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An open packing in a graph G is a set S of vertices in G such that no two vertices in S
have a common neighbor in G . The injective chromatic number χi(G) of G is the smallest 
number of colors assigned to vertices of G such that each color class is an open packing. 
Alternatively, the injective chromatic number of G is the chromatic number of the two-
step graph of G , which is the graph with the same vertex set as G in which two vertices 
are adjacent if they have a common neighbor. The concept of injective coloring has been 
studied by many authors, while in the present paper we approach it from two novel per-
spectives, related to open packings and the two-step graph operation. We prove several 
general bounds on the injective chromatic number expressed in terms of the open pack-

ing number. In particular, we prove that χi(G) ≥ 1
2 +

√
1
4 + 2m−n

ρo holds for any connected 
graph G of order n ≥ 2, size m, and the open packing number ρo, and characterize the class 
of graphs attaining the bound. Regarding the well known bound χi(G) ≥ �(G), we describe 
the family of extremal graphs and prove that deciding when the equality holds (even for 
regular graphs) is NP-complete, solving an open problem from an earlier paper. Next, we 
consider the chromatic number of the two-step graph of a graph, and compare it with the 
clique number and the maximum degree of the graph. We present two large families of 
graphs in which χi(G) equals the cardinality of a largest clique of the two-step graph of 
G . Finally, we consider classes of graphs that admit an injective coloring in which all color 
classes are maximal open packings. We give characterizations of three subclasses of these 
graphs among graphs with diameter 2, and find a partial characterization of hypercubes 
with this property.

© 2023 The Author(s). Published by Elsevier B.V. This is an open access article under the 
CC BY-NC-ND license (http://creativecommons .org /licenses /by-nc -nd /4 .0/).

1. Introduction and preliminaries

Throughout the paper, we consider G as a finite simple graph with vertex set V (G) and edge set E(G). Recall that a 
(vertex) coloring of G is a labeling of the vertices of G so that any two adjacent vertices have distinct labels. The chromatic 
number of G , denoted χ(G), is the smallest number of labels in a coloring of G . For some additional information on coloring 
problems, we refer the reader to [23].
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A function f : V (G) → {1, . . . , k} is an injective k-coloring function if no vertex v is adjacent to two vertices u and w with 
f (u) = f (w). For an injective k-coloring function f , the set of color classes

{{v ∈ V (G) | f (v) = i} : 1 ≤ i ≤ k
}

is an injective 
k-coloring of G (or simply an injective coloring if k is clear from the context). The minimum k for which a graph G admits 
an injective k-coloring is the injective chromatic number of G , and is denoted by χi(G). Injective colorings were introduced 
in [17], and further studied in [8,11,33,36,42] for just a few examples.

In this paper, we focus on two approaches to injective colorings of graphs that have seemingly not been much explored. 
The following concept was mentioned also in the seminal paper of Hahn, Kratochvíl, Širáň and Sotteau [17]. For a given 
graph G , the two-step graph N (G) of G is the graph having the same vertex set as G with an edge joining two vertices 
in N (G) if and only if they have a common neighbor in G . These graphs were introduced in [1] and investigated later 
in [7,14,32], while in [17] the concept was referred to as the common neighbor graph of a graph G . Taking into account the 
fact that a vertex subset S is independent in N (G) if and only if every two vertices of S have no common neighbor in G , 
we can readily observe that

χi(G) = χ
(
N (G)

)
. (1)

The second approach to injective colorings is motivated by a concept that is close to graph domination studies. Namely, 
a subset B ⊆ V (G) is an open packing in a graph G if for any two distinct vertices u, v ∈ B , we have NG(u) ∩ NG(v) = ∅. The 
open packing number of G , denoted by ρo(G), is the maximum cardinality among all open packings in G . See [21], where the 
concept of open packing was introduced, and [39], where it was efficiently used in the study of total domination in direct 
products of graphs. It is easy to see that every color class of an injective coloring of a graph G is an open packing in G , and 
consequently, the injective chromatic number is the minimum number of classes in a partition of G into open packings. We 
give more details about this connection in the next subsection, where we also present several other well studied concepts 
that are related to injective colorings of graphs.

1.1. Related concepts

In this subsection, we thus present some strong relationships between the concepts mentioned above and other ones 
related to some classical topics of colorings and domination in graphs.

We start with distance coloring of graphs, which was initiated by Kramer and Kramer [27,28] in 1969. A 2-distance 
coloring of a graph G is a mapping of V (G) to a set of colors such that any two vertices at distance at most two receive 
different colors (that is, every vertices that are adjacent or have a common neighbor are colored differently). The minimum 
number of colors k for which there is a 2-distance coloring of G is the 2-distance chromatic number, χ2(G), of G . Clearly, a 
2-distance coloring generates a partition of V (G) into sets of vertices having the same color.

The open neighborhood of a vertex v is denoted by NG (v), and its closed neighborhood is NG [v] = NG(v) ∪ {v}. The degree
of a vertex u of G is degG(u) = |NG(v)|, while the minimum and maximum degrees of G are denoted by δ(G) and �(G), 
respectively. Also, a subset S ⊆ V (G) is a dominating set in G if each vertex in V (G)\S has at least one neighbor in S . The 
domination number γ (G) is the minimum cardinality among all dominating sets in G . If G has no isolated vertices, then a 
subset S ⊆ V (G) is a total dominating set of G if each vertex in V (G) has a neighbor in S , and the smallest cardinality of a 
total dominating set in G is the total domination number, γt(G), of G . It is well-known that ρo(G) ≤ γt(G) for every graph G
with no isolated vertices; see [39].

For more information on domination theory, the reader can consult [18,19]. Similarly as coloring can be regarded as 
the partition into independent sets, in domination theory a partition into dominating sets of different types has also been 
widely considered. The study of the corresponding parameter, the domatic number d(G) of a graph G , was initiated by 
Cockayne and Hedetniemi [10]. A closely related topic to domination is that of 2-packing, and thus a graph partitioning 
problems extended to 2-packings promises an interesting parameter.

In this concern, a subset B ⊆ V (G) is a 2-packing (or simply a packing) in G if for every pair of distinct vertices u, v ∈ B , 
we have NG [u] ∩ NG [v] = ∅. The packing number ρ(G) is the maximum cardinality among all packings in G . As announced 
above, one may be interested in a partition of the vertex set of a graph G into 2-packings. A partition P = {P1, . . . , P |P |} of 
V (G) is a packing partition if Pi is a packing in G for each i, 1 ≤ i ≤ |P |. The packing partition number p(G) is the minimum 
cardinality of a packing partition of G .

