sx
i
≤ sx

i
, i ∈ OX ,

sy
r
≤ s

y
r , r ∈ OY ,

�io ≤ �io, i ∈ OX ,

�j ≥ 0, j = 1,… ,N,

sx
i
, sx

i
, sy

r
, s

y
r ∈ ℤ+, i ∈ OXI , r ∈ OYI ,

sx
i
, sx

i
, sy

r
, s

y
r ≥ 0, i ∈ OXNI , r ∈ OYNI ,

�io, �io ∈ ℤ+, i ∈ OXI ,

�io, �io ≥ 0, i ∈ OXNI ,
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Let us pointed out that the previous problem is a mixed- integer nonlinear optimiza-
tion problem, which is NP-hard, in general. To deal with it and compute examples 
(following), on the one hand, we include penalties on integer variables in the objec-
tive function, following a proposal used in Arana-Jiménez and Salles (2017) and Le 
Thi (2020), among others. Then, we apply the R-package called “nloptr”, which 
used methods based on gradients to provide a solution. From now on, and for the 
sake of simplicity, we use a similar notation to refer to vector interval solutions of 
(IP) and their parameterizations as real vector solutions of (MONLP). In this regard, 
for instance, �o = (�1o, �1o, ..., �Mo, �Mo) can be interpreted as a vector of intervals or 
as a vector of real numbers, depending on the problem at hand. The inequality 

(11)

(MONLP)w Min

2M
∑

i=1

wi�io

s.t.

N
∑

j=1

�jxij ≤ �io − sx
i
, i ∈ OX ,

N
∑

j=1

�jxij ≤ �io − sx
i
, i ∈ OX ,

N
∑

j=1

�jyrj ≥ �ro + sy
r
, r ∈ OY ,

N
∑

j=1

�jyrj ≥ �ro + s
y
r , r ∈ OY ,

M
∑

i=1

sx
i
+ sx

i

�io + �io
+

S
∑

r=1

s
y
r + s

y
r

�ro + �ro

≥ (1 − t)II∗,

�io ≥ xio, i ∈ OX ,

�io ≥ xio, i ∈ OX ,

sx
i
≤ sx

i
, i ∈ OX ,

sy
r
≤ s

y
r , r ∈ OY ,

�io ≤ �io, i ∈ OX ,

�j ≥ 0, j = 1,… ,N,

sx
i
, sx

i
, sy

r
, s

y
r ∈ ℤ+, i ∈ OXI , r ∈ OYI ,

sx
i
, sx

i
, sy

r
, s

y
r ≥ 0, i ∈ OXNI , r ∈ OYNI ,

�io, �io ∈ ℤ+, i ∈ OXI ,

�io, �io ≥ 0, i ∈ OXNI .
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relationships are used according to the previous interpretation, being  for intervals, 
and ≦ for vectors of real numbers, for instance.

The following theorem represents the relationship between the (IP) and (MONLP) 
solutions.

Theorem 4 �∗
o
∈ (K

ℤ+
)XI ∗ (KC)

XNI ,XI + XNI = M is an interval Pareto solution of 
(IP) if and only if there exist �∗ ∈ ℝ

N
+

 , sx∗ ∈ (K
ℤ+
)XI ∗ (KC)

XNI ,XI + XNI = M and 
s
y∗ ∈ (K

ℤ+
)YI ∗ (KC)

YNI , YI + YNI = S such that the corresponding parameterization of  
(�∗,�∗

o
, sx∗, sy∗) , (�∗

1
,… , �∗

N
, �∗

1o
, �∗

1o
,… , �∗

Mo
 , �∗

Mo
, sx∗

1
, sx∗

1
,… , sx∗

M
, sx∗

M
, s

y∗

1
, s

y∗

1
,… , s

y∗

S
, s

y∗

S
) , 

is a Pareto solution of (MONLP).

Proof (i) Suppose that �∗
o
 is an interval Pareto solution of (IP). It implies that, 

if one considers the related optimization problem to calculate II∗(�∗
o
, �o) , 

then there exist �
∗ ∈ ℝ

N
+

 , s
x∗ ∈ (K

ℤ+
)XI ∗ (KC)

XNI ,XI + XNI = M and 
s
y∗ ∈ (K

ℤ+
)YI ∗ (KC)

YNI , YI + YNI = S such that

The latter means that (�∗,�∗
o
, sx∗, sy∗) , in its parameterization form, is a feasible 

solution of (MONLP). Now, reasoning by contradiction, suppose that(�∗,�∗
o
, sx∗, sy∗) 

is not a Pareto solution of (MONLP), which implies that there exists 
(�∗∗,�∗∗

o
, sx∗∗, sy∗∗) a feasible solution of (MONLP) such that �∗∗

o
≦ �∗

o
, �∗∗

o
≠ �∗

o
 . 

