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1. Introduction

Supporting Vector Analysis (SVA) is a relatively recent technique that allows one to solve
analytically many real-life problems that used to be tackled by means of Heuristic methods. The lack
of mathematical formalism of Heuristic methods resulted many times in unpredictable solutions, that
is, mathematical solutions whose real-life interpretations make no sense. Supporting vectors came
into play to overcome this issue. This way, supporting vectors were used in a successful way to
solve multiobjective optimization problems coming from different disciplines, such as Bioengineering,
Physics, and Statistics [4, 6–9, 15, 22], improving considerably the results achieved by other methods
like, for instance, Heuristic techniques [10, 11, 20, 21].

In [4, 6, 15], it was proven that Singular Value Decomposition (SVD) can be seen as a particular
case of SVA. This fact triggered the new trend of restating Statistical notions from the perspective of

http://www.aimspress.com/journal/Math
http://dx.doi.org/10.3934/math.2023100


1938

Functional Analysis and Operator Theory. The main objective of this manuscript is to study Principal
Component Analysis (PCA) by means of SVA.

2. Materials and methods

We will review several basic notions from Operator Theory that will turn out to be crucial for the
development of this manuscript.

2.1. Centering and standardizing

If x = (x1, . . . , xn) ∈ Rn, then the mean of x is defined as x := 1
n

∑n
i=1 xi, and its standard deviation is

given by sx :=
√

1
n

∑n
i=1 (xi − x)2. Notice that

√
nsx =

∥∥∥x − x
∥∥∥

2
, (2.1.1)

where x := (x, n. . ., x) denotes the constant vector of term x (in general, if a ∈ R, then a := (a, n. . ., a)
denotes the constant vector of term a).

We say that x ∈ Rn is centered provided that x = 0, and it is standardized provided that x = 0 and
sx = 1. In the latter situation, ‖x‖2 =

√
n, in view of (2.1.1). The subset of centered vectors of Rn is

usually denoted by cen(Rn), that is, cen(Rn) := {x ∈ Rn : x = 0} . The subset of standardized vectors of
Rn is usually denoted by stan(Rn), that is,

stan(Rn) := {x ∈ Rn : x = 0 and sx = 1} .

According to (2.1.1), stan (Rn) ⊆
√

nS`n
2
, where S`n

2
stands for the unit sphere of `n

2 := (Rn, ‖ · ‖2). In
Topology, S`n

2
is denoted as Sn−1.

2.2. Principal component analysis

The covariance of two vectors x, y ∈ Rn is defined as

sx,y :=
1
n

n∑
i=1

(xi − x) (yi − y) .

Notice that sx,x = s2
x, that is, the variance of x. The covariance matrix of a given matrix A ∈ Mm×n is

defined by sa1,...,an :=
(
sai,aj

)
i, j=1,...,n

, where a1, . . . , an stand for the column vectors of A.
Consider a matrix A ∈ Mm×n. The principal components of A are defined as Ax1, . . . , Axn, where

{x1, . . . , xn} is an ordered orthonormal basis of eigenvectors of sa1,...,an , sorting the eigenvalues of sa1,...,an

decreasingly.
We refer the reader to [24] for a wider perspective on PCA. Interesting applications of PCA to

certain Engineering fields, such as video processing and Big Data, have been provided in [3, 12].

2.3. Supporting vector analysis

Let X,Y be Banach spaces. Let T : X → Y be a bounded linear operator. The operator norm of T is
given by

‖T‖ := sup{‖T (x)‖ : ‖x‖ = 1}. (2.3.1)
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The vector space CL(X,Y) of continuous linear operators from X to Y becomes a Banach space when
endowed with the operator norm (2.3.1). In the case X = Y , CL(X,Y) is simply denoted as CL(X).
If Y = K (R or C), then CL(X,Y) is denoted as X∗, that is, the dual space of X. It is also common to
denote CL(X,Y) by B(X,Y) and CL(X) by B(X).

The supporting vector notion was formally posed for the first time in [5]. However, this concept can
be found implicitly and scattered throughout the literature of Banach Space Theory [1, 2, 18, 19].

The set of supporting vectors of a bounded linear operator T : X → Y between Banach spaces X,Y
is defined by

suppv(T ) := {x ∈ SX : ‖T (x)‖ = ‖T‖} = arg max
‖x‖=1
‖T (x)‖. (2.3.2)

Here, SX stands for the unit sphere of X, and BX denotes the (closed) unit ball of X. In the infinite-
dimensional setting, it may occur that (2.3.2) is empty. Note that suppv(T ) = suppv(λT ) for all λ ∈
K \ {0}, and suppv(T ) = SKsuppv(T ), where K = R or C. For a topological and geometrical analysis
of the above set, we strongly refer the reader to [13, 14, 23].

For linear functionals, a special subset of supporting vectors is worth regarding. Consider a
continuous linear functional f ∈ X∗ in the dual X∗ of a Banach space X. We define the set of 1-
supporting vectors of f by

suppv1( f ) := {x ∈ SX : f (x) = ‖ f ‖}. (2.3.3)

Notice that 1-supporting vectors are particular cases of supporting vectors; in other words, suppv1( f ) ⊆
suppv( f ). In the upcoming sections, 1-supporting vectors will be very much relied on. The following
remark highlights a standard geometrical property satisfied by 1-supporting vectors.

Remark 2.1. Consider a Banach space X and a nonzero linear functional f ∈ X∗ \ {0}. For every
x, y ∈ suppv1( f ) and every λ ∈ [0, 1], we have that λx + (1 − λ)y ∈ suppv1( f ), that is, suppv1( f ) is a
convex subset of the unit sphere SX of X.

A direct consequence of Remark 2.1 is that suppv1( f ) is either empty or a singleton in strictly
convex Banach spaces, like, for instance, Hilbert spaces.

2.4. Hilbert space theory

Representation Theory is one of the most important theories in Mathematics. A major result in
Representation Theory is undoubtedly the Riesz Representation Theorem. This is a key result in
Functional Analysis and is crucial for working with self-adjoint operators on Hilbert spaces.

Riesz Representation Theorem. In a Hilbert space H, for every h∗ ∈ H∗ there exists a unique h ∈ H
satisfying h∗ = (·|h). This assignment between H and H∗ is a surjective linear isometry.