In contrast with the construction of the two-step graph N (G) of a graph G mentioned earlier, we recall the following 
concept. Given a graph G , the closed neighborhood graph, Nc(G), of G , has vertex set V (G), and two distinct vertices u and v
are adjacent in Nc(G) if and only if NG [u] ∩ NG [v] �= ∅. See [6] for a recent use of this concept, and note that Nc(G) is also 
well known under the name the square, G2, of G . With this construction in mind, we observe that a 2-distance coloring 
of a graph G is essentially the same as a coloring of its closed neighborhood graph. Furthermore, it is easily seen that the 
2-distance coloring problem is equivalent to the problem of partitioning the vertex set of a graph into packings. Altogether, 
we observe the following equalities:

χ2(G) = χ(G2) = χ
(
Nc(G)

) = p(G). (2)

Motivated by the existence of packing partitions and open packings, we can say that a partition P = {P1, . . . , P |P |} of 
the vertex set of a graph G is an open packing partition if Pi is an open packing in G for each 1 ≤ i ≤ |P |. The open packing 
2
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partition number po(G) is the minimum cardinality among all open packing partitions of G . It turns out that such partitions 
can be understood from other perspectives, since we can readily see that for any k-injective coloring function f , the set 
of color classes 

{{v ∈ V (G) | f (v) = i} : 1 ≤ i ≤ k
}

forms an open packing partition of G and vice versa. This fact, together 
with (1) and the definition of two-step graphs, leads to

χi(G) = χ
(
N (G)

) = po(G), (3)

which is an open neighborhood analogue of (2). This establishes another relationship between coloring and domination 
theories in graphs.

Another close relative of two-step graphs and injective colorings are exact distance-2 graphs and their colorings. Given 
a graph G , the exact distance-p graph G[�p] has V (G) as its vertex set, and two vertices are adjacent whenever the distance 
between them in G equals p. The concept was introduced back in 1983 by Simić [41] who investigated when the exact 
distance-p graphs coincide with line graphs. A different kind of approach to exact distance graphs was given in a series 
of papers [13,37,44,46] where the so-called cube-like graphs were considered, which arise as exact distance graphs of 
hypercubes. Only a decade ago, the concept was rediscovered by Nešetřil and Ossona de Mendez, which initiated further 
studies. The main object of many of the mentioned investigation is the chromatic number of exact distance graphs. In 
particular, a problem from [35], attributed to van den Heuvel and Naserasr, was asking about the boundedness of the 
chromatic number of G[�p] when G is a planar graph and p is an odd integer, while in [4] the question was answered in 
the negative by using a class of trees. In some recent papers, exact distance-p colorings were connected with generalized 
colorings [22], they were studied in subcubic planar graphs [15], and in various graph products [5]. It was noted in [15]
that for any graph G ,

χ(G[�2]) ≤ χi(G) ≤ χ2(G),

and if G is triangle-free, then χ(G[�2]) = χi(G). Actually, this is a direct consequence of the fact that the two-step graph 
N (G) of a triangle-free graph G coincides with G[�2] . Moreover, observe that G[�2] is always a spanning subgraph of N (G), 
where G[�2] can be obtained from N (G) by removing the edges that belong to a triangle in G .

1.2. Other terminologies, notations and plan of the article

Given subsets A, B ⊂ V (G), let [A, B] denote the set of all edges with one end-vertex in A and the other in B . Given 
a set S ⊆ V (G), by G[S] we denote the subgraph of G induced by S . The maximum cardinality of a set S in G such that 
G[S] is a complete graph is the clique number of G , denoted ω(G). A graph G is chordal if it contains no induced cycle of 
length greater than 3. It is well known that chordal graphs G are perfect; that is, for any induced subgraph H of G , we have 
ω(H) = χ(H). By a χ(G)-coloring, a χi(G)-coloring, and a χ2(G)-coloring we mean a coloring, an injective coloring, and a 
2-distance coloring of G with χ(G), χi(G), and χ2(G) colors, respectively. Moreover, by a ρo(G)-set we represent an open 
packing of G of cardinality ρo(G).

For the following two standard products of graphs G and H (see [16]), the vertex set of the product is V (G) × V (H). 
In the edge set of the Cartesian product G�H two vertices are adjacent if they are adjacent in one coordinate and equal in 
the other. On the other hand, in the edge set of the direct product G × H two vertices are adjacent if they are adjacent in 
both coordinates. Note that these two products are associative and commutative [16]. We use the book of West [45] as a 
reference for graph theory terminology and notation which are not explicitly defined here.

In this paper, we continue the study of the injective chromatic number, or open packing partition number, or equivalently, 
the chromatic number of two-step graphs from different perspectives. The three terminologies will be used in concordance 
with the situation in which they appear. In the following section we concentrate on some general bounds on the injective 
chromatic number of graphs. Noting the general lower bound χi(G) ≥ �(G), we prove that for any r-regular graph G it 
is NP-complete to decide whether χi(G) = r. In contrast to that, we give a structural characterization of graphs G with 
χi(G) = �(G), which has a particularly nice form in regular graphs, yet, it does not lead to an efficient algorithm. We also 
present some bounds on the injective chromatic number of graphs expressed in terms of their open packing number, and 
also a sharp lower bound expressed in terms of the order, size and the open packing number of a graph. In Section 3, we 
study graphs G with the property that χi(G) = ω(

(
N (G)

)
. We prove that ω(

(
N (G)

)
can exceed �(G) for an arbitrarily large 

amount. On the other hand, we present two large families of graphs G with χi(G) = ω(
(
N (G)

)
, notably, the graphs with 

no induced even cycles, and the graphs whose complements are bipartite. Finally, in Section 4, we consider the graphs that 
admit injective colorings such that all color classes are maximal open packings; in this study, three classes naturally appear 
depending on how strict conditions we impose. We characterize all three classes of graphs among graphs with diameter 2
and among even cycles, respectively, and give some initial related results in the class of hypercubes.

2. General bounds on the injective chromatic number

Let u ∈ V (G) be a vertex of maximum degree and let B = {B1, . . . , Bχi(G)} be a χi(G)-coloring. Since B j is an open 
packing in G for each 1 ≤ j ≤ �(G), u has at most one neighbor in B j and hence 

∑χi(G) |N(u) ∩ B j | ≤ χi(G). So,
j=1

3
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χi(G) ≥ �(G). (4)

This simple but important inequality will turn out to be useful in some places in this paper.
A complete characterization of graphs G for which χi(G) = �(G) was mentioned as an open problem by Panda and 

Priyamvada [36]. In this section, we discuss the complexity and structural aspects of this problem, leading to a complete 
solution to it. Let us mention that the decision version of the injective chromatic number was shown to be NP-complete 
even when restricted to (certain subclasses of) bipartite graphs [24].

In what follows, we prove that it is NP-complete to decide whether χi(G) = �(G) for a given graph G . Indeed, we give 
a stronger result by limiting on the case when G is regular. For this purpose, we make use of the following well known 
result due to Leven and Galil [31] regarding the edge chromatic number χ ′(G) of a graph G , which indeed represents the 
chromatic number of the line graph of G .

Lemma 1. ([31]) For any fixed r, the problem of deciding whether χ ′(G) equals r or r + 1 for an r-regular graph G is NP-complete.

Theorem 2. Given an r-regular graph G with r ≥ 3, it is NP-complete to decide whether χi(G) = r.

