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Abstract—The high penetration of distributed generation
(DG) has set up a challenge for energy management and conse-
quently for the monitoring and assessment of power quality
(PQ). Besides, there are new types of disturbances owing to the
uncontrolled connections of non-linear loads. The stochastic be-
haviour triggers the need for new holistic indicators which also
deal with big data of PQ in terms of compression and scalabili-
ty so as to extract the useful information regarding different
network states and the prevailing PQ disturbances for future
risk assessment and energy management systems. Permanent
and continuous monitoring would guarantee the report to claim
for damages and to assess the risk of PQ distortions. In this
context, we propose a measurement method that postulates the
use of two-dimensional (2D) diagrams based on higher-order
statistics (HOSs) and a previous voltage quality index that as-
sesses the voltage supply waveform in a continous monitoring
campaign. Being suitable for both PQ and reliability applica-
tions, the results conclude that the inclusion of HOS measure-
ments in the industrial metrological reports helps characterize
the deviations of the voltage supply waveform, extracting the in-
dividual customers’ pattern fingerprint, and compressing the
data from both time and spatial aspects. The method allows a
continuous and robust performance needed in the SG frame-
work. Consequently, the method can be used by an average con-
sumer as a probabilistic method to assess the risk of PQ devia-
tions in site characterization.

Index Terms—Continuous statistical monitoring, big data, da-
ta compression, higher-order statistics (HOSs), power quality

(PQ).
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[. INTRODUCTION

HE high penetration of renewable energy resources, as

expected in the future smart grid (SG), establishes a
challenging scenario for energy management. Consequently,
it is driving and conducting the design of emerging monitor-
ing equipment for power quality (PQ) and the strategies re-
garding the application and the associated reports. SG de-
mands more efficient systems and monitoring algorithms de-
ployed in advanced measurement infrastructure that creates a
more flexible power system [1], [2]. Indeed, new PQ distur-
bances are appearing due to the uncontrolled connections of
non-linear loads at different levels in the electrical network,
e.g., from low voltage (LV) to high voltage (HV). Thus, it is
a fundamental issue to create efficient monitoring strategy
for different multiple disturbances in power system modern-
ization. As a result, PQ is investigated in several areas, e.g.,
statistical signal processing, instrumentation and measure-
ment for internet of things (IoT). New analytical tools
should be developed to comply with a more complex online
PQ analysis [3]-[5].

So far, European measurement campaigns have been tradi-
tionally based on widely accepted meters developed in accor-
dance with IEC 61000-4-30 [6]. However, new measurement
solutions are needed to fulfill the specific campaign require-
ments. PQ monitoring demands a more efficient data man-
agement strategy which ensures flexible reporting, e.g., time-
and space-varying scales, which improves the site monitor-
ing and allows measurement traceability and repeatability as
well [7]. Moreover, current grid performance analysis con-
veys the characterization of multiple measurement locations,
which produces huge volumes of data that require proper or-
ganization, i.e., big data. This in turn must be based on the
elimination of redundant and erroneous information and the
formulation of “ad hoc” indicators that bring together the
significance of the measurements adapted to the require-
ments demanded by the customer [8], [9].

The reporting levels along with the measurement alloca-
tions are usually interpreted through the PQ triangle [10].
The graphical representation consists of a data framework in
which the concepts of time and space compression are asso-
ciated with each physical element within the entire electrical
network, along with the magnitudes and the types of distur-
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bances. The new scheme of measurement campaigns is the re-
sult of more than a decade during which the scientific commu-
nity has expressed serious concerns about the strategy adopted
in the reports of the data that result from the PQ monitoring
[11]. To tackle this issue, the method must be twofold. On one
hand, it must be based on the standardized indices and stan-
dards. On the other hand, it should incorporate the elements
that provide the monitoring campaigns with its own functional-
ities adapted to particular customer’s requirements.

In fact, along with the deregulation of the market that
comes with the renewable energy, specific PQ measurements
are called to contribute to improvements in the compatibility
between consumers and grid operator’s solutions. The idea
of using more understandable indicators lies not only for en-
ergy suppliers but also for the end users, producers and con-
sumers (prosumers). The EN 50160 [12] does not differenti-
ate the responsibilities between suppliers and end-consumers
in the point of common coupling (PCC), and the physical
connections between the power grid and the end-user [13].
Indeed, this standard describes the voltage supply and devia-
tions in the PCC. From the consumer side, the user must ful-
fill the harmonized electromagnetic compatibility (EMC)
standards accomplishing the immunity and emission [14].
Thus, in the power grid context, a two-flow energy takes
place at PCC. Besides, current standards have been devel-
oped when linear consumers dominate the distribution net-
works and they must consider the end-consumer’s influence
in the SG context [15].