In view of Remark 2.1 and under the settings of the Riesz Representation Theorem, for every h ∈
H \ {0}, we have that suppv1 (h∗) =

{
h
‖h‖

}
, that is, h

‖h‖ is the only 1-supporting vector of h∗.
On the other hand, the orthogonal subspace of a closed subspace V of a Hilbert space H is denoted

by V⊥. The orthogonal projection of H onto V is usually denoted by pV . Observe that H = V ⊕2 V⊥,
that is, for each h ∈ H,

h = pV(h) + pV⊥(h), and ‖h‖2 = ‖pV(h)‖2 + ‖pV⊥(h)‖2 . (2.4.1)
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The adjoint of a bounded linear operator T : H → K between Hilbert spaces H,K is defined as the
unique bounded linear operator T ∗ : K → H satisfying (T (h)|k) = (h|T ∗(k)) for each h ∈ H and each
k ∈ K. Basic properties satisfied by the adjoint operator are ‖T ∗‖ = ‖T‖, (T ∗)∗ = T , (T + S )∗ = T ∗+ S ∗,
(T ◦ S )∗ = S ∗ ◦ T ∗ and (λT )∗ = λT ∗.

Lemma 2.2. Every bounded linear operator T : H → K between Hilbert spaces H,K verifies that
cl(T (H)) = ker (T ∗)⊥ and T (H)⊥ = cl(T (H))⊥ = ker (T ∗).

Proof. First off, it is a trivial observation that T (H)⊥ = cl(T (H))⊥. Fix an arbitrary h ∈ H. For every
k ∈ ker (T ∗), (T (h)|k) = (h|T ∗(k)) = (h|0) = 0. This shows that T (h) ∈ ker (T ∗)⊥. The arbitrariness
of h ∈ H means that T (H) ⊆ ker (T ∗)⊥. By taking orthogonal complements, we obtain that
ker (T ∗) ⊆ T (H)⊥. Conversely, fix an arbitrary k ∈ T (H)⊥. For every h ∈ H, 0 = (T (h)|k) = (h|T ∗(k)).
This shows that T ∗(k) = 0, and hence k ∈ ker (T ∗). The arbitrariness of k ∈ T (H)⊥ means that
T (H)⊥ ⊆ ker (T ∗). By taking orthogonal complements, we finally obtain that ker (T ∗)⊥ ⊆ cl(T (H)). �

A bounded operator T ∈ B(H) is said to be self-adjoint provided that T ∗ = T . If H is complex,
then T ∈ B(H) is self-adjoint if and only if (T (h)|h) ∈ R for all h ∈ H. A self-adjoint operator is called
positive provided that (T (h)|h) ≥ 0 for all h ∈ H.

For every T ∈ B(H), σ(T ) := {λ ∈ C : λI − T < U (B(H))} is the spectrum of T , where U (B(H)) is
the multiplicative group of invertible operators on H. Among other spectral properties, the spectrum
is compact and nonempty, and ‖T‖ ≥ max |σ(T )|. A special subset of the spectrum, called the point
spectrum, σp(T ) := {λ ∈ C : ker(λI − T ) , {0}} , whose elements are called the eigenvalues of T , will
be very much employed. Note that σp(T ) ⊆ σ(T ). Furthermore, for each λ ∈ σp(T ), VT (λ) :=
{h ∈ H : T (h) = λh} stands for the subspace of eigenvectors associated with λ. In case there is no
confusion with T , we will simply denote VT (λ) by V(λ).

Suppose next that ‖T‖ is an eigenvalue of T , that is, ‖T‖ ∈ σp(T ). In this situation, since ‖T‖ ≥
max |σ(T )|, we conclude that ‖T‖ is the maximum of |σ(T )|; in other words, ‖T‖ = max |σ(T )|. In this
case, we write ‖T‖ = λmax(T ). Observe also that V(‖T‖) ∩ SX ⊆ suppv(T ). Indeed, if x ∈ V(‖T‖) ∩ SX,
then T (x) = ‖T‖x, so ‖T (x)‖ = ‖T‖, and hence x ∈ suppv(T ).

Nevertheless, in general, ‖T‖ < σp(T ), unless, for instance, T is compact, self-adjoint and positive.
This is why we have to rely on the adjoint T ∗ and on the strongly positive operator T ∗ ◦ T . It is
straightforward to check that the eigenvalues of a self-adjoint operator are real, and the eigenvalues
of a self-adjoint positive operator are positive. When T is compact, it holds that T ∗ ◦ T is compact,
self-adjoint and positive.

The following result, on which we will strongly rely later on, can be found in [6, Theorem 4], which
is itself a refinement of [14, Theorem 9].

Theorem 2.3. Let H,K be Hilbert spaces. Let T ∈ B(H,K). Then, ‖T‖2 = ‖T ∗ ◦ T‖, and suppv(T ) ⊆
suppv (T ∗ ◦ T ). Furthermore, suppv(T ) , ∅ if and only if ‖T ∗ ◦ T‖ ∈ σp (T ∗ ◦ T ). In this situation,
‖T‖ =

√
λmax (T ∗ ◦ T ), and suppv(T ) = V (λmax(T ∗ ◦ T )) ∩ SH.

3. Results

In this section, we will state and prove all the novel theorems of this work. This section is divided
into four subsections, in which we will deal with supporting vectors, principal components and the
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topological structure of the subsets of centered and standardized vectors.

3.1. Topological structure of the subsets of centered and standardized vectors

This subsection begins unveiling the topological structure of the subsets cen(Rn) and stan(Rn) of
centered and standardized vectors, respectively. Notice that cen(R) = {0} and stan(R) = ∅.

Theorem 3.1. If n ≥ 1, then cen(Rn) is linearly isometric, and hence homeomorphic, to `n−1
2 . If n ≥ 2,

then stan(Rn) is linearly isometric, and hence homeomorphic, to Sn−2.

Proof. Notice that x + y = x + y, and tx = tx for all x ∈ Rn and all t ∈ R. As a consequence,

· : Rn → R

x 7→ x = 1
n

∑n
i=1 xi

(3.1.1)

is a linear functional (usually called the mean functional). Next, simply observe that cen(Rn) = ker (·).
Thus, by bearing in mind (2.1.1), we immediately obtain that stan(Rn) = ker (·) ∩

√
nS`n

2
=
√

nSker(·).
In other words, stan(Rn) is precisely a multiple of the unit sphere of the Hilbert subspace ker (·) of `n

2.
Since dim (ker (·)) = n − 1, we have that ker (·) is linearly isometric to `n−1

2 . As a consequence, the unit
sphere of ker (·), 1

√
nstan(Rn), is linearly isometric to the unit sphere of `n−1

2 , S`n−1
2

= Sn−2. �

The following lemma aims at computing the norm of the mean functional as an element of the dual
space of `n

2 as well as its only 1-supporting vector.

