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A B S T R A C T

The need to improve motion planning techniques for manipulator robots, and new effective strategies to
manipulate different objects to perform more complex tasks, is crucial for various real-world applications
where robots cooperate with humans. This paper proposes a novel framework that aims to improve the motion
planning of a robotic agent (a manipulator robot) through semantic knowledge-based reasoning. The Semantic
Web Rule Language (SWRL) was used to infer new knowledge based on the known environment and the robotic
system. Ontological knowledge, e.g., semantic maps, were generated through a deep neural network, trained
to detect and classify objects in the environment where the robotic agent performs. Manipulation constraints
were deduced, and the environment corresponding to the agent’s manipulation workspace was created so the
planner could interpret it to generate a collision-free path. For reasoning with the ontology, different SPARQL
queries were used. The proposed framework was implemented and validated in a real experimental setup,
using the planning framework ROSPlan to perform the planning tasks. The proposed framework proved to
be a promising strategy to improve motion planning of robotics systems, showing the benefits of artificial
intelligence, for knowledge representation and reasoning in robotics.
1. Introduction

Within the ongoing advances of Industry 5.0, robotic systems are
increasingly present in highly dynamic environments, including envi-
ronments shared with humans (Nahavandi, 2019). The need to find
efficient paths (motion planning) for manipulator robots, and new
effective strategies to manipulate different objects in order to perform
more complex tasks, is crucial for various real-world applications. Mo-
tion planning for robotic manipulators consists of defining a continuous
path that connects a given initial state of a robotic system to a shared
goal region for that system. The path satisfies constraints (e.g. collision
avoidance, bounded forces, bounded acceleration) (Latombe, 2012).
Traditionally, there are two approaches to the problem: offline plan-
ning, which assumes a perfectly known and stable environment, and on-
line planning, which focuses on dealing with environmental uncertain-
ties. The majority of motion planning algorithms are based on random
sampling algorithms (Karaman & Frazzoli, 2011), such as Probabilistic
RoadMaps (PRMs) (Hsu, Latombe, & Kurniawati, 2006; Siméon, Lau-
mond, Cortés, & Sahbani, 2004) and Rapidly-exploring Random Trees
(RRTs) (LaValle et al., 1998; Rodriguez, Tang, Lien, & Amato, 2006).
Recently, algorithms such as optimization-based (Salzman & Halperin,
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2016), Probabilistic Movement Primitives (ProMPs)-based (Gomez-
Gonzalez, Neumann, Schölkopf, & Peters, 2020; Paraschos, Daniel,
Peters, & Neumann, 2018) and physics-based methods (Kitaev, Mor-
datch, Patil, & Abbeel, 2015; Moll, Kavraki, Rosell, et al., 2017), have
been shown to be more effective (Liu & Liu, 2021).

Human–robot collaboration (HRC) has been emerging in the man-
ufacturing domain (Lasota, Fong, Shah, et al., 2017). Collaborative
robots usually have the advantages of high safety, good adaptability
to the environment, and human–computer solid interaction capabili-
ties (Gualtieri, Rauch, & Vidoni, 2022; Polverini, Zanchettin, & Rocco,
2017). To achieve better collaboration, robots must be able to perceive
and analyse information holistically from the working environment to
plan and act accordingly (Fan, Zheng, & Li, 2022) proactively. The
emergence of collaborative robots has increased the difficulty of motion
planning.

Knowledge representation and reasoning have become promising
fields in artificial intelligence (Olszewska et al., 2017; Pignaton de
Freitas et al., 2020). Ontology-based knowledge representation and
reasoning techniques provide sophisticated knowledge about the en-
vironment for processing tasks or methods. Ontologies emerge as an
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excellent way to describe manipulation actions and facilitate the rea-
soning process in path planning, and the representation of knowledge
about the environment to make robots more autonomous (Bernardo,
Sousa, & Gonçalves, 2021, 2022; Feyzabadi & Carpin, 2014; Olszewska
et al., 2017). Knowledge reasoning techniques can infer new con-
clusions and thus help to plan dynamically in a non-deterministic
environment. Semantic Web Rule Language (SWRL)-rules are increas-
ingly becoming an important form of knowledge representation on the
Semantic Web (Mun & Ramani, 2011).