Proof. Let G be an r-regular graph with r ≥ 3. Based on (4), it is clear that the problem of deciding whether χi(G) = r
is in NP. To see the NP-completeness of the problem, we establish a reduction from the problem given in Lemma 1. Let 
G ′ be obtained from G by replacing each uv ∈ E(G) by a 4-path u(u, v)(v, u)v and creating an r-clique on the set of 
vertices {(v, w) | w ∈ N(v)} for each v ∈ V (G). Now let G ′′ = G ′ − V (G). (The structure of G ′′ , by a different expression, was 
introduced in [20].) It is routine by the construction that G ′′ is an r-regular graph as well. Moreover, we observe that every 
vertex of G ′′ belongs to a clique of cardinality r.

Assume that χ ′(G) = r and that f is an r-edge coloring of G . We define f ′ on V (G ′′) by f ′((u, v)
) = f ′((v, u)

) = f (uv)

for each edge uv of G . Suppose to the contrary that there exists a vertex (u, v) adjacent to distinct vertices (u′, v ′) and 
(u′′, v ′′) in G ′′ with f ′((u′, v ′)

) = f ′((u′′, v ′′)
)
. In particular, we have f (u′v ′) = f (u′′v ′′) by the definition. Since f is an 

r-edge coloring of G , it follows that the edges u′v ′, u′′v ′′ ∈ E(G) have no shared end-vertices. This implies, by the structure 
of G ′′ , that there are two r-cliques A and B in G ′′ such that (u′, v ′) ∈ A and (u′′, v ′′) ∈ B . Since each vertex in an r-clique 
K has precisely one neighbor outside K , it follows that (u, v) ∈ A ∪ B . We therefore assume, without loss of generality, that 
(u, v) ∈ A. With this in mind and taking the structure of G ′′ into account, we may assume that u = u′ . This necessarily 
implies that v �= v ′ . Therefore, uv and uv ′ are two distinct edges in G . On the other hand, because (u, v)(u′′, v ′′) ∈ E(G ′′), it 
follows from the structure of G ′′ that (u′′, v ′′) = (v, u). Therefore, the edges u′v ′ = uv ′ and u′′v ′′ = uv in G have the vertex 
u in common. This contradicts the fact that f (u′v ′) = f ′((u′, v ′)

) = f ′((u′′, v ′′)
) = f (u′′v ′′). Therefore, f ′ is an injective 

coloring of G ′′ with r colors. So, χi(G ′′) ≤ r. This results in the equality in view of the inequality (4).
Conversely, let χi(G ′′) = r. Let g be a χi(G ′′)-coloring. Note that each vertex x of G turns into a unique r-clique Ax in 

G ′′ . Since g is an injective coloring of G ′′ and because r ≥ 3, g assigns r distinct colors to the vertices in Ax ⊆ V (G ′′) for 
each x ∈ V (G). Notice that each vertex (x, y) ∈ Ax necessarily has its rth neighbor (y, x) ∈ A y , for some y ∈ NG(x), with the 
color g

(
(x, y)

) = g
(
(y, x)

)
. We now define h on E(G) by h(xy) = g

(
(x, y)

) = g
(
(y, x)

)
. Let xy and yz be two edges of G . We 

observe that (y, x), (y, z) ∈ A y in the graph G ′′ . Since g is an injective coloring of G ′′ and because |A y | = r ≥ 3, it follows 
that g assigns different colors to (y, x) and (y, z). Therefore, h(xy) = g

(
(y, x)

) �= g
(
(y, z)

) = h(yz). Hence, h is an r-edge 
coloring of G . Therefore, χ ′(G) ≤ r. This leads to χ ′(G) = r due to the fact that χ ′(F ) ∈ {�(F ), �(F ) + 1} for each simple 
graph F .

In fact, we have proved that χ ′(G) = r if and only if χi(G ′′) = r. In view of this, Lemma 1 completes the proof. �
Next, we give a structural characterization of all graphs G for which χi(G) = �(G). In particular, this results in a simple 

characterization of all r-regular graph G for which χi(G) = r (see Corollary 4), which we present next.
Let 	 be the family of graphs G defined as follows. We begin with any graphs H1, . . . , Ht of maximum degree at most 

1, so that at least one of them, say Hk , is nontrivial (that is, it contains at least one edge). Let v be a non-isolated vertex of 
Hk . Let G be obtained from the disjoint union H1 + · · · + Ht by

(a) joining v by an edge to precisely one vertex of Hi for each 1 ≤ i �= k ≤ t , and
(b) adding some edges with one end-vertex in V (Hi) and the other one in V (H j) such that [V (Hi), V (H j)] is a matching, 

for each 1 ≤ i �= j ≤ t (note that [V (Hi), V (H j)] = ∅ can also be taken as a matching).

The condition (b) could be rephrased by saying that edges are added between vertices of distinct sets V (Hi) and V (H j), 
with i, j ∈ {1, . . . , t}, in such a way that any vertex u ∈ V (G), with u ∈ V (Hi), can have at most one neighbor in V (H j). 
Note that, for instance, the path P4 and the cycle C4 are graphs of the family 	.

Theorem 3. Let G be an arbitrary graph. Then, χi(G) = �(G) if and only if G ∈ 	.

Proof. Assume first that G ∈ 	. It is clear from the construction that H = {V (H1), . . . , V (Ht)} forms an injective coloring 
of G . Moreover, v is a vertex of G with deg(v) = t = �(G). Therefore, χi(G) ≤ |H| = t = �(G). So, χi(G) = �(G) by (4).
4
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Conversely, assume that χi(G) = �(G). Let {B1, . . . , B�(G)} be a χi(G)-coloring of G . For every 1 ≤ i, j ≤ �(G), every 
vertex in Bi has at most one neighbor in B j because both Bi and B j are open packings. This shows that (i) �(G[Bi]) ≤ 1
for each 1 ≤ i ≤ �(G), and (ii) [Bi, B j] is a matching in G for each 1 ≤ i �= j ≤ �(G).

Now let v ∈ B j be a vertex of maximum degree. Since |N(v) ∩ Bi | ≤ 1 for every 1 ≤ i ≤ �(G) and that deg(v) = �(G), 
it follows that v has precisely one neighbor in Bi for each 1 ≤ i ≤ �(G). It is now readily seen that v, j, �(G) and 
G[B1], . . . , G[B�(G)] have the same roles as v, k, t and H1, . . . , Ht , respectively, have in the definition of the family 	. 
Thus, G ∈ 	. �

Hahn et al. [17] characterized the extremal r-regular graphs for the lower bound given in (4). Their characterization 
is based on some algebraic and topological techniques. However, the family 	 would be much clearer when restricted to 
r-regular graphs. In fact, we have the following immediate consequence of Theorem 3.

Corollary 4. Let G be an r-regular graph. Then, χi(G) = r if and only if G is obtained from an r-partite graph H with partite sets 
H1, . . . , Hr , such that
(1) |H1| = · · · = |Hr | ∼= 0 (mod 2) and
(2) [Hi, H j] is a perfect matching for each 1 ≤ i �= j ≤ r,
by making a perfect matching using the vertices in Hi for each 1 ≤ i ≤ r.