A PQ index should assess the performance of continuous
and discrete electrical disturbances. These two strategies are
usually based on the techniques that compress the acquired
time-series cycle by cycle, extracting the information both in
the time and frequency domains. For instance, the site indi-
ces may unify the measurements and compute individual
weekly percentiles at different physical layers along the en-
tire network. Nevertheless, far from being updated, PQ
norms and standards still do not gather sufficiently flexible
standardized measurement methods, e. g., implemented in
new meters. Therefore, for continuous monitoring, it is nec-
essary to incorporate new indices and ensure that their com-
pliance remains within 95% of confidence interval within a
week [6]. Current power measurement strategies are definite-
ly insufficient to achieve a full characterization and cope
with the current electrical disturbances and consequently
bound its causes [8], [16], [17].

Based on normal operation conditions, we develop a long-
term PQ campaign on how to characterize the network, look-
ing out its deviation from the ideal steady state. The propos-
al makes use of an index based on higher-order statistics
(HOSs). The performance is introduced in class S of the in-
struments according to IEC 61000-4-30 [6], and the flexibili-
ty is added to the measurements and the reporting which
match the current SG context [17] for possible class M in-
struments [8]. Four new levels of PQ monitoring functional-
ity are then covered. The main highlights of the research are
as follows. First, HOSs are capable of characterizing the
waveform distortion by monitoring their probability density

function (PDF) as well as reporting the symmetry, amplitude
and tail deviations. Thus, for continuous analysis, we pro-
pose a global deviation index of PQ based on HOSs. Sec-
ond, these measurements help characterize the waveform in
a consumer installation under normal operation conditions in
different measurement scenarios in a permanent regime, i.e.,
daily or weekly. This contributes to improving future predic-
tion tools based on artificial intelligence. The authors’ previ-
ous work [18] settled down the basis of the index and
showed a preliminary controlled experience that has been
tested and validated in the current work.

The rest of paper is organized as follows. Section II expos-
es the need for continuous monitoring based on HOS. The
measurement and analysis are presented in Section III. The
analysis results are provided in Section IV. Section V pres-
ents the discussion of the results and the contributions of the
proposed methods. Finally, Section VI concludes the paper.

II. THE NEED FOR CONTINUOUS MONITORING BASED ON HOS

A. PQ Index

Recently, managing information is proposed in measure-
ment solutions by converting big data from each smart meter
into a series of probability distributions, calculating the pair-
wise distance between load profiles. Each long series of de-
mand data are transformed into a single two-dimensional
(2D) diagram [19], and become more traceable and under-
standable for both customers and suppliers. We propose a
2D diagram of HOS (2D-HOS) that characterizes the volt-
age, compresses the time-domain information, and computes
the evolution of the quality vector of the waveform shape cy-
cle by cycle. It contributes to the main PQ issues including
data compression, an scalable index, and continuous monitor-
ing based on a more feasible solution. The proposed method
differs from the conventional PQ measurements which are
based on the second-order magnitudes, e.g., the power spec-
trum and the total harmonic distortion (THD). Considering a
complementary resource that contributes to improve the PQ
with a global indicator that informs about the waveform, the
proposed method helps characterize the point in test and
monitor the network in an holistic way. It is allowed to trig-
ger a more specific off line in case the parameters fall out-
side the normal operation conditions and overcome the con-
tractual requirements.

In [18], the index is primarily tested during a short-term
one-week campaign, which is an effective tool for voltage
characterization using HOS. Two strategies are extracted: the
first strategy detects the extreme values of the PQ events;
and the second one consists of the continuous monitoring
patterns of working and non-working days. Based on a long-
term horizon, the method consists of a site characterization,
which compares the performance in a public building with
an isolated consumer. Indeed, the voltage is characterized
during six weeks considering the individual indices that inte-
grate the aggregated PQ index as the variance, the skewness
and the kurtosis. Extracting histograms of the different week-
ly indices based on cumulative density function (CDF) and
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PDF helps characterize the voltage behaviour under normal
operation conditions. In addition, data compression is ex-
plored, and the PQ index proves global effectiveness, which
detects the network state in terms of voltage waveform dete-
rioration with less computation load. The PQ fingerprint in
the HOS space, e.g., clusters regions, along with the time
evolution of the PQ index manages to characterize the net-
work at different time stamps with different resolutions.
Thus, the flexibility and the potential of the method are
shown to incorporate solutions on future instrumentation.
For instance, as a direct result, consumer’s fingerprints relat-
ed to waveform characteristics and day ahead are character-
ized.

The HOS-based indices introduce shape parameters of the
signal which are not traditionally included in the norms.
They usually deal with second-order measurements. As stat-
ed in the following sections, the variance detects the changes
in the amplitude as a result of power change, which is indic-
ative of sags and swells [20]. In addition, the variance exhib-
its a linear behaviour with the root mean squrare (RMS) val-
ue and characterizes the power supply under continuous nor-
mal operation conditions, which is the main goal of the pro-
posed method. The skewness can be positive or negative de-
pending on the sizes of the right and left tails of the PDF, as
shown in Fig. 1. If Fig. 1(a) and (c) is more evident than
Fig. 1(b) and (d), the skewness is negative, vice versa.
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Fig. 1. Voltage supply and PDF of two steady-state voltage signals com-
pared with the theoretical for cases 1 and 2. (a) Waveform for case 1. (b)
PDF for case 1. (¢) Waveform for case 2. (d) PDF for case 2.