The main goal of this paper is to develop a framework where
motion planning is improved, allowing the possibility to reconfigure
the initially defined plan (e.g. recovery from a situation where an unex-
pected obstacle appears on the path), for a robotics manipulative agent.
Through semantic knowledge and reasoning (about manipulation ac-
tions and the objects present in the environment), i.e., the inferred
knowledge should be used to fine-tune motion planning. SWRL-rules1

re used to infer knowledge. A deep neural network was trained for the
etection and classification of the objects present in the environment
here the robotic agent is located was used. Based on this information,
semantic map (described in an ontology) of the environment was

reated. The proposed domain ontology is based on the CORA (Robotics
Society, 2015) (Core Ontology for Robotics and Automation) and

uR (Goncalves et al., 2021) (Autonomous Robotic) ontologies. It has
s a fundamental layer the top-level ontology DOLCE (Descriptive
ntology for Linguistic and Cognitive Engineering), to follow the in-

erpretation of some relevant concepts and thus define an ontology
domain) with a high level of flexibility (Borgo & Masolo, 2010).
xperimental validation is performed in a simple environment of a
ouse, based on a smart-home environment. In order to control the
obotic manipulator (UR3 from Universal Robots), and the gripper (2f-
40 from Robotiq), two toolboxes were developed, one for the robotic
rm (toolbox_ur3) and another for the gripper (toolbox_gripper), these
ere developed to work on the robot operating system (ROS2). Fi-

nally, knowledge was inferred based on semantic knowledge, and the
ROSPlan3 framework was used to perform task planning based on the
actions defined in the ontology.

This paper is organized as follows: The next section provides an
overview of related work and presents the research gaps. Section 3
introduces the ontological framework proposed here. Section 4 reports
the results of the implementation of the different components of the
framework. Section 5 presents an example of a practical validation
of the proposed framework in a real environment. Finally, Section 6
provides the work’s conclusions and challenges/futures.

2. Literature review

2.1. Ontologies for robotic systems

Ontologies are a powerful solution for acquiring and sharing com-
mon knowledge (Garg et al., 2020; Wang, Wong, & Wang, 2010).
Consist of the formal conceptualization of knowledge representation
and provide the definitions of the concepts and relationships of a
given domain of knowledge as a set of concepts and the relationships
among those concepts. ‘‘A domain ontology does not aim to list all
concepts in a domain exhaustively, but rather to build an abstract
(yet extendable) philosophical (yet practical) conceptualization of the
essence of knowledge in a domain’’. (El-Diraby, 2013). Ontologies
can be encoded using the Web Ontology Language (OWL), the most
recent development in ontology languages from the World Wide Web
Consortium (W3C4). OWL is a set of languages for authoring ontologies

1 https://www.w3.org/Submission/SWRL/
2 https://www.ros.org
3 https://kcl-planning.github.io/ROSPlan/
4

2

https://www.w3.org/OWL/
for formal knowledge representation; There are three versions of OWL,
each with different degrees of expressiveness, OWL Lite, OWL DL
(Description Logic), and OWL Full (Horrocks & Patel-Schneider, 2003).

Different types of ontology can be defined depending on the specific
application needs. Guarino proposes a classification based on levels of
generality (Guarino, 1998) and defines four classes: (i) Top-level or Up-
per ontologies describe very general concepts like e.g., space, time, event
or action, that are independent from a particular problem or domain;
(ii) Domain ontologies describe general concepts related to a specific
domain; (iii) Task ontologies describe generic tasks or activities. (iv)
Application ontologies characterize a specific application and describe
concepts whose relevance is limited to a specific domain and task.