Lemma 3.2. In
(
`n

2

)∗
, ‖·‖ = 1

√
n and suppv1 (·) =

{
1
√

n

}
.

Proof. Hölder’s Inequality ensures that

|x| =

∣∣∣∣∣∣∣1n
n∑

i=1

xi

∣∣∣∣∣∣∣ ≤
n∑

i=1

1
n
|xi| ≤

 n∑
i=1

1
n2


1
2
 n∑

i=1

x2
i


1
2

=
1
√

n
‖x‖2

for every x ∈ `n
2. This shows that ‖·‖ ≤ 1

√
n . On the other hand, ‖1‖2 =

√
n, that is, 1

√
n ∈ S`n

2
. Finally,

1
√

n
=

1
n

n∑
i=1

1
√

n
=

1
√

n
.

As a consequence, ‖·‖ = 1
√

n and suppv1 (·) =
{

1
√

n

}
. �

As a direct consequence of Lemma 3.2, the standard deviation of a vector x ∈ Rn can be rewritten
as the following (2.1.1):

sx =
1
√

n

∥∥∥x − x
∥∥∥

2
= ‖·‖

∥∥∥x − x
∥∥∥

2
. (3.1.2)

By bearing in mind the Riesz Representation Theorem, Lemma 3.2 assures that if h := 1
n , then

h∗ = · in H := `n
2. Notice that h := 1

n =
(

1
n ,

n. . ., 1
n

)
can be seen as a (finite) convex series. This fact will

help us generalize these concepts to an infinite-dimensional separable Hilbert space setting later on in
the Discussion.
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Definition 3.3. For n ≥ 1, the mean operator is defined by

• : Rn → Rn

x 7→ x = (x, n. . ., x) ,
(3.1.3)

and the centering operator is defined as

cen : Rn → Rn

x 7→ cen(x) := x − x = (x1 − x, n. . ., xn − x) .
(3.1.4)

For n ≥ 2, the standardizing operator is defined as

stan : Rn \ Rn1 → Rn

x 7→ stan(x) :=
√

n x−x
‖x−x‖2

.
(3.1.5)

It is a trivial observation that

stan(x) =
√

n
cen(x)
‖cen(x)‖2

=
cen(x)

‖·‖ ‖cen(x)‖2
(3.1.6)

for all x ∈ Rn.
Recall that a projection on a Banach space X is a continuous, linear, and idempotent map P : X → X.

Its dual operator P∗ : X∗ → X∗ is also a projection. The complementary projection of P is
defined as IX − P, which is also a projection. Every non-zero projection has norm greater than or
equal to 1. A 1-projection is a projection of norm 1 (also called a contractive projection), and a
(1, 1)-projection is a 1-projection whose complementary projection is also a 1-projection (also called
bicontractive). Orthogonal projections in Hilbert spaces are the most representative examples of
bicontractive projections.

The final result of this first subsection serves to show that both the mean operator and the centering
operator are complementary projections to each other of norm 1, that is, bicontractive, for the Euclidean
norm. Even more, the mean operator and the centering operator are orthogonal projections to each
other. This will allow us to directly obtain the König-Huygens Theorem (3.1.7) as a direct consequence
of the Pythagorean Theorem in Hilbert spaces. The König-Huygens Theorem provides the classical
decomposition of the 2-norm of a vector of Rn in terms of the mean and the standard deviation.

Theorem 3.4. The centering operator is a linear projection on Rn whose kernel is ker(cen) = Rn1,
whose range is cen(Rn) = ker (·), and whose complementary projection is the mean operator.
Furthermore, if we consider Rn endowed with the Euclidean norm, then ‖•‖ = ‖cen‖ = 1, and •
and cen are complementary orthogonal projections. As a consequence, for every x ∈ Rn,

‖x‖22 = ‖x‖22 + ‖x − x‖22 = n
(
|x|2 + s2

x

)
. (3.1.7)

Proof. In the first place, notice that • is clearly linear, since • = ·1; in other words, x = (x, n. . ., x) =

x (1, n. . ., 1) = x1 for all x ∈ Rn. As a consequence, cen is linear as well because cen = IRn−•, that is, the
difference of two linear operators on Rn. On the other hand, observe that if x ∈ Rn is a constant vector,
that is, x = t1 = t for some t ∈ R, then cen(x) = 0. Conversely, if cen(x) = 0, then x = x = x1, and
hence x ∈ Rn1 is a constant vector. This shows that ker(cen) = Rn1. From Theorem 3.1, we already
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know that cen(Rn) = ker (·). Next, let us prove that cen is a projection. Fix an arbitrary x ∈ Rn. Notice
that

cen (cen(x)) = cen
(
x − x

)
= cen (x) − cen

(
x
)

= x − x − 0 = x − x = cen (x) .

Since • = IRn − cen, we conclude that the mean operator is the complementary projection to the
centering operator. Finally, let us compute ‖•‖ and ‖cen‖. In accordance with Lemma 3.2, for every
x ∈ Rn we have that

‖x‖2 =
√

n|x| ≤
√

n
1
√

n
‖x‖2 = ‖x‖2,

meaning that ‖•‖ ≤ 1. Next, ∥∥∥∥∥∥ 1
√

n

∥∥∥∥∥∥
2

=

∥∥∥∥∥∥
(

1
√

n
, n. . .,

1
√

n

)∥∥∥∥∥∥
2

=
√

n
1
√

n
= 1.

This shows that ‖•‖ = 1. In order to prove that • and cen are orthogonal projections, it only suffices to
realize that R1 and cen(Rn) are orthogonal subspaces. Indeed, for every t ∈ R and every x ∈ Rn with
x = 0, we have that (t1|x) = t(1|x) = t

∑n
i=1 xi = tnx = 0, and hence R1 ⊆ cen(Rn)⊥, or equivalently,

cen(Rn) ⊆ (R1)⊥. Furthermore, the Pythagorean Theorem in `n
2 allows that

‖t1 + x‖22 = ‖t1‖22 + ‖x‖22

for every t ∈ R and every x ∈ Rn with x = 0. Next, if y ∈ (R1)⊥, then 0 = 1
n (1|y) = 1

n

∑n
i=1 yi = y,

meaning that y ∈ ker (·) = cen(Rn). As a consequence, cen(Rn)⊥ = R1, resulting in

‖x‖22 = ‖x‖22 + ‖x − x‖22 = n
(
|x|2 + s2

x

)
for every x ∈ Rn. It only remains to show that ‖cen‖ = 1, but this is a direct consequence of the fact
that cen is an orthogonal projection. �

3.2. Supporting vectors and first principal component

In this subsection, we will provide sufficient conditions for the supporting vectors to coincide with
the first principal component. First, we will need some definitions.

