
Computer Standards & Interfaces 84 (2023) 103676

A
0

Contents lists available at ScienceDirect

Computer Standards & Interfaces

journal homepage: www.elsevier.com/locate/csi

EDALoCo: Enhancing the accessibility of blockchains through a low-code
approach to the development of event-driven applications for smart contract
management
Jesús Rosa-Bilbao a, Juan Boubeta-Puig a,∗, Adrian Rutle b

a UCASE Software Engineering Research Group, Department of Computer Science and Engineering, University of Cadiz, Avda. de la Universidad de Cádiz 10,
11519 Puerto Real, Cádiz, Spain
b Department of Computer Science, Electrical Engineering and Mathematical Sciences, Western Norway University of Applied Sciences, Bergen, Norway

A R T I C L E I N F O

Keywords:
Low-code
Smart contract
Blockchain
Event-driven application

A B S T R A C T

Blockchain is a cutting-edge technology based on a distributed, secure and immutable ledger that facilitates
the registration of transactions and the traceability of tangible and intangible assets without requiring central
governance. The agreements between the nodes participating in a blockchain network are defined through
smart contracts. However, the compilation, deployment, interaction and monitoring of these smart contracts is
a barrier compromising the accessibility of blockchains by non-expert developers. To address this challenge, in
this paper, we propose a low-code approach, called EDALoCo, that facilitates the development of event-driven
applications for smart contract management. These applications make blockchain more accessible for software
developers who are non-experts in this technology as these can be modeled through graphical flows, which
specify the communications between data producers, data processors and data consumers. Specifically, we
have enhanced the open-source Node-RED low-code platform with blockchain technology, giving support for
the creation of user-friendly and lightweight event-driven applications that can compile and deploy smart
contracts in a particular blockchain. Additionally, this platform extension allows users to interact with and
monitor the smart contracts already deployed in a blockchain network, hiding the implementation details
from non-experts in blockchain. This approach was successfully applied to a case study of COVID-19 vaccines
to monitor and obtain the temperatures to which these vaccines are continuously exposed, to process them
and then to store them in a blockchain network with the aim of making them immutable and traceable to
any user. As a conclusion, our approach enables the integration of blockchain with the low-code paradigm,
simplifying the development of lightweight event-driven applications for smart contract management. The
approach comprises a novel open-source solution that makes data security, immutability and traceability more
accessible to software developers who are non-blockchain experts.
1. Introduction

Blockchain [1] is an emergent technology that is based on a dis-
tributed ledger where the blocks are linked and encrypted to protect
the security and privacy of transactions. Some studies estimate that,
within a few years, this technology will be used worldwide, reaching
a volume of approximately 2 trillion per year of goods and services
[2]. As an example, it is having a considerable impact on areas such
as e-health [3–5], smart industry [6], cybersecurity [7,8], smart cities
[9], education [10] and voting [11].

Blockchain emerges as a solution to address the challenge of ensur-
ing the security, integrity, traceability, immutability and transparency

∗ Corresponding author.
E-mail addresses: jesus.rosabilbao@alum.uca.es (J. Rosa-Bilbao), juan.boubeta@uca.es (J. Boubeta-Puig), adrian.rutle@hvl.no (A. Rutle).

of data generated by devices [12] and services thanks to its decen-
tralized nature. One of the main advantages of the blockchain tech-
nology is that it does not require trusted third parties or a centralized
certification authority for the verification of transactions [13].

All transactions that take place in a blockchain network are grouped
into blocks, and each block is cryptographically linked to the previous
block upon which it is validated [14]. When a new block is mined, it
is replicated across all participating nodes belonging to the network.
Specifically, the behavior of blockchain networks can be programmed
through the use of smart contracts. These contracts can be used to
specify agreements between two or more different parties at design
time and whose conditions will be validated at runtime [15].
vailable online 4 August 2022
920-5489/© 2022 The Author(s). Published by Elsevier B.V. This is an open access a

https://doi.org/10.1016/j.csi.2022.103676
Received 4 May 2022; Received in revised form 13 July 2022; Accepted 31 July 20
rticle under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

22

http://www.elsevier.com/locate/csi
http://www.elsevier.com/locate/csi
mailto:jesus.rosabilbao@alum.uca.es
mailto:juan.boubeta@uca.es
mailto:adrian.rutle@hvl.no
https://doi.org/10.1016/j.csi.2022.103676
https://doi.org/10.1016/j.csi.2022.103676
http://crossmark.crossref.org/dialog/?doi=10.1016/j.csi.2022.103676&domain=pdf
http://creativecommons.org/licenses/by/4.0/


Computer Standards & Interfaces 84 (2023) 103676J. Rosa-Bilbao et al.
Fig. 1. General overview of the EDALoCo approach.
Smart contracts are becoming increasingly common in the business
world, reinforced by the digitalization trends in all aspects of the soci-
ety [16]. Smart contracts are viable because they enable the exchange
of digital assets as a means of payment and the execution of code
through distributed applications.

However, smart contracts could have bugs or vulnerabilities that
result in security breaches and can lead to large economic losses.
These bugs and vulnerabilities can be mitigated with the use of good
programming practices. To this end, several works have proposed how
to develop robust smart contracts [17,18].

Moreover, the accessibility of blockchain technology is currently a
handicap for domain experts and even for software developers, since it
takes time and requires technical knowledge and effort to develop and
compile secure smart contracts, deploy them in a blockchain network,
interact with them and monitor them in real time.

To deal with these challenges, this paper aims to propose a low-code
approach, called EDALoCo, that allows software developers, who are
non-blockchain experts, to develop event-driven applications for easily
compiling, deploying, monitoring, and interacting with smart contracts
in real time (see Fig. 1). This way, software developers do not need
to know how blockchain technology works or how to compile, deploy
and interact with smart contracts within the network. Thanks to the
use of the low-code paradigm [19], the development of event-driven
applications allows us to save resources, to improve the quality code, to
be more flexible as well as to automate and integrate these applications
with other systems.

In order to enhance the accessibility of the blockchain technology,
we have extended the Node-RED open-source low-code platform [20]
through the development of new nodes that allow the integration of
blockchain technology with the low-code paradigm. As a blockchain
network, we have chosen Ethereum since it is one of the most widely
used and well-known networks of smart contracts, as demonstrated in
recent literature [21]. Note that other blockchain networks could be
used without requiring implementation changes in these new nodes.
This extension will allow us to support the development of event-
driven applications capable of managing smart contracts in real time.
These applications can be modeled through graphical flows, which
specify the communications between data producers, data processors
and data consumers [22]. By using software containers, our proposed
solution can be run on most lightweight devices, such as Raspberry
[23], without worrying about particular configurations or operating
systems [24].

Although the approach presented in this paper is generic and can
be applied to other domains, we have demonstrated its feasibility
by applying it to a specific case study. This case study consists of
effective monitoring and obtaining real-time temperatures of COVID-
19 vaccines while processing and storing these temperature values
within a blockchain network. These recorded temperatures will be
immutable and traceable for any user. Thanks to the use of the low-
code paradigm, the development of event-driven applications becomes
2

easier [25]. In addition, the case study allows us to also evaluate the
effectiveness of our low-code approach to enhance the accessibility
of the blockchain network through hiding the implementation details
from domain experts and software developers.

The contributions of this paper, which have not been addressed
altogether by prior research, are be summarized as follows:

• C1: Integrating blockchain and low-code paradigms.
• C2: Developing event-driven applications for smart contract man-

agement.
• C3: Deploying the event-driven applications in lightweight de-

vices.
• C4: Proposing an open-source solution.

The remainder of the paper is organized as follows. Section 2
introduces the technologies and paradigms used in this work. Sec-
tion 3 describes related work. Section 4 presents our low-code ap-
proach for smart contract management in a graphical way. Section 5
presents a real-world case study where our proposal has been applied,
and Section 6 discusses the obtained results. Finally, Section 7 draws
conclusions and outlines future work.

2. Background

In this section, the background on the technologies and paradigms
used in our proposal is described: blockchain and low-code.

2.1. Blockchain

Blockchain can be defined as a distributed database in which trans-
actions are recorded and confirmed. All transactions must be verified,
recorded and combined with other transactions to create new blocks.
These blocks are replicated throughout the network by all nodes par-
ticipating in the network, thus creating a distributed network (see
Fig. 2).

Blockchain networks have a series of stages necessary for a new
block to be created and secured. These stages are responsible for col-
lecting and computing the data in blocks, unifying them securely, vali-
dating them and maintaining consensus among all the nodes belonging
to the network [26].

When a new transaction is recorded in the blockchain network,
this information is shared by all users belonging to the network. All
blocks are formed from transactions and are identified by a timestamp,
which allows to organize them in a sequential order to avoid errors or
duplications. All blocks that are recorded in the blockchain network are
immutable. Therefore, any participant who wants to check the history
of the blockchain network will get the same result and in the same
order [27].

Within blockchain networks, several elements can be found. One of
the most important elements is the hash function [27]. This function is



Computer Standards & Interfaces 84 (2023) 103676J. Rosa-Bilbao et al.
Fig. 2. Operation of transactions in a blockchain network.
Fig. 3. Operation of smart contracts in a blockchain network.
a cryptographic algorithm that securely links all the blocks in the net-
work, making it impossible to break. The information in each block is
used to create a unique sequence of characters that uniquely identifies
any block.

Each of the blocks that form a blockchain network has a hash which
is added to the next block’s data. That is, when a new block is to be
mined in the network, it contains information from the immediately
preceding block. This linkage allows that if any person tries to manip-
ulate a block, it will cause the whole chain to change. Furthermore,
this process is replicated in each block that belongs to a blockchain
network. Therefore, if someone tries to manipulate any part of a
network, it will be detected easily [28].

One of the well-known blockchain platforms is Ethereum [29].
This platform is especially used in the creation of decentralized open-
source applications. Among other advantages, these applications allow
us to control the digital value or run a program from anywhere in the
world. The Ethereum blockchain network provides great traceability,
integrity and transparency of data. Additionally, Ethereum allows us to
create smart contracts [30] that specify business logic and agreements
between participating nodes in the network. These agreements are
executed automatically when certain conditions are satisfied, dealing
with the information transmitted across the network or even extracted
from other interconnected systems (see Fig. 3).

Smart contracts may need to obtain data placed outside the
blockchain. For that reason, blockchain oracles are needed. An oracle
is any device or entity that connects the blockchain with off-chain data.
These oracles introduce data through external transactions, in this way,
we can be sure that the blockchain network contains all the necessary
information [28].

Smart contracts can be implemented by using programming lan-
guages such as Solidity [31], one of the languages provided by the
Ethereum platform. The implementation of a smart contract should
be done as efficiently as possible since each of its operations—e.g. a
transaction or an execution of the contract—which are performed in
the blockchain network may require a certain amount of gas. Gas is the
unit that measures the amount of computational effort that is necessary
for the execution of a transaction [32].

2.2. Low code

Low-code [33] is a paradigm that allows us to develop solutions
without requiring too much knowledge of technologies or programming
3

languages. This is made possible through the use of graphical user
interfaces and visual elements. It also provides reusability since there is
no need to manually program many of the elements already available
by the interface [34]. Low-code is increasingly present in the software
development industry when developing products without the need for
extensive knowledge of certain technologies [35].