The CORA is an ontology developed by the IEEE-RAS Ontologies
for Robotics and Automation Working Group (IEEE ORA WG) in 2015
to map and represent the most general concepts and axioms in the
Robotics and Automation (R&A) domain (Prestes et al., 2013). It is part
of the IEEE Standard 1872–2015 (Robotics & Society, 2015). However,
extra effort is needed to review and adapt the definition of some
key concepts of CORA, as it is based on the upper ontology SUMO
(Suggested Upper Merged Ontology) (Niles & Pease, 2001).

Although similar, the upper ontologies cannot be directly integrated
without introducing contradictions. DOLCE is an ontology of particu-
lars. It does have universal (classes and properties), but the claim is
that they are only employed in the service of describing particulars.
In contrast, SUMO could be described as an ontology of both partic-
ulars and universals (Mascardi, Cordì, & Rosso, 2008). Also, DOLCE
uses meta-properties as a guiding methodology, while SUMO pursues
a formal definition of such meta-properties directly in the ontology
itself (axiomatization) (Mascardi et al., 2008; Trojahn, Vieira, Schmidt,
Pease, & Guizzardi, 2021).

The IEEE1872.2 Autonomous Robotics (AuR) Ontology Working
Group has recently developed the AuR ontology (Goncalves et al.,
2021). This standard is a logical extension to IEEE 1872–2015 Standard
Ontologies for Robotics and Automation, CORA. The standard has been
developed to be widely adopted from an ontological viewpoint. The
standard does not commit to a specific top-level ontology. Indeed,
the ontology definitions are compatible and aligned to two distinct
top-level ontologies, namely DOLCE and SUMO. In this way, systems
developed adopting this standard can interoperate with foundational
views (like DOLCE) and practitioner-driven views (like SUMO).

Several works have already presented strategies based on using
ontologies to improve motion planning in dynamic environments (Ak-
bari, Rosell, et al., 2015; Beetz, Mösenlechner, & Tenorth, 2010; Diab,
Akbari, Rosell, et al., 2017; Feyzabadi & Carpin, 2014). Zhao, Filla-
treau, Elmhadhbi, Karray, and Archimede (2022) present an ontology
‘‘ENVOn’’, which contains geometric information of the objects present
in the environment. Path planning is generated based on the informa-
tion present in the ontology, and reasoning at the ‘‘primitive’’ tasks
level is improved. Leidner, Borst, and Hirzinger (2012) presented work
in which, through centralized world representation, they propose a
method for solving arbitrary manipulation tasks depending on the
type of objects. Diab, Akbari, Ud Din, and Rosell (2019) propose an
ontological framework to organize the knowledge needed for physics-
based manipulation planning, allowing to derive manipulation regions
and behaviours. Akbari, Rosell, et al. (2018) proposes ontologies to
separately describe the knowledge on the manipulation objects and on
the manipulation actions. However, all of these works present isolated
approaches that do not use an upper ontology as a base, making
them difficult to be reusable. Moreover, such approaches have not
presented inference systems to increase the robot semantic knowledge
of the environment and the new objects that can be arrive on the
environment, to improve motion planning.

Ontologies have shown great potential in improving the motion
planning of agents in symbiotic work systems (e.g. a team of robots
can work together to assemble a product on the shop floor, each robot

