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1. Introduction

A (continuous, linear) operator T defined on a separable F -space X is said to be 
hypercyclic if there exists f ∈ X such that {Tnf}n≥1 is dense in X . We refer to [17] and 
[4] for further information about hypercyclic operators.

The term λ-commuting was introduced by J.B. Conway and G. Prǎjiturǎ in [14]. More 
recently, a complex number λ is called an extended eigenvalue of an operator T if there 
exists a non-zero continuous operator X, which is called an extended λ-eigenoperator of 
T , such that TX = λXT . Extended eigenvalues and extended eigenoperators are natu-
rally born to improve V. Lomonosov’s famous result on the invariant subspace problem 
([13,19,24]) and their study is currently under development (see [21,26]).

Let H(C) be the space of entire functions endowed with the topology of uniform 
convergence on compact subsets. G. D. Birkhoff ([10]) proved in 1929 that translation 
operators on H(C) are hypercyclic. In 1952, G. R. MacLane ([25]) proved the same 
result for the differentiation operator D on H(C). These results appear to be the first 
hypercyclicity theorems for operators.

In 1991, G. Godefroy and J. H. Shapiro (see [16]) unified Birkhoff’s and MacLane’s 
results by proving that each non-scalar operator that commutes with D is hypercyclic. 
The simplicity and beauty of this statement is striking, and it is worthy to note that 
there is no analogous result in the context of Banach spaces since contractions on these 
spaces are never hypercyclic. This result has been improved and extended in different 
directions, making [16] one of the most cited papers on hypercyclic operators. A step 
further in Godefroy and Shapiro’s result arises with the following question:

Suppose that T is an operator on H(C) which is an extended λ-eigenoperator of D; 
that is, DT = λTD. Is T hypercyclic?

At first glance, this question seems difficult because there are examples of non-trivial 
extended eigenoperators of D which are not hypercyclic. The first one was discovered by 
L. Bernal and A. Montes (see [7]), who showed that the composition operator Cλ,bf(z) =
f(λz + b) induced by the affine endomorphism ϕ(z) = λz + b is hypercyclic if and 
only if ϕ is a proper translation (λ = 1 and b �= 0). It is easy to see that Cλ,b is an 
extended λ-eigenoperator of D. From these facts, it can be suspected that there are 
many extended eigenoperators of D that are not hypercyclic. But, is there a non-trivial 
one that is hypercyclic? R. M. Aron and D. Markose answered this question affirmatively. 
Denoting Tλ,bf(z) = f ′(λz + b), then Tλ,b is an extended λ-eigenoperator of D, and Tλ,b

is hypercyclic if and only if |λ| ≥ 1 (see [1,15,23]).
Along the paper, φ will be a non-zero entire function of exponential type: there are 

constants A, B > 0 such that |φ(z)| ≤ AeB|z| for all z ∈ C. We will denote by spanA

the subspace generated by a subset A of a vector space.
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In this article, we fully characterize when an extended λ-eigenoperator of D is hyper-
cyclic. Our main result characterizes the λ− commutant of D on H(C) and summarizes 
all the results on hypercyclicity and mixing properties. Let us recall that an operator T
is called topologically mixing if for any non empty open subsets U, V , there exists N ∈ N

such that Tn(U) ∩ V �= ∅ for all n ≥ N (equivalently for any subsequence of natural 
numbers (nk) ⊂ N there exists a function f such that {Tnkf}k≥1 is dense in H(C)). 
Our Main Theorem is then stated as follows:

Main Theorem. An operator T : H(C) → H(C) is an extended λ-eigenoperator of D if 
and only if T factors as T = Rλφ(D), where Rλf(z) = f(λz) is the dilation operator 
and φ is an entire function of exponential type.

Moreover, the following statements are equivalent for T = Rλφ(D) when λ �= 1:

a) The operator T is hypercyclic.
b) The operator T is topologically mixing.
c) The zero-set of φ is non-trivial (i.e., φ−1(0) �= ∅, C) and |λ| ≥ 1.

The paper is organized as follows. In Section 2, we introduce some preliminary results, 
including the Hypercyclicity Criterion of C. Kitai [20], in a version formulated by J. Bès 
and A. Peris in [9]. We show that an extended λ-eigenoperator T of D can be factorized 
as T = Rλφ(D), where Rλf(z) = f(λz) and φ is an entire function of exponential type. 
So we can study the hypercyclicity of T in terms of the properties of φ and λ. We also 
show that φ has no zeros if and only if Rλφ(D) is a nonzero multiple of Cλ,b, and it is 
not hypercyclic in this case.

We divide the rest of the proof of the Main Theorem in cases (assuming that φ has 
an isolated zero) which are treated in successive sections:

3: |λ| < 1 and λn = 1 for some n ∈ N;
4: |φ(0)| > 1 and |λ| ≥ 1;
5: 0 < |φ(0)| ≤ 1 and |λ| > 1;
6: 0 < |φ(0)| ≤ 1 and |λ| = 1;
7: φ(0) = 0 and |λ| ≥ 1.

Thus, the main result is obtained by considering different cases for the values of λ and 
φ(0), which share a similar flavor to recent studies on algebras of hypercyclic vectors for 
convolution operators by F. Bayart, J. Bès and coworkers [8,2].

Each particular case is solved by a different method. Using some arguments borrowed 
from [16], we prove the cases when |λ| < 1 and when λ is a root of the unity. However, 
new ideas are needed to solve the rest of the cases.

In the case when |λ| ≥ 1 and |φ(0)| > 1, we analyze the action of T on the exponentials 
eaz, and we show that T has a dense generalized kernel. Then we construct the right 



4 I.F.Z. Bensaid et al. / Journal of Functional Analysis 282 (2022) 109391
inverse required by the Hypercyclicity Criterion using the triangularity of T and a linear 
algebra argument.