The following sharp lower and upper bounds on the injective chromatic number in terms of the 2-distance chromatic 
number of a graph were found in [25]:

χ2(G)

2
≤ χi(G) ≤ χ2(G).

Next, we present sharp lower and upper bounds on the injective chromatic number in terms of the open packing number 
of a graph.

It is shown in [40] that for any graph G on at least three vertices, ρo(G) = 1 if and only if diam(G) ≤ 2 and every edge 
of G lies on a triangle. It is readily observed that this is also a necessary and sufficient condition for χi(G) = |V (G)|.

Proposition 5. If G is a graph of order n, then

n

ρo(G)
≤ χi(G) ≤ n − ρo(G) + 1

and the bounds are sharp.

Proof. Let B = {B1, . . . , B |B|} be a χi(G)-coloring. Since every Bi is an open packing in G , we have n = ∑
1≤i≤|B| |Bi | ≤

|B|ρo(G) = χi(G)ρo(G). Hence, χi(G) ≥ n/ρo(G). On the other hand, if B is a ρo(G)-set, then {B} ∪ {{g} | g ∈ V (G) \ B
}

is 
an injective coloring of G of cardinality n − ρo(G) + 1. So, χi(G) ≤ n − ρo(G) + 1.

That the lower bound is sharp can be seen by considering the cycles C4m or paths P4m for which χi(C4m) = χi(P4m) =
2 = 4m/ρo(C4m) = 4m/ρo(P4m) since ρo(C4m) = ρo(P4m) = 2m. The upper bound is sharp for Kn as well as for K1,n−1 on 
n ≥ 3 vertices. �

In the next result, we give a lower bound on the injective chromatic number of a graph G in terms of its order, size and 
open packing number. Despite the fact that it is not comparable with �(G), the family of extremal graphs for the two lower 
bounds are the same as the family 	 when it is restricted to regular graphs. For the sake of convenience, we let 	r be the 
family of all regular graphs in 	. Note that the members of 	r are represented in the statement of Corollary 4.

Theorem 6. If G is a connected graph of order n ≥ 2 and size m, then

χi(G) ≥ 1

2
+

√
1

4
+ 2m − n

ρo(G)
.

The equality holds if and only if G ∈ 	r .

Proof. Let P = {P1, . . . , Pχi(G)} be a χi(G)-coloring. Relabeling the subscripts if necessary, we may assume that |P1| ≤ · · · ≤
|Pχi(G)|. By definition, every vertex in Pi has at most one neighbor in P j for all 1 ≤ i < j ≤ χi(G). Moreover, the subgraph 
of G induced by Pi , for each 1 ≤ i ≤ χi(G), has at most |Pi |/2 edges. We therefore conclude that,
5
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m = ∑
1≤i< j≤χi(G) |[Pi, P j]| + ∑

1≤i≤χi(G) |[Pi, Pi]| ≤ ∑χi(G)−1
i=1 |Pi |(χi(G) − i) + n

2

≤ |Pχi(G)|∑χi(G)−1
i=1 (χi(G) − i) + n

2

≤ (χi(G)(χi(G) − 1)

2

)
ρo(G) + n

2
.

(5)

Solving the inequality chain (5) for χi(G), we get χi(G) ≥ (
1 + √

1 + 4(2m − n)/ρo(G)
)
/2.

Assume that the lower bound holds with equality. Therefore, all three inequalities in (5) necessarily hold with equality. 
In particular, together the second and third resulting equalities show that |P1| = · · · = |Pχi(G)| = ρo(G). Moreover, the first 
one implies that any vertex in Pi has precisely one neighbor in each other P j , and |[Pi, Pi]| = |Pi |/2 for all 1 ≤ i ≤ χi(G). 
This shows that the edges of each subgraph G[Pi] form a perfect matching. It is now easy to observe that the resulting 
subgraph of G by removing ∪χi(G)

i=i [Pi, Pi] is a χi(G)-partite graph with partite sets Pi of cardinality |Pi | ∼= 0 (mod 2) for 
1 ≤ i ≤ χi(G). That G ∈ 	r can be seen by observing the fact that χi(G) and P1, . . . , Pχi(G) have the same roles as r and 
H1, . . . , Hr have in the description of the members of 	r , respectively.

Conversely, let G ∈ 	r . By the structure of G , the vertex partition X = {H1, . . . , Hr} is an injective coloring of G . Hence, 
χi(G) ≤ r. Since H1 is both an open packing and a total dominating set in G , it follows that |H1| ≤ ρo(G) ≤ γt(G) ≤ |H1|, 
and so ρo(G) = |H1| = n/r. Moreover, we have r = 2m/n as 2m = ∑

v∈V (G) degG(v) = rn. A simple calculation then shows 
that 

(
1 + √

1 + 4(2m − n)/ρo(G)
)
/2 = 2m/n = r ≥ χi(G). This implies the equality in the lower bound. �

The following theorem shows that the simple lower bound given in (4) gives the exact values of χi when dealing with 
nontrivial trees. An additional goal is to give a proof for it that can be implemented as a polynomial-time algorithm for 
obtaining an optimal injective coloring of a tree.

Theorem 7. For any tree T on at least two vertices, χi(T ) = �(T ).

Proof. We have χi(T ) ≥ �(T ) by the inequality (4). Therefore, it suffices to construct an injective coloring of T of cardinality 
�(T ).

Let r be a vertex of maximum degree in T . We root T at r. We assign 1 to r and the colors 1, . . . , �(T ) to the children 
of r so that any of them takes a unique color. If T is a star, then we are done. So, let v be a child of r colored with 
i ∈ {1, . . . , �(T )} which is not a leaf. Since deg(v) ≤ deg(r) = �(T ), it follows that v has at most �(T ) − 1 children. We now 
assign deg(v) − 1 colors among {1, . . . , �(T )} \ {1} to its children so that any of these deg(v) − 1 colors appears on only 
one such a child. This process is continued until all descendants of v are assigned colors among {1, . . . , �(T )}. Iterating 
this process for any other non-leaf child of r (if any), any vertex of T takes a color from {1, . . . , �(T )} so that no vertex is 
adjacent to two vertices having the same colors. Therefore, the subsets V i = {v ∈ V (T ) | v is colored with i} for 1 ≤ i ≤ �(T )

give an injective coloring of T of cardinality �(T ). This completes the proof. �
3. Two-step graphs and the equality χi(G) = ω

(
N (G)

)

Based on the relationship (3), it is likely that constructing the two-step graphs of some families of graphs can be useful 
in several situations, in particular in the context of injective colorings. It can be easily observed that if G is a cycle of order 
n ≥ 3, then N (G) is either a cycle of order n (when n is odd) or the disjoint union of two cycles of order n/2 (when n is 
even). Also, if G is the path Pn , then N (G) is formed by two disjoint paths of order �n/2� and �n/2�; if G is the complete 
graph of order n �= 2, then N (G) = G = Kn; and if G is a complete bipartite graph Kr,t , then N (G) is formed by two disjoint 
complete graphs Kr and Kt . Moreover, if G is a triangle-free graph of diameter 2, then one can readily observe that N (G)

is isomorphic to the complement graph G . Notice that this last comment together with equality (3) leads to χi(G) = χ(G)

for any triangle-free graph of diameter 2.
On the other hand, by the structure of the two-step graph N (G) of a graph G , we observe that ω