In PQ events, the non-symmetry behaviour generally indi-
cates the half-cycle in which the deviation takes place. The
skewness detects transients and the non-symmetry of the ini-
tial and end cycles of events such as sag and swells. The
kurtosis characterizes the tails of the statistical distribution.
In the bimodal distribution of a voltage sinusoidal cycle of
50 Hz as shown in Fig. 1, the tails of the distribution are the
maximum and minimum values. Indeed, the kurtosis mea-
sures the outliers in the form of heavy tails, mainly in the re-
gion of the maximum and minimum waveform values. In
the context of voltage waveforms, the flatter the top and
down regions are, the lower the kurtosis will be [21], [15].

Regarding the feature extraction stage, the importance lies
in the previous preprocessing that guarantees the maximum
probability of detecting not only the events when performing
permanent monitoring but also the network behaviours under
normal operation condition. The information is crucial for
the power recognition systems [22], [19] in terms of statisti-
cal behaviours. Also, the PQ campaigns must produce reli-
able data that accomplish the metrological requirements
from the Bayesian perspective and reduce the uncertainty in
the process control [23]. In literature, the detection and char-
acterization of real-time events are not improved [24] and ex-
amples on the characterization of multiple events in real-
time monitoring can not be found frequently [25]. Thus, the
current PQ technology lacks a generalized solution to the
problem that handles all different events, i.e., single and mul-
tiple events [25], [26]. Other signal processing tools such as
wavelets [27] and estimators based on echo state networks
[28] have provided good results in shape identifications, but
the noise influence is still noticeable. Also, there is a need
for targeting new types of disturbances, specially hybrids.
Considering the type of disturbances, it seems that the har-
monics are the most necessary family of disturbances that re-
quires special attention in continuous campaigns [21],
[27], [28].

The literature review has revealed the need for new ana-
lyzing tools, which track the waveform continuously, rather
than for the power change, e.g., THD. Thus, an alternative
tool is needed for the traditional second-order time-domain
indicators in permanent PQ surveillance applications [15].
The use of HOS is motivated hereinafter by comparing its
performance with an indicator of the signal power. In Table
I, the HOS performance is simulated and compared with one
of the traditional waveform indicators as the crest factor
(CF) for different simulated time-domain signals.

TABLE I
COMPARISON OF HOS PERFORMANCE WITH CF FOR DIFFERENT SIMULATED TIME-DOMAIN SIGNALS UNDER HARMONIC DISTORTION

Simulation condition

Statistical PQ index

Interval (s) Harmonic Waveform behaviour Variance Skewness Kurtosis PQ index cF
0-0.4 Ideal Symmetric-sinusoidal 0.5000 0 1.5000 0 1.00
0.4-0.8 Second order Symmetric-nonsinusoid 0.4565 0 1.6109 0.1546 1.04
0.8-1.2 Third order Symmetric-nonsinusoid 0.6452 0 1.2222 0.4229 1.02
0.2-1.6 Fifth order Symmetric-nonsinusoid 0.2785 0 1.9800 0.7017 1.01
0.2-1.6 Seventh order Symmetric-nonsinusoid 0.2905 0 2.1621 0.8718 1.01
0.6-2.0 Nineth order Symmetric-nonsinusoid 0.2513 0 2.2417 0.9905 1.00
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In each time interval, a new harmonic is incorporated to
the simulation [29]. It is observed that as the number or har-
monics increases, the PQ index, which is a combination of
variance, skewness, and kurtosis in absolute values, is capa-
ble of detecting harmonic additions. However, CF remains
unchanged [29]. The skewness is zero because all signals are
symmetric. Reference [30] introduces statistical waveform
similarity metrics, using successive cycles of the signal and
detecting local outliers. The proposed method is similar but
using HOSs, which also provides noise immunity and non-
Gaussian characterization.

B. HOS-based PQ Index

HOS estimation has been proposed through the last de-
cade to infer new statistical characteristics associated with
the data from non-Gaussian time-series in predominant
Gaussian background, which can be theoretically considered
as a result of the summation of different noise processes.
Within the context of PQ disturbance detection, the targeted
electrical disturbance is always considered as non-Gaussian,
while the floor is assumed to be a stationary Gaussian sig-
nal [20].