Therefore, (�∗∗
o
, �o) ∈ T , �∗∗

o
≧ Xo and

In consequence, we have that �∗∗
o

 is a feasible solution of (IP), with 
�∗∗
o

≦ �∗
o
, �∗∗

o
≠ �∗

o
 , what is a contradiction with �∗

o
 is an interval Pareto solution of 

(IP).
(ii) Suppose that (�∗

1
,… , �∗

N
, �∗

1o
 , �∗

1o
,… , �∗

Mo
, �∗

Mo
 , sx∗

1

, s
x∗

1

,… , s
x∗

M
, s

x∗

M
, s

y∗

1

, s
y∗

1

,… , s
y∗

S
, s

y∗

S
) 

is Pareto solution of (MONLP). From the problem (10), we derive

Then (�∗
o
, �o) ∈ T  , , that is, �∗

o
 is a feasible solution of (IP). Proceeding by 

contradiction, suppose �∗
o
 is not an interval Pareto solution of (IP), i.e. there exists 

�∗∗
o

 feasible for (IP), with , �∗∗
o

≠ �∗
o
 . Since �∗∗

o
 is feasible solution of (IP), it 

implies that there exists (�∗∗
1

,… , �∗∗
N
, �∗∗

1o
, �∗∗

1o
,… , �∗∗

Mo
, �∗∗

Mo
, s

x∗∗
1

, s
x∗∗
1

,… ,
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s
x∗∗
M

, s
x∗∗
M

, s
y∗∗

1

, s
y∗∗

1

,… , s
y∗∗

S
, s

y∗∗

S
) feasible solution of (MONLP), with �∗∗

o
≦ �∗

o
 , 

�∗∗
o

≠ �∗
o
 , what is a contradiction with �∗

o
 Pareto solution of (MONLP).   ◻

As a consequence of the previous theorem, we have the following one that shows 
that the above integer interval (MONLP) can be used for input level estimation.

Theorem 5 Assume that II∗ is the inefficiency score of DMUo in the problem (7) and the 
output of DMUo are increased from Y0 to �

0

= (�
1o
, �

1o
, �

2o
, �

2o
, ..., �

So
, �

So
)

= Y
0

+△Y
o
 , △Yo ≩ 0.

(1) Let (�∗
1
,… , �∗

N
, �∗

1o
, �∗

1o
,… , �∗

Mo
, �∗
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1
, sx∗

1
,… , sx∗

M
, sx∗

M
, s

y∗

1
, s

y∗

1
,… , s

y∗

S
, s

y∗

S
) 

be a Pareto solution to the problem (10), then the inefficiency score of DMUo under 
new inputs and outputs is not less than t-percent.

(2) Conversely, if the new DMUo belongs to the technology, and the inefficiency 
score of the new DMUo is not less than t-percent, then there exist �∗, sx∗, sy∗ such 
that (�∗

1
,… , �∗

N
, �∗

1o
, �∗

1o
,… , �∗

Mo
, �∗

Mo
, sx∗

1
, sx∗

1
,… , sx∗

M
, sx∗

M
, s

y∗

1
, s

y∗

1
,… , s

y∗

S
, s

y∗

S
) is a 

feasible solution for (MONLP). Furthermore, if any decrease in the input �∗
o
 of the 

new DMUo in the Pareto sense makes not fulfill the previous conditions, then it fol-
lows that �∗

o
 is a Pareto solution of (MONLP).

Proof If (�∗
1
,… , �∗

N
, �∗

1o
, �∗

1o
,… , �∗
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, �∗
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, sx∗

1
, sx∗

1
,… , sx∗

M
, sx∗

M
, s

y∗

1
, s

y∗

1
,… , s

y∗

S
, s

y∗

S
) is a 

Pareto solution of the problem (MONLP), then by Theorem  4 it follows that 
(�∗,�∗

o
, sx∗, sy∗) is interval Pareto solution of (IP), and then II∗(�∗

o
, �o) ≥ (1 − t)II∗ . 