being responsible for a specific task, without them clashing) (Akbari,

https://www.w3.org/Submission/SWRL/
https://www.ros.org
https://kcl-planning.github.io/ROSPlan/
https://www.w3.org/OWL/
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Muhayyuddin, & Rosell, 2019; Schou, Andersen, Chrysostomou, Bøgh,
& Madsen, 2018). Ontologies have also been applied in human-centric
cyber–physical production systems (Kanazawa, Kinugawa, & Kosuge,
2019; Olivares-Alarcos, Foix, Borgo, & Alenyà, 2022; Umbrico, Or-
landini, & Cesta, 2020). Recently with the advances in digitalization,
strategies such as Digital Twins (DT) have been emerging, changing the
limits and possibilities of the current autonomous systems (Phanden,
Sharma, & Dubey, 2021). Different works have linked DTs together
with semantic knowledge. Knowledge-based DT can help improve mo-
tion planning by using data and analytics to optimize robot move-
ment (Havard, Jeanne, Savatier, & Baudry, 2017; Tuli, Kohl, Chala,
Manns, & Ansari, 2021). Additionally, using machine learning algo-
rithms, a DT can optimize the robot’s movement over time, improving
efficiency and reducing the risk of errors or accidents (Tuli et al., 2021).

2.2. Semantic maps

Robotic mapping. In the considerable body of literature about robot
aps and mapping, maps are metrical in most cases, and less fre-

uently, topological (Nüchter & Hertzberg, 2008). Going further, se-
antic maps augment traditional representations of robot workspaces,

ypically based on their geometry and/or topology (He, Sun, Hou,
a, & Schwertfeger, 2021; Niloy et al., 2021; Sim & Little, 2009),
ith meta-information about their compositional elements properties,

elationships, and functionalities. These provide robots with the ability
o understand beyond the spatial aspects of the environment, the
eaning of each element, and how humans interact with them (e.g. fea-

ures, events, relationships, etc.) (Hanheide et al., 2017; Kostavelis
Gasteratos, 2015; Toscano, Arrais, & Veiga, 2017). Semantic maps

eal with meta information that models the properties and relation-
hips of relevant concepts in the domain in question, encoded in a
nowledge Base (KB). Semantic maps enable the execution of high-

evel robotic tasks efficiently, and several strategies have been pre-
ented (Achour, Al-Assaad, Dupuis, & El Zaher, 2022; Bernardo et al.,
021; Fernandez-Chaves, Ruiz-Sarmiento, Petkov, & Gonzalez-Jimenez,
021), that include map building and planning for navigation.

.3. Semantic Web Rule Language (SWRL)

To enhance the OWL-DL’s expressivity and allow rules modelling,
he SWRL has been developed (Horrocks et al., 2004). SWRL is a
anguage to express rules and logic that, combined with OWL, enhances
he reasoning of knowledge. The SWRL is a standard rule language
ased on OWL-DL and the Rule Markup Language (Rule ML) (Horrocks
t al., 2004). According to Fiorentini, Rachuri, Suh, Lee, and Sriram
2010), the OWL/SWRL is the only approach that gathers ontology and
ules in product development. A SWRL-rule consists of an antecedent
body) and a consequent (head). Both antecedent and consequent have
ultiple atoms. Atoms in these rules can be of the form C(x), P(x,y),
here C is an OWL description, P is an OWL property, and x, y
re either variables, OWL individuals or OWL data values (Schmidt-
chauß, 1988). Listing Eq. (1), describes the abstract syntax of a
WRL-rule (Fiorentini et al., 2010).

𝑢𝑙𝑒 ∶∶= ′𝐼𝑚𝑝𝑙𝑖𝑒𝑠
(

’[ URIreference ]′{ annotation } antecedent consequent
)′

𝑎𝑛𝑡𝑒𝑐𝑒𝑑𝑒𝑛𝑡 ∶∶=′ 𝐴𝑛𝑡𝑒𝑐𝑒𝑑𝑒𝑛𝑡
(

’{ atom }′
)′

𝑐𝑜𝑛𝑠𝑒𝑞𝑢𝑒𝑛𝑡 ∶∶=′ 𝐶𝑜𝑛𝑠𝑒𝑞𝑢𝑒𝑛𝑡
(

’{ atom }′
)′

(1)

The SWRL-rules in OWL/RDF format can perfectly merge with the
OWL-based proposed ontology. Besides, SWRL-rules offer a human-
readable syntax, such as the above SWRL-rule means that if an agent’s
(e.g. belongs to the class ‘‘robotic_agent ’’) has a battery charge (dat-
3

aproperty − > ‘‘BatteryLevel’’) greater than 30, then the agent is avail-
able to execute a mission. A boolean variable (dataproperty − > ‘‘
BatteriesCharged’’) is set to true.