With an 7"-order real-valued stationary random process
(original analogue time-series) x(f), we define a set of ran-
dom variables (time-series) given by:

X(@),x(t+7,),x(t+75), .., x(t+7,_))

(M
where ¢ is the discrete time; and 7, =77, is the #"-order time
shift applied to the original data time-series, and 7, is the

sampling period. The joint (compacted notation) 7"-order cu-
mulant of the random variables C,  (-) is given by:

C, (01T eonat, )= Cum[ 3O Xt +7,), o ox(t 47, ) |=

E {x(t)x(t +T )Xt +7,).. x(t+7,_, )} 2)

where Cum|-] denotes the cumulant function; and E{-} is the
expected value. The concept of cumulant is defined in (2) as
the autocorrelation between the original time-series and their
time-shifted versions. In other words, the cumulants quantify
the mathematical similitude between two of more time-se-
ries. Depending on the cumulants’ orders, the interdependen-
cy will lead to specific state of the system under test, and
will enable the inference of some properties related to the
system behaviour. By using (2), the most common cases of
the cumulants are the second-, third- and fourth-order ver-
sions defined as:

€)
4)

C,, (D) =E{x(O)x(t +7)}
Cl}r (71, 75)= E{x(t)x(t + 7, )x(t + 7, )}

Coon (11,10, 1) = E (Ot +7)x(t +2,)x(t +73) = G (1))
C, (1, —15)— C2,x (r.)C,, (13— 1) = C, . (3)C,, (r) — 1,)
(5)
For a non-zero mean process, with no time shifting, we
have the well-known statistics:

V2 =E{X (0)}=C,.(0) (6)
V. =E{X (0)}=C;,(0,0) (7
Vo =E{x*(1)}=313,=C,.(0.0.0) ®)
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Since HOSs have succeeded in other fields, e.g., vibration
mechanics, acoustic detection of insects, they are suitable for
the new power grid. It contributes significantly to the classi-
fication of electrical disturbances since it addresses not only
the instantaneous power, but also those associated with wave-
form [20], [31]. The circumstance confers HOSs with suit-
able characteristics to analyze the new type of multiple dis-
turbances that occur in the electrical network with distribut-
ed generation.

The strategy consists of calculating three statistics: the
variance, the skewness and the kurtosis. In the case of an
ideal voltage supply of 50 Hz, this triplet takes the reference
values of 0, 0.5, 1.5. This is assumed as the steady state
from which deviations are measured in the HOS planes. For
practical purposes, the absolute deviation index is not null,
since the power line is not pure at all. Likewise, by gather-
ing the measurements of each record in three statistical pa-
rameters, the memory savings are notable, which indicate
that an index of these characteristics is suitable for dealing
with big data.

In order to define the generic index, the following magni-
tudes are introduced: Ar is the measurement interval; and At
contains M periods of the power signal; s, is the j" sample
statistic associated with the i period; §, is the expected ;"
statistic; and N is the number of statistics; the PQ deviation
index PQ,, is a function of the specific deviations of each in-
dividual statistic with respect to their expected values, and it
is given by the general expression as:

PO, =f(s\, =5, ... |Si/'_§j|7 oo S =85 ©)

While the theoretical value for the index is zero, i.e., each
statistic equals its estimates, in practice it has to be calibrat-
ed depending on the location of the point under test and the
specific operation conditions. A particular case of (9) con-
sists of using the summation of each individual deviation:

M N
22|Si/_s,'|

L

The deviations of each statistic from its ideal value assess
the waveform. Three deviations terms are used in (10). The
final expression for the PQ deviation index is described as:

(10)

M
Z|var[ — var|+|sk, — sk|+|kur, — kur|
PO, = = M

where var;, sk, and kur, are the variance, the skewness, and
the kurtosis of the i" period, respectively; and the symbol ~
denotes the estimated value. The indices measure the quality
of the voltage in terms of the waveform from a statistical
point of view. To illustrate the concept of statistical distribu-
tion, i.e., a steady-state voltage supply, understand their devi-
ations, and introduce the definition of compression, two dif-
ferent cases under normal power delivery conditions are
compared in Fig. 1. Case 1 corresponds to a public building
in the University of Cadiz, Spain, and case 2 corresponds to
a household user. The purpose of time compression is to re-
duce all the data within a cycle into a single triplet, which is
composed of three statistics compared with the ideal values

(11)
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within the expression of the index.

In Fig. 1, the real measurements of the two waveforms
are computed through the HOS, in case 1, var=0.4826, sk=
—0.0067, kur=1.5092, and in case 2, var=0.4720, sk=
—0.0039, kur=1.4726. Finally, the PQ index computes each
of the individual waveform deviations. In case 1, PQ is
0.0333 p.u., and in case 2, PQ is 0.0593 p.u.. The most deteri-
orated signal with a higher PQ comes from the household. In
fact, two different degrees of the deviation are detected. In
Fig. 1(b), the amplitude fluctuations are detected by the vari-
ance, because the signal exhibits a flat top, while the skewness
and kurtosis remain around their ideal values. In Fig. 1(d), the
deviations in the top and bottom regions stand out over the
rest of the cycle, and are detected by the variance. Addition-
ally, a presence of a certain harmonic distortion is revealed
by the kurtosis. Also, as both cycles are symmetric, the devi-
ation in the skewness is negligible. Although this is a simula-
tion based on two different cycles, the PQ confirms the be-
haviour of each cycle. Table II presents the time-domain
compression using HOS and the aggregated index, which
elicits that the method is capable of maintaining the resolu-
tion in terms of signal compression and represents the infor-
mation of a cycle (0.02 s). It also inform the network behav-
iour using less computation resources needed in continuous
measurement campaigns.