(
N (G)

)
equals the 

maximum number of vertices of G such that any two of them have a common neighbor. This fact, together with relationship 
(3), gives sense to considering whether χi(G) = ω

(
N (G)

)
, since it is well known that χ(G) ≥ ω(G) for any graph G . We can 

easily observe that ω
(
N (G)

) ≥ �(G). However, it can happen that ω
(
N (G)

) � �(G). To see this, we consider for instance 
the direct product graph Kr × Kt with r, t ≥ 3. By the adjacency rules of direct product and two-step graphs, we observe 
that N (Kr × Kt) ∼= Krt . Therefore, we have ω

(
N (Kr × Kt)

) = rt while �((Kr × Kt)) = (r − 1)(t − 1). In fact, we have the 
following result.

Corollary 8. For any positive integer 
 there exists a graph G such that ω
(
N (G)

) − �(G) > 
.

In the next result, we give a large family of graphs whose two-step graphs are perfect.

Theorem 9. If G is a C2k-free graph for each k ≥ 2, then χi(G) = ω
(
N (G)

)
.

6
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Proof. We first prove that N (G) is a chordal graph. Suppose to the contrary that Ck : v1 v2 · · · vk v1 is a chordless 
cycle in N (G) for some k ≥ 4. Therefore, there exist u1, . . . , uk ∈ V (G) such that {v1, v2} ⊆ N(u1), . . . , {vk−1, vk} ⊆
N(uk−1), {vk, v1} ⊆ N(uk). Because Ck is chordless, it follows that {u1, u2, . . . , uk} ∩ {v1, v2, . . . , vk} = ∅. If the vertices ui

are pairwise distinct, then v1u1 v2 · · · vk−1uk−1 vkuk v1 is a cycle in G on 2k vertices, a contradiction. Therefore, us = ut for 
some 1 ≤ s < t ≤ k. If t = s + 1, then vs vs+2 is a chord of Ck in N (G). If t > s + 1, then vs vt is a chord of Ck in N (G). Each 
case leads to a contradiction. Therefore, N (G) is chordal, and so it is a perfect graph. Thus, χ

(
N (G)

) = ω
(
N (G)

)
, and by 

relationship (3), χi(G) = ω
(
N (G)

)
. �

Let T be a tree and Q be a maximum clique in N (T ). So, any two vertices of Q have a common neighbor in T . Since T
is a tree, Q is independent in T . With this in mind, a unique vertex is adjacent to all vertices of Q in T . (Indeed, otherwise 
the subgraph of T induced by the union of Q and the set of vertices each of which is adjacent to at least two vertices in 
Q contains a cycle, a contradiction.) This implies that χi(T ) = ω

(
N (T )

) = �(T ). Consequently, Theorem 7 is an immediate 
consequence of Theorem 9. However, as mentioned earlier, the proof of Theorem 7 provides an efficient way to obtain an 
optimal injective coloring of an arbitrary tree.

Note that the condition of being C2k-free for each k ≥ 2 cannot be removed in Theorem 9. To see this, consider the 
cycle C4t+2 for t ≥ 2. It is easy to see that N (C4t+2) ∼= 2C2t+1, and so χi(C4t+2) = χ

(
N (C4t+2)

) = 3 �= 2 = ω
(
N (C4t+2)

)
. In 

fact, this example shows that the equality in Theorem 9 does not necessarily hold even if G is a perfect graph. However, it 
remains true for several infinite families of graphs containing even cycles as induced subgraphs.

Theorem 10. If the complement G of a graph G is a bipartite graph, then χi(G) = ω
(
N (G)

)
.

Proof. Let G be a graph of order n, and let X and Y be the partite sets of G with |X | ≤ |Y |. Since G is bipartite, both X
and Y are cliques in G . If G is a complete bipartite graph, then G is isomorphic to the disjoint union K |X | + K |Y | . In such a 
situation, we have

N (G) ∼=
⎧⎨
⎩

Kn if |Y | ≤ 2,

K |X | + K |Y | if |X | ≤ 2 and |Y | ≥ 3,

K |X | + K |Y | if |X | ≥ 3.

In each case, χi(G) = χ
(
N (G)

) = ω
(
N (G)

) ∈ {1, |Y |}.
So, in what follows we may assume that G is not complete bipartite. Therefore, [X, Y ] ⊆ E(G) is nonempty. We distin-

guish two cases depending on |X |.
Case 1. |X | ≥ 3. Assume first that [X, Y ] = {x1 y1, . . . , xk yk} is a matching in G . Since Y is a clique in G , we deduce by 
the structure of N (G) that xi is adjacent to all vertices in Y \ {yi} in N (G) for each 1 ≤ i ≤ k. Moreover, x1 y1, . . . , xk yk /∈
E
(
N (G)

)
. We also observe that [X \ {x1, . . . , xk}, Y \ {y1, . . . , yk}] is empty in N (G). In such a situation, ω

(
N (G)

) = |Y |
because |Y | ≥ |X |. Let f assign the colors

• 1, . . . , k to the vertices in {x1, y1}, . . . , {xk, yk}, respectively,
• k + 1, . . . , |Y | to the other vertices of Y (if any), and
• k + 1, . . . , |X | to the other vertices of X (if any).

It is readily seen that f is a coloring of N (G) that assigns |Y | colors to the vertices of V
(
N (G)

) = V (G). Therefore, 
χi(G) = χ

(
N (G)

) ≤ |Y | = ω
(
N (G)

)
. Since also, χ

(
N (G)

) ≥ ω
(
N (G)

)
we obtain the desired equality.

Assume now that [X, Y ] is not a matching. This means that |NG (x) ∩ Y | ≥ 2 or |NG(y) ∩ X | ≥ 2 for some x ∈ X or y ∈ Y , 
respectively. Let X ′ = {x ∈ X : |NG(x) ∩ Y | ≥ 2} and Y ′ = {y ∈ Y : |NG(y) ∩ X | ≥ 2}. By the adjacency rule of N (G), we 
have NN (G)(x) ∩ Y = Y and NN (G)(y) ∩ X = X for any x ∈ X ′ ∪ (NG(Y ′) ∩ X) and y ∈ Y ′ ∪ (NG (X ′) ∩ Y ), respectively. It 
is not hard to see that both Q 1 = X ∪ Y ′ ∪ (NG(X ′) ∩ Y ) and Q 2 = Y ∪ X ′ ∪ (NG(Y ′) ∩ X) are cliques in N (G). Let now 
X ′′ = X \ (

X ′ ∪ (NG(Y ′) ∩ X)
)

and Y ′′ = Y \ (
Y ′ ∪ (NG(X ′) ∩ Y )