Although low-code is a very new term, its fundamentals are not so
new. This paradigm can be considered as a more restrictive derivation
of Model-Driven Development (MDD) [36–39], specializing it in certain
types of applications such as web or mobile applications [40].

Low-code programming is a process that provides experts in certain
technologies a higher level of abstraction by which they automate
different steps of the software life cycle. It also allows to speed up
the delivery of products and satisfy business needs. It is, therefore, a
new approach to software development that enables high scalability
and achieves value in a short period of time [41].

Moreover, low-code platforms [42] provide a development envi-
ronment through a graphical user interface that is used to produce
functional applications. This requires some additional programming
in certain situations. Low-code platforms greatly reduce the amount
of manual programming required, facilitating faster delivery of an
application. Additionally, people with limited programming skills have
the opportunity to be involved in the development of a large appli-
cation. Among other advantages, the cost of configuration, training,
deployment and maintenance is also reduced [43].

Currently, the development of low-code platforms is increasing
around the world. In particular, Node-RED [20] is one of the most
popular flow-based tools for visual programming. It is based on the
low-code paradigm and allows us to connect the hardware, Application
Programming Interfaces (APIs) and services through a graphical user
interface tool. Node-RED provides an editor that helps users to create
flows by dragging and dropping all available graphical nodes on its
tool palette. A flow is a directed graph of processing graphical nodes
[44]. While edges establish flow dependencies between the defined
graphical nodes, each node performs a part of the computation of a
data-driven application [45] when it receives data. Specifically, these
graphical nodes are represented by the elements that make up the
Node-RED function palette. These elements perform a series of opera-
tions and allow the connection of hardware devices, APIs and services,
among others. Each node is a piece of code that is implemented in the
JavaScript programming language [46]. All available graphical nodes
can be easily deployed with a single click. We would like to highlight
that the palette provided by Node-RED can be extended with new
graphical nodes, as we propose in this paper.



Computer Standards & Interfaces 84 (2023) 103676J. Rosa-Bilbao et al.

b
p
b
e
T
t
d
a
t
f
a
c
R

I
p
t
H
o
a
T
p
p
l

c
b

Table 1
Aligning related works and tools with the contributions of this paper.

Approach C1 (low- C2 (event- C3 (lightweight C4 (open
code) driven) devices) source)

Hasan’s work [47] – – +/– +
Singh’s work [48] – – – –
Yong’s work [49] – – – –
Hamdaqa’s work [50] – +/– – +
Li’s work [51] – – – –
Yu’s work [52] – – – –
Li’s work [53] – – – –
Li’s work [54] – – +/– +
Tian’s work [55] – – – –
Settlemint [56] +/– – – –
Unibright [57] + +/– – –
Creatorchain [58] – +/– – –
Aurachain [59] + +/– – –
Our approach + + + +

3. Related work

This section discusses the existing proposals and blockchain tools
related to our work. In Table 1, we summarize and align existing
related works and tools with respect to the contributions of this
paper mentioned in Section 1: C1 (integrating blockchain and low-
code paradigms), C2 (developing event-driven applications for smart
contract management), C3 (deploying the event-driven applications
in lightweight devices) and C4 (proposing an open-source solution).
Specifically, each of the existing proposals and related tools will be
compared according to the contributions made with respect to our
approach as follows:

• – : The proposal or tool has not addressed that contribution in its
work.

• +/– : The proposal or tool has partially addressed that contribu-
tion in its work.

• + : The proposal or tool has addressed that contribution in its
work.

Regarding related proposals, Hasan et al. [47] propose a blockchain-
ased solution for the shipment supply chain management. This pro-
osal makes use of IoT devices, such as sensors integrated with
lockchain technology—particularly, the Ethereum public network—to
nsure a reliable tracking of such shipments avoiding manipulations.
his integration is possible through the use of message brokers with
he MQTT protocol [60]. In addition, this proposal uses a lightweight
evice, namely, Raspberry Pi 3 Model B. Therefore, although Hasan
t al.’s work uses sensors and lightweight devices based on blockchain
echnology, unlike our proposal, it does not provide a low-code plat-
orm that allows end users to define in a user-friendly way event-driven
pplications for the management of smart contracts. Moreover, our low-
ode approach uses a different and more powerful hardware, namely
aspberry Pi4, which provides lower processing times.

Singh et al. [48] present a system integrating blockchain and
nternet of Things (IoT) technologies. The proposal tries to mitigate
roblems with drug counterfeiting and temperature management in
he cold chain. The authors use two different types of blockchain:
yperledger Sawtooth and Ethereum. Similarly, our proposal is based
n the Ethereum blockchain network which brings advantages to our
pproach such as transparency, immutability, and traceability of data.
hey also conduct a performance evaluation. However, Singh et al.’s
roposal is not tested on lightweight devices. Unlike Singh et al.’s
roposal, our proposal provides a user-friendly interface through a
ow-code platform.

Yong et al. [49] propose an intelligent system based on smart
ontracts, which are deployed in Ethereum. This system combines
lockchain and machine learning for the recommendation, evaluation
4

and forecasting functions on vaccine demand. Nevertheless, unlike
our approach, it does not support full automation of the processes
of compiling, deploying, interacting and monitoring smart contracts.
Yong et al.’s proposal also fail to provide a low-code platform with a
user-friendly interface for easily carrying out such processes.

Hamdaqa et al. [50] propose a Domain-Specific Language (DSL)
to help software developers create smart contracts and deploy them
on a blockchain network. That is, through a graphical tool, software
developers will be able to define models that will later generate code
for different blockchain platforms. This allows users to abstract which
blockchain they are using and what peculiarities each one has. How-
ever, it is only able to deploy the contracts on the blockchain network,
so it is not able to interact with them or monitor them in real-time.
Moreover, unlike our proposal, it is not container-based and its proposal
is not intended for low-cost devices.

Li et al. [51] present a solution that seeks a balance between
anonymity and traceability in the existing cryptocurrency Monero.
In Monero, transactions are made anonymously, however, there is a
tracing authority which can revoke that anonymity for misbehavior. In
this context, the authors present Traceable Monero that can achieve
conditional anonymity and traceability simultaneously. Therefore, Li
et al. propose a solution with improved traceability mechanisms with
respect to the existing Monero implementation, meeting all security
requirements in exchange for a small overhead compared to the existing
cryptocurrency. However, they do not propose any low-code approach
which allows the development of event-driven applications for smart
contract management.

Yu et al. [52] investigate the existing security and privacy issues in
IoT by suggesting possible solutions through the use of blockchain tech-
nology and Ethereum. Specifically, they demonstrate how blockchain
can be integrated with IoT by describing a joint framework. In addition,
they show some possible solutions to address the security and privacy
issues presented in IoT devices based on blockchain solutions. More-
over, they consider other types of blockchain solutions to cover other
needs in addition to security and privacy. However, although Yu et al.’s
work uses blockchain technology in conjunction with IoT devices,
they do not present a solution that allows the graphical definition of
event-driven applications for the smart contract domain.

Li et al. [53] analyze blockchain technology from the point of
view of privacy and regulation in cryptocurrencies. Particularly, they
investigate existing approaches to enhance privacy in well-known so-
lutions such as Bitcoin and classify different existing methods to put
cryptocurrencies under surveillance. Then, they propose two possible
solutions to balance privacy and regulation in blockchain-based cryp-
tocurrencies. Therefore, Li et al.’s work does not allow the development
of event-driven applications for smart contract management.

In a later work, Li et al. [54] also propose a decentralized voting
system based on IoT devices and blockchain technology. In particular,
this system satisfies some requirements such as fairness, absence of
disputes and voting secrecy. In addition, the protocol implemented
by Li et al. has been tested on several devices such as a laptop, a
mobile phone and a Raspberry Pi 3 Model B+ through performance and
consumption tests. Therefore, although Li et al. use lightweight devices
to implement their proposal, unlike our approach, it is not based on the
low-code paradigm and does not allow the definition of event-driven
applications. In addition, our low-code approach uses a Raspberry
Pi4 for the case study, i.e., a more powerful and better-resourced
lightweight device than the one used in Li et al.’s work, which will
offer processing times lower than those presented by their work.

Tian et al. [55] propose a secure data deduplication and shared
auditing scheme based on decentralized storage through blockchain. It
aims to achieve space savings while protecting users from losing their
data under a single point of failure. In addition, it reduces the cost of
metadata calculation and storage through a lightweight authenticator
generation algorithm. This scheme achieves a decentralized public

audit without the need for third parties that will be shared with all users



Computer Standards & Interfaces 84 (2023) 103676J. Rosa-Bilbao et al.
Fig. 4. The proposed approach that integrates blockchain with low-code paradigm.
to avoid this kind of repetitive tasks. Therefore, Tian et al.’s work does
not present a low-code approach that allows end users to graphically
define event-driven applications for smart contract management.

Therefore, to the best of our knowledge, there are no approaches
that integrate blockchain technology with low-code paradigm for fa-
cilitating the compilation, deployment, interaction and monitoring of
smart contracts, which can be deployed in low-cost devices.

With respect to the existing blockchain tools, Settlemint [56] is
a low-code-based Blockchain-Platform-as-a-Service. Its toolkit allows
us to build a blockchain network based on other networks such as
Ethereum, Polygon or Binance Smart Chain. This tool is focused on
enterprise use due to its high costs. Thanks to the use of the low-code
paradigm, this tool requires less technical knowledge with respect to
other works described in this section, although it is also important to
take into account the most frequent errors when using this paradigm
[61]. However, our approach has different purposes. Our approach is
open-source and does not deploy a blockchain network from scratch;
rather, it is a complement to achieve compiling, deploying, interacting
and monitoring smart contracts within an existing blockchain network.
In addition, our approach allows integration with multiple services and
devices.

Unibright [57] is a consulting firm with a team of blockchain spe-
cialists with expertise in business process and integration. The provided
integration tools are low-code-based. Thanks to this, it allows inte-
grating business processes without the need for code. Its framework is
designed to help businesses to integrate blockchain into their processes
through its visual tool. Since this tool uses low-code paradigm, it
requires less technical knowledge with respect to other works described
in this section. However, our approach is more generic, based on
an open-source tool that can be extended with new functionalities
constantly. Furthermore, our approach also allows the integration of
blockchain with a multitude of services and devices without the need
for coding.

Creatorchain [58] is a low-code based Blockchain-Platform-as-a-
Service. It is based on Polkadot but allows interoperability with other
5

networks such as Ethereum or Binance Smart Chain. It offers a graphi-
cal interface for developers and also for users depending on the purpose
for which the tool is used. Creatorchain enables the graphical defini-
tion, compilation and deployment of smart contracts. However, it does
not allow integration of the blockchain network with other existing
services or devices. In addition, although its cost is lower than the other
tools presented, its use requires costs.