Therefore, (1) is proof. Conversely, if the inefficiency score of DMUo is not less than 
t-percent, II∗(�∗

o
, �o) ≥ (1 − t)II∗ , it means that (�∗

o
, �o) is feasible for (IP), and there exist 

�
∗, sx∗, sy∗ such that (�∗

1

,… , �∗
N
, �∗

1o
, �∗

1o
,… , �∗

Mo
, �∗

Mo
, s

x∗

1

, s
x∗

1

,… , s
x∗

M
, s

x∗

M
, s

y∗

1

, s
y∗

1

,… , s
y∗

S
, s

y∗

S
) 

is a feasible solution of (MONLP). Furthermore, since (�∗
o
, �o) is feasible for (IP) and 

there aren’t , �∗∗
o

≠ �∗
o
 then �∗

o
 is an interval Pareto solution of (IP), and then, by 

Theorem 4, is a Pareto solution of (MONLP).   ◻

5  Numerical experiments

In this section, we introduce a problem that contains both integer and continuous var-
iables. The data set which comes from Zhang and Cui (2020) are shown in Table 1. 
There are 12 DMUs. Every DMU consume three inputs and produce two outputs. 
The first input and the second output are continuous, and the other data are integer. 
Firstly, we calculate the inefficiency score of the model (7). It is indicated in Table 2. 
Then due to the dependency between DEA and MONLP, we can relate inverse 
DEA mode into single objective programming by means of weighted problems. 
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To illustrate the example, the result is shown for three values for DMU1 and DMU2 
in Tables 3 and 4, respectively. In Table 3, we increase the output of DMU1 from 
Y1 = ([67, 67], [751, 751]) to �1 = ([80, 85], [780, 850]) and put t = 0.3 . After solving 
the model (10) by using weighted sum problem, w = (0.2, 0.3, 0.1, 0.2, 0.1, 0.1) , we 
can get �∗

1
= ([350.00, 350.11], [47, 47], [13, 13]) . According to the the model (8), 

II(�∗
1
, �1) = 1.01 which is not less than (1 − t)II∗(X1, Y1) = 0.994 . Also, if we increase 

from Y1 = ([67, 67], [751, 751]) to �1 = ([70, 73], [760, 770]) and put t = 0.3 , a 
Pareto solution for MONLP will be �∗

1
= ([350.00, 350.00], [47, 47], [13, 13]) , which 

means the inefficiency score is not less than (1 − t)II∗(X1, Y1) = 0.994 . In addition, 
again we increase from Y1 = ([67, 67], [751, 751]) to �1 = ([67, 70], [760, 765]) and 
put t = 0.3 and get �∗

1
= ([350.00, 350.00], [47, 47], [13, 13]) that is not less than 

(1 − t)II∗(X1, Y1) = 0.994 . Also, in Table 4, we consider the problem for the outputs of 
DMU2 and get new inputs. For example, when we increase Y2 = ([70, 76], [608, 620]) 
to �2 = ([80, 85], [620, 630]) , we calculate �∗

2
= ([304.73, 304.75], [35, 38], [14, 14]) 

that the inefficiency score of new DMU is not less than (1 − t)II∗(X2, Y2) = 0.259 . 
Also, after changing Y2 = ([70, 76], [608, 620]) to �2 = ([72, 78], [619, 625]) , 
we get �∗

2
= ([298.00, 299.11], [35, 38], [14, 14]) which II∗(�∗

2
, �2) is not less 

than (1 − t)II∗(X2, Y2) = 0.259 . Finally, we increase Y2 = ([70, 76], [608, 620]) 
to �2 = ([75, 78], [610, 622]) , and a pareto solution will be 
�∗
2
= ([298.00, 299.11], [35, 38], [14, 14]) which the inefficiency score of new DMU 

is not less than (1 − t)II∗(X2, Y2) = 0.259.
As a summary of the method, we have followed to get the inefficiency score of 

the new DMU II∗(�∗, �) , first, we calculate the inefficiency score of II∗(Xo, Yo) . 
Then, we get the value of � in the model (MONLP)w . And finally, we obtain the 
inefficiency score of new DMU II∗(�∗, �) . The result shows the inefficiency score of 
new DMU under new input and output is not less than t-percent. As a limitation of 
this method, we point out the role of the election of w to get � , although this is nor-
mal since we are dealing with a multiobjective optimization problem.

6  Conclusions

In this paper, we present a new inverse DEA problem on the non-radial slacks-based 
model with integer and continuous data set. The main question on inverse DEA 
on the input estimation has been discussed. in this regard, we use Pareto solutions 
of the MONLP to determine sufficient and necessary conditions of input estima-
tion. It is shown that in this new framework, with integer and continuous interval 
data, it is not guaranteed when Yo increase to �o , there is an increase of Xo such that 
II∗(�o, �o) = (1 − t)I∗(Xo, Yo) , what happens with crisp data. This is of difference 
between crisp and interval data. Therefore, the method can be applied to increase 
inputs for a slacks-based model such that the inefficiency score of DMUo is not less 
than t-percent. Necessary and sufficient conditions are established for each DMU 
with integer and interval variables. The present work establishes the first response to 
inverse DEA under integer interval-type uncertainty on data, which is an important 
step to address a future study under fuzzy data. Another potential research direction 
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would be non-radial inverse DEA with negative and undesirable integer and con-
tinuous interval data, which will lead our future research.
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