)
. Note that each vertex x ∈ X ′′ (resp. y ∈ Y ′′) has at most one 

neighbor in Y (resp. X), and this neighbor belongs to Y ′′ (resp. X ′′), necessarily. This implies that [X ′′, Y ′′] is a matching in 
G . Consider next that [X ′′, Y ′′] = {x′′

1 y′′
1, . . . , x′′

r y′′
r } (see Fig. 1). Again by using the adjacency rule of N (G), we observe that 

none of the edges x′′
1 y′′

1, . . . , x′′
r y′′

r appears in N (G).
Assume first that |X ′′| ≥ |Y ′′|. We consider a function g that assigns the colors

• 1, . . . , r to the vertices in {x′′
1, y′′

1}, . . . , {x′′
r , y′′

r }, respectively,
• r + 1, . . . , |X ′′| to the other vertices in X ′′ (if any),
• |X ′′| + 1, . . . , |X | to the vertices in X \ X ′′ ,
• |X | + 1, . . . , |Q 1| to the vertices in Q 1 \ X , and
• r + 1, . . . , |Y ′′| to the other vertices in Y ′′ (if any).
7
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X

Y

X ′ X ′′
X ′ ∪ (NG(Y ′) ∩ X)

Y ′ ∪ (NG(X ′) ∩ Y )

Y ′ Y ′′

︷ ︸︸ ︷
H H H H H H H H H H H H H H H H H H H H H H H H H

H H H H H H H H H H H H H H H H H H H H H H H H H︸ ︷︷ ︸

• . . . . • • • •...
x′′

1 x′′
r

• . . . . • • • •...
y′′

1 y′′
r

Fig. 1. The graph G described in Case 1 of the proof of Theorem 10 when [X, Y ] is not a matching.

Note that g is a coloring of N (G) assigning |Q 1| colors to the vertices of N (G). Therefore, χi(G) = χ
(
N (G)

) ≤ |Q 1| ≤
ω

(
N (G)

)
. Now, since χ

(
N (G)

) ≥ ω
(
N (G)

)
we obtain the desired equality.

In a similar fashion, we deduce that χi(G) = χ
(
N (G)

) ≤ |Q 2| ≤ ω
(
N (G)

)
when |Y ′′| ≥ |X ′′|, and again as χ

(
N (G)

) ≥
ω

(
N (G)

)
we get the desired equality when |X | ≥ 3.

Case 2. |X | ≤ 2. We now consider two possibilities depending on |Y |.
Subcase 2.1. |Y | ≥ 3. Since G is not complete bipartite, there exists an edge xy ∈ E(G) in which x ∈ X and y ∈ Y . If |X | = 1, 
then it is easy to see that N (G) ∼= Kn or N (G) ∼= Kn − xy depending on |[X, Y ]| ≥ 2 or |[X, Y ]| = 1, respectively. In both 
cases, the desired equality holds. Let x, x′ ∈ X be two distinct vertices. If NG (x) ∩ NG (x′) �= ∅, then N (G) = Kn . So, we assume 
that x and x′ have no common neighbor in G . In such a situation, we conclude that

N (G) ∼=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Kn − xx′ if both x and x′ have at least two neighbors in Y ;
Kn − {xx′, x′ y′} if x has at least two neighbors and x′ has a unique neighbor

y′ in Y ;
H if x has at least two neighbors in Y and x′ is not adjacent to

any vertex in Y , where H is isomorphic to the graph obtained
from Kn−1 by joining a new vertex x′ to degG(x) − 1 vertices
of Y ;

(Kn−1 − xy) + x′ y if x has a unique neighbor y ∈ Y and x′ does not have any
neighbor in Y ;

F if x and x′ have unique neighbors y and y′ in Y , respectively,
where F is obtained from Kn−2 on the vertices in Y by joining
new vertices x and x′ to all vertices in Y \ {y} and Y \ {y′},
respectively;

Kn−2 + {x, y} otherwise.

In all cases above, we have χi(G) = χ
(
N (G)

) = ω
(
N (G)

)
.

Subcase 2.2. |Y | ≤ 2. It is a simple matter to see that

N (G) ∈ {
2K1, K3, K2 + K1, K4,2K2, K4 − xy

}
,

in which x and y are two vertices of K4. In each case, we get the desired equality. This completes the proof. �
In view of the usefulness of the two-step operation, it is natural to separately consider its structural properties, such 

as finding forbidden subgraphs in two-step graphs, or characterizing the graphs that can be realized as the two-step graph 
of some graph. For instance, with respect to the latter, we observe that a triangle-free graph G with �(G) ≥ 3 is not the 
two-step graph of any graph.

Remark 11. If a connected triangle-free graph G on at least two vertices is the two-step graph of some graph, then G is an 
odd cycle.

Proof. Let G be a connected triangle-free graph of order n ≥ 2 different from an odd cycle. Suppose G is isomorphic to 
N (H) for some (necessarily connected) graph H . If H has maximum degree 2, then H is either a cycle or a path, whose 
8
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two-step graph is either a cycle (when H is an odd cycle) or is disconnected, which is not possible. On the other hand, if H
has a vertex v of degree at least 3, then any three neighbors of v induce a triangle in N (H), a contradiction. �
4. Perfect injectively colorable graphs

A problem that connects coding theory to domination in graphs asks whether there exists a minimum dominating set D
in a graph G such that every vertex of G has in its closed neighborhood exactly one vertex of D . Such a dominating set is 
known under different names, such as an efficient dominating set [2] or an independent perfect dominating set [30] or a perfect 
code. The problem of characterizing the graphs that admit such a dominating set goes back to the 1970s [3], and it is still 
in general not resolved. Note that any such graph has its domination number equal to the packing number. Furthermore, 
partitions of the vertex of a graph into perfect codes have been considered as early as in the 1980’s, where the main focus 
was on the class of hypercubes [38]. In relation with these studies and connecting them to our work, we present three 
types of partitions of graphs into open packings.

First, consider a graph G that admits a partition into ρo(G)-sets. Based on the relationship (3), this implies that G has 
an injective coloring in which every color class has the same number of vertices. For instance, if G is a cycle C4r , then 
ρo(C4r) = 2r and χi(C4r) = 2, and the desired partition holds for cycles C4r . Other sporadic examples of graphs with this 
property are the hypercubes Q 3 and Q 4, the complete bipartite graphs Kt,t and the Sierpiński graph S2

4. To formalize, a 
graph G is a perfect injectively colorable graph if it has an injective coloring in which every color class forms a ρo(G)-set. 
Note that such an injective coloring of G is necessarily a χi(G)-coloring. Our aim is to initiate the study of perfect injectively 
colorable graphs, and here we give some initial results. From this definition, and due to (3), we readily deduce the following 
result.

Proposition 12. A graph G is a perfect injectively colorable graph if and only if there is a χ(N (G))-coloring in which all color classes 
have the same cardinality equal to ρo(G).

An application of the result above can be for instance while considering paths Pn , n ≥ 2. As previously mentioned, N (Pn)

is isomorphic to two disjoint paths P�n/2� and P�n/2� . Hence, we deduce the following claims.