Aurachain [59] is a low-code platform that enables fast software
development. It is a tool focused on developers as well as citizens
through the use of a visual module with drag and drop functions. In ad-
dition, it allows the creation of deployable blockchain applications on
Hyperledger, Ethereum and other compatible networks. Aurachain also
allows the integration of its applications with other systems and ser-
vices. Similarly, this tool requires less technical knowledge compared
to other mentioned works since it is based on the low-code paradigm.
However, the use of this tool entails high costs that users and many
companies cannot afford to implement blockchain-based solutions.

4. The EDALoCo approach

This section presents our low-code approach for developing event-
driven applications for user-friendly smart contract management. An
overview of our proposed architecture, which is composed of three
main layers (Data Producers, Data Processing and Data Consumers), is
illustrated in Fig. 4.

4.1. Data producers

The Data Producers layer is composed of Web Services, IoT sen-
sors, IoT data simulators, smart contracts and applications, among
others, which generate data relevant to our approach.

Web Services are a means of intercommunication and interoper-
ability between machines connected in a network. IoT sensors can be
manufactured by several suppliers and can measure different parame-
ters, such as temperature, humidity or air quality. Applications are a



Computer Standards & Interfaces 84 (2023) 103676J. Rosa-Bilbao et al.
type of computer software designed to perform a group of coordinated
functions, tasks or activities for the benefit of the user.

The blockchain side is composed of smart contracts that have al-
ready been deployed in a blockchain network. When a smart contract
is deployed or one of its functions is invoked, a transaction is created.
Transactions are grouped together to create blocks. All transactions
registered in the blockchain network can be monitored in real time
through our proposal.

As shown in Fig. 4, the blockchain network contains information
about the transactions done such as destination address, transaction
hash, or gas cost. These data can be automatically consumed by some
nodes in our proposal, as explained in Section 4.2.

These data producers act as an oracle, i.e., it is an intermediary
between the real world and the smart contract. Specifically, data from
different data producers are received and could be preprocessed to
convert them into a suitable format. Depending on the device or service
supplier, the received data may have different structures. Thereby,
these data could be transformed and unified to a single format that
will be necessary to be sent to the low-code platform (Data Processing
Layer), i.e. data in different formats such as Comma-Separated Values
(CSV) and Extensible Markup Language (XML) are transformed into a
unique format: JavaScript Object Notation (JSON).

4.2. Data processing

The Data Processing layer is composed of a software container that
hosts a low-code platform.

The low-code platform facilitates the developing of event-driven
applications. To this end, this platform provides a browser-based ed-
itor that allows for the user-friendly developing of these applications
through node flows. Nodes can be grouped according to their function-
alities: (i) Data Producer nodes, which are responsible for receiving
data from the Data Producers layer and sending it to the Data Pro-
cessing nodes; (ii) Data Processing nodes, which are in charge of data
processing such as, compiling, deploying or interacting with a smart
contract, as well as sending the produced results to the Data Consumer
nodes; and (iii) Data Consumer nodes, which allow for connecting and
sending data from our low-code platform to the Data Consumers layer,
which is composed of several elements such as dashboards, files and
the blockchain network.

We decided to base our approach on the Node-RED low-code plat-
form because it brings us many advantages: (i) it can be run in software
containers, resulting in a portable solution that can be used in any ma-
chine regardless of aspects such as configuration or operating system;
(ii) it can be executed on most lightweight devices so any person or
entity without the need for many resources can use our proposal; (iii)
it allows to develop event-driven applications collaboratively; and (iv)
it allows easy import and export of created flows.

More specifically, we have implemented an extension of the Node-
RED flow-based tool that facilitates the integration of blockchain tech-
nologies with the low-code paradigm. The nodes developed for the
extension of the Node-RED low-code platform’s palette have specific
functionalities, as detailed in the following subsections. These nodes,
which we implemented using NodeJS, JavaScript and HTML as sug-
gested by the Node-RED documentation, were included in the Node-
RED editor palette to make them available to end users (see Fig. 5).
Although in this work we use it for a specific case study, it is important
to remark that these nodes are generic and can be used for all smart
contracts defined in several blockchain networks. That way, users will
be able to graphically develop event-driven applications to manage
smart contracts in a blockchain network. Thanks to the transparency
provided by the use of some blockchain networks, such as, Ethereum,
we do not need any kind of permission for anyone to be able to monitor
all the transactions of a deployed smart contract.
6

Fig. 5. Screenshot of the Node-RED tool palette extended with blockchain support.

4.2.1. Smart contract address subscription
We have developed a new node, called Smart Contract Address

Subscription, in Node-RED. It is a listener that receives all hashes of new
transactions mined on the selected blockchain network from a specific
public address of a smart contract. This node has no inputs.

Its parameters are as follows: (i) Web Socket, which indicates the
blockchain network where the specified smart contract is already de-
ployed, and (ii) Contact Address, which indicates the address of the
smart contract that is deployed on the blockchain network and to which
we wish to subscribe.

The output of this node is the result of the smart contract sub-
scription process. If the subscription has been successful, then all
transactions to or from the specified contract address will be displayed.

4.2.2. Transaction details
We have developed a new node, called Transaction Details, in Node-

RED. It gets all the details of a transaction that is already mined on the
blockchain network from its hash. The input of this node is the hash of
the transaction to be queried in the blockchain network.

Its parameters are as follows: (i) Web Socket, which indicates the
blockchain network on which the transaction has taken place, and (ii)
Detail, which indicates what details to be obtained from the queried
transaction. It can be a single piece of information such as gas used,
source address or destination address. However, it is also possible to
query all the details of the transaction.

The output of this node is the result of the transaction query process.
If the query has been successful, then the details selected in the node
will be displayed.

4.2.3. Solidity compiler
We have developed a new node, called Solidity Compiler, in Node-

RED. It allows to check that the developed Solidity code is correct and
has no errors. The input of this node is the Solidity code to be compiled.

Its parameter is as follows: Smart Contract Name, which indicates
the name of the smart contract to be compiled.

The output of this node is the result of the Solidity code compilation
process. In case of an error in the compilation, the error reasons
will be shown. If the compilation has been successful, then detailed



Computer Standards & Interfaces 84 (2023) 103676J. Rosa-Bilbao et al.
information about all the artifacts resulting from the compilation will
be displayed.

4.2.4. Solidity deploy
We have developed a new node, called Solidity Deploy, in Node-RED.

It deploys the smart contract on the blockchain network chosen by the
user. This contract must not have any compilation errors. This node has
no inputs.

Its parameters are as follows: (i) Web Socket, which indicates the
blockchain network where the Solidity code will be deployed. (ii)
Bytecode, which indicates the compiled code necessary for the correct
deployment of the Solidity code. It is the hexadecimal representation
of the compiled contract to object code. This bytecode can be obtained
through compilation using the Solidity Compiler node. (iii) ABI (Ap-
plication Binary Interface), which indicates a smart contract interface
required to be able to deploy it correctly. This allows interacting
with the smart contract from outside the network or contract–contract
interactions. This ABI can be obtained through compilation using the
Solidity Compiler node. (iv) Public Address, which indicates the public
address of the account that will be in charge of deploying the smart
contract on the blockchain network. This account can be considered the
‘‘owner’’ of the smart contract, and (v) Private Key, which indicates the
private key of the account that will be in charge of deploying the smart
contract on the blockchain network. This account can be considered the
‘‘owner’’ of the smart contract.

The output of this node is the result of the Solidity code deployment
process. If the deployment has been successful, then the address of the
smart contract assigned in the blockchain network will be displayed.

4.2.5. Solidity interaction
We have developed a new node, called Solidity Interaction, in Node-

RED. It invokes the functions of the smart contract already deployed
on the blockchain network.

The input of this node is the data with the necessary parameters
to interact with the desired smart contract function. Note that not all
smart contract functions need parameters.

Its parameters are as follows: (i) Web Socket, which indicates the
blockchain network where the specified smart contract is already de-
ployed. (ii) Private Key, which indicates the private key of the account
that will be in charge of interacting with the smart contract already
deployed on the blockchain network. (iii) Smart Contact ABI, which
indicates a smart contract interface required to be able to interact
correctly. This allows interacting with the smart contract from outside
the network or contract-contract interactions. This ABI can be obtained
through compilation using the Solidity Compiler node, and (iv) Smart
Contact Address, which indicates the address of the smart contract that
is deployed on the blockchain network and with which we want to
interact. This address can be obtained through deployment using the
Solidity Deploy node.

The output of this node is the result of the smart contract interaction
process. If the interaction has been successful, then all details of the
completed transaction will be displayed.

4.3. Data consumers

The Data Consumers layer is composed of social networking,
dashboards, files, smart contracts, databases and applications, which
consume data from our approach. Optionally, multiple devices and
services can consume data from the same event-driven application.

The blockchain side is composed of smart contracts that can be
deployed on the blockchain network or have been already deployed.
When a smart contract is deployed or one of its functions is invoked
through our approach, a transaction is created and its status in the
blockchain network changes.

Social Networking refers to the use of social networks as a means of
sharing data and results. A dashboard is a way to represent the data and
7

Fig. 6. COMET IoT wireless temperature device.

results obtained in a user-friendly way. Finally, File refers to the storage
in some local or remote directory of the data and results obtained.

These data consumers will be in charge of transferring all the results
of our approach to other systems or tools. In other words, they act
as intermediaries between our approach and the final systems. This
generic approach based on a low-code platform allows to be integrated
into business processes and to be part of a larger system thanks to its
modular and lightweight architecture.

5. Case study

To demonstrate the feasibility of our low-code proposal, we applied
it to a real-world IoT case study, as presented below.

5.1. Description

This case study was implemented by using Ethereum as the
blockchain network, a smart sensor as the IoT device and a lightweight
device as a host for the low-code platform container, as detailed below.
Note that other sensors, devices, services and smart contracts could be
added to the architecture, if necessary.

To easily monitor temperatures of different vaccines in real time, the
Data Producers layer is composed of an IoT wireless temperature data
logger with built-in sensor and Global System for Mobile communica-
tions (GSM) modem. This device (see Fig. 6), manufactured by Comet
System [62], fulfills the requirements of EN ISO/IEC 17025 standard,
which is very useful for performing testing, sampling or calibration
and obtaining reliable results [63]. This device can send Short Message
Service (SMS) and JSON messages using the General Packet Radio
Service (GPRS) [64] technology. The measured temperature data can
be automatically sent to a data server in real time and also recorded in
non-volatile electronic memory to be transferred to a PC. Some of the
most important features of this device are as follows:

• Temperature measuring range: −20 to +60 ◦C.
• Accuracy of temperature measurement: ±0.4 ◦C.
• Total memory capacity: 500 000 values.
• Dimensions: 61 × 93 × 53, with antenna 120 × 93 × 53.
• Weight: 260 g.
• Battery: SONY LiIon 5200 mAh.

Particularly, this sensor measures the temperature every 5 min (this
frequency can be configured) and then sends it to a message bro-
ker. These measurements are received by our event-driven application
through data source nodes that connect to the message broker and
consume in real time all the temperatures emitted by the sensor.