Definition 3.5. A matrix is said to be centered (standardized) provided that all of its column vectors
are centered (standardized) vectors.

The following lemma displays a simple characterization of centered matrices.

Lemma 3.6. Let A ∈Mm×n(R). The following conditions are equivalent:

1) A is centered.
2) Ax is centered for all x ∈ Rn.

Proof. Let {e1, . . . , en} denote the canonical basis of Rn. Notice that the columns of A are precisely Ae j

for j = 1, . . . , n. Suppose first that A is centered. Fix an arbitrary x ∈ Rn. The linearity of the mean
functional allows that

Ax =

n∑
j=1

x jAe j =

n∑
j=1

x jAe j = 0.
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As a consequence, Ax is centered for all x ∈ Rn. Conversely, suppose now that Ax is centered for all
x ∈ Rn. In particular, Ae j = 0 for j = 1, . . . , n, meaning that the columns of A are centered vectors, that
is, A is centered.

�

The following characterization of centered matrices is a bit more sophisticated. First, a technical
lemma is needed.

Lemma 3.7. Consider x, y ∈ Rm. Then,

1) msx,y = x • y if and only if either x or y is centered.
2) x is standardized if and only if x is centered and x • x = m.

Proof.

1) Let us observe that

msx,y =

m∑
i=1

(xi − x) (yi − y)

=

m∑
i=1

xiyi −

m∑
i=1

xyi −

m∑
i=1

xiy +

m∑
i=1

x y

=

m∑
i=1

xiyi − x
m∑

i=1

yi − y
m∑

i=1

xi + x y
m∑

i=1

1

=

m∑
i=1

xiyi − xmy − ymx + x y

= x • y − mx y.

As a consequence, msx,y = x • y if and only if either x or y is centered.
2) By definition, x is standardized if and only if x is centered and sx = 1. We know that then
‖x − x‖2 =

√
msx. In the context of centered vectors, the previous expression becomes

√
x • x =

‖x‖2 =
√

msx. Therefore, x is standardized if and only if x is centered and x • x = m.

�

Recall that the covariance matrix of a given matrix A ∈Mm×n is defined by sa1,...,an :=
(
sai,aj

)
i, j=1,...,n

,
where a1, . . . , an stand for the column vectors of A. Also, recall that if B is a square matrix, then
diag(B) stands for the diagonal of B.

Proposition 3.8. Let A ∈Mm×n(R). The following conditions are equivalent:

1) A is centered.
2) AtA = msa1,...,an .
3) diag

(
AtA

)
= diag

(
msa1,...,an

)
.
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Proof. Notice that AtA =
(
ai • aj

)
i, j=1,...,n

. Suppose first that A is centered. In view of Lemma 3.7,
msai,aj = ai • aj for all i, j ∈ {1, . . . , n}, meaning that AtA = msa1,...,an . Next, if AtA = msa1,...,an , then
we trivially have that diag

(
AtA

)
= diag

(
msa1,...,an

)
. Finally, assume that diag

(
AtA

)
= diag

(
msa1,...,an

)
.

Then, msai,ai = ai • ai for all i = 1, . . . , n. In accordance with Lemma 3.7, ai is centered for all
i = 1, . . . , n, meaning that A is centered. �

As an immediate consequence of Lemma 3.7 and Proposition 3.8, we obtain the following corollary.

Corollary 3.9. Let A ∈Mm×n(R). The following conditions are equivalent:

1) A is standardized.
2) AtA = msa1,...,an and diag

(
AtA

)
= (m, n. . .,m).

Finally, we have gathered all the necessary tools to prove our main results of this subsection. Simply
keep in mind the small observation that if B ∈Mn(R), then σp(αB) = ασp(B) and VαB(αλ) = VB(λ) for
all α ∈ R \ {0} and all λ ∈ σp(B).

Theorem 3.10. Let A ∈Mm×n(R). If A is centered, then

suppv(A) =
{
x ∈ S`n

2
: Ax is the first principal component of A

}
,

where A is seen as a linear operator
A : `n

2 → `m
2

x 7→ Ax.
(3.2.1)

Proof. According to Theorem 2.3, suppv(A) = V (λmax(A∗ ◦ A)) ∩ S`n
2
. Notice that the adjoint of A,

A∗, coincides with its transpose, At. On the other hand, since A is centered, Proposition 3.8 allows that
AtA = msa1,...,an . Finally,

suppv(A) = VA∗◦A (λmax(A∗ ◦ A)) ∩ S`n
2

= VAtA
(
λmax(AtA)

)
∩ S`n

2

= Vmsa1 ,...,an

(
λmax(msa1,...,an)

)
∩ S`n

2

= Vmsa1 ,...,an

(
mλmax(sa1,...,an)

)
∩ S`n

2

= Vsa1 ,...,an

(
λmax(sa1,...,an)

)
∩ S`n

2

=
{
x ∈ S`n

2
: Ax is the first principal component of A

}
.

�

We will conclude this subsection with an example of a centered matrix A whose last principal
component has at least two dimensions.

Remark 3.11. Let T : H → K be a bounded linear operator between Hilbert spaces H,K. Then,
ker(T ) ⊆ ker (T ∗ ◦ T ). As a consequence, if 0 ∈ σp(T ), then 0 ∈ σp (T ∗ ◦ T ).

Notice that if T ∈ B(H) is a self-adjoint positive operator on a Hilbert space H such that ker(T ) ,
{0}, then 0 is the minimum of σp(T ) since all the eigenvalues of T are positive.
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Example 3.12. Let A ∈ Mm×n(R) be any centered matrix with three equal columns. Then, ker(A) ⊆
ker(AtA) = ker(sa1,...,an) since AtA = msa1,...,an in accordance with Proposition 3.8. Notice that ker(A)
has at least dimension 2. Observe that 0 ∈ σp

(
sa1,...,an

)
. As a consequence, the last principal component

of A corresponds to Ax1, . . . , Axp, where {x1, . . . , xp} is an orthonormal basis of Vsa1 ,...,an (0).

3.3. Second principal component as supporting vector

This subsection is aimed at showing the second principal component of a centered matrix can be
obtained via a supporting vector of a derived matrix from the original one.

Theorem 3.13. Let H,K be Hilbert spaces and T : H → K be a continuous linear operator. Let H1 be
a closed subspace of H. Then,

1)
∥∥∥T |H1

∥∥∥ =
∥∥∥T ◦ pH1

∥∥∥.
2) suppv

(
T |H1

)
= suppv

(
T ◦ pH1

)
.