When |λ| > 1 and 0 < |φ(0)| ≤ 1, the operator T = Rλφ(D) is not injective. So 
the right inverse needed to apply the Hypercyclicity Criterion is not unique, and the 
construction in the previous section does not provide a right inverse in this case. However, 
using the Pólya representation of an entire function, we obtain an integral representation 
of the powers of the operator which allows us to find a sequence of right inverses for the 
powers of the operator. With this sequence of right inverses and the Hypercyclicity 
Criterion we prove the desired result.

The case 0 < |φ(0)| ≤ 1 and λ an irrational rotation is the most intriguing one. When 
λ is a root of unity, the problem can be solved using a result on powers of hypercyclic 
operators, but when λ is an irrational rotation the solution is different. In many cases; 
e.g., when φ(z) is a polynomial p(z) or φ(z) = p(z)ez, we can deduce the result by 
standard arguments. However, as far as we know, these arguments cannot be used in the 
general case, and the problem requires an argument involving normal families. Montel’s 
Theorem plays an important role in guaranteeing the universality of a family of functions 
on the complex plane: it is the key of the proof.

A different treatment is needed also in the case φ(0) = 0, including the operator Tλ,b, 
which is different from those used in [1,15,23]. We need to refine the computations in the 
case |φ(0)| > 0 and |λ| ≥ 1 using the complex Volterra operator.

2. Some preliminary results

We will need the following version of the Hypercyclicity Criterion formulated by J. 
Bés and A. Peris in [9]. Although the original Kitai-Gethner-Shapiro criterion and the 
Bés-Peris version are equivalent (see [17] p. 81), the latter is easier to use in practice.

Theorem 2.1 (Hypercyclicity Criterion). Let T be an operator on an F -space X satisfying 
the following conditions: there exist X0 and Y0 dense subsets of X , a sequence (nk) of 
non-negative integers, and (not necessarily continuous) mappings Snk

: Y0 → X so that:

i) Tnk → 0 pointwise on X0.
ii) Snk

→ 0 pointwise on Y0.
iii) TnkSnk

→ IdY0 pointwise on Y0.

Then the operator T is hypercyclic.

Observe that if T satisfies the Hypercyclicity Criterion for the full sequence of natural 
numbers, then T is topologically mixing.

In many cases, we obtain that the operators we study are chaotic in the Devaney 
sense, that is: they are hypercyclic and have a dense set of periodic points (see [17, 
Section 1.2]). Moreover, we will prove that these operators are frequently hypercyclic in 
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several cases. Recall that an operator T defined on an F-space X is said to be frequently 
hypercyclic if there exists some f ∈ X such that for any non-empty subset U , the subset 
{n ∈ N : Tnf ∈ U} has a positive lower density in N, that is:

lim inf
N→∞

card{n ≤ N, : Tnf ∈ U}
N + 1 > 0.

To obtain frequently hypercyclicity, we will use the following sufficient condition dis-
covered by F. Bayart and S. Grivaux (see [3]). The next version was formulated by A. 
Bonilla and KG. Grosse-Erdmann in [12]:

Theorem 2.2 (Frequently Hypercyclicity Criterion). Let T be an operator on an F -space 
X if there is a dense subset X0 and a map S : X0 → X0 such that, for any x0 ∈ X0

i)
∑∞

n=0 T
nx0 converges unconditionally.

ii)
∑∞

n=0 S
nx0 converges unconditionally.

iii) TSx0 = x0.

Then T is frequently hypercyclic.

Next, we give a result inspired by [22] that will be central in our discussion.

Proposition 2.3. Let T be an operator on H(C). Then DT = λTD for some 0 �= λ ∈ C

if and only if T = Rλφ(D) with Rλf(z) = f(λz) for z ∈ C and φ an entire function of 
exponential type.

Proof. Suppose that DT = λTD with λ �= 0. Given f ∈ H(C) and λ ∈ C \ {0}, the 
operator R1/λ is an extended (1/λ)-eigenoperator of D, that is, DR1/λ = 1

λR1/λD. 
Besides,

R1/λTDf = 1
λ
R1/λDTf = 1

λ
λDR1/λT = DR1/λTf.

Hence, R1/λT commutes with D. By Proposition 5.2 in [16], there exists an entire func-
tion φ of exponential type such that R1/λT = φ(D). Since R1/λ is invertible with inverse 
Rλ, we deduce that T = Rλφ(D). Conversely, if there exists an entire function φ of 
exponential type such that T = Rλφ(D), since Dφ(D) = φ(D)D, DT = λTD. �

The following result deals with the case in which φ has no zeros. Thus we can assume 
that φ has an isolated zero in the remaining sections.

Proposition 2.4. Let 1 �= λ ∈ C. Then T = Rλφ(D) is a multiple of Cλ,b for some scalar 
b if and only if φ has no zeros on C. In this case T is not hypercyclic.
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Proof. If φ(z) �= 0 for all z ∈ C, we can define the logarithm of φ(z) (see, e.g., p. 226 
in [18]), and there exists an entire function g such that φ(z) = eg(z). Since φ is entire 
of exponential type, g(z) = az + b for some a, b ∈ C. Thus Tf(z) = ebf(λz + a), which 
is not hypercyclic when λ �= 1 (see [7]). Indeed, set c = a/(1 − λ), the fixed point of 
the map λz + a. If f is hypercyclic for T then, the orbit Tnf(c) should be dense in C. 
However the sequence Tnf(c) = enbf(c) is either bounded (if |eb| ≤ 1) or diverges to 
infinity (if |eb| > 1), a contradiction. Conversely, if Rλφ(D) = μCλ,b for some scalars μ
and b, then

φ(D) = R−1
λ μCλ,b = μC1,b.

So, φ(z) = μebz for all z ∈ C. Clearly, φ has no zeros on C, and this finishes the proof. �
Propositions 2.3 and 2.4 provide a way to study our problem by looking at the prop-

erties of φ and λ.