The Blockchain component, proposed in the Data Producers
layer (see Fig. 4), is composed of two smart contracts, called



Computer Standards & Interfaces 84 (2023) 103676J. Rosa-Bilbao et al.

t

t
a

d
t
a
h
t
t
b
m

f
p

T
a
c
d

a
s
f
r

d
w
f
t
T
t

R
s
p
b
d

5

b
(

t
a
(
S
n
c
t
b
p
b
c
D
b
e
t

c
c
i
a

s
a
i
b
d
p
n
E
t
p
E

AstraZenecaVaccine and ModernVaccine, which we imple-
mented in Solidity for defining the logic necessary to register and
detect when the temperature exposed by an AstraZeneca vaccine [65]
or Moderna vaccine [66] is out of the allowed range. The code of
these smart contracts can be downloaded from [67]. Both contracts
have the same functions with minor differences in terms of temperature
thresholds. Specifically, the contract functions are as follows:

• registerTemperature: this function is in charge of receiv-
ing the data to be registered in the blockchain network. In addi-
tion, the received temperature is checked against set thresholds. If
the temperature is not within the thresholds, then a temperature
warning is generated. In the case of the AstraZeneca vaccine,
if the temperature is lower than 2 ◦C or higher than 8 ◦C,
the temperature will be recorded as a temperature outside the
set thresholds. However, if the vaccine is Moderna, the estab-
lished thresholds will be between −25 ◦C and −15 ◦C. These
temperature thresholds are the ones recommended for correct
conservation of the vaccines according to the European Medicines
Agency suppliers [65,66]. Since this function writes data into the
blockchain network, it previously requires the approval of the
majority of the nodes in the network. That is, registering this data
in the blockchain network will have an associated cost which will
depend on the number of operations that are performed within
the function.

• getTemperatureReading: this function allows to get all the
data that has been registered so far in the blockchain network by
the register Temperature function. As this operation is only
a query and does not require approval by the blockchain network,
it does not have any gas cost.

• getTemperatureWarning: all the temperature warnings that
have been registered in the blockchain network by the reg-
isterTemperature function are obtained. These temperature
warnings will give us all the details of the recorded temperatures,
which sensor recorded them and at what time they occurred. As
this operation is only a query and does not require approval by
the blockchain network, it does not have any gas cost.

Thereby, these smart contracts can record in the blockchain network
he following information emitted by the sensor:

• timestamp: the timestamp value at which the temperature was
measured by the sensor.

• sensorId: an id that uniquely identifies a device that is in charge
of taking and sending temperatures.

• temperature: a temperature value taken at a specific time and
sent by the sensor.

All transactions recorded in the blockchain network will take place
ransparently and immutably. Moreover, the results can be queried by
nyone, anywhere in the world at any time.

The Data Processing layer is made up of a lightweight device to
eploy our architecture, in particular, it is a Raspberry Pi4. Currently,
his is the latest model available that offers an improvement in speed
nd performance over previous models. This model is also quiet and
as low power consumption compared to other devices [23]. Note that
he use of this type of device in the case study is to demonstrate that
he proposal can be deployed on lightweight devices. However, it can
e also deployed on computers and more powerful devices. Some of the
ost important features of the Raspberry Pi4 are:

• Broadcom BCM2711, Quad core Cortex-A72 (ARM v8) 64-bit SoC
@ 1.5 GHz.

• 8 GB LPDDR4-3200 SDRAM.
• Gigabit Ethernet.
• Micro-SD card slot for loading operating system and data storage.

◦

8

• Operating temperature: 0–50 C. o
This device will be in charge of hosting the container necessary
or the correct operation of the approach. The container used in this
roposal has been managed using the Docker tool [68].

The container is responsible for hosting the low-code platform.
hrough this platform, end-users can drag and drop different nodes
vailable in the editor palette. As mentioned in Section 4.2, these nodes
an have different functions, such as data sources, data processors, or
ata consumers.

This low-code platform provides an editor where flows for creating
n event-driven application can be graphically developed. The data
ource nodes of the application to be modeled can be of various types,
or example, a source node that supports an MQTT protocol client that
eceives the formatted data from the smart sensor.

Optionally, processing nodes can be modeled. These nodes have a
ata input and a data output. These nodes execute a series of functions
ith the data received. The data obtained as a result of executing these

unctions will be sent to the other nodes. Specifically, in this proposal,
he received data are deployed in the Ethereum blockchain network.
his action generates some results that are the details of the deployed
ransaction to be sent to the output nodes.

The output nodes allow us to store data, send data or display data.
emarkably, a processing node can be linked to several output nodes,
o the same information will be sent, stored or displayed in different
laces. In our proposal, the tests performed have been sent to a message
roker by using the Kafka protocol, storing the data in a file and
isplaying the results on a dashboard.

.2. Modeling event-driven applications

Four event-driven applications for managing smart contracts have
een graphically modeled by using our blockchain-based graphical tool
see Section 4), as explained below.

Fig. 7 depicts one of such modeled event-driven applications. Par-
icularly, this application, which has been modeled with 10 nodes,
llows end-users to compile a given smart contract. The first node
Solidity Code) corresponds to a data producer, which will contain the
olidity code to be compiled. This node is connected to the second
ode (Solidity Compiler), a data processor responsible for transparently
ompiling the Solidity code injected from the data producer. Note that
his node requires a certain configuration in the form of parameters to
e specified by the user, as illustrated in Fig. 8. The only mandatory
arameter required by the node is the name of the smart contract to
e compiled. Then, the data processor node is linked to several data
onsumer nodes where the data processing results will be published.
ifferent types of data consumer nodes can be used such as message
roker, file and on a dashboard. Note that all data typed by the user in
ach node is validated, so, an error will be displayed for correction if
he entered data is incorrect.

Specifically, the kafka-producer node is in charge of publishing the
ompilation results in a message queue. The write file node saves the
ompilation results in a file. The rest of the orange and blue nodes are
n charge of obtaining the relevant data from the compilation results
nd displaying them through a dashboard.

Fig. 9 shows the modeled event-driven application for deploying a
mart contract. The first node (Solidity Deploy) is a data producer that
llows end-users to deploy a smart contract on a blockchain network
n a user-friendly way. This node requires a previous configuration
efore deploying a smart contract correctly. Fig. 10 shows the required
ata to be provided by the user, such as web socket, bytecode, ABI,
ublic address and private key. Web socket is the specific URL address
eeded to properly connect to the blockchain network (in our case, the
thereum network). Bytecode and ABI specify the information about
he details of the contract to be deployed. The public address and
rivate key are from the user who will deploy the contract on the
thereum blockchain network. Note that many of these fields can be
btained through the use of other nodes, such as the compilation node.



Computer Standards & Interfaces 84 (2023) 103676J. Rosa-Bilbao et al.
Fig. 7. Node-RED flow for compiling a smart contract.
Fig. 8. Configuration details of the Solidity Compiler node.

Fig. 9. Node-RED flow for deploying a smart contract.

The rest of the nodes represent data outputs that will be responsible for
recording the results in different places such as message brokers, files
and on a dashboard. In this particular application flow, and unlike the
previous one, there are no data processing nodes. Therefore, data are
produced and stored in the blockchain without being modified by any
node.

In particular, the kafka-producer node is in charge of publishing the
deployment results in a message queue. The write file node saves the
deployment results in a file. Then, the Dashboard node is in charge of
displaying the deployment result through a dashboard.

The third application flow for facilitating the interaction with a
blockchain network is formed by 26 nodes, as shown in Fig. 11. The
first node (MQTT ) is a message broker–client that receives the data to
be emitted by the sensor and preprocessed before reaching the low-code
platform. These transmitted data use the MQTT protocol. Once the data
have been received by a processing node, these will be automatically
registered in the blockchain network. To this end, the node must
be previously configured, as depicted in Fig. 12. Among others, the
9

Fig. 10. Configuration details of the Solidity Deploy node.

following data are required to the user: web socket, private key, smart
contract ABI and smart contract address. The private key is from the
user who will interact with the contract deployed in the blockchain
network. ABI and address specify the information about the details of
the contract already deployed. After interacting with the blockchain
network, the processed results are received by data consumer nodes,
such as message broker, file and on a dashboard.

More specifically, the kafka-producer node is in charge of publishing
the interaction results in a message queue. The write file node saves the
interaction results in a file. The rest of the orange and blue nodes are in
charge of obtaining the relevant data from the interaction results and
displaying them through a dashboard.

The event-driven application modeled for monitoring a smart con-
tract deployed in a blockchain network is composed of 22 nodes (see
Fig. 13). The first node (Contract_Address Subscription) is a data producer
which subscribes to a smart contract already deployed in a blockchain
network. This node is listening in real time to the blockchain network
to notify the new mined transactions whose source or destination is
such a smart contract. This node requires a previous configuration, as
illustrated in Fig. 14, in particular, web socket and contract address.
The contract address is the public address of the smart contract that
is deployed on the blockchain network and which is to be moni-
tored in real time. Then, the Get Transaction Details node receives



Computer Standards & Interfaces 84 (2023) 103676J. Rosa-Bilbao et al.
Fig. 11. Node-RED flow for interacting with a smart contract.
Fig. 12. Configuration details of the Solidity Interaction node.

the result of the (Contract_Address Subscription) node. From the hash
of the monitored transactions in real time, this node can query the
details of the monitored transactions. This node also requires a previous
configuration so that it can properly connect to the blockchain network
and then query the needed details. Fig. 15 shows the data required
for its correct configuration, i.e, Web socket and the details to be
obtained. Concretely, details refer to the desired information to be
obtained from the transactions listened to in real time; for instance, all
available information or just the transaction number or gas cost. The
data consumer nodes (message broker, file and display) will receive the
details of all monitored transactions in real time.

Note that the kafka-producer node is in charge of publishing the
monitoring results in a message queue. The write file node saves the
10
monitoring results in a file. The rest of the orange and blue nodes are
in charge of obtaining the relevant data from the monitoring results
and displaying them through a dashboard.

5.3. Executing the modeled event-driven applications

After modeling the event-driven applications for compiling, deploy-
ing, interacting and monitoring smart contracts, these were executed
by obtaining the following information.

Fig. 16 shows the results obtained upon the Compilation flow exe-
cution. Specifically, it shows the information necessary for the deploy-
ment flow, such as the ABI and bytecode of the smart contract. Among
others, it also shows if there are any errors.

The output obtained for the execution of the Deployment flow is
illustrated in Fig. 17. Particularly, it presents two messages with rel-
evant information about the deployment process. Firstly, it shows that
it is trying to deploy the contract and which user is deploying it. Then,
it indicates that the contract has been successfully deployed and the
address that has been assigned to this contract.

After executing the Interaction flow, the obtained output can be
checked in Fig. 18. In particular, all information about the transaction
that has just been mined is displayed. As an example, the block in which
the transaction has been included, the hash of the transaction or the gas
used.

Fig. 19 depicts the results obtained as a result of executing the
Monitoring flow. It outputs the information of the transaction listened
in real time whose source or destination is the public address that has
been previously configured; among other information, the transaction
hash, block hash or block number.

Note that all above results have been displayed on a dashboard,
replicated and saved in a file and sent to a message broker.

6. Evaluation

This section presents the evaluation of our EDALoCo proposal,
which we have applied to the case study described in Section 5.