3)
(
T |H1

)∗
= pH1 ◦ T ∗.

4) If H1 is an invariant subspace of T ∗ ◦ T, then
(
T |H1

)∗
◦ T |H1 = (T ∗ ◦ T ) |H1 .

Proof.

1) In the first place, pH1 is an orthogonal projection. Thus,
∥∥∥pH1

∥∥∥ = 1, and therefore
∥∥∥T ◦ pH1

∥∥∥ =∥∥∥T |H1 ◦ pH1

∥∥∥ ≤ ∥∥∥T |H1

∥∥∥ ∥∥∥pH1

∥∥∥ =
∥∥∥T |H1

∥∥∥. On the other hand, for every h1 ∈ BH1 ,
∥∥∥T |H1(h1)

∥∥∥ =

‖T (h1)‖ =
∥∥∥T

(
pH1

)∥∥∥ =
∥∥∥(T ◦ pH1

)
(h1)

∥∥∥ ≤ ∥∥∥T ◦ pH1

∥∥∥. As a consequence,
∥∥∥T |H1

∥∥∥ ≤ ∥∥∥T ◦ pH1

∥∥∥,
meaning that

∥∥∥T |H1

∥∥∥ =
∥∥∥T ◦ pH1

∥∥∥.
2) Fix an arbitrary h1 ∈ suppv

(
T |H1

)
. Then,

∥∥∥(T ◦ pH1

)
(h1)

∥∥∥ =
∥∥∥T |H1(h1)

∥∥∥ =
∥∥∥T |H1

∥∥∥ =
∥∥∥T ◦ pH1

∥∥∥,
meaning that h1 ∈ suppv

(
T ◦ pH1

)
. Conversely, take h ∈ suppv

(
T ◦ pH1

)
. We will show first that

pH1(h) ∈ suppv
(
T |H1

)
. Indeed,

∥∥∥T |H1

(
pH1(h)

)∥∥∥ =
∥∥∥(T ◦ pH1

)
(h)

∥∥∥ =
∥∥∥T ◦ pH1

∥∥∥ =
∥∥∥T |H1

∥∥∥. Since∥∥∥pH1(h)
∥∥∥ ≤ ‖h‖ = 1, we conclude that

∥∥∥pH1(h)
∥∥∥ = 1, and hence pH1(h) ∈ suppv

(
T |H1

)
. Now,

notice that
1 = ‖h‖2 =

∥∥∥pH1(h)
∥∥∥2

+
∥∥∥pH⊥1

(h)
∥∥∥2

= 1 +
∥∥∥pH⊥1

(h)
∥∥∥2
,

meaning that pH⊥1
(h) = 0 and h = pH1(h) ∈ suppv

(
T |H1

)
.

3) Fix arbitrary elements h1 ∈ H1 and k ∈ K. Notice that(
h1|

(
pH1 ◦ T ∗

)
(k)

)
=

(
h1|pH1 (T ∗(k))

)
=

(
h1|pH1 (T ∗(k))

)
+

(
h1|pH⊥1

(T ∗(k))
)

=
(
h1|pH1 (T ∗(k)) + pH⊥1

(T ∗(k))
)

= (h1|T ∗(k))

= (T (h1)|k)

=
(
T |H1(h1)|k

)
.

By the uniqueness of the adjoint, we conclude that
(
T |H1

)∗
= pH1 ◦ T ∗.

4) Finally, let us show that
(
T |H1

)∗
◦ T |H1 = (T ∗ ◦ T ) |H1 whenever H1 is an invariant subspace of

T ∗ ◦ T . Indeed, fix an arbitrary h1 ∈ H1. Then,

(T ∗ ◦ T ) |H1(h1) = T ∗(T |H1(h1))
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= pH1

(
T ∗(T |H1(h1))

)
=

((
pH1 ◦ T ∗

)
◦ T |H1

)
(h1)

=
((

T |H1

)∗
◦ T |H1

)
(h1).

�

If X is a normed space, T : X → X is a continuous linear operator, and λ ∈ σp(T ), then it is clear
that T (V(λ)) ⊆ V(λ). The following lemma is also well known, yet we include the proof for the sake
of completeness.

Lemma 3.14. Let H be a Hilbert space, and T : H → H is a self-adjoint continuous linear operator.
Let λ ∈ σp(T ). Then,

1) T
(
V(λ)⊥

)
⊆ V(λ)⊥.

2) σp
(
T |V(λ)⊥

)
= σp(T ) \ {λ}.

Proof.

1) Fix arbitrary elements w ∈ V(λ)⊥ and v ∈ V(λ). Observe that

(T (w)|v) = (w|T (v)) = (w|λv) = λ(w|v) = 0.

This shows that T (w) ∈ V(λ)⊥. The arbitrariness of w ∈ V(λ)⊥ serves to assure that T
(
V(λ)⊥

)
⊆

V(λ)⊥.
2) Take any γ ∈ σp

(
T |V(λ)⊥

)
. There exists w ∈ V(λ)⊥ \ {0} such that T (w) = γw. It is clear that

γ ∈ σp(T ). If γ = λ, then w ∈ V(λ), meaning the contradiction that w = 0. Conversely, take any
γ ∈ σp(T ) \ {λ}. There exists w ∈ H \ {0} such that T (w) = γw. It suffices to show that w ∈ V(λ)⊥.
Indeed, since λ , γ, either λ or γ is not 0. We can assume without any loss of generality that
γ , 0. Then, for every v ∈ V(λ), we have that

(w|v) =
1
γ

(γw|v) =
1
γ

(T (w)|v) =
1
γ

(w|T (v)) =
1
γ

(w|λv) =
λ

γ
(w|v).

Since λ , γ, the only possibility is that (w|v) = 0. As a consequence, w ∈ V(λ)⊥.

�

Theorem 3.15. Let H,K be Hilbert spaces and T : H → K be a compact linear operator. If λ ∈

σp (T ∗ ◦ T ) is the second largest eigenvalue of T ∗ ◦ T, then λ =
∥∥∥∥T |VT∗◦T (‖T‖2)⊥

∥∥∥∥2
and

VT ∗◦T (λ) ∩ SH = suppv
(
T |VT∗◦T (‖T‖2)⊥

)
= suppv

(
T ◦ pVT∗◦T (‖T‖2)⊥

)
.