TABLE 1T
TIME-DOMAIN COMPRESSION FOR CASES 1 AND 2

Scenario Variable size  Signal compression (byte)  Class
Case 1 500x% 1 4000 Double
Case 2 500 1 4000 Double

PQ for case | 1x1 8 Double
PQ for case 2 1x1 8 Double
HOS for case 1 1x3 24 Double
HOS for case 2 1x3 24 Double

In [21] and [29], daily PQ patterns are identified, and dif-
ferences between the trends of hourly PQ within working
and non-working days are presented. The following perfor-
mances of HOS are found.

1) The performance of the indices according to the impact
of instantancous fundamental frequency changes on voltage
waveforms is measured according to EN 50160.

2) A minimum of 5 kHz sampling frequency is needed. In
field measurements, a 25 kHz sampling frequency is adopted.

3) HOSs are immune to noise.

4) The sliding window is used to sweep the waveform
and extract the indices. Theoretically, the length of window
from 1 cycle up to 10 cycles would exhibit similar indices.
No overlapping is used as it sweeps one period.

Besides, we show the potential of HOS in improving predic-
tions. The strategy could be based on the learning of daily,
weekly, and monthly 2D patterns. However, more research
work should be done in the PQ trend pattern for long-term
campaigns. We report the PQ index time-series and the 2D-
HOS during three time scales, i.e., day, week, and month, and

aim to establish different strategies in long-term measurement
campaigns that would use the PQ index based on HOS.

III. MEASUREMENT AND ANALYSIS

The measurements are conducted at the University of
Cadiz, Spain, during a six-week campaign. The goal is to
monitor the 50 Hz LV at a sampling rate of 25 kHz (500
samples per cycle). The devices used in the acquisition sys-
tem are the chassis NI cDAQ-9188 of National Instru-
ments™, using an analogue input module NI-9225 C-series.
It is connected via the ethernet to a PC in which a Lab-
VIEW-based program developes continuous analysis. With
the information generated using the sample frequency of 25
kHz, for each period (20 ms), the dimension of the data vec-
tor is 20/25x10°=800000. The algorithm calculates the
three statistics, i.e., variance, skewness, and kurtosis, using a
cycle-by-cycle window without overlapping. Each window
computes 8000 data, which are reduced to four parameters.
In a subsequent stage, the values are subtracted to the ideal
quantities; the absolute values are calculated; and the final
differences are added to the PQ index in (11). In order to es-
tablish a procedure to study different patterns, all the mea-
surements are analyzed offline using MATLAB. The monitor-
ing procedure through HOS-based deviation index is shown
in Fig. 2, where u, is the output variable.

| u(f), At |
)
Data acquisition and preprocessing of HOS
and PQ cycle-by-cycle
[ w0, 0¥
| Data storage and weekly intervals |
| s 1€ML,/ €[1LN]
| Normalization and preprocessing in MATLAB |

| Graphical representation (CDF and histograms) |

| PQ range selection |

)
| PQ plot and 2D-HOS |
)

Extraction of PQ time-series and matrices

End

Fig. 2. Monitoring procedure through HOS-based deviation index.

An N-statistic u(¢) signal is processed over a preselected
time interval Af. M period s, are calculated and compared
with their nominal values §, The first compression consists
of the time compression during the feature extraction stage.
The second takes place in the space, averaging different 2D di-
agrams.

IV. ANALYSIS RESULTS

Figure 3 shows the histograms for different weekly indi-
ces based on CDF and PDF. All the measurements have
been obtained during a six-week campaign in the same con-
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nection point of the building. The histograms are normal-
ized. Each value in the horizontal axis is equal to the rela-
tive accumulated number of observations in the current and
former bins. The proposed method suggests the idea of
studying probability distribution disturbances in order to
have a profile of the distribution line [32].

1.01 1.0
0.8+ 0.8+
= 0.67 a9 0.6
a a
© 04t O o4t
0.2 0.2+ i
N
0.440.46 0.48 0.50 0.52 0.54
Variance
(b)
1.0 1.0r
0.8 0.8
53 0.6 3 0.61
a a
C04r C 04t
0.2+ 0.2+
0 L L L n 0 L il '
-0.02 -0.01 0 0.01 0.02 146 148 150 1.52
Skewness Kurtosis
(© (d)
0.08 0.06
0.06
0.04+
i o9
a 0.04+ )
ey
0.021
0.02 U ]
‘ ‘ N
0 0.02 0.04 0.06 0.440.46 0.48 0.50 0.52 0.54
PQ Variance
(e) ®
0.25¢ 0.15r
0.20+
0.10
> 5
0.10 0.05-
0.05
0 . 0 e
-0.02 -0.01 0 0.01 0.02 146 148 150 1.52
Skewness Kurtosis
(8) (h)

— Week 1; — Week 2; Week 3; — Week 4; — Week 5; — Week 6

Fig. 3. Histograms for different weekly indices based on CDF and PDF. (a)
CDF of PQ. (b) CDF of variance. (c) CDF of skewness. (d) CDF of kurto-
sis. (e) PDF of PQ. (f) PDF of variance. (g) PDF of of skewness. (h) PDF
of kurtosis.