EDALoCo can be considered accessible for software developers
who are non-experts in blockchain since it is based on the low-code
paradigm, which provides a great level of user-focus by abstracting
from technical details [69].



Computer Standards & Interfaces 84 (2023) 103676J. Rosa-Bilbao et al.
Fig. 13. Node-RED flow for monitoring a smart contract.
.

Fig. 14. Configuration details of the Contract Subscription node.

Fig. 15. Configuration details of the Transaction Details node.
11
Table 2
Public addresses of the smart contracts deployed in the Ethereum blockchain network

Contract name Contract address

ModernaVaccine 0×9fe64BF433721354404751B02AA3c6C4bf065cEc
AstraZenecaVaccine 0×4B4bf83C0a46D22146428be5EEAcd8CcD35B1b17

6.1. Functionality evaluation

To evaluate the functionality of our proposal, we ran the case study
during 1 week (from 02/06/2021 to 09/06/2021), considering the two
mentioned application scenarios: Moderna and AstraZeneca vaccines
(see Section 5).

For the Moderna scenario, we placed the temperature sensor in
a freezer. This vaccine was kept at a temperature with thresholds
between −25 ◦C and −15 ◦C. Fig. 20 shows all temperatures measured
by the sensor every 5 min.

For the AstraZeneca scenario, we placed the temperature sensor in
a refrigerator. This vaccine was kept at a temperature with thresholds
between 2 ◦C and 8 ◦C. All temperatures measured by the sensor every
300 s can be seen in Fig. 21.

To automatically store such temperature measurements in the
blockchain to make them visible to anyone around the world, we
deployed the two described smart contracts in the Ethereum network.
As a consequence, a unique public address was automatically assigned
to each contract (see Table 2).

Therefore, thanks to the transparency, traceability and immutability
of the Ethereum blockchain network, all transactions mined on the
network, i.e. all recorded temperatures of each smart contract can be
queried by anyone transparently. Using the Node-RED tool, which we
have extended with the blockchain support, all these temperatures have
been registered by non-experts in blockchain (see Section 5). Fig. 22
shows an excerpt of a query on the conducted transactions of the
Moderna vaccine smart contract, while Fig. 23 shows another example
of a query on AstraZeneca vaccine smart contract’s transactions.

As a result, Table 3 summarizes the information on the vaccine
smart contracts. Particularly, it presents the temperature measurements
registered in the Ethereum blockchain network. Additionally, it shows
the detected temperature warnings also registered in the Ethereum net-
work, i.e., the temperatures outside the established thresholds. More-
over, the total cost in gas for having mined all these transactions and
the average cost of gas for each transaction are provided in Table 3.



Computer Standards & Interfaces 84 (2023) 103676J. Rosa-Bilbao et al.
Fig. 16. Dashboard with the results obtained after executing the Compilation flow.
Fig. 17. Dashboard with the results obtained after executing the Deployment flow.
Fig. 18. Dashboard with the results obtained after executing the Interaction flow.
Table 3
Summary of the relevant data for the deployed smart contracts.
Smart Mined Detected Total Average
contract transactions warnings gas used gas used

ModernaVaccine 716 3 69252186 96720.93016759776
AstraZenecaVaccine 501 1 48343418 96493.84830339321
Therefore, we can affirm that the flows modeled in Section 5
were correctly deployed. Moreover, thanks to the use of the Ethereum
network, the registered data are transparent, immutable and traceable.
12
Finally, after having performed the evaluation, we can state that
software developers can graphically develop event-driven applications
that allows managing smart contracts in a blockchain network. All



Computer Standards & Interfaces 84 (2023) 103676J. Rosa-Bilbao et al.
Fig. 19. Dashboard with the results obtained after executing the Monitoring flow.
Fig. 20. Recorded temperatures of the Moderna vaccine.
Fig. 21. Recorded temperatures of the AstraZeneca vaccine.
this is achieved using the low-code paradigm, making the approach
accessible to non-experts by avoiding repetitive programming tasks.
Moreover, thanks to our extension of the Node-RED tool that allows
defining event-driven applications through graphical flows, all temper-
atures measured in real time by devices and services will be registered
in the blockchain network automatically and without the need for
human interaction.
13
6.2. Performance evaluation

We conducted a performance evaluation of our proposal deployed
in a Raspberry Pi. We used the RPi-Monitor [70] software to monitor
some system metrics of such a low-cost device. In addition, it provides
a web server that allows us to display the current status of the device as



Computer Standards & Interfaces 84 (2023) 103676J. Rosa-Bilbao et al.
Fig. 22. Moderna smart contract’s view in Etherscan.
Fig. 23. AstraZeneca smart contract’s view in Etherscan.
Fig. 24. Summary of the RPi-Monitor main web interface.
well as statistics of some metrics about the performance of the low-cost
device (see Fig. 24).

Fig. 25 illustrates the amount of computational work performed by
our whole proposal running on a Raspberry Pi 4 device for one week.
As we can see, the CPU consumption required by the proposal is low
(between 0.0 and 0.2 min). Although there are some peaks, this is not
an issue since their frequency is usually about once per day.

The status of the main memory of such a device is shown in Fig. 26.
Although this device has a total memory of 8 GB (see Section 5), our
proposal has not required so much capacity: the device could run the
whole system without problems by using 1 GB approximately.
14
Fig. 27 presents the temperatures of the device while it was in
execution. These values were usually stable although have suffered
small variations. Note that these values were usually not higher than
55 ◦C and less than 45 ◦C.

Taking these results into account, we can conclude that EDALoCo
can be appropriately deployed on lightweight devices. By using soft-
ware containers, we have achieved that our approach is lightweight and
can be executed on these devices without requiring a lot of resources.
This validates our proposal as an efficient and feasible low-code ap-
proach to be deployed in this type of devices.



Computer Standards & Interfaces 84 (2023) 103676J. Rosa-Bilbao et al.
Fig. 25. Evolution of the CPU load on the Raspberry.
Fig. 26. Evolution of the main memory on the Raspberry.
Fig. 27. Evolution of the temperature on the Raspberry.
6.3. Threats to validity

Next, we will discuss the threats to the validity of the evaluation
results presented in this section. Specifically, we will divide them into
four categories:

• Threats to internal validity, which consider factors that have not
been controlled at the time of the development of the new nodes
developed for the Node-RED tool and that may affect the results
obtained.

• Threats to external validity consider whether the results of our
case study can be generalized and adapted to other situations,
i.e., whether we have achieved an adequate level of abstraction.

• Threats to construct validity in which we will check whether we
are working with properties of interest.

• Threats to conclusions validity that will be those that put at risk
our approach and the results obtained in this paper.

In terms of threats to internal validity, the main concerns we have
taken into account are programming failures in the new nodes devel-
oped to extend the Node-RED tool. To mitigate the impact generated
15
by this threat, we have decided to perform multiple tests on these
nodes once implemented, using different examples and case studies
with different situations to check their correct operation since we could
manually check the results in the console of the low-code tool itself.
To reach the adequate level of abstraction required by the low-code
paradigm, it is important to ensure a good implementation that controls
all possible situations and their exceptions. For this purpose, certain
fields are mandatory without which the execution of the nodes will not
be possible. In addition, an exception control has been implemented to
control the different possible situations that may occur, showing the
user what has happened in case something has not worked properly
and what has been the reason.

With respect to external validity threats, the first thing we have
considered is the ability of our approach to adapt to different domains.
For our case study, we have used smart sensors connected to the low-
code platform, which is hosted on a lightweight device. If our approach
is able to provide good performance when applying it to this type of
case study, then we can be confident that the performance will not be
affected when applied to other types of domains. This case study is
representative since we use different layers in our architecture, and the



Computer Standards & Interfaces 84 (2023) 103676J. Rosa-Bilbao et al.
case study has a real representation in each of these layers. Therefore,
the results obtained through these tests should be similar to the results
that will be obtained by using this approach in other different domains.
Finally, thanks to the use of the low-code paradigm we can abstract end
users from technical details of the implementation of each of the nodes
used [69].

Regarding the threats to the validity of the construct, we have
taken into account the capability of the newly developed nodes with
respect to the detection of errors derived from bad practices in their
use. In order to do this, in our experiments we have introduced different
anomalous situations not expected by the nodes to check what happens.
Errors were always detected in a timely manner and displayed so
that they could be corrected. Errors that are not detected or errors
whose descriptions do not correctly describe the error are a threat
to the validity of the construct. Furthermore, with respect to the
performance evaluation of our proposal we have considered several
metrics. In particular, Fig. 24 shows some of the metrics used, such
as temperature, computational work and capacity of the main memory
of the lightweight device.

Finally, the threats to the validity of the conclusions will be those
factors that may compromise the conclusions we have reached based
on the results. As mentioned above, thanks to the use of the low-code
paradigm, we have achieved an adequate level of abstraction. This
allows our approach to be used in other real-world case studies in addi-
tion to the one presented in this paper; however, the occurrence of any
errors in some of the layers of our architecture (see Section 4) would be
a threat to the validity of our conclusions. For instance, a malfunction
of sensors or a blockchain saturation, i.e. when a blockchain network
is not available or its performance is not as expected.

7. Conclusions and future work

In this paper, we proposed EDALoCo, an approach that enhances
the accessibility of the blockchain technology by utilizing the low-
code paradigm to develop event-driven applications for smart contract
management.

EDALoCo, which is based on a containerized low-code platform, al-
lows software developers who are non-experts in blockchain, to graph-
ically develop event-driven applications to manage smart contracts in
the blockchain network through a browser-based editor. This editor
is the result of extending the Node-RED tool with novel blockchain-
based nodes which we developed in this work. Thanks to this editor,
such event-driven applications can be defined—even in a collaborative
way—as graphical flows to be deployed in runtime through a single
click.

The use of software containers in EDALoCo allows us to have a
lightweight solution that can be run on most devices without worrying
about the particular configuration or operating system supported by
these devices. In addition, it offers us a modular solution in which we
can deploy our proposal in one container and integrate it with other
services. For example, the low-code platform in one container and a
message broker in another one.

More specifically, EDALoCo was successfully applied to a case study
on AstraZeneca’s and Moderna’s COVID-19 vaccines with the aim of
real-time monitoring the temperatures to which these vaccines are ex-
posed as well as automatically storing them in an Ethereum blockchain.
That way, this immutable information is made public for anyone in-
terested in verifying the cold chain. By using the proposed graphical
editor, the user can model the event-driven applications necessary to
manage the smart contracts in charge of controlling the logic of this
case study.

As future work, we plan to apply EDALoCo to other real-world case
studies, such as the monitoring of air quality or water consumption in
smart cities [71], and e-health data [72,73]. We also intend to extend
the palette of the low-code platform’s editor to calculate statistics from
blockchain data. This will allow users to detect situations of interest,
such as blockchain network anomalies, or to analyze when it is cheaper
(in terms of gas price) to register a temperature reading in a blockchain
network.
16
CRediT authorship contribution statement

Jesús Rosa-Bilbao: Conceptualization, Methodology, Software, Val-
idation, Investigation, Resources, Visualization, Writing – original draft,
Writing – review & editing. Juan Boubeta-Puig: Conceptualization,
Methodology, Software, Validation, Investigation, Writing – original
draft, Writing – review & editing, Funding acquisition, Supervision.
Adrian Rutle: Conceptualization, Methodology, Writing – review &
editing.