Proof. In the first place, T ∗ ◦ T : H → H is self-adjoint, positive, and compact. According to
Theorem 2.3, ‖T‖2 = ‖T ∗ ◦ T‖ ∈ σp (T ∗ ◦ T ), and ‖T‖2 is the largest eigenvalue of T ∗ ◦ T . By applying

Lemma 3.14, we have that (T ∗ ◦ T )
(
VT ∗◦T

(
‖T‖2

)⊥)
⊆ VT ∗◦T

(
‖T‖2

)⊥
and

σp

(
(T ∗ ◦ T ) |VT∗◦T (‖T‖2)⊥

)
= σp (T ∗ ◦ T ) \

{
‖T‖2

}
.
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As a consequence, λ is the largest eigenvalue of (T ∗ ◦ T ) |VT∗◦T (‖T‖2)⊥ . Next, since VT ∗◦T

(
‖T‖2

)⊥
is an

invariant subspace of T ∗ ◦ T , Theorem 3.13(4) allows that

(T ∗ ◦ T ) |VT∗◦T (‖T‖2)⊥ =

(
T |VT∗◦T (‖T‖2)⊥

)∗
◦ T |VT∗◦T (‖T‖2)⊥ .

This means that λ is the largest eigenvalue of
(
T |VT∗◦T (‖T‖2)⊥

)∗
◦ T |VT∗◦T (‖T‖2)⊥ . By relying again on

Theorem 2.3 and on the fact that T |VT∗◦T (‖T‖2)⊥ is also compact, we obtain that λ =
∥∥∥∥T |VT∗◦T (‖T‖2)⊥

∥∥∥∥2
and

VT ∗◦T (λ) ∩ SH = suppv
(
T |VT∗◦T (‖T‖2)⊥

)
.

Finally, Theorem 3.13(2) assures that

VT ∗◦T (λ) ∩ SH = suppv
(
T |VT∗◦T (‖T‖2)⊥

)
= suppv

(
T ◦ pVT∗◦T (‖T‖2)⊥

)
.

�

3.4. Supporting vectors of quotient operators

Let X be a Banach space and M ⊆ X be a closed subspace. The quotient space of X by M is
defined by X/M := {x + M : x ∈ X} and becomes a Banach space endowed with the distance-to-M norm
‖x + M‖ := d(x,M) := inf{‖x − m‖ : m ∈ M}. The canonical projection of X onto X/M is given by

πM : X → X/M

x 7→ πM(x) := x + M,
(3.4.1)

and it is clearly a linear operator of norm ‖πM‖ = 1. The closed subspace M is called proximinal
provided that for every x ∈ X, the distance from x to M is attained at some m0 ∈ M, that is, d(x,M) =

‖x − m0‖.
Let X,Y be Banach spaces and T : X → Y be a continuous linear operator. Let M ⊆ ker(T ) be a

closed subspace. The quotient operator of T

TM : X/M → Y
x + M 7→ TM(x + M) := T (x)

(3.4.2)

is a well-defined continuous linear operator. Notice that when M is chosen to be ker(T ), we obtain the
First Isomorphism Theorem. The following theorem relates the supporting vectors of T with those of
TM.

Theorem 3.16. Let X,Y be Banach spaces and T : X → Y be a continuous linear operator. Let
M ⊆ ker(T ) be a closed subspace. Then,

1) ‖TM‖ = ‖T‖.
2) πM

(
suppv(T )

)
⊆ suppv (TM).

3) If M is proximinal, then πM
(
suppv(T )

)
= suppv (TM).
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Proof.

1) Indeed, if ‖x‖ ≤ 1, then ‖x + M‖ := d(x,M) ≤ ‖x − 0‖ ≤ 1. Therefore, ‖T (x)‖ = ‖TM(x +

M)‖ ≤ ‖TM‖. This shows that ‖T‖ ≤ ‖TM‖. Conversely, if ‖x + M‖ = 1, then we can find a
sequence (mk)k∈N ⊆ M such that ‖x − mk‖ → d(x,M) = ‖x + M‖ = 1 as k → ∞. Notice that∥∥∥∥T

(
x−mk
‖x−mk‖

)∥∥∥∥ ≤ ‖T‖ for all k ∈ N, that is, ‖TM(x + M)‖ = ‖T (x)‖ = ‖T (x − mk)‖ ≤ ‖T‖‖x − mk‖ for
all k ∈ N. Since ‖x −mk‖ → 1 as k → ∞, we conclude that ‖TM(x + M)‖ ≤ ‖T‖. The arbitrariness
of x + M ∈ SX/M assures that ‖TM‖ ≤ ‖T‖.

2) Fix an arbitrary x ∈ suppv(T ). Notice that ‖x‖ = 1, so ‖x + M‖ = d(x,M) ≤ ‖x − 0‖ = ‖x‖ = 1.
This shows that x + M ∈ BX/M. Next, ‖TM(x + M)‖ = ‖T (x)‖ = ‖T‖ = ‖TM‖. As a consequence,
‖x + M‖ ∈ suppv(TM).

3) Fix an arbitrary x + M ∈ suppv(TM). Since M is proximinal, there exists m0 ∈ M such that
1 = ‖x + M‖ = d(x,M) = ‖x − m0‖. We will show that x − m0 ∈ suppv(T ). Indeed, ‖x − m0‖ = 1,
and ‖T (x − m0)‖ = ‖T (x)‖ = ‖TM(x + M)‖ = ‖TM‖ = ‖T‖. Finally, πM(x − m0) = x + M.

�

3.5. Applications of SVA/PCA to real-life situations

In this section, we present the application of our SVA/PCA theorems to solve a real-life problem
focused on the distribution of political sensitivities with several economic variables. For that, we have
used the results of the 2018 Andalusian (Spain) elections. The data analyzed is provided by the Institute
of Statistics and Cartography of Andalusia [17] and combines information from 153 municipalities
with more than ten thousand inhabitants and 8 measured variables. The data include unemployment
rate, aging rate and 6 generalist policy options ranging from left to right wing. Note that the variables
in columns were previously centered.

A Graphical User Interface (GUI) has been developed in Python code and aims to compute the
eigenvectors, including the supporting vector (first eigenvector), and the principal components. Figure
1 shows the GUI of the PCA input, where the data matrix is introduced. It is important to note that the
input data can be imported by a CSV file. This option is very useful when we are working with large
matrices. The results obtained are shown in Figure 2, which can also be exported as a CSV file.

First of all, we note that the A ∈ M153×8(R) data matrix is centered in the origin by subtracting the
mean. Then, we calculate the covariance matrix for the centered matrix. Afterwards, we compute the
eigenvalues and eigenvectors. In particular, as mentioned in this paper, the eigenvector associated with
the maximum eigenvalue corresponds to the supporting vector. These eigenvalues and eigenvectors
are sorted in descending order, so the first element corresponds to the supporting vector and the first
principal component. Finally, the products of the initial matrix and the eigenvectors are done, obtaining
the principal components.