3. The cases |λ| < 1 and λ is a root of 1

In the first case, we will show that T = Rλφ(D) is not hypercyclic. At first glance, 
one may think that the cases of Fréchet spaces and Banach spaces are similar. However, 
using some ideas of [5], we will show that in the Banach space setting, an extended 
λ-eigenoperator with |λ| < 1 is not hypercyclic. This is no longer true for Fréchet spaces.

Proposition 3.1. Let A and T be two operators on a Banach space. If T is an extended 
λ-eigenoperator of A and |λ| < 1 then T is not hypercyclic.

Proof. Assume that T is hypercyclic. Then there exists x ∈ X such that {Tnx}n≥1 is 
dense in X . Hence, {AmTnx}n≥1 is also dense in Am(X ) for each m ≥ 1. Since |λ| < 1, 
we can choose m ≥ 1 such that |λ|m‖T‖ ≤ 1. Observing that AmTn = λnmTnAm, we 
have:

‖AmTnx‖ = |λ|nm‖TnAmx‖ ≤ |λ|nm‖Tn‖‖Amx‖ ≤ ‖Amx‖.

Hence, we get a contradiction, and T cannot be hypercyclic. �
Proposition 3.1 is not true in Fréchet spaces:

Example 3.2. Let us recall the operator Tλ,bf = f ′(λz + b) introduced by Aron and 
Markose. For |λ| > 1, Tλ,b is hypercyclic. On the other hand Tλ,bD = (1/λ)DTλ,b. Hence 
D is a hypercyclic extended (1/λ)-eigenoperator of Tλ,b with |1/λ| < 1.

However, our case is not one of these examples:
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Proposition 3.3. If |λ| < 1 and T is an extended λ-eigenoperator of D then T is not 
hypercyclic.

Proof. First, we give a representation of T similar to one in the proof of Proposition 5.2 
in [16]. We consider Λ ∈ H(C)∗ defined by Λf = Tf(0). By the Hahn-Banach theorem 
and the Riesz Representation theorem, there exists a complex Borel measure μ with 
compact support in C such that

Λf = Tf(0) =
∫

f(w) dμ(w)

for all f ∈ H(C). For each α ∈ C we consider the translation operator τα defined by 
ταf(z) = f(z + α). Since

f(z + α) =
∞∑
k=0

f (k)(z)α
k

k! =
( ∞∑

k=0

αk

k! D
k

)
f(z)

we have ταT =
(∑∞

k=0
αk

k! D
k
)
T = T

(∑∞
k=0

λkαk

k! Dk
)

= Tτλα. Therefore

Tf(z) = (τzTf)(0) = (Tτλzf)(0) =
∫

f(λz + w) dμ(w)

for each f ∈ H(C). Iterating the above equality we get:

Tnf(z) =
∫

· · ·
∫

f(λnz + λn−1w1 + · · · + wn) dμ(wn) · · · dμ(w1).

Thus, if the disc D(0, R) contains the support of μ, since

|λnz + λn−1w1 + · · · + wn| ≤ M(|z|) = |λn||z| + 1 − |λ|n
1 − |λ| R,

for |z| ≤ r each element of the argument of f in the above integral lies in the disk 
D(0, M(r)). Hence, for f ∈ H(C) and |z| ≤ r we get:

|Tnf(z)| ≤ sup
|z|=M(r)

|f(z)| ‖μ‖n,

where ‖μ‖ denotes the total variation of μ.
Assume there exists f ∈ H(C) such that {Tnf}n≥1 is dense in H(C). Since |λ| < 1, 

there exists m ∈ N such that |λ|m < 1/‖μ‖. Since D has dense range, {DmTnf}n≥1 is 
dense in H(C). However, for |z| ≤ r we get

|DmTnf(z)| = |λ|mnTn(Dmf)(z)| ≤ |λ|mn‖μ‖n max
|z|≤M(r)

|Dmf(z)|

which goes to 0 as n → ∞, a contradiction. Thus T is not hypercyclic. �



8 I.F.Z. Bensaid et al. / Journal of Functional Analysis 282 (2022) 109391
When λ is a root of 1, the result of Godefroy and Shapiro for λ = 1 allows us to prove 
the following result.

Proposition 3.4. If λn0 = 1 �= λ and for some scalar b the operator T = Rλφ(D) is not 
a multiple of Cλ,b then T is hypercyclic.

Proof. If λn0 = 1 then Rn0
λ = I. Hence,

Tn0f =
(
Rλφ(D))n0f = (φ(D)φ(λD) · · ·φ(λn0−1D)

)
f.

Thus, if Φ(z) =
∏n0−1

j=0 φ(λjz) is zero then T = 0, and if Φ is a nonzero constant function, 
then φ has no zeros, and T is a multiple of Cλ,b by Proposition 2.4. On the other hand 
if Φ(z) is not constant, then Tn0 = Φ(D) is hypercyclic by [16, Theorem 5.1]. �
Remark 3.5. The previous proof entails a stronger result: the operator T in Proposi-
tion 3.4 is frequently hypercyclic, chaotic, and topologically mixing. Indeed, from [12], 
we have that Tn0 = Φ(D) is frequently hypercyclic, chaotic, and topologically mixing 
whenever Φ is non-constant. The following claim leads straight to the conclusion.

Claim. If a power Tn0 of an operator T in a F-space X is (i) frequently hypercyclic, (ii) 
chaotic or (iii) topologically mixing, then the operator T has the same property.

Proof of the Claim. The case (i) follows from [17, Theorem 9.27]. If x0 is periodic for 
Tn0 then by definition x0 is also periodic for T , therefore (ii) follows directly. Finally to 
show (iii), let U, V be two non-empty open subsets, then since the rank of T is dense, 
we get that T−j(U) is an non-empty open subset for each j = 0, · · · , n0. Now, since Tn0

is topologically mixing, there exist N0, N1, · · · , Nn0 such that

Tmn0(V ) ∩ T−j(U) �= ∅

for all m ≥ Nj , j = 0, · · · , n0. Hence,

Tmn0+j(V ) ∩ U �= ∅

for all n ≥ Nj . Let N = max{N0, · · · , Nn0}. For all, m ≥ N(n0 + 1), we obtain that 
m = nn0 + j for some 0 ≤ j < n0, n > N ≥ Nj therefore

Tm(V ) ∩ U = Tnn0+j(V ) ∩ U �= ∅,

which means that T is topologically mixing as desired.
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4. The case |φ(0)| > 1 and |λ| ≥ 1

This case can be dealt with by using a standard argument.