Declaration of competing interest

No author associated with this paper has disclosed any potential or
pertinent conflicts which may be perceived to have impending conflict
with this work. For full disclosure statements refer to https://doi.org/
10.1016/j.csi.2022.103676.

Acknowledgments

This work was supported by the Spanish Ministry of Science and In-
novation and the European Regional Development Fund under projects
FAME [RTI2018-093608-B-C33] and AwESOMe [PID2021-122215NB-
C33], and the Research Plan from the University of Cadiz and Grupo
Energético de Puerto Real S.A. under project GANGES [IRTP03_UCA].

References

[1] X. Xu, I. Weber, M. Staples, Architecture for Blockchain Applications, Springer
International Publishing, Cham, 2019, http://dx.doi.org/10.1007/978-3-030-
03035-3.

[2] Gartner, Blockchain technology & how it helps business growth, 2022, https://
www.gartner.com/en/information-technology/insights/blockchain. (Accessed 03
February 2022).

[3] A. Azaria, A. Ekblaw, T. Vieira, A. Lippman, MedRec: Using blockchain for med-
ical data access and permission management, in: 2nd International Conference
on Open and Big Data (OBD), 2016, pp. 25–30, http://dx.doi.org/10.1109/OBD.
2016.11.

[4] M. Liu, Z. Zhang, W. Chai, B. Wang, Privacy-preserving COVID-19 contact tracing
solution based on blockchain, Comput. Stand. Interfaces 83 (2022) 103643,
http://dx.doi.org/10.1016/j.csi.2022.103643.

[5] X. Zheng, Y. Zhao, H. Li, R. Chen, D. Zheng, Blockchain-based verifiable privacy-
preserving data classification protocol for medical data, Comput. Stand. Interfaces
82 (2022) 103605, http://dx.doi.org/10.1016/j.csi.2021.103605.

[6] Y. Yu, Y. Zhao, Y. Li, X. Du, L. Wang, M. Guizani, Blockchain-based anonymous
authentication with selective revocation for smart industrial applications, IEEE
Trans. Ind. Inf. 16 (5) (2020) 3290–3300, http://dx.doi.org/10.1109/TII.2019.
2944678.

[7] D. Puthal, N. Malik, S.P. Mohanty, E. Kougianos, C. Yang, The blockchain as a
decentralized security framework [future directions], IEEE Consum. Electr. Mag.
7 (2) (2018) 18–21, http://dx.doi.org/10.1109/MCE.2017.2776459.

[8] D. Li, D. Han, Z. Zheng, T.-H. Weng, H. Li, H. Liu, A. Castiglione, K.-C. Li,
MOOCsChain: A blockchain-based secure storage and sharing scheme for MOOCs
learning, Comput. Stand. Interfaces 81 (2022) 103597, http://dx.doi.org/10.
1016/j.csi.2021.103597.

[9] L. Tan, H. Xiao, K. Yu, M. Aloqaily, Y. Jararweh, A blockchain-empowered
crowdsourcing system for 5G-enabled smart cities, Comput. Stand. Interfaces 76
(2021) 103517, http://dx.doi.org/10.1016/j.csi.2021.103517.

[10] D.S.W. Ting, L. Carin, V. Dzau, T.Y. Wong, Digital technology and COVID-19,
Nat. Med. 26 (4) (2020) 459–461, http://dx.doi.org/10.1038/s41591-020-0824-
5.

[11] J. Rosa-Bilbao, J. Boubeta-Puig, RectorDApp: Decentralized application for
managing university rector elections, in: 2021 IEEE International Conference
on Service-Oriented System Engineering, SOSE, IEEE, Oxford, United Kingdom,
2021, pp. 161–165, http://dx.doi.org/10.1109/SOSE52839.2021.00024.

[12] R.T. Geraldi, S. Reinehr, A. Malucelli, Software product line applied to the
Internet of things: A systematic literature review, Inf. Softw. Technol. 124 (2020)
106293, http://dx.doi.org/10.1016/j.infsof.2020.106293.

[13] M. Xie, Y. Yu, R. Chen, H. Li, J. Wei, Q. Sun, Accountable outsourcing data
storage atop blockchain, Comput. Stand. Interfaces 82 (2022) 103628, http:
//dx.doi.org/10.1016/j.csi.2022.103628.

[14] D.J. Yaga, P.M. Mell, N. Roby, K. Scarfone, Blockchain Technology Overview,
NIST Pubs 8202, NIST, Gaithersburg, MD, 2018, pp. 1–66, http://dx.doi.org/10.
6028/NIST.IR.8202.

https://doi.org/10.1016/j.csi.2022.103676
https://doi.org/10.1016/j.csi.2022.103676
https://doi.org/10.1016/j.csi.2022.103676
http://dx.doi.org/10.1007/978-3-030-03035-3
http://dx.doi.org/10.1007/978-3-030-03035-3
http://dx.doi.org/10.1007/978-3-030-03035-3
https://www.gartner.com/en/information-technology/insights/blockchain
https://www.gartner.com/en/information-technology/insights/blockchain
https://www.gartner.com/en/information-technology/insights/blockchain
http://dx.doi.org/10.1109/OBD.2016.11
http://dx.doi.org/10.1109/OBD.2016.11
http://dx.doi.org/10.1109/OBD.2016.11
http://dx.doi.org/10.1016/j.csi.2022.103643
http://dx.doi.org/10.1016/j.csi.2021.103605
http://dx.doi.org/10.1109/TII.2019.2944678
http://dx.doi.org/10.1109/TII.2019.2944678
http://dx.doi.org/10.1109/TII.2019.2944678
http://dx.doi.org/10.1109/MCE.2017.2776459
http://dx.doi.org/10.1016/j.csi.2021.103597
http://dx.doi.org/10.1016/j.csi.2021.103597
http://dx.doi.org/10.1016/j.csi.2021.103597
http://dx.doi.org/10.1016/j.csi.2021.103517
http://dx.doi.org/10.1038/s41591-020-0824-5
http://dx.doi.org/10.1038/s41591-020-0824-5
http://dx.doi.org/10.1038/s41591-020-0824-5
http://dx.doi.org/10.1109/SOSE52839.2021.00024
http://dx.doi.org/10.1016/j.infsof.2020.106293
http://dx.doi.org/10.1016/j.csi.2022.103628
http://dx.doi.org/10.1016/j.csi.2022.103628
http://dx.doi.org/10.1016/j.csi.2022.103628
http://dx.doi.org/10.6028/NIST.IR.8202
http://dx.doi.org/10.6028/NIST.IR.8202
http://dx.doi.org/10.6028/NIST.IR.8202


Computer Standards & Interfaces 84 (2023) 103676J. Rosa-Bilbao et al.
[15] J. Boubeta-Puig, J. Rosa-Bilbao, J. Mendling, CEPchain: A graphical model-
driven solution for integrating complex event processing and blockchain, Expert
Syst. Appl. 184 (Article 115578) (2021) http://dx.doi.org/10.1016/j.eswa.2021.
115578.

[16] M. Wohrer, U. Zdun, Domain specific language for smart contract development,
in: 2020 IEEE International Conference on Blockchain and Cryptocurrency,
ICBC, IEEE, Toronto, ON, Canada, 2020, pp. 1–9, http://dx.doi.org/10.1109/
ICBC48266.2020.9169399.

[17] I. Grigg, The ricardian contract, in: Proceedings of the First IEEE International
Workshop on Electronic Contracting, 2004, IEEE, San Diego, CA, USA, 2004, pp.
25–31, http://dx.doi.org/10.1109/WEC.2004.1319505.

[18] B. Jiang, Y. Liu, W.K. Chan, ContractFuzzer: Fuzzing smart contracts for vulnera-
bility detection, in: Proceedings of the 33rd ACM/IEEE International Conference
on Automated Software Engineering, in: ASE 2018, Association for Computing
Machinery, New York, NY, USA, 2018, pp. 259–269, http://dx.doi.org/10.1145/
3238147.3238177.

[19] L. Almonte, I. Cantador, E. Guerra, J. de Lara, Towards automating the
construction of recommender systems for low-code development platforms, in:
Proceedings of the 23rd ACM/IEEE International Conference on Model Driven
Engineering Languages and Systems: Companion Proceedings, in: MODELS ’20,
Association for Computing Machinery, New York, NY, USA, 2020, pp. 1–10,
http://dx.doi.org/10.1145/3417990.3420200.

[20] OpenJ.S. Foundation, Node-RED, 2022, https://nodered.org/. (Accessed 03
February 2022).

[21] M. Wohrer, U. Zdun, Design patterns for smart contracts in the ethereum ecosys-
tem, in: 2018 IEEE International Conference on Internet of Things (IThings)
and IEEE Green Computing and Communications (GreenCom) and IEEE Cyber,
Physical and Social Computing (CPSCom) and IEEE Smart Data (SmartData),
IEEE, 2018, pp. 1513–1520, http://dx.doi.org/10.1109/Cybermatics_2018.2018.
00255.

[22] G. Ortiz, J. Boubeta-Puig, J. Criado, D. Corral-Plaza, A.G. de Prado, I. Medina-
Bulo, L. Iribarne, A microservice architecture for real-time IoT data processing:
A reusable web of things approach for smart ports, Comput. Stand. Interfaces 81
(2022) 103604, http://dx.doi.org/10.1016/j.csi.2021.103604.

[23] Raspberry Pi, Raspberry pi, 2022, https://www.raspberrypi.org/. (Accessed 03
February 2022).

[24] W. Felter, A. Ferreira, R. Rajamony, J. Rubio, An updated performance compar-
ison of virtual machines and linux containers, in: IEEE International Symposium
on Performance Analysis of Systems and Software, ISPASS, 2015, pp. 171–172,
http://dx.doi.org/10.1109/ISPASS.2015.7095802.

[25] C. Silva, J. Vieira, J.C. Campos, R. Couto, A.N. Ribeiro, Development and
validation of a descriptive cognitive model for predicting usability issues in
a low-code development platform, Hum. Factors 63 (6) (2021) 1012–1032,
http://dx.doi.org/10.1177/0018720820920429.

[26] M. Ananthanarayanan, R. Mishra, V. Chakka, How integrated process
management completes the blockchain jigsaw, Blockchain (2018) 4–7.

[27] D. Drescher, Blockchain Basics: A Non-Technical Introduction in 25 Steps, 1, A
Press, 2017.

[28] K. Mammadzada, M. Iqbal, F. Milani, L. García-Bañuelos, R. Matuleviius,
Blockchain oracles: A framework for blockchain-based applications, in: A. Asa-
tiani, J.M. García, N. Helander, A. Jiménez-Ramírez, A. Koschmider, J. Mendling,
G. Meroni, H.A. Reijers (Eds.), Business Process Management: Blockchain and
Robotic Process Automation Forum, in: Lecture Notes in Business Information
Processing, Springer International Publishing, Cham, 2020, pp. 19–34, http:
//dx.doi.org/10.1007/978-3-030-58779-6_2.