𝑟𝑜𝑏𝑜𝑡𝑖𝑐_𝑎𝑔𝑒𝑛𝑡(?𝑟) ∧ 𝐵𝑎𝑡𝑡𝑒𝑟𝑦𝐿𝑒𝑣𝑒𝑙(?𝑟, ?𝑏𝑡) ∧ 𝑠𝑤𝑟𝑙𝑏 ∶ 𝑔𝑟𝑒𝑎𝑡𝑒𝑟𝑇 ℎ𝑎𝑛(?𝑏𝑡, 30)

→ 𝐵𝑎𝑡𝑡𝑒𝑟𝑖𝑒𝑠𝐶ℎ𝑎𝑟𝑔𝑒𝑑(?𝑟, 𝑡𝑟𝑢𝑒) (2)

Formalism: In Eq. (2), a ‘‘‘robotic_agent(?r)’’ atom stores in the
variable ?r the value of an instance of the ‘‘robotic_agent ’’ class, a
‘‘BatteryLevel(?r,?bt)’’ atom stores in the variable ?bt the value of the
dataproperty ‘‘BatteryLevel’’ if it is related to ?r. Through the set of
constructs for SWRL,5 for comparisons, the ‘‘swrlb:greaterThan’’ was
used; ‘‘swrlb:greaterThan(?bt, 30)’’ is satisfied if the first argument ?bt
is greater than the second argument (value: 30). In case this statement
is true the dataproperty ‘‘BatteriesCharged’’, if it is related to ?r, takes
on the value of the second element, i.e. ‘‘true’’.

Different authors have resorted to using SWRL rules to infer knowl-
edge. Wang et al. (2023) proposed safety management approaches for
manufacturing processes based on a digital twin that improves upon
traditional safety management based on the subjective human expe-
rience. Zhai, Martínez Ortega, Lucas Martínez, and Castillejo (2018)
proposed an approach with rule-based reasoning to infer and provide
OWL and SWRL-based query services for underwater robots. SAR-
bot (Sun, Zhang, & Chen, 2019) uses OWL for ontology development
and adopts SWRL rules to infer tasks to be performed according to the
environment and obtain the state of the victims. The experiments were
conducted using TurtleBot3 with a real robotic platform established in
ROS. Zheng et al. (2022) presented a proposed automatic generation of
manufacturing programs based on semantic descriptions and reasoning
through rules; this approach showed significant advantages in stability
and output quality. In summary, several works show the potentiality of
using rules to improve manufacturing processes (O’connor et al., 2005;
Umbrico, Cesta, & Orlandini, 2022; Zheng & Terpenny, 2013).

2.4. Research gaps

Recently and driven by industry 5.0, the exploration of new forms
of cooperation and collaboration between humans and robots, aims
efficient production (Simões, Pinto, Santos, Pinheiro, & Romero, 2022).
The description of a Cyber–Physical Systems, like a Human–Robot Col-
laborative scenario, requires a model of complex adaptive behaviours
of involved agents from both a ‘‘local perspective’’ (i.e., the point of
view of an agent) and a ‘‘global perspective’’ (i.e., the point of view of
the production and related constraints and objectives) (Borgo, 2019).

Current classical methods (e.g., PRM, RRT, etc.) used in trajectory
planning become limited if the actions required to perform the task
are subject to strong geometric constraints of the environment (lack
of space to place objects, occlusions) and of the robot (accessibility of
objects, kinematic constraints of the manipulators) (Li & Tian, 2020).
It is crucial to use semantics to provide a complete description of the
environment, the set of available actions and the state variables to
represent the domain, as the robots need to perform actions efficiently
and effectively.