• If n = 4p for some integer p ≥ 1, then N (P4p) is formed by two disjoint paths P2p . This means there exists a 
χ

(
N (P4p)

)
-coloring in which every color class has cardinality 2p. Since ρo(P4p) = 2p, it follows P4p is perfect in-

jectively colorable.
• If n = 4p + 1 or n = 4p + 3 for some integer p ≥ 1, then N (Pn) is formed by two disjoint paths P�n/2� and P�n/2� (of 

different orders, one even and one odd). We easily observe that there is a color class in any χ
(
N (Pn)

)
-coloring that 

has cardinality less than ρo(Pn). Thus, Pn is not perfect injectively colorable.
• If n = 4p + 2 for some integer p ≥ 1, then N (Pn) is formed by two disjoint paths P2p+1. Now there is a color class in 

any χ
(
N (Pn)

)
-coloring that has cardinality less than ρo(Pn). Again, Pn is not perfect injectively colorable.

We next turn our attention to graphs of diameter 2. Note that ρo(G) ≤ 2 if diam(G) = 2. If, in addition, G is triangle-
free, then a partition of V (G) into ρo(G)-sets coincides with the existence of a perfect matching in G . We generalize this 
observation to a characterization of diameter 2 perfect injectively colorable graphs.

Proposition 13. If G is a graph with diam(G) = 2, then G is a perfect injectively colorable graph if and only if either each edge of G
lies in a triangle or there exists a perfect matching M in G such that each edge of M does not lie in a triangle.

Proof. Let G be a graph with diam(G) = 2. Firstly, if each of its edges lies in a triangle, then every two vertices have a 
common neighbor, so ρo(G) = 1. We infer that χi(G) = |V (G)|, and G is a perfect injectively colorable graph. Secondly, 
consider G has a perfect matching M such that each edge of M does not lie in a triangle. Note that {u, v} is an open 
packing if uv is an edge that does not lie in a triangle. Thus, ρo(G) = 2, and the end-vertices of any edge from M form an 
ρo(G)-set. We readily infer that G is a perfect injectively colorable graph.

Conversely, let G be a perfect injectively colorable graph (with diam(G) = 2). We may further assume that there is 
an edge e that does not lie in a triangle. By the same argument as above, we infer that ρo(G) = 2. Hence V (G) can be 
partitioned into ρo(G)-sets of cardinality 2. Since diam(G) = 2, each ρo(G)-set consists of two adjacent vertices. Thus, G
has a matching, which saturates all vertices of G , that is, a perfect matching. �

A weaker form of perfectness is obtained when one requires that each open packing in a partition given by an injective 
coloring is maximal, though not necessarily maximum. (An open packing P is maximal if after adding any new vertex to P
the resulting set is not an open packing.) An analogous concept for standard graph coloring is already established. Namely, 
a fall coloring of a graph G , as introduced by Dunbar et al. [12], is a partition of V (G) into maximal independent sets. 
The concept is also known as idomatic partition [26,43]. Note that a graph G need not have a fall coloring, and if it does, 
the minimum number of colors required for such a coloring is the fall chromatic number of G . A naturally interesting case 
9



B. Brešar, B. Samadi and I.G. Yero Discrete Mathematics 346 (2023) 113348
is when the fall chromatic number equals the chromatic number of a graph. Among various studies of fall colorings, we 
mention two recent papers considering their complexity issues [9,29]

Taking this terminology into account, call a partition of the vertex set of a graph G into maximal open packings an 
injective fall coloring. If a graph G admits such a partition, then G is an injectively fall colorable graph. If, in addition, G admits 
an injective fall coloring with χi(G) colors, then G is an injectively fall χi(G)-colorable graph. Clearly, every perfect injectively 
colorable graph is an injectively fall χi(G)-colorable graph, but the converse is not true; take the graph house as a small 
example. Also, every injectively fall χi(G)-colorable graph is an injectively fall colorable graph. While we do not know if the 
converse is also true, we prove that these two classes coincide within diameter 2 graphs.

Proposition 14. Let G be a graph with diam(G) = 2. The following statements are equivalent:

(i) G is an injectively fall χi(G)-colorable graph;
(ii) G is an injectively fall colorable graph;

(iii) there exists a matching M in G such that each edge of M does not belong to a triangle, and every edge incident with a vertex not 
in V (M) lies in a triangle.

Proof. The direction (i) =⇒ (ii) is trivial. To see (ii) =⇒ (iii), let G be an injectively fall colorable graph, and let P =
{P1, . . . , P |P |} be the color partition of an injective fall coloring of G . Since G has diameter 2, each Pi either consists of a 
vertex or of two adjacent vertices. If Pi consists of two adjacent vertices u and v , then, since Pi is an open packing, the 
edge uv does not lie in a triangle. Thus the edges that correspond to sets Pi with |Pi | = 2 form a matching M in G as 
stated by condition (iii). On the other hand, if |Pi | = 1 with Pi = {u}, then Pi being maximal implies that any edge uv must 
be contained in a triangle for otherwise {u, v} would be an open packing containing Pi . Thus (iii) is proved.

To prove (iii) =⇒ (i), first note that the partition of V (G), P = {{u, v} : uv ∈ M} ∪ {{w} : w is not incident with an edge
of M} yields an injective coloring of G . Indeed, since edges of M do not lie in a triangle, their end-vertices form an open 
packing, while the singletons always form an open packing. Thus, P is an open packing partition of G . Since diam(G) = 2, 
each {u, v} ∈P is clearly a maximal open packing in G . Let {w} ∈P . If {w} is not a maximal open packing, then there exists 
an open packing {w, z} in G . Moreover, wz ∈ E(G) as diam(G) = 2. Now, wz lies in a triangle by the hypothesis, which 
contradicts the fact that {w, z} is an open packing. Consequently, G is injectively fall colorable. To see that |P | = χi(G), note 
that every vertex, which is not incident with M , receives a unique color in any injective coloring of G , since it is adjacent 
to all other vertices in N (G). Hence, χi(G) ≥ |V (G) \ V (M)| + |V (M)|/2 = |V (G)| − |V (M)| + |V (M)|/2 = |P |. Thus G is an 
injectively fall χi(G)-colorable graph. �

We continue with analyzing the case of even cycles with respect to containment in one of the three classes of graphs 
that we study in this section. To do so, we recall that the lower open packing number of G , denoted ρo

L (G), is the minimum 
cardinality of a maximal open packing of G . We make use of the next lemma. Moreover, we observe that n ≡ 2 (mod 4) and 
n ≡ 0 (mod 3) is equivalent to n ≡ 6 (mod 12).

Lemma 15. ([21]) Given an integer n, n ≥ 3, we have ρo
L (Cn) = � n

3 � + 1 if n ≡ 2 (mod 6), and ρo
L (Cn) = � n

3 � otherwise.

Proposition 16. An even cycle Cn is injectively fall colorable if and only if either n ≡ 0 (mod 4) or n ≡ 6 (mod 12). In addition, Cn

is perfect injectively colorable if and only if n ≡ 0 (mod 4) or n = 6. Also, it is injectively fall χi(Cn)-colorable if and only if n ≡ 0
(mod 4), or n ≡ 6 (mod 12).