[29] Ethereum Foundation, Ethereum, 2022, Ethereum.Org https://ethereum.org.
(Accessed 03 February 2022).

[30] A.J. Varela-Vaca, A.M.R. Quintero, Smart contract languages: A multivocal
mapping study, ACM Comput. Surv. 54 (1) (2021) http://dx.doi.org/10.1145/
3423166.

[31] Solidity, Solidity documentation, 2022, https://docs.soliditylang.org/en/v0.8.4/.
(Accessed 03 February 2022).

[32] T. Chen, X. Li, X. Luo, X. Zhang, Under-optimized smart contracts devour
your money, in: 2017 IEEE 24th International Conference on Software Analysis,
Evolution and Reengineering, SANER, 2017, pp. 442–446, http://dx.doi.org/10.
1109/SANER.2017.7884650.

[33] C. Ploder, R. Bernsteiner, S. Schlögl, C. Gschliesser, The future use of Low-
Code/NoCode platforms by knowledge workers – an acceptance study, in: L.
Uden, I.-H. Ting, J.M. Corchado (Eds.), Knowledge Management in Organizations,
Springer International Publishing, Cham, 2019, pp. 445–454.

[34] J. Caldeira, F. Brito e Abreu, J. Cardoso, J.P. dos Reis, Unveiling process
insights from refactoring practices, Comput. Stand. Interfaces 81 (2022) 103587,
http://dx.doi.org/10.1016/j.csi.2021.103587.

[35] L. Brunschwig, R. Campos-López, E. Guerra, J. de Lara, Towards domain-specific
modelling environments based on augmented reality, in: IEEE/ACM 43rd Inter-
national Conference on Software Engineering: New Ideas and Emerging Results,
ICSE-NIER, 2021, pp. 56–60, http://dx.doi.org/10.1109/ICSE-NIER52604.2021.
00020.
17
[36] A. Calderón, J. Boubeta-Puig, M. Ruiz, MEdit4CEP-Gam: A model-driven ap-
proach for user-friendly gamification design, monitoring and code generation
in CEP-based systems, Inf. Softw. Technol. 95 (2018) 238–264, http://dx.doi.
org/10.1016/j.infsof.2017.11.009.

[37] M. Brambilla, J. Cabot, M. Wimmer, Model-Driven Software Engineering in
Practice, 2nd, Morgan & Claypool Publishers, 2017.

[38] J. Cabot, Low-code vs model-driven: are they the same?, 2022, https://modeling-
languages.com/low-code-vs-model-driven/. (Accessed 03 February 2022).

[39] J. Cabot, Positioning of the low-code movement within the field of model-driven
engineering, in: Proceedings of the 23rd ACM/IEEE International Conference on
Model Driven Engineering Languages and Systems: Companion Proceedings, in:
MODELS ’20, Association for Computing Machinery, New York, NY, USA, 2020,
pp. 1–3, http://dx.doi.org/10.1145/3417990.3420210.

[40] L.N. Sánchez-Morales, G. Alor-Hernández, V.Y. Rosales-Morales, C.A. Cortes-
Camarillo, J.L. Sánchez-Cervantes, Generating educational mobile applications
using UIDPs identified by artificial intelligence techniques, Comput. Stand.
Interfaces 70 (2020) 103407, http://dx.doi.org/10.1016/j.csi.2019.103407.

[41] Mendix, The low-code guide, 2022, https://www.mendix.com/low-code-guide/.
(Accessed 03 February 2022).

[42] S. Farshidi, S. Jansen, S. Fortuin, Model-driven development platform selection:
four industry case studies, Softw. Syst. Model. (2021) http://dx.doi.org/10.1007/
s10270-020-00855-w.

[43] B. Kenneweg, I. Kasam, M. McMullen, Building Low-Code Applications with
Mendix: Discover Best Practices and Expert Techniques to Simplify Enterprise
Web Development, vol. 20, Packt Publishing, 2021, pp. 1525–1551.

[44] B. Zarrin, H. Baumeister, Towards separation of concerns in flow-based pro-
gramming, in: Companion Proceedings of the 14th International Conference
on Modularity, in: MODULARITY Companion 2015, Association for Computing
Machinery, New York, NY, USA, 2015, pp. 58–63, http://dx.doi.org/10.1145/
2735386.2736752.

[45] F. Darema, Dynamic data driven applications systems: A new paradigm for
application simulations and measurements, in: M. Bubak, G.D. van Albada,
P.M.A. Sloot, J. Dongarra (Eds.), Computational Science - ICCS 2004, Springer
Berlin Heidelberg, Berlin, Heidelberg, 2004, pp. 662–669.

[46] Mozilla, JavaScript, 2022, https://developer.mozilla.org/es/docs/Web/
JavaScript. (Accessed 03 February 2022).

[47] H. Hasan, E. AlHadhrami, A. AlDhaheri, K. Salah, R. Jayaraman, Smart contract-
based approach for efficient shipment management, Comput. Ind. Eng. 136
(2019) 149–159, http://dx.doi.org/10.1016/j.cie.2019.07.022.

[48] R. Singh, A.D. Dwivedi, G. Srivastava, Internet of things based blockchain
for temperature monitoring and counterfeit pharmaceutical prevention, Sensors
(Switzerland) 20 (14) (2020) 1–23, http://dx.doi.org/10.3390/s20143951.

[49] B. Yong, J. Shen, X. Liu, F. Li, H. Chen, Q. Zhou, An intelligent blockchain-based
system for safe vaccine supply and supervision, Int. J. Inf. Manage. 52 (102024)
(2020) http://dx.doi.org/10.1016/j.ijinfomgt.2019.10.009.

[50] M. Hamdaqa, L.A.P. Met, I. Qasse, iContractML 2.0: A domain-specific language
for modeling and deploying smart contracts onto multiple blockchain platforms,
Inf. Softw. Technol. 144 (2022) 106762, http://dx.doi.org/10.1016/j.infsof.2021.
106762.

[51] Y. Li, G. Yang, W. Susilo, Y. Yu, M.H. Au, D. Liu, Traceable Monero: Anony-
mous cryptocurrency with enhanced accountability, IEEE Trans. Dependable
Secure Comput. 18 (2) (2021) 679–691, http://dx.doi.org/10.1109/TDSC.2019.
2910058.

[52] Y. Yu, Y. Li, J. Tian, J. Liu, Blockchain-based solutions to security and privacy
issues in the Internet of things, IEEE Wirel. Commun. 25 (6) (2018) 12–18,
http://dx.doi.org/10.1109/MWC.2017.1800116.

[53] Y. Li, W. Susilo, G. Yang, Y. Yu, X. Du, D. Liu, N. Guizani, Toward privacy
and regulation in blockchain-based cryptocurrencies, IEEE Netw. 33 (5) (2019)
111–117, http://dx.doi.org/10.1109/MNET.2019.1800271.

[54] Y. Li, W. Susilo, G. Yang, Y. Yu, D. Liu, X. Du, M. Guizani, A blockchain-
based self-tallying voting protocol in decentralized IoT, IEEE Trans. Dependable
Secure Comput. 19 (1) (2022) 119–130, http://dx.doi.org/10.1109/TDSC.2020.
2979856.

[55] G. Tian, Y. Hu, J. Wei, Z. Liu, X. Huang, X. Chen, W. Susilo, Blockchain-based
secure deduplication and shared auditing in decentralized storage, IEEE Trans.
Dependable Secure Comput. (2021) In press, http://dx.doi.org/10.1109/TDSC.
2021.3114160.

[56] SettleMint, SettleMint, 2022, https://www.settlemint.com. (Accessed 03 February
2022).

[57] Unibright I.T. GmbH, Unibright, 2022, https://unibright.io. (Accessed 03
February 2022).

[58] Creator Platform, Creator, 2022, https://www.creatorchain.network. (Accessed
03 February 2022).

[59] Aurachain, Aurachain, 2022, https://aurachain.ch. (Accessed 03 February 2022).
[60] G. Ortiz, I. Castillo, A. Garcia-de Prado, J. Boubeta-Puig, Evaluating a flow-based

programming approach as an alternative for developing CEP applications in IoT,
IEEE Internet Things J. 9 (13) (2022) 11489–11499, http://dx.doi.org/10.1109/
JIOT.2021.3130498.