This paper presents a domain ontology based on the CORA and
AuR ontologies. The proposed ontology intends to serve as a basis
for future works which focus on improving motion planning because,
to date, existing approaches have not presented inference systems to
increase the robot semantic knowledge of the environment and the new
objects that can arrive at the environment, in order to improve motion
planning. Moreover, all the works presented are isolated works, i.e., are
not based on an upper ontology (Upper ontologies aim to describe
reality from a general perspective to define general concepts that are
the same in all domains. Top-level ontologies represent an excellent
design choice for building new domain ontologies.). As noted in Jansen

5 https://www.w3.org/Submission/SWRL/#Schmidt-Schauss89

https://www.w3.org/Submission/SWRL/#Schmidt-Schauss89
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Fig. 1. Proposed framework overview.
and Schulz (2011), these concepts represent a stable theoretical base,
promoting a clear structuring and disambiguation of new concepts and
related relations. In summary, the strategies presented in the past are
difficult to reuse by other researchers in the field.

SWRL-rules are increasingly becoming an important form of knowl-
edge representation on the Semantic Web (Mun & Ramani, 2011).
Unlike in the areas of production and manufacturing, in the area of
robotics, there is still a gap on using SWRL rules to improve the
reasoning on robotic agents and the representation of the environment,
when they perform tasks. As such, we present the examples for rule
development and application examples in this paper, along with their
potential, i.e., how they can be easily applied in robotic systems to infer
new knowledge.

3. Proposed ontological framework

In recent years, given the increasing interest in robots being able
to coexist with humans and perform high-level automated tasks, mul-
tiple contributions have been presented to complement geometrical
information of the environments with semantic knowledge. The pro-
posed framework, depicted in Fig. 1, comprises four main modules:
object detection, motion planner, hardware-level of robotic agent, and
the knowledge-based reasoning engine. The implementation of each
module is detailed in the following sections.

3.1. Object detection

A deep neural network was trained for the detection and classi-
fication of the objects present in the environment where the robotic
agent is located was used. Based on this information, a semantic map
was created. Object detection algorithm YOLO v3 (Redmon & Farhadi,
2018) by Darknet for ROS was used for object detection (Bjelonic,
2016–2018). YOLO has a few advantages over classifier-based systems.
It looks at the whole image at test time so that the global context
in the image informs its predictions. Moreover, it makes predictions
with a single network assessment, in contrast to systems like R-CNN,
which require thousands for a single prediction (Buric, Pobar, & Ivasic-
Kos, 2018). This makes it several orders of magnitude faster than the
previous methods.
4

3.2. Motion planning

The trajectory planner comprises the Robotics Library (RL) (Rickert
& Gaschler, 2017), a self-contained C++ library for robot kinemat-
ics, motion planning and control. It covers mathematics, kinemat-
ics and dynamics, hardware abstraction, motion planning, collision
detection, and visualization, which uses the Open Motion Planning
Library (OMPL) (Sucan, Moll, & Kavraki, 2012) as the core set of plan-
ning algorithms. OMPL allows planning under geometric constraints
as well as differential constraints, including those that require dy-
namic simulations (OMPL uses the Open Dynamic Engine for dynamic
simulation). Based on the classical libraries mentioned above, we im-
plemented three sampling-based algorithms: (i) Probabilistic Roadmap
Method (PRM) (Siméon et al., 2004); (ii) Rapidly-expanding Random
Trees (RRT) (LaValle et al., 1998); and (iii) exploring/exploiting tree
(EET) (Rickert, Sieverling, & Brock, 2014). However in the present
work the results are presented based on the PRM algorithm, which
proven better results for the robotic system used.