Proposition 4.1. Assume |φ(0)| > 1, |λ| ≥ 1, and λ is not a root of the unity. If T =
Rλφ(D) is not a multiple of Cλ,b then T is topologically mixing.

Proof. By Proposition 2.4, there exists a ∈ C, a �= 0, such that φ(a) = 0. We consider 
the subset X0 = span {e(a/λn)z ; n ≥ 0}.

Since |λ| ≥ 1 and λ is not a root of the unity, the set {a/λn : n ∈ N} has an accumu-
lation point in C; hence X0 is dense in H(C). On the other hand, since Tne(a/λk)z = 0
if n > k, Tn converges to zero pointwise on X0.

We will construct a mapping S on a dense subset Y0 such that Sny → 0 for all y ∈ Y0, 
and TS = IdY0 . First, observe that the subspace Pn of polynomials of degree less or equal 
than n is invariant under T = Rλφ(D), and the action of T on Pn can be represented by 
a finite triangular matrix with diagonal entries φ(0)λk, k ≥ 0. Since λ �= 1, T has n + 1
different eigenvalues in Pn. Thus, there exists a sequence {pk : k ≥ 0} of polynomials 
with degree of pk equal to k such that Tpk = φ(0)λkpk for all k ≥ 0, and

Y0 = span {pk(z) : k ≥ 0}

is the subspace of polynomials, which is dense. We define Spk = 1
φ(0)λk pk and extend 

S to Y0 by linearity. Since |φ(0)| > 1, Snpk → 0 as n → ∞ for every |λ| ≥ 1, hence 
Sny → 0 as n → ∞ for all y ∈ Y0. Therefore, the Hypercyclicity Criterion implies that T
is hypercyclic. Moreover, we have shown that the Hypercyclicity Criterion is satisfied for 
the full sequence of natural numbers, therefore the operator T is topologically mixing. �
Remark 4.2. Note that when |φ(0)| > 1 and |λ| > 1, the proof of the above result 
yields the frequent hypercyclicity of T . As a consequence, T is also chaotic and topo-
logically mixing. Let us check that T satisfies the Frequent Hypercyclicity Criterion. 
For that, set ek(z) = ea/λ

k , with a ∈ φ−1(0). Since aλk has an accumulation point 
X0 = span {e(a/λn)z ; n ≥ 0} is dense in H(C). Since Tnea/λ

k = 0 for n > k, it follows 
that if f ∈ X0

∞∑
n=0

Tnf

is a finite sum, therefore it converges unconditionally for any f ∈ X0. Let us define the 
linear mapping

Sek(z) = 1
φ
(

a
λk

)ek+1.

The linear mapping S satisfies that TS = I on X0. It remains to show that



10 I.F.Z. Bensaid et al. / Journal of Functional Analysis 282 (2022) 109391
∞∑
n=0

Snf

converges unconditionally for any f ∈ X0, and this fact follows if we show that for any 
R > 0 and k ≥ 0

∞∑
n=0

ρR(Snek),

converges for every seminorm ρR(f) = max|z|≤R |f(z)|. Indeed, since
∣∣∣φ( a

λr

)∣∣∣ −→ |φ(0)| > 1, as r → ∞,

there exist ε > 0 and r0 ∈ N such that for any r ≥ r0
∣∣φ (

a
λr

)∣∣ > 1 + ε. Thus,

∞∑
n=r0+k

ρR(Snek) =
∞∑

n=r0+k

ρR

(
1

φ
(

a
λk+1

)
φ
(

a
λk+2

)
· · ·φ

(
a

λk+n

)e a

λk+n z

)

=
∞∑

n=r0+k

1∣∣φ (
a

λk+1

)
φ
(

a
λk+2

)
· · ·φ

(
a

λk+n

)∣∣ρR
(
e

a

λk+n z
)

≤ C1

∞∑
n=r0+k

1∣∣φ (
a

λr0+1

)
· · ·φ

(
a

λk+n

)∣∣e |a|R
|λ|k+n

≤ C2

∞∑
n=r0+k

1
(1 + ε)k+n−r0

< ∞,

for some constants C1 and C2 which are independent of n. Hence T is frequently hyper-
cyclic

5. The case 0 < |φ(0)| ≤ 1 and |λ| > 1

In this case, if we use the inverse defined as in the previous section; that is Spk =
1

φ(0)λk pk, then |φ(0)λn| > 1 for n > n0 for some n0. This implies that Skpn → 0 for all 
n > n0. However on the subspace of polynomials of degree less or equal than n0 we do 
not have convergence to zero.

It was pointed out in [6] that φ(D) is injective if and only if it is a multiple of Cλ,b. 
Thus our operator T is not injective, so its right inverse is not unique, and we will 
overcome the obstacle by defining a different right inverse.

Let f be an entire function of exponential type f(z) =
∑∞

n=0 anz
n. The Borel trans-

form of f is defined as

Bf(z) =
∞∑ n!an

zn+1 .

n=0
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It is well known that Bf(z) is analytic on |z| > c for some c > 0. In particular, for 
the monomials fn(z) = zn/n! we have Bfn(z) = 1/zn+1 which is analytic on |z| > 0.

Pólya representation of f (see [11] p. 78) asserts that if Bf(z) is analytic on |z| > c

then for any R > c, we have

f(z) = 1
2πi

∮
|t|=R

eztBf(t) dt.