Proof. We start the proof by noting that ρo(Cn) = 2� n
4 � for any even integer n, and χi(Cn) = 2 if n ≡ 0 (mod 4), while 

χi(Cn) = 3 if n ≡ 2 (mod 4).
Let n ≡ 0 (mod 4). Note that the pattern “1122 . . .” repeated along the vertices of the cycle yields an injective 2-coloring 

of Cn , in which each color class has cardinality n
2 = ρo(Cn). Thus Cn is perfect injectively colorable (in particular, it is both 

injectively fall χi(Cn)-colorable and injectively fall colorable) in this case.
From now on, let n ≡ 2 (mod 4). First observe that C6 is a perfect injectively colorable graph. Next, we write n = 4q + 2

for some integer q ≥ 2. Since ρo(Cn) = 2� n
4 � = 2q and χi(Cn) = 3, the equality ρo(Cn)χi(Cn) = n does not hold, which 

implies that Cn is not perfect injectively colorable graph.
Now, let n ≡ 6 (mod 12). Then the pattern “123 . . .” repeated along the vertices of the cycle yields an injective χi(Cn)-

coloring of Cn , in which each color class is a maximal open packing. Thus, Cn is both injectively fall χi(Cn)-colorable and 
injectively fall colorable, as claimed.

It remains to consider the case when n is not congruent to 6 modulo 12
(
and n ≡ 2 (mod 4)

)
. We claim that in this 

case, regardless of how an injective k-coloring (k ≥ 3) of Cn is constructed, at least one of the color classes will not be 
a maximal open packing of Cn . Let f be an injective k-coloring function of Cn for which any color class is maximal. Let 
Xi be the set of vertices with color i under f . Since n is not congruent to 6 modulo 12 and n ≡ 2 (mod 4), it follows 
that n = 12q + 2 or n = 12q′ + 10 for some integers q, q′ ≥ 1. If n = 12q + 2, then ρo

L (Cn) = 4q + 2 by Lemma 15. So, 
12q +2 = |X1| +· · ·+ |Xk| ≥ k(4q +2) ≥ 3(4q +2), a contradiction. Moreover, ρo(Cn) = 4q′ +4 if n = 12q′ +10. So, 12q′ +4 =
L

10
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|X1| + · · · + |Xk| ≥ k(4q′ + 4) ≥ 3(4q′ + 4), which is again a contradiction. Therefore, Cn is not injectively fall colorable. This 
also implies that Cn is not injectively fall χi(Cn)-colorable. This completes the proof. �

In the rest of this section, we focus on the family of hypercubes {Q n}n∈N , where Q 1 = K2, and Q n = Q n−1 � K2 for 
n ≥ 2. Recall that a perfect code (also called a 1-perfect code) in a graph G is a set which is at the same time a packing and 
a dominating set. A code-coloring of G is a partition of V (G) into perfect codes. Clearly, not all graphs admit a perfect code 
let alone a code-coloring, where for a simple example one can take Q 2 = C4. It is also easy to see that any two antipodal 
vertices of Q 3 form a perfect code, and thus one can find a code-coloring in the 3-cube. Note that each color class of a 
code-coloring of a graph G presents a maximum packing, that is, a ρ(G)-set of G .

First, we give a general observation about the specific construction of the partition into ρo(G)-sets of prisms, which is 
based on the existence of code-colorings.

Lemma 17. If a graph G has a code-coloring, then G � K2 is a perfect injectively colorable graph.

Proof. Let G be a graph and P = {P1, . . . , P |P |} a code-coloring of G . By definition, for any i, the set Pi is a maximum 
packing and a dominating set in G . Clearly, Pi × V (K2) is an open packing and at the same time a total dominating set in 
G � K2. We infer that Pi × V (K2) is an ρo-set of G � K2. Consequently, Q = {P1 × V (K2), . . . , P |P | × V (K2)} is a partition 
into ρo-sets of G � K2. �

Mollard [34] considered code-colorings of regular graphs, and proved the following result.

Theorem 18. [34, Theorem 7] Let G and H be regular graphs of the same degree n. If H is bipartite and there exists a code-coloring 
in G and in H, then there exists a code-coloring in G � H � K2 .

By inductively applying Theorem 18, we get that Q 2k−1 has a code-coloring for every k ∈ N , and combining this with 
Lemma 17 we infer the following result.

Theorem 19. If k ∈N , then Q 2k is a perfect injectively colorable graph.

The problem of characterizing the hypercubes, which are perfect injectively colorable or injectively fall colorable, is still 
open. Beside Theorem 19, we have a few additional sporadic examples. Clearly, Q 3 is a perfect injectively colorable graph, 
and one can also check that Q 5 is as well. We suspect that this happens also with Q 6, since the set

S = {000000,000001,001110,001111,110110,110111,111000,111001},
given in a binary representation of Q 6 is a ρo(Q 6)-set of cardinality 8, which leads to a partition of V (Q 6) into ρo(Q 6)-sets. 
These facts bring the following question.

Problem 1. For which positive integers n, is the hypercube Q n a perfect injectively colorable graph (an injectively fall 
colorable graph, respectively)?

Clearly, an answer to the question above passes first through computing the value of the open packing number of 
hypercubes. Hence, the following question is also worthwhile.

Problem 2. Which is the value of ρo(Q n) for any n ≥ 6?

We conclude this section with some other natural open problems. Note that Propositions 13 and 14 provide charac-
terizations of the three classes among diameter 2 graphs, that is, the graphs G with ρo(G) ≤ 2. The next small step in 
characterizing the three classes of graphs is presented in the following problem.

Problem 3. Characterize the perfect injectively colorable graphs, the injectively χi(G)-fall colorable graphs, and the injec-
tively fall colorable graphs G , respectively, among graphs G with ρo(G) = 3.

As noted in Proposition 14, the classes of injectively χi(G)-fall colorable graphs and injectively fall colorable graphs 
coincide in graphs G with diameter 2. Actually, we do not know if the two classes differ, though we suspect they do. 
Anyway, we pose it as the following question.

Problem 4. Does there exist a graph G , which is injectively fall colorable, but not injectively χi(G)-fall colorable?
11
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[13] T. Dvořák, I. Havel, J.M. Laborde, P. Liebl, Generalized hypercubes and graph embedding with dilation, Rostock. Math. Kolloqu. 39 (1990) 13–20.
[14] G. Exoo, F. Harary, Step graphs, J. Comb. Inf. Syst. Sci. 5 (1980) 52–53.
[15] F. Foucaud, H. Hocquard, S. Mishra, N. Narayanan, R. Naserasr, É. Sopena, P. Valicov, Exact square coloring of subcubic planar graphs, Discrete Appl. 

Math. 293 (2021) 74–89.
[16] R. Hammack, W. Imrich, S. Klavžar, Handbook of Product Graphs, second edition, CRC Press, Boca Raton, FL, 2011.
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