In particular, focusing on the example of the Andalusian elections, the results show the
correspondence of the first principal component with the classic political sensitivities associated
with old-aging municipalities. On the other hand, the second principal component is related to the
differentiation between left-wing and right-wing political options.

In Figure 3, the 8 variables used in the example are shown in the eigenvector reference system with
the supporting vector and the second eigenvector. The representation of the 153 municipalities in the
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principal component reference system (Ax) is shown in Figure 4. This 2D image with the first and the
second principal component group the municipalities according to the political sensitivities and their
demographic characteristics.

Figure 1. GUI of the PCA input for a matrix A ∈M153×8(R).

Figure 2. GUI of the PCA output for a matrix A ∈M153×8(R).
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Figure 3. Variables represented in the eigenvector reference system with the supporting
vector and the second eigenvector.

Figure 4. Municipalities represented in the principal component reference system (first and
second PC).
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4. Discussion

We will discuss how to transport the mean functional, the mean operator and the centering operator
to abstract settings, such as Hilbert spaces, Banach algebras and probability spaces.

4.1. Generalization to Hilbert spaces

As mentioned in Lemma 3.2, in view of the Riesz Representation Theorem, if h0 := 1
n =

(
1
n ,

n. . ., 1
n

)
,

then h∗0 = · is precisely the mean functional in H := `n
2. Actually, ‖h0‖2 = 1

√
n = ‖h∗0‖. At this stage,

the key is to realize that h0 can be seen as a (finite) convex series. Recall that a convex series is a
convergent series

∑∞
n=1 tn such that

∑∞
n=1 tn = 1 and tn ≥ 0 for all n ∈ N. Notice that if

∑∞
n=1 tn is a

convex series, then
∑∞

n=1 t2
n ≤

∑∞
n=1 tn = 1, and hence (tn)n∈N ∈ `2. Now, we are in the right position to

define the notions of mean and standard deviation on separable Hilbert spaces.
Let H be a separable Hilbert space with an orthonormal basis (en)n∈N. Fix a convex series

∑∞
n=1 tn.

Let h ∈ H and write h =
∑∞

n=1 (h|en) en. The mean of h, with respect to (tn)n∈N, is defined as

h :=
∞∑

n=1

tn (h|en) . (4.1.1)

The mean functional, with respect to (tn)n∈N, is given by

· : H → K

h 7→ h :=
∑∞

n=1 tn (h|en) .
(4.1.2)

By relying on Hölder’s Inequality, it is not hard to check that the mean functional is an element of H∗

whose norm is precisely
√∑∞

n=1 t2
n = ‖(tn)n∈N‖2. In accordance with the Riesz Representation Theorem,

there exists h0 ∈ H such that (h|h0) = h for all h ∈ H. If we let h =
∑∞

n=1 (h|en) en, then we obtain that

∞∑
n=1

(h|en) (en| h0) =

 ∞∑
n=1

(h|en) en

∣∣∣∣∣∣∣ h0

 =

∞∑
n=1

tn (h|en) . (4.1.3)

By taking h = en for every n ∈ N in (4.1.3), we conclude that (en|h0) = tn for every n ∈ N. In particular,
h0 =

∑∞
n=1 tnen. As expected,

‖h0‖ = ‖(tn)n∈N‖2 =

√√
∞∑

n=1

t2
n = ‖·‖.

In view of the Riesz Representation Theorem, h∗0 = (·|h0) = ·. Notice that, in order to conclude that
h∗0 = (·|h0) = ·, the Riesz Representation Theorem is really not needed. Let us get back for a second to
`n

2. For every x ∈ `n
2,

x = (x, n. . ., x) = x1 =
x
1
√

n

1
n
1
√

n

=
·

1
√

n

(x)
1
n
1
√

n

.

Then, going back to a general separable Hilbert space H, the mean operator is defined as

H → H
h 7→ h := h∗0

‖h∗0‖
(h) h0
‖h0‖

.
(4.1.4)
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It is not hard to check that the mean operator is an orthogonal projection on H whose complementary
projection is, precisely, the centering operator:

H → H
h 7→ cen(h) := h − h.

(4.1.5)

4.2. Generalization to Banach algebras

A Banach algebra is a real or complex algebra A endowed with a complete vector norm that is also
a ring norm, that is, ‖ab‖ ≤ ‖a‖‖b‖ for all a, b ∈ A. We say that A is unital if it is unitary, that is, it has
a unity 1 ∈ A, and ‖1‖ = 1. In this situation, according to the Hahn-Banach Theorem, there exists a
continuous linear functional, which we will denote by 1∗ ∈ A∗, such that ‖1∗‖ = 1 and 1∗(1) = 1. Then,
the mean functional is precisely 1∗, that is, defined by

A → K

a 7→ a := 1∗(a).
(4.2.1)

The mean operator is defined as
A → A
a 7→ a := 1∗(a)1. (4.2.2)

Finally, the centering operator is defined as

A → A
a 7→ cen(a) := a − a. (4.2.3)

Following (3.1.2), the variance of an element a ∈ A can be defined by

s2
a := 1∗

((
a − a

)2
)

= 1∗(a2) − 1∗(a)2. (4.2.4)

Notice that this generalization to unital Banach algebras presents a weakness: The existence of the
functional 1∗ ∈ A∗ is guaranteed by the Hahn-Banach Theorem, but its uniqueness is not guaranteed. In
fact, in many unital Banach algebras, such as `∞(Λ) for instance, 1 is not a smooth point of B`∞(Λ) [16,
Theorem 2.9], and thus there are infinitely many functionals of norm 1 attaining their norm at 1. It
seems not trivial to overcome this issue. Maybe an option is to try to renorm equivalently the unital
Banach algebra in such a way that 1 becomes a smooth point of the new unit ball of the algebra or,
at least, to find another smooth point in the unit ball. According to [16, Theorem 2.1], the canonical
unit vector eλ is a smooth point of B`∞(Λ) for each λ ∈ Λ. Another possibility may rely on constructing
the mean functional in a C∗-algebra. Recall that a C∗-algebra is a Banach algebra A endowed with an
antimultiplicative and antilinear involution ∗ : A→ A satisfying that ‖aa∗‖ = ‖a‖2 for all a ∈ A.