Using this representation, if φ(D) =
∑∞

n=0 φnD
n, then

Rλφ(D)f(z) = Rλ

⎛
⎜⎝∑

n

φn
1

2πi

∮
|t|=R

tnetzBf(t) dt

⎞
⎟⎠

= Rλ
1

2πi

∮
|t|=R

(∑
n

φnt
n

)
eztBf(t) dt

= 1
2πi

∮
|t|=R

φ(t)eλztBf(t) dt.

And iterating the above formula, we get:

(Rλφ(D))n f(z) = 1
2πi

∮
|t|=R

φ(t)φ(λt) · · ·φ(λn−1t)eλ
nztBf(t) dt.

On the other hand, denoting ω = 1/λ, if for some R > c we define

S1f(z) = 1
2πi

∮
|t|=R

1
φ(ωt)e

ωztBf(t) dt, (1)

arguing as in the above computation of Rλφ(D)f(z) we get Rλφ(D)S1f = f . Let us 
point out that R > c is chosen such that φ(z) has no zeros on the circle |z| = R|λ|, 
because the zeros of φ are isolated. That is, the integral in equation (1) is well defined.

The next result will be needed to prove this case.

Proposition 5.1. Let P (z) = c(1 − z/a) with c �= 0 �= a. Then there exists a sequence 
(Rk) of positive numbers converging to ∞ such that for each n ≥ 0,

(Lkfn)(z) = 1
2πi

∮
|t|=Rk

1
P (ωt) · · ·P (ωkt)e

ωkztBfn(t) dt (2)

converges to zero, uniformly on compact subsets, as k → ∞.
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Proof. Since |ω| < 1 the subset X0 = span {eaωnz : n ≥ 0} is dense in H(C). Moreover 
for each x0 ∈ X0, Tnx0 = 0 for n large enough. We choose M0 ≥ 1 such that |P (z)| ≥ 2
for |z| ≥ M0, set Rk = |λ|kM0, define Lk on fn(z) = zn/n! by

Lkfn(z) = 1
2πi

∮
|t|=Rk

1
P (ωt) · · ·P (ωkt)e

ωkztBfn(t) dt.

If |t| = Rk = |λ|kM0 and 1 ≤ j ≤ k, then |ωjt| = |λk−j |M0 ≥ M0. Therefore 
|P (ωjt)| ≥ 2 and

|Lkfn(z)| ≤ 1
2π 2πRk e

M0|z| 1
2kRn+1

k

= eM0|z|

2kRn
k

→ 0

uniformly on compact subsets as k → ∞. �
Proposition 5.2. Suppose that φ vanishes at some a ∈ C and 0 < |φ(0)| ≤ 1. If |λ| > 1
then T = Rλφ(D) is hypercyclic.

Proof. Again, since |ω| < 1, the subset X0 = span {eaωnz : n ≥ 0} is dense in H(C), 
and if x0 ∈ X0 then Tnx0 = 0 for n large enough. Let n0 be the first natural number 
satisfying |φ(0)λn0+1| > 1. The proof will be finished if we can define a sequence of 
mappings Sk on the monomials fn (n = 0, . . . , n0) satisfying

1. Skfn → 0 uniformly on compact subsets as k → ∞, and
2. (Rλφ(D))kSkfn → fn uniformly on compact subsets as k → ∞.

We denote P (z) = φ(0)(1 − z/a). First we define Sk on f0. By Proposition 5.1, there 
exists a sequence of positive numbers Rk → ∞ such that

Lkfn(z) = 1
2πi

∮
|t|=Rk

1
P (ωt) · · ·P (ωkt)e

ωkztBfn(t) dt → 0

uniformly on compact subsets as k → ∞ for n = 0, . . . , n0.
Taking Skf0 = Lkf0, we get (Rλφ(D))kSkf0 = f0. Indeed, denoting

Φk(t) = φ(ωt)
P (ωt) · · ·

φ(ωkt)
P (ωkt) ,

and observing that Φk(0) = 1, we get

(Rλφ(D))kSkf0(z) = 1
2πi

∮
Φk(t)ezt

dt

t
= 1,
|t|=Rk
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where the last equality follows from the fact that the function Φk(t)ezt is analytic: the 
integral is equal to the residue of Φk(t)ezt(1/t), which is 1.

Next we define Sk on f1. Since Φk(t) is an entire function and Φk(0) = 1, we can 
write Φk(z) =

∑∞
j=0 a

(k)
j tj with a(k)

0 = 1 for all k. Also, the second term of the Cauchy 

product 
(∑∞

j=0
zj

j! t
j
)
·
(∑∞

j=0 a
(k)
j tj

)
coincides with

1
2πi

∮
|t|=Rk

Φk(t)ezt
dt

t2
= z + a

(k)
1 .

So defining

Skf1(z) = 1
2πi

∮
|t|=Rk

Φk(t)eω
kzt dt

t2
− a

(k)
1 Skf0,

we get (Rλφ(D))kSkf1 = f1, and (Skf1) converges uniformly to zero on compact sets 
provided (a(k)

1 ) is bounded. By the chain rule, a(k)
1 = (ω + . . . + ωk)c, where c is the 

derivative at zero of the function ϕ(z)/P (z). Since |ω| < 1 the sequence (a(k)
1 ) is bounded.

Assume that Skfj has already been defined for 0 ≤ j < m, satisfying Skfj → 0 as 
k → ∞ uniformly on compact subsets, (Rλφ(D))kSkfj = fj , and (a(k)

j )k∈N bounded. 
Let us construct Skfm. Since

Lkfm(z) = 1
2πi

∮
|t|=Rk

Φk(t)ezt
dt

tm+1 = cm

=
m∑
j=0

zj

j! a
(k)
m−j = fm(z) +

m−1∑
j=0

a
(k)
m−jfj(z),

here cm is the term m of the Cauchy product 
(∑∞

j=0
zj

j! t
j
)
·
(∑∞

j=0 a
(k)
j tj

)
. Thus, defining

Skfm = Lkfm −
m−1∑
j=0

a
(k)
m−jSkfj

we get (Rλφ(D))Skfm = fm by construction, and Skfm → 0 uniformly on compact 
subsets provided the sequence (a(k)

m ) is bounded for all k ∈ N, which follows directly by 
Leibniz rule. Indeed, denoting ϕ(z) = φ(z)/P (z),

|a(k)
m | = 1

m!