In Fig. 3(a), 90% of the weekly values achieve 0.026 or
below, and the maximum values reach the range of 0.04-
0.06. In Fig. 3(e), the values of the supply quality index are
skewed to the left, which confirms the trend to a high proba-
bility of reaching the value of 0.01. It is relevant because
the theoretical value for the PQ is 0.

The patterns of week 2 and week 4 seem to adopt similar
trends, and are different from the rest of the weeks. In addi-
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tion, high values of up to 0.12 denote the presence of the
events. To achieve a better interpretation of the graphs, a rep-
resentation range of 0-0.06 has been selected.

Figure 3(b) shows a wider range of variation. Ninety per-
cent of the values are included in the interval [0.49, 0.51],
which includes the theoretical value of the variance as 0.5.
With regards to Fig. 3(f), except for those corresponding to
week 4, they all exhibit a symmetrical distribution pattern
with a very high probability within the interval of
[0.49, 0.51].

Figure 3(c) confirms that for the voltage signal, the skew-
ness denotes a symmetrical behaviour (around the ideal val-
ue of 0) for more than 90% of the cycles analyzed, with a
very small deviation and admissible value.

Finally, based on Fig. 3(d), more than 90% of the values
fall below 1.51. Note that the theoretical value of kurtosis is
1.5. For Fig. 3(h), the highest values of kurtosis fall within
the interval [1.50, 1.51], and the general interval for this in-
dex is [1.495, 1.552].

Therefore, according to the weekly histograms, while the
skewness and the kurtosis seem to have the most stable rang-
es, the variance exhibits a wider one. The results obtained,
mainly those related to variance, help understand that the
majority of fluctuations that occur during a week are associ-
ated with the changes in variance, i.e., amplitude changes of
the waveform.

Also, the changes in the tails present a probability of oc-
currence evidenced by the deviation in the kurtosis index.
This situation is different from the less frequent changes in
the symmetry of the distribution, which constitutes a work-
ing hypothesis for future experiments. However, the skew-
ness is another term of the PQ index having specific weight
in certain measuring points with deviations in the symmetry.

Next, in order to obtain daily patterns of 2D diagrams,
two weeks have been compared based on the variance ver-
sus the kurtosis in Fig. 3. The values with the maximum
temporal resolution of 0.02 s (cycle by cycle) have been con-
sidered. For each day of the considered week, its intensity
graph of variance versus the kurtosis has been considered.
The skewness is obviated for the reasons stated above. Simi-
larities have been found between the patterns of different
days within a week and those of the days corresponding to
different weeks.

Figure 4 shows the representation of PQ index time-series
along the first two weeks of the monitoring campaign and
their trend, and different 2D diagrams of day-to-day patterns
of HOS.

Measurements took place from Monday to Sunday, from
November 13th to 28th, 2017. During these two weeks, all
the cycles of the measured signals were processed except a
lack of 7.2% of data from week 1, and 0.6% of data from
week 2 (missing 12-hour and 1-hour monitoring data, respec-
tively) because of a connection loose between the acquisi-
tion unit and the connection point during the monitoring
campaign. However, in order to carry out a robust character-
ization with the least number of data, only a representative
part was selected. The criterion adopted (as forwarded in pre-
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vious sections) was to take a measurement in every 1000 da-
ta points for each container in the histograms (bins). The
goal was to eliminate statistically redundant information. Be-
fore carrying out the later compression, the time-series of
PQ measurements seemed to have coupled noise, which was
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the visual effect produced by the accumulation of data. Even
so, it was observed that the cycle-by-cycle PQ index time-se-
ries exhibited a trend, which was easily reproducible by a
simple mathematical model.
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Fig. 4. Respresentation of PQ index time-series. (a) Monitoring campaign and trend for week 1. (b) 2D diagram of day-to-day pattern of HOS for week 1.
(c) Monitoring campaign and trend for week 2. (d) 2D diagram of day-to-day pattern of HOS for week 2.