http://dx.doi.org/10.1016/j.eswa.2021.115578
http://dx.doi.org/10.1016/j.eswa.2021.115578
http://dx.doi.org/10.1016/j.eswa.2021.115578
http://dx.doi.org/10.1109/ICBC48266.2020.9169399
http://dx.doi.org/10.1109/ICBC48266.2020.9169399
http://dx.doi.org/10.1109/ICBC48266.2020.9169399
http://dx.doi.org/10.1109/WEC.2004.1319505
http://dx.doi.org/10.1145/3238147.3238177
http://dx.doi.org/10.1145/3238147.3238177
http://dx.doi.org/10.1145/3238147.3238177
http://dx.doi.org/10.1145/3417990.3420200
https://nodered.org/
http://dx.doi.org/10.1109/Cybermatics_2018.2018.00255
http://dx.doi.org/10.1109/Cybermatics_2018.2018.00255
http://dx.doi.org/10.1109/Cybermatics_2018.2018.00255
http://dx.doi.org/10.1016/j.csi.2021.103604
https://www.raspberrypi.org/
http://dx.doi.org/10.1109/ISPASS.2015.7095802
http://dx.doi.org/10.1177/0018720820920429
http://refhub.elsevier.com/S0920-5489(22)00045-9/sb26
http://refhub.elsevier.com/S0920-5489(22)00045-9/sb26
http://refhub.elsevier.com/S0920-5489(22)00045-9/sb26
http://refhub.elsevier.com/S0920-5489(22)00045-9/sb27
http://refhub.elsevier.com/S0920-5489(22)00045-9/sb27
http://refhub.elsevier.com/S0920-5489(22)00045-9/sb27
http://dx.doi.org/10.1007/978-3-030-58779-6_2
http://dx.doi.org/10.1007/978-3-030-58779-6_2
http://dx.doi.org/10.1007/978-3-030-58779-6_2
https://ethereum.org
http://dx.doi.org/10.1145/3423166
http://dx.doi.org/10.1145/3423166
http://dx.doi.org/10.1145/3423166
https://docs.soliditylang.org/en/v0.8.4/
http://dx.doi.org/10.1109/SANER.2017.7884650
http://dx.doi.org/10.1109/SANER.2017.7884650
http://dx.doi.org/10.1109/SANER.2017.7884650
http://refhub.elsevier.com/S0920-5489(22)00045-9/sb33
http://refhub.elsevier.com/S0920-5489(22)00045-9/sb33
http://refhub.elsevier.com/S0920-5489(22)00045-9/sb33
http://refhub.elsevier.com/S0920-5489(22)00045-9/sb33
http://refhub.elsevier.com/S0920-5489(22)00045-9/sb33
http://refhub.elsevier.com/S0920-5489(22)00045-9/sb33
http://refhub.elsevier.com/S0920-5489(22)00045-9/sb33
http://dx.doi.org/10.1016/j.csi.2021.103587
http://dx.doi.org/10.1109/ICSE-NIER52604.2021.00020
http://dx.doi.org/10.1109/ICSE-NIER52604.2021.00020
http://dx.doi.org/10.1109/ICSE-NIER52604.2021.00020
http://dx.doi.org/10.1016/j.infsof.2017.11.009
http://dx.doi.org/10.1016/j.infsof.2017.11.009
http://dx.doi.org/10.1016/j.infsof.2017.11.009
http://refhub.elsevier.com/S0920-5489(22)00045-9/sb37
http://refhub.elsevier.com/S0920-5489(22)00045-9/sb37
http://refhub.elsevier.com/S0920-5489(22)00045-9/sb37
https://modeling-languages.com/low-code-vs-model-driven/
https://modeling-languages.com/low-code-vs-model-driven/
https://modeling-languages.com/low-code-vs-model-driven/
http://dx.doi.org/10.1145/3417990.3420210
http://dx.doi.org/10.1016/j.csi.2019.103407
https://www.mendix.com/low-code-guide/
http://dx.doi.org/10.1007/s10270-020-00855-w
http://dx.doi.org/10.1007/s10270-020-00855-w
http://dx.doi.org/10.1007/s10270-020-00855-w
http://refhub.elsevier.com/S0920-5489(22)00045-9/sb43
http://refhub.elsevier.com/S0920-5489(22)00045-9/sb43
http://refhub.elsevier.com/S0920-5489(22)00045-9/sb43
http://refhub.elsevier.com/S0920-5489(22)00045-9/sb43
http://refhub.elsevier.com/S0920-5489(22)00045-9/sb43
http://dx.doi.org/10.1145/2735386.2736752
http://dx.doi.org/10.1145/2735386.2736752
http://dx.doi.org/10.1145/2735386.2736752
http://refhub.elsevier.com/S0920-5489(22)00045-9/sb45
http://refhub.elsevier.com/S0920-5489(22)00045-9/sb45
http://refhub.elsevier.com/S0920-5489(22)00045-9/sb45
http://refhub.elsevier.com/S0920-5489(22)00045-9/sb45
http://refhub.elsevier.com/S0920-5489(22)00045-9/sb45
http://refhub.elsevier.com/S0920-5489(22)00045-9/sb45
http://refhub.elsevier.com/S0920-5489(22)00045-9/sb45
https://developer.mozilla.org/es/docs/Web/JavaScript
https://developer.mozilla.org/es/docs/Web/JavaScript
https://developer.mozilla.org/es/docs/Web/JavaScript
http://dx.doi.org/10.1016/j.cie.2019.07.022
http://dx.doi.org/10.3390/s20143951
http://dx.doi.org/10.1016/j.ijinfomgt.2019.10.009
http://dx.doi.org/10.1016/j.infsof.2021.106762
http://dx.doi.org/10.1016/j.infsof.2021.106762
http://dx.doi.org/10.1016/j.infsof.2021.106762
http://dx.doi.org/10.1109/TDSC.2019.2910058
http://dx.doi.org/10.1109/TDSC.2019.2910058
http://dx.doi.org/10.1109/TDSC.2019.2910058
http://dx.doi.org/10.1109/MWC.2017.1800116
http://dx.doi.org/10.1109/MNET.2019.1800271
http://dx.doi.org/10.1109/TDSC.2020.2979856
http://dx.doi.org/10.1109/TDSC.2020.2979856
http://dx.doi.org/10.1109/TDSC.2020.2979856
http://dx.doi.org/10.1109/TDSC.2021.3114160
http://dx.doi.org/10.1109/TDSC.2021.3114160
http://dx.doi.org/10.1109/TDSC.2021.3114160
https://www.settlemint.com
https://unibright.io
https://www.creatorchain.network
https://aurachain.ch
http://dx.doi.org/10.1109/JIOT.2021.3130498
http://dx.doi.org/10.1109/JIOT.2021.3130498
http://dx.doi.org/10.1109/JIOT.2021.3130498


Computer Standards & Interfaces 84 (2023) 103676J. Rosa-Bilbao et al.
[61] C. Silva, J. Vieira, J.C. Campos, R. Couto, A.N. Ribeiro, Development and
validation of a descriptive cognitive model for predicting usability issues in
a low-code development platform, Hum. Factors 63 (6) (2021) 1012–1032,
http://dx.doi.org/10.1177/0018720820920429.

[62] COMET System, IoT wireless temperature datalogger, with built-in sensor, GSM
modem and flat rate SIM card, 2022, https://bit.ly/3kfhedB. (Accessed 03
February 2022).

[63] International Organization for Standardization, ISO/IEC 17025 Testing and
calibration laboratories, 2022, https://bit.ly/36INJc8. (Accessed 03 February
2022).

[64] Y. Quiñonez, C. Lizarraga, R. Aguayo, D. Arredondo, Communication architecture
based on IoT technology to control and monitor pets feeding, J. UCS 27 (2)
(2021) 190–207.

[65] European Medicines Agency, COVID-19 Vaccine AstraZeneca - product
information, 2022, https://bit.ly/3orjQVC. (Accessed 03 February 2022).

[66] European Medicines Agency, COVID-19 vaccine moderna - product information,
2022.

[67] J. Rosa-Bilbao, J. Boubeta-Puig, A. Rutle, Dataset for EDALoCo: Enhancing the
accessibility of blockchains through a low-code approach to the development of
event-driven applications for smart contract management, 2022, Mendeley Data,
v1, http://dx.doi.org/10.17632/drxw92dz4f.3. (Accessed 09 August 2022).

[68] Docker, Docker docs, 2022, https://docs.docker.com/. (Accessed 03 February
2022).

[69] C. Wohlin, P. Runeson, M. Höst, M.C. Ohlsson, B. Regnell, A. Wesslén, Experi-
mentation in Software Engineering, Springer, 2012, http://dx.doi.org/10.1007/
978-3-642-29044-2.

[70] X. Berger, RPi-monitor documentation, 2022, https://xavierberger.github.io/RPi-
Monitor-docs/. (Accessed 03 February 2022).

[71] D. Corral-Plaza, G. Ortiz, I. Medina-Bulo, J. Boubeta-Puig, MEdit4CEP-SP: A
model-driven solution to improve decision-making through user-friendly man-
agement and real-time processing of heterogeneous data streams, Knowl.-Based
Syst. 213 (2021) 106682, http://dx.doi.org/10.1016/j.knosys.2020.106682.

[72] I. Calvo, M.G. Merayo, M. Núñez, A methodology to analyze heart data using
fuzzy automata, J. Intell. Fuzzy Systems 37 (6) (2019) 7389–7399, http://dx.
doi.org/10.3233/JIFS-179348.

[73] V. Valero, G. Díaz, J. Boubeta-Puig, H. Macià, E. Brazález, A compositional
approach for complex event pattern modeling and transformation to colored Petri
nets with black sequencing transitions, IEEE Trans. Softw. Eng. 48 (7) (2022)
2584–2605, http://dx.doi.org/10.1109/TSE.2021.3065584.
18
Jesús Rosa-Bilbao is a Ph.D. student in the UCASE Software
Engineering Research Group at the University of Cadiz
(UCA), Spain. He received his B.Sc. degree in Computer
Science specialized in Software Engineering from UCA in
2019. In addition, he received his M.Sc. degree in Cyberse-
curity from UCA, his M.Sc. degree in Project Management
from the European Business School in Barcelona (ENEB)
and his M.Sc. degree in Business Administration from ENEB
in 2020. He also received his M.Sc. degree in Big Data
and Business Intelligence from ENEB in 2021. His research
interests include complex event processing, event-driven
service-oriented architecture, business process modeling,
blockchain and cybersecurity.

Juan Boubeta-Puig received the Ph.D. degree in Computer
Science and Engineering from the University of Cadiz (UCA),
Cádiz, Spain, in 2014. He is an Associate Professor with
the Department of Computer Science and Engineering, UCA.
His research interests include real-time big data analytics
through complex event processing, event-driven service-
oriented architecture, Internet of things, blockchain and
model-driven development of advanced user interfaces, and
their application to smart cities, industry 4.0, e-health,
and cybersecurity. Dr. Boubeta-Puig was honored with
the Extraordinary Ph.D. Award from UCA and the Best
Ph.D. Thesis Award from the Spanish Society of Software
Engineering and Software Development Technologies.

Adrian Rutle holds a Ph.D. in Computer Science from the
University of Bergen, Norway. Rutle is a professor at the
Department of Computer science, Electrical engineering and
Mathematical sciences at the Western Norway University
of Applied Sciences (HVL), Bergen. Rutle’s main interest is
applying theoretical results from the field of model-driven
software engineering to practical domains and has expertise
in the development of modelling frameworks and domain-
specific modelling languages. He also conducts research in
the fields of modelling and simulation for robotics, eHealth,
digital fabrication, smart systems and machine learning.

http://dx.doi.org/10.1177/0018720820920429
https://bit.ly/3kfhedB
https://bit.ly/36INJc8
http://refhub.elsevier.com/S0920-5489(22)00045-9/sb64
http://refhub.elsevier.com/S0920-5489(22)00045-9/sb64
http://refhub.elsevier.com/S0920-5489(22)00045-9/sb64
http://refhub.elsevier.com/S0920-5489(22)00045-9/sb64
http://refhub.elsevier.com/S0920-5489(22)00045-9/sb64
https://bit.ly/3orjQVC
http://refhub.elsevier.com/S0920-5489(22)00045-9/sb66
http://refhub.elsevier.com/S0920-5489(22)00045-9/sb66
http://refhub.elsevier.com/S0920-5489(22)00045-9/sb66
http://dx.doi.org/10.17632/drxw92dz4f.3
https://docs.docker.com/
http://dx.doi.org/10.1007/978-3-642-29044-2
http://dx.doi.org/10.1007/978-3-642-29044-2
http://dx.doi.org/10.1007/978-3-642-29044-2
https://xavierberger.github.io/RPi-Monitor-docs/
https://xavierberger.github.io/RPi-Monitor-docs/
https://xavierberger.github.io/RPi-Monitor-docs/
http://dx.doi.org/10.1016/j.knosys.2020.106682
http://dx.doi.org/10.3233/JIFS-179348
http://dx.doi.org/10.3233/JIFS-179348
http://dx.doi.org/10.3233/JIFS-179348
http://dx.doi.org/10.1109/TSE.2021.3065584

	EDALoCo: Enhancing the accessibility of blockchains through a low-code approach to the development of event-driven applications for smart contract management
	Introduction
	Background
	Blockchain
	Low code

	Related work
	The EDALoCo approach
	Data producers
	Data processing
	Smart contract address subscription
	Transaction details
	Solidity compiler
	Solidity deploy
	Solidity interaction

	Data consumers

	Case study
	Description
	Modeling event-driven applications
	Executing the modeled event-driven applications

	Evaluation
	Functionality evaluation
	Performance evaluation
	Threats to validity

	Conclusions and future work
	CRediT authorship contribution statement
	Declaration of competing interest
	Acknowledgments
	References