∣∣∣[ϕ(ωz), . . . , ϕ(ωkz)](m)(0)
∣∣∣

= 1
m!

∣∣∣∣∣
∑ (

m

h1, . . . , hk

) k∏
(ϕ(ωtz))(ht)(0)

∣∣∣∣∣

h1+...+hk=m t=1



14 I.F.Z. Bensaid et al. / Journal of Functional Analysis 282 (2022) 109391
≤ 1
m!

∑
h1+...+hk=m

(
m

h1, . . . , hk

) k∏
t=1

|ω|tht |(ϕ(ht)(0))|

≤ C
m! (|ω| + . . . + |ω|k)m,

where C = maxm
j=0 |ϕj(0)|. Since ϕ(0) = 1, we can construct a sequence of mappings Sk

acting on fn, n = 0, . . . , n0, satisfying all the requirements we desired, and this finishes 
the proof. �
Remark 5.3. Notice that the proof of Proposition 5.2 provides that when |λ| > 1 and 
0 < |φ(0)| ≤ 1, the operator T = Rλφ(D) satisfies the Hypercyclicity Criterion for the 
full sequence of natural numbers. Hence, T is topologically mixing.

Remark 5.4. Following the proof of Proposition 5.2, we can show that T = Rλφ(D) is 
frequently hypercyclic whenever 0 < |φ(0)| < 1 and |λ| = 1 an irrational rotation. Indeed, 
let us check that T satisfies the Frequent Hypercyclicity Criterion. For that, consider X0
the subset of polynomials. Since 0 < |φ(0)| < 1 and λ is an irrational rotation, we see 
that T restricted to the polynomials of degree n, is a triangular operator with different 
diagonal entries φ(0)λk, k = 0, · · · , n. If {p0, · · · pn} are the eigenvectors of this matrix 
then

‖Tmpk‖ = |φ(0)|m → 0.

Thus, for each k the series

∞∑
m=0

Tmpk(z) =
∞∑

m=0
φ(0)mpk

is unconditionally convergent.
On the other hand, inductively, we can construct the sequence of mappings Sk acting 

on fn(z) = zn/n! as in the proof of Proposition 5.2. That is, Skf0 = Lkf0 here

Lkfn(z) = 1
2πi

∮
|t|=Rk

1
P (ωt) · · ·P (ωkt)e

ωkztBfn(t) dt

where P (z) = φ(0)(1 − z/a) and Rk = M0 is chosen such that

|Lkfn(z)| ≤ eM0|z|

2kMn
0
,

and

Skfm = Lkfm −
m−1∑

a
(k)
m−jSkfj
j=0
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for some constants a(k)
m which satisfy:

|a(k)
m | ≤ C

m! (|w| + · · · + |ω|k)m = C
km

m! .

Now we see that T kSkfm = fm by construction, and Skfm(z) converges quickly to zero. 
Indeed

|Skf0(z)| = |Lkf0| ≤ C
eM0|z|

2kM0
0

and

|Skf1(z)| ≤ C

(
1

2kM0
0

+ 1
2kM1

0

)
eM0|z|

For each m,

|Skfm(z)| ≤ C

⎛
⎝ 1

2kMm
0

+
m−1∑
j=0

km−j

2kM j
0

⎞
⎠ eM0|z|

as k → ∞. Therefore, for each m, the series

∞∑
k=0

Skfm

is unconditionally convergent. Thus T is frequently hypercyclic.

6. The case 0 < |φ(0)| ≤ 1 and |λ| = 1

We take λ = e2πiθ with θ an irrational number, since the case λ is a root of the unity 
has already been studied in Section 3, and we set ω = λ−1. Let us show the following 
result:

Proposition 6.1. Let λ be a scalar of modulus one and that is not a root of unity. Let φ
be entire and of exponential type, and so that it is not a scalar multiple of an exponential 
(i.e., not of the form φ(z) = aebz, (z ∈ C) where a and b are fixed scalars). Then 
T = Rλφ(D) is topologically mixing.

To do this, we will distinguish the cases in which φ−1({0}) is finite (Proposition 6.2) 
or φ−1({0}) is infinite (Proposition 6.4). The case where φ−1({0}) is empty was settled 
with Proposition 2.4. We show that T is topologically mixing whenever φ−1({0}) is 
non-empty. Standard arguments are used to prove Proposition 6.2. However, the proof 
of Proposition 6.4 follows by using a normal families argument. Specifically, the proof 
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follows by showing that a certain family of maps acts transitively on the complex plane. 
The following consequence of Montel’s Theorem is needed:

Corollary. (Montel’s Theorem). Let us suppose that F is a family of meromorphic func-
tions defined on an open subset D. If z0 ∈ D is such that F is not normal at z0 and 
z0 ∈ U ⊂ D, then

⋃
f∈F

f(U)

is dense for any non-empty neighborhood U of z0.

Proposition 6.2. If φ−1({0}) is finite (and non-empty), then T satisfies the Hypercyclicity 
Criterion for the full sequence (nk) = (k).

Proof. Set ω = 1/λ and fix α ∈ φ−1({0}). To apply the Hypercyclicity Criterion, we 
consider the dense subset

X0 = span {eωnαz : n ≥ 1},

where the powers of T = Rλφ(D) are eventually zero.
To see that T satisfies the Hypercyclicity Criterion with respect to a sequence (nk)

it is sufficient to find a subset of the form Y0 = span {ebz : b ∈ U} for some non empty 
open subset U satisfying:

i) U has a cluster point in C.
ii) ωU ⊂ U

iii) φ(ωb)φ(ωnb) · · ·φ(ωnkb) → ∞ as k → ∞.