During the first week, there was a lack of data on Mon-
day 13th, because the acquisition started from noon. Indeed,
during the nights, the PQ index was nearer to the null ideal
value, and reached the maximum of 0.04 at noon. Also,
there was a second maximum around 0.03 corresponding to
the network behaviour during the afternoons, which was
shown on Tuesday 14th, Wednesday 15th, and Thursday
16th. On Wednesday 15th, some outliers indicated a PQ of
0.07. In addition, time-series on Friday 17th showed that PQ
was lower during the afternoon, which was similar to that
during the night. Moreover, Saturday 19th and Sunday 20th
exhibited completely different PQ patterns and a trend with-
in the interval of [0.01, 0.02].

Focusing on the one-day color maps (represent the vari-
ance versus kurtosis), the regions with shades were close to
yellow. As was the case in histograms, the variance reached
the greatest elongations, which were represented in the yel-
low pattern of the graph along the horizontal axis. For some
days, two centroid-type regions were observed in the 2D dia-
gram corresponding to different states of the network during
the same day. This fact was even more visible on Tuesday
14th, Wednesday 15th, and Thursday 16th. On Saturday 19th

and Sunday 20th, the pattern was more diffuse at the periph-
ery of the graph center and more intense in the graph center.
Precisely, the greatest number of measurements occured on
Sunday 20th, which was nearest to the ideal supply value.

Furthermore, during the second week, the PQ index time-
series exhibited a similar behaviour to week 1. There was a
lack of PQ data on Monday 13th during the noon as a result
of the monitoring campaign. From Monday 21st to Friday
25th, two maximum regions were detected, and there were
less behaviours during the nights. A more unstable pattern
can be observed during the weekend compared with the
same period during week 1. However, in general terms dur-
ing the weekends, the PQ trend was, most of the time, near
to the ideal values located in the graph center. Some outliers
can be observed on Wednesday 23th and on Sunday 27th
that reached a PQ of 0.08 and 0.1, respectively. Besides, the
day-to-day color maps confirmed the patterns in two differ-
ent clusters from Monday to Friday and the weekends with a
centered behaviour according to the PQ trend. The minimum
PQ was always over zero, which was indicative of a non-ide-
al behaviour of the voltage supply waveform under normal
operation conditions.
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V. DISCUSSION OF RESULTS AND OF PROPOSED METHOD

A. General Discussion of Results

The analyses of CDF and PDF help establish a character-
ization of the waveform in the point under test. For a week-
ly/monthly campaign, the most representative indices seem
to be the variance and the kurtosis. Nevertheless, it is impor-
tant to mention that based on the authors’ experience, skew-
ness can be useful in the strategies more focused on small-
length windows and the event detection strategies. The main
contributions include establishing the more realistic measure-
ments to the individual ranges of indices and detecting their
region of the maximum probability within the whole cam-
paign duration.

Time-domain analysis helps detect the waveform deviation
computed by the statistics. Also, the individual contribution
of each indicator to the PQ is identified. Indeed, the daily
PQ fluctuates depending on the day of the week, the hourly
trend of the network, and the energy usage during working
or non-working hours. During the night, the PQ cycle-by-cy-
cle can fluctuate between 0.01 and 0.02. During the morn-
ing, the deviation of PQ increases, and during the noon, it
reaches to the maximum of 0.04. Also, between 13:00 and
16:00, there is a drop because of the lunch time. A second
increase of the index occurs in the evening, since the Univer-
sity under study in this paper is open until 22:00. Finally,
during the midnight, the PQ decreases again, recovering the
minimum values. Indeed, 2D diagrams allow visualizing
such behaviours by emphasizing the areas of signal persis-
tence throughout the hours, days and weeks.

In order to develop the site characterization through the
PQ features, the time-series can be scaled to different aver-
age windows, as shown in Fig. 5. Note that the average of
the PQ values help compress the size of time-series and ex-
tract the information about the general trend of the index
with less computation load. Regarding the permanent moni-
toring strategy, the final representation of PQ smoothes the
cycle-by-cycle waveform, avoiding transient effects but pro-
viding a general trend information. To set a compliance limit
for the values, following the average strategy, the PQ index
should be set to be 0.03 at 95% of the full scale. Neverthe-
less, as the indicator is averaged, the index looses the event
detection resolution but the measurements help train the pro-
posed method for more efficient performance of the PQ con-
trol. PQ based on HOS changes from one network to anoth-
er depending on the quality of the waveform in the point in-
fluenced by multiple factors, which include the changes in
voltage admitted by the actual PQ standards. Depending on
the requirements of customer and network, this non-ideal be-
haviour can be assumed or not. In general, both the utility
and the end-users can facilitate that information, introducing
the continuous PQ monitoring of the waveform and charac-
terizing their deviation under normal operation conditions. In
practical applications, the minimum requirements in terms of
computation are resumed in the Table III. 10-min PQ de-
mands of 474720 bytes per month (15824 plus 30 days) in a
year (474720 plus 12 months) equals 0.00569664 gigabytes.
The PQ strategy deployed in a thousand of smart meters
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would demand a storage capacity of 5.69 gigabytes per year.
The procedure can be incorporated in future campaigns and
the solution accomplishes the monitoring challenges of the
next generation of advanced metering infrastructure in terms
of compression and reporting efficiency.
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Fig. 5. Different PQ monitoring strategies informing about hourly-aver-
aged PQ index based on HOS and PQ.