4.3. Generalization to probability spaces

A probability space is a 3-tuple (Ω,Σ,P) where (Ω,Σ) is a measurable space and P : Σ→ [0, 1] is a
probability measure, that is, a countably additive positive measure such that P(Ω) = 1. If X is a Banach
space, by L1((Ω,Σ,P), X) we denote the Banach space of all absolutely integrable functions, that is,

L1((Ω,Σ,P), X) :=
{

f ∈ XΩ : f is measurable and
∫

Ω

‖ f ‖dP < ∞
}
,
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endowed with the norm
‖ f ‖1 :=

∫
Ω

‖ f ‖dP.

For each f ∈ L1((Ω,Σ,P), X), the mean of f is defined as

µ( f ) :=
∫

Ω

f dP. (4.3.1)

The mean functional is given by

µ : L1((Ω,Σ,P), X) → X
f 7→ µ( f ) :=

∫
Ω

f dP.
(4.3.2)

Notice that the mean functional is actually an operator, but we keep calling it functional not to mistake
it with the mean operator, which will be defined next. It can be easily shown that the mean functional
has norm equal to 1. Indeed,

‖µ( f )‖ =

∥∥∥∥∥∫
Ω

f dP
∥∥∥∥∥ ≤ ∫

Ω

‖ f ‖dP = ‖ f ‖1

for every f ∈ L1((Ω,Σ,P), X), meaning that ‖µ‖ ≤ 1. Now, if we choose any x ∈ SX, then xχΩ ∈

SL1((Ω,Σ,P),X), and

µ (xχΩ) =

∫
Ω

xχΩdP = xP(Ω) = x.

Hence,

‖µ (xχΩ)‖ =

∥∥∥∥∥∫
Ω

xχΩdP
∥∥∥∥∥ = ‖x‖P(Ω) = 1 = ‖xχΩ‖1 .

This proves that ‖µ‖ = 1 and xχΩ ∈ suppv(µ). The mean operator is then defined as

L1((Ω,Σ,P), X) → L1((Ω,Σ,P), X)
f 7→ µ( f )χΩ,

(4.3.3)

and the centering operator is

L1((Ω,Σ,P), X) → L1((Ω,Σ,P), X)
f 7→ f − µ( f )χΩ.

(4.3.4)

Finally, if X is a unital Banach algebra, then the natural way of defining the variance of f ∈
L1((Ω,Σ,P), X) is

σ( f ) := µ
(
( f − µ( f )χΩ)2

)
=

∫
Ω

( f − µ( f )χΩ)2 dP. (4.3.5)

5. Conclusions

It is well known in the literature of the Geometry of Banach Spaces that Hilbert spaces are transitive
Banach spaces, meaning that every two elements of the unit sphere of a Hilbert space can be transported
one into another by means of a surjective linear isometry. This fact confers Hilbert spaces with a
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certain freedom when it comes to choosing the convex series that defines the mean functional, the mean
operator, the centering operator and the standard deviation. Theorem 3.1, Lemma 3.2 and Theorem 3.4
can be transported to the more general scope provided by separable Hilbert spaces discussed in the
previous section. In fact, in the Discussion we unveiled how to extend the mean functional, the mean
operator, the centering operator and the variance to spaces of absolutely integrable functions defined
on a probability space and valued on a unital Banach algebra.

On the other hand, the study of Principal Component Analysis through Supporting Vector Analysis
is a revolutionary trend that allows one to look at these Statistical concepts from a Functional Analysis
viewpoint, which is more general and works in infinite dimensional environments, making possible
applications in very specific settings such as, for instance, Quantum Mechanical Systems.
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Supplementary: Python GUI code

Let A ∈ Mm×n(R) be a general matrix. The algorithm to compute the supporting vector with
its corresponding first principal component, the second eigenvector with its corresponding second
principal component and the next eigenvectors and principal components of A is the following:

def PCA(X, num_components):

X_meaned = X - np.mean(X, axis=0)

cov_mat = np.cov(X_meaned, rowvar=False)

eigen_values, eigen_vectors = np.linalg.eigh(cov_mat)

sorted_index = np.argsort(eigen_values)[::-1]

sorted_eigenvectors = eigen_vectors[:, sorted_index]

eigenvector_subset = sorted_eigenvectors[:, 0:num_components]

X_new_values = np.dot(eigenvector_subset.transpose(),

X_meaned.transpose()).transpose()

return X_new_values, eigenvector_subset

One of the novelties of this work is to apply the PCA method with a different procedure specifically,
using an algorithm based on the mathematical idea that the second eigenvector, with its associated
second principal component, is the supporting vector of the original points projected to the orthogonal
complement of the original supporting vector. Consequently, all the principal components can be
computed in an iterative process via a supporting vector.

Let x ∈ Rn be a vector. First, we show the following function to calculate the orthogonal
complement of x:

def calculate_orthogonal_complement(x, normalize=True, threshold=1e-15):

x = np.asarray(x)

r, c = x.shape

if r < c:

import warnings

warnings.warn(’fewer rows than columns’, UserWarning)

s, v, d = np.linalg.svd(x)

rank = (v > threshold).sum()
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oc = s[:, rank:]

if normalize:

k_oc = oc.shape[1]

oc = oc.dot(np.linalg.inv(oc[:k_oc, :]))

return oc

Next, by using the previous function, we calculate the orthogonal complement of the supporting
vector, representing a hyperplane with dimension n − 1. Afterwards, the points of the original matrix,
used for the initial supporting vector, are projected to this hyperplane. Hence, a new matrix is derived,
whose first principal component corresponds to the second principal component of the original matrix.
Thus, by applying this iterative algorithm, we can calculate all the principal components via the
orthogonal complement of a supporting vector.

It is easier to understand this algorithm considering a special case. Let A ∈ M3×3(R) be a matrix.
In an intuitive manner, each row of the matrix represents points of R3. Now, we present a process of
computing the first eigenvector (supporting vector) and its corresponding first principal component as
before, but with a different procedure to obtain the followings. As mentioned, we notice that the first
principal component via a supporting vector of a derived matrix from the original one coincides with
the second principal component of the original matrix. This derived matrix is constructed projecting the
original points of the original matrix to a plane formed by the orthogonal complement (two vectors) of
the initial supporting vector (one vector) and the origin point. Therefore, we obtain the same result by
applying the PCA presented before and this algorithm determining the next eigenvector as a supporting
vector of the original supporting vector.

supporting_vector = PCA(input_matrix, 1)

orthogonal_complement = calculate_orthogonal_complement(supporting_vector)

v1 = Vector(orthogonal_complement.T[0, :])

v2 = Vector(orthogonal_complement.T[1, :])

point = Point([0, 0, 0])

plane = Plane.from_vectors(point, v1, v2)

projected_points = np.array([plane.project_point(x) for x in input_matrix])

supporting_vector_projected_points = PCA(projected_points, 1)
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