Indeed, since U has a cluster point in C, Y0 is a dense subset. And if we consider 
S : Y0 → Y0 defined by Sebz = 1

φ(ωb)e
ωbz, we get that Snk converges pointwise to zero 

on Y0 and TS = IdY0 .
Since φ is of exponential type and φ−1({0}) is finite we can suppose that φ(z) =

eazp(z), for some a ∈ C and for some non constant polynomial p(z).
Since |p(z)| → ∞ as |z| → ∞ we select R > 0 so that |p(z)| ≥ 2 for all |z| ≥ R. Let 

us consider U = {b ∈ C : |b| ≥ R}. Clearly U satisfy i) and ii). To show iii) for the full 
sequence of natural numbers, let us observe that

|φ(ωb) · · ·φ(ωnb)| = |e(ω+···+ωn)ab||p(ωb) · · · p(ωnb)|

≥ eReω−ωn+1
1−ω 2n

≥ e
−2|a|R
|1−ω| 2n
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which diverges to ∞ as n → ∞. That is, T satisfies de Hypercyclicity Criterion for the 
full sequence of natural numbers as desired. �

At first glance, one might think that the above ideas can be applied to prove the 
case in which φ has infinitely many zeros, simply by cutting the infinite product into a 
polynomial by a tail. However, to control the tail of the product, we must consider z
away from the zeros of the tail. But at the same time, to get divergence of the iteration 
of the polynomial, we must choose z larger than the zeros of the polynomial. Since both 
requirements are not compatible, we need a new proof for the case of infinite zeros.

Lemma 6.3. Let 0 < r < R, and let φ be an entire function of exponential type that has 
no zero on the annulus:

A = {z ∈ C : r < |z| < R}

and which has a zero of modulus r. Let ω = e2πθi with θ an irrational scalar. For each 
n ∈ N let

gn(z) = φ(ωz)φ(ω2z) · · ·φ(ωnz) (z ∈ C).

Let (nk) such that nk → ∞ and z0 ∈ A so that

G = {gk}k≥1

is normal at z0 and supk≥1 |gnk
(z0)| < ∞. Then G is uniformly bounded on D(0, |z0|).

Proof. By assumption, there exists ε > 0 such that D(z0, ε) ⊂ A and G is uniformly 
bounded on D(z0, ε). Therefore, there exists M > 0 such that for each k ≥ 1 whenever 
|ω−jz − ω−jz0| = |z − z0| ≤ ε we have

M ≥ |gnk
(z)|

= |φ(ωz)φ(ω2z) · · ·φ(ωnkz)|

= |φ(ω1+j(ω−jz))φ(ω2+j(ω−jz)) · · ·φ(ωnk+j(ω−jz))|

= |φ(ω(ω−jz)) · · ·φ(ωnk(ω−jz))| · |φ(ωnk+1(ω−jz)) · · ·φ(ωnk+j(ω−jz))|
|φ(ω(ω−jz)) · · ·φ(ωj(ω−jz))|

Thus, for each z such that |z − ω−jz0| < ε and k ≥ 1 we obtain

M ≥ |gnk
(z)| · |φ(ωnk+1z) · · ·φ(ωnk+j(z)|

|φ(ωz) · · ·φ(ωjz)|
≥ Cj |gnk

(z)|
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Fig. 1. ω = e
√

2πi, and m = 100.

where C = min{|φ(z) : |z|=|z0|}
max{|φ(z)| : |z|=|z0|} ∈ (0, 1).

Hence G is uniformly bounded on D(ω−jz0, ε) for each j ≥ 1. By the compactness of 
C(0, |z0|) there exists m such that

C(0, |z0|) ⊂
m⋃
j=1

D(ω−jz0, ε).

Therefore G is uniformly bounded on the above finite union, and hence on C(0, |z0|). 
By the Maximum Modulus Principle, G is uniformly bounded on D(0, |z0|) as desired 
(see Fig. 1). �
Proposition 6.4. Suppose φ−1({0}) is infinite. Then for each sequence (nk) converging 
to ∞, there exists a subsequence (nkj

) such that T satisfies the Hypercyclicity Criterion 
with respect to (nkj

). In particular, T = Rλφ(D) is topologically mixing.

Proof. Let 0 < r0 < r1 < r2 < · · · be the radii of all those circles centered at 0 that 
contain zeroes of φ. Since φ−1({0}) has no accumulation point in C we may assume that 
rn → ∞ as n → ∞. Let a ∈ φ−1({0}) with |a| = r0. By Hadamard’s Theorem we have

φ(z) = φ(0)
(
1 − z)

ϕ(z)

a
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with ϕ of exponential type satisfying ϕ(0) = 1. Now, for each n ∈ N let fn and gn the 
functions defined by

fn(z) = φ(ωz)φ(ω2z) · · ·φ(ωnz)

gn(z) = ϕ(ωz)ϕ(ω2z) · · ·ϕ(ωnz).

Let R > 0 be large enough so that

(
|z|
r0

− 1
)
|φ(0)| > 1 for |z| > R.

Let k0 large enough so that rk > R for k ≥ k0. Then for |z| > R we have

|φ(z)| = |φ(0)
(
1 − z

a

)
ϕ(z)|

≥
(
|z|
|a| − 1

)
|φ(0)||ϕ(z)|

> |ϕ(z)|.

So for each n ∈ N and |z| > R we have

|fn(z)| = |φ(ωz) · · ·φ(ωnz)| > |ϕ(ωz) · · ·ϕ(ωnz)| = |gn(z)|.

It suffices to show the following claim.

Claim 1. There exists z0 ∈ Ark0
= {z ∈ C : rk0 < |z| < rk0+1} such that 

lim supk→∞ |gnk
(z0)| = ∞.