TABLE III
DATA COMPRESSION RESULTS USING DIFFERENT STRATEGIES

Data compression

Parameter Variable size (byte) Class

Week data based on HOS ~ 29685000x6 1424880000 Double
Week data based on PQ 29685000%2 474960000 Double
Variance versus kurtosis 102x102 83232 Double
PQ (1 hour) 164x2 2624 Double

PQ (10 min) 9902 15824 Double

B. Contributions

All in all, the objective of the proposed method does not
reside in the specific events, but in characterizing a long-
term time-series. Indeed, the proposed method characterizes
different power signal states from a global point of view, but
not focusing on specific events, as compared with other simi-
lar researches. However, we have carried out a comparison
based on the objectives of the proposed method on the data
set using low complexity event classification (LCEC) [33]
and optimal time-frequency response (OTFR) [34], [35],
which are good classifiers in voltage signals. Results are sim-
ilar to those in [36], where HOSs have good performance
and are efficient. However, in a long-term measurement cam-
paign, the proposed method computes and exhibits voltage
behaviour and the fluctuations between weeks.

We are not only differentiating between two signal states
[32]. The proposed method extracts all the patterns and
helps monitor the main zones within the 2D traces. More-
over, the aforementioned results show different behaviour
zones within a day.

Based on our experience and the measurements, we can
assure that the PQ index based on HOS can tackle the limita-
tions on the data base, e.g. a data permutation or any other
incidence such as sampling errors, because we have charac-
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terized the previous pattern and it is easier to check any
anomaly in the database. On the contrary, the methods based
on supervized learning on the extreme values are unable to
target previously unregistered waveforms [30]. We have used
the Euclidian distance [37] to obtain the 2D traces, residing
the contribution in targeting different behaviour zones, even
within the dynamics of the same week [29].

With respect to [15], this is conceived to detect disturbanc-
es and not thought for a mid-term campaign. Thus, it is a
global index without imposing a previous classification. In-
deed, it is an open topic in the PQ research. Regarding our
method, visualizing the network state in a longer-term mea-
surement campaign would be the next goal.

VI. CONCLUSION

The contribution of the proposed method lies in the site
characterization of the consumer’s behaviour based on HOS
monitoring, and the strategy of extracting the individual cus-
tomers’ pattern fingerprint. A PQ index is utilized which
computes the voltage operation conditions and their devia-
tions that come from both sides of the network, i.e., the utili-
ty and the customer, when we measure on the client’s side.
The proposed method assumes customer’s deviations as in-
trinsic characteristics of the network, which is not quantified
in the traditional analysis.

While traditional indices inform only about the power fluc-
tuations, the HOS estimators provide the information regard-
ing the waveform and constitute the new terms of the PQ in-
dex to assess the nature of PQ in the SG. The statistical fea-
tures that are incorporated in the strategy are the symmetry
and the tailedness of the signal under test, characterizing
their PDF. The analysis is valid for continuous disturbances
and event detection, or continuous and permanent monitor-
ing. Indeed, the proposed method is scalable both in time
and space, and can be deployed downstream and upstream
depending on the measurement campaign objectives.

The PQ index in the HOS space provides the patterns
which are more aligned to the instantaneous state of the net-
work, considering time and the waveform characteristics,
and determines the percentage of the data which are conve-
nient to be stored according to the PQ monitoring objectives.

Additionally, the proposed method helps reduce the data
computation and reports about the statistical features of the
waveform more intuitively. The highest compression is made
through the detection of the PQ hourly pattern. Thus, it man-
ages to accomplish monitoring strategies and objectives relat-
ed to smart meters with new PQ functionalities. As a final
idea, our method would contribute to characterize the instan-
taneous fundamental frequency fluctuations, which is a limi-
tation of the current time-based methods.

Considering potential usages of the PQ index based on
HOS, the followings can be adopted for site characterization:
PQ data compression in different intervals, e.g., journey, day-
night, measurements for each hour, each 15 min, each 1
min, and each 1 s.

In performance analysis, two highlights are considered.

1) Different patterns can detect the outliers in the wave-
form with an origin in the PQ events.

2) We recommend an analysis window of a PQ each 10
min, 1 min or less.

Within the context of troubleshooting, we recommend an
analysis window of PQ for each 10 min, 1 min or less. In
advanced applications that evolve to PQ analysis based on
artificial networks, waveform feature extraction in order to
establish a more accurate artificial network and a reliability
or PQ classification reflects the behaviour of the point under
test.

To establish a relationship between HOS and the consum-
er’s energy pattern, climatic forecasting is convenient. In-
deed, the PQ pattern is related to the time with high or low
energy demands. Thus, the proposed method would satisfy
the requirements of the modern power grid to carry out per-
manent monitoring in future networks.
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