Indeed, suppose Claim 1 holds. Then there exists a subsequence (nkl
) of (nk) such 

that

|fnkl
(z0)| ≥ |gnkl

(z0)| → ∞,

as l → ∞. Then Λ = {ωjz0 : j ≥ 1} satisfies ωΛ ⊂ Λ and has an accumulation point in 
C, therefore

Y0 = span{ebz : b ∈ Λ}

is dense in H(C). Moreover, the linear mapping S : Y0 −→ Y0 defined by S(ebz) :=
1

φ(ωb)e
ωbz (b ∈ Λ) clearly satisfies that TS = I on Y0 and

Snkl → 0
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pointwise on Y0. Indeed, to see the latter it suffices to show that for each b ∈ Λ we have 
Snkl (ebz) → 0 as l → ∞. So let b = ωrz0 ∈ Λ. Let us denote by 0 < m1 < m2 the 
minimum and maximum of |φ| on the circle C(0, |z0|). Then for any R > 0 and |z| ≤ R

we have

∣∣Snkl (ebz)
∣∣ =

∣∣∣∣ 1
φ(ωb)φ(ω2b) · · ·φ(ωnkl b)e

ω
nkl

bz
∣∣∣∣

≤
∣∣∣∣ CR

φ(ωl+1z0)φ(ωl+2z0) · · ·φ(ωnkl
+lz0)

∣∣∣∣
≤ CR

|fnkl
(z0)|

(
m2

m1

)r

where CR = sup|z|≤R|z0| |ez|. Therefore Snkl (ebz) → 0 as l → ∞, and T satisfies the 
Hypercyclicity Criterion with respect to the sequence (nkl

) as we wanted to prove. So it 
remains to show Claim 1.

Proof of Claim 1. By means of contradiction, suppose G = {gnk
}k≥1 is pointwise 

bounded on Ark0
. Notice first that G is normal at no point of Ark0

. To see this, suppose 
that G is normal at a point z0 ∈ Ark0

then by Lemma 6.3 G should be uniformly bounded 
on D(0, |z0|), and by Montel’s Theorem (see [27, p. 35]) there exists a holomorphic func-
tion g on D(0, |z0|) and a subsequence (nkj

) of (nk) such that

gnkj
→ g as j → ∞ (3)

locally uniformly on D(0, |z0|). So pick a root b of φ with |b| = rk0 . Then for each l ∈ N

and n > l we have gn(w−lb) = 0.
Thus by (3) we have that g vanishes at each w−lb for (l ≥ 1), which implies that g is 

identically zero. However |gn(0)| = 1 for each n ≥ 1, hence |g(0)| = limj→∞ |gnkj
(0)| = 1, 

a contradiction.
So G is normal at no point of Ark0

. Hence by a consequence of Montel’s Theorem, for 
each non-empty open subset U of Ark0

the set

∞⋃
k=1

gnk
(U)

is dense in C. That is, for each non-empty open subsets U of Ark0
and V of C there exists 

k ∈ N such that gnk
(U) ∩V �= ∅. Since Ark0

has no isolated points and is homeomorphic 
to a complete metric space, by Birkhoff’s Transitivity Theorem there exists z0 ∈ Ark0

such that {gnk
(z0) : k ∈ N} is dense in C, which contradicts that G is pointwise bounded 

on Ark . So Claim 1 holds, and the proof of Proposition 6.4 is now complete. �

0
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7. The case φ(0) = 0 and |λ| ≥ 1

The operator Tλ,b of Aron and Markose is included in this case with φ(z) = zebz.

Theorem 7.1. Assume φ(0) = 0. If |λ| ≥ 1 then T = Rλφ(D) is hypercyclic.

Proof. We write φ(z) = zmψ(z) with ψ(0) �= 0 and we denote by X0 the set of complex 
polynomials p(z). Note that Tnp(z) = 0 for n > deg(p).

Set Aλ = Rλψ(D) so that T = AλD
m. Since ψ(0) �= 0, as in the proof of Proposi-

tion 4.1, the subspace of polynomials of degree less or equal to n is invariant under the 
operator Aλ and the eigenvalues are simple on that subspace. We denote p0, p1, · · · pk
the polynomials of degree ≤ k which are the eigenvectors associated to ψ(0)λk, that is, 
Aλpk = ψ(0)λkpk for k ≥ 0.

Let V be the complex Volterra operator defined by

V f(z) =
z∫

0

f(ξ)dξ, (z ∈ C).

The equation TV mpk = Aλpk = ψ(0)λkpk gives us the key to construct the maps Sk

required by the Hypercyclicity Criterion. Indeed, let us define

Skpn = V mkpn
λmλ2m · · ·λ(k−1)m(ψ(0)λn)k

,

and extend Sk to Y0 = span {pk(z) : k ≥ 0} by linearity. Since V k1
ψ(0)k → 0 uniformly on 

compact sets as k → ∞, we obtain that 1
ψ(0)k V

mkpn → 0 in H(C). Hence, since |λ| ≥ 1,

|Sk(pn)(z)| ≤ |V mkpn(z)|
|ψ(0)|k → 0

uniformly on compact sets. To check that T kSk = IdY0 , note that

T k = AλD
mAλD

m · · ·AλD
m, (k times).

Since Aλ is an extended λ-eigenoperator of D, DmAλ = λmAλD
m. Therefore T k =

λmλ2m · · ·λ(k−1)mAk
λD

km, hence

T kSkpn = T k

(
V mkpn

λmλ2m · · ·λ(k−1)m(ψ(0)λn)k

)
= Ak

λpn
ψ(0)kλnk

= pn,

and the Hypercyclicity Criterion implies that T is hypercyclic. �
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Remark 7.2. Here again, when φ(0) = 0, we can show that T is frequently hypercyclic 
by applying the Frequent Hypercyclicity Criterion. Therefore, T is also chaotic and 
topologically mixing.

Let us finish with a question. As the reader can see, in many cases scattered parts 
of the manuscript (Remarks 3.5, 4.2, 5.4 and 7.2) it has been established the frequent 
hypercyclicity of T = Rλφ(D). There exist only one case unsolved.

Problem 7.3. Suppose λ is an irrational rotation and |φ(0)| ≥ 1. Is T = Rλφ(D) fre-
quently hypercyclic?
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