Semantic knowledge was used to improve the manipulator agent’s
motion planning. The ontology is consulted to identify all objects
and their properties (e.g. dimensions, weight, position on the map,
etc.) in the robot’s work area. Based on the semantic information, the
scenario around the manipulator agent is created to create a collision-
free path and replan a new path if a change in the environment makes
the initial path unfeasible. The environment surrounding the agent is
created based on primitive geometric shapes (e.g. Box, Cone, Cylinder
and Sphere), as they provide better performance than convex hulls or
concave geometries (Kockara, Halic, Iqbal, Bayrak, & Rowe, 2007).

3.3. Hardware-level of the robotic agent

In order to control the robotic arm (UR3 from Universal Robots),
and the gripper (2f-140 from Robotiq), two toolboxes were developed,
one for the robotic arm (toolbox_ur3) and another for the gripper
(toolbox_gripper), these were developed to work on the ROS, having
been written in C++, these toolboxes have the advantage of being easily
reused by other research groups. They are written based on the ur-rtde6

library, which communicates with UR3 via the real-time data exchange
protocol (RTDE). By using these libraries, the desired trajectory points

6 https://sdurobotics.gitlab.io/ur_rtde

https://sdurobotics.gitlab.io/ur_rtde
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Fig. 2. Example of SPARQL query.

obtained from the methods described in the previous section, are sent
to the built-in controller in the UR3 industrial robot. This controller
allows a smooth control of the robot joints, with repeatability equal
to 0.1 [mm]. As such, the final trajectories of the robot does not have
significant disturbances.

3.4. Ontology description and knowledge-based reasoning engine

The ontology can be written using the Protégé software. Protégé
version 5.5.0 was used (Protégé, 2022). The ontology was verified
through version 2.2.0 of Pellet logic Reasoner to ensure that it is free of
inconsistencies (Sirin, Parsia, Grau, Kalyanpur, & Katz, 2007). Protégé
is a free, open-source editor for developing the ontologies produced
by Stanford University. It is a java-based application (multi-platform),
with plugins such as onto Viz to visualize the ontologies. The backbone
of protégé is that it supports the tool builders, domain specialists,
and knowledge engineers. The Owlready2 library was used to access
the developed OWL ontology. Owlready2 is a Python module; it can
load OWL 2.0 ontologies as Python objects, modify them, save them,
and perform reasoning. Owlready2 allows transparent access to OWL
ontologies (unlike the standard Java-based API). Lamy (2017).

Owlready2 was used to create and edit SWRL-rules. The class Imp
(‘‘Implies’’) represents a rule. The easiest way to create a rule is to
define it using Protégé-like syntax, with the .set_as_rule() method.

𝑟𝑢𝑙𝑒 = 𝐼𝑚𝑝()

𝑟𝑢𝑙𝑒.𝑠𝑒𝑡_𝑎𝑠_𝑟𝑢𝑙𝑒(‘‘‘‘‘‘‘𝑟𝑜𝑏𝑜𝑡𝑖𝑐_𝑎𝑔𝑒𝑛𝑡(?𝑟) 𝐵𝑎𝑡𝑡𝑒𝑟𝑦𝐿𝑒𝑣𝑒𝑙(?𝑟, ?𝑏𝑡)
𝑠𝑤𝑟𝑙𝑏 ∶ 𝑔𝑟𝑒𝑎𝑡𝑒𝑟𝑇 ℎ𝑎𝑛(?𝑏𝑡, 30) → 𝐵𝑎𝑡𝑡𝑒𝑟𝑖𝑒𝑠𝐶ℎ𝑎𝑟𝑔𝑒𝑑(?𝑟, 𝑡𝑟𝑢𝑒)""") (3)

SPARQL (SPARQL Protocol and RDF Query Language) is the stan-
dard query language and protocol for Linked Open Data and RDF
databases Sirin and Parsia (2007). For reasoning with the ontology,
different SPARQL queries were used (see Fig. 2).

Fig. 3 presents the hierarchical class where the main concepts are
defined in the proposed domain ontology. The main classes of the
ontology proposed here are based on the classes of the upper ontology
DOLCE since the latter is used as the basis for the construction of
our domain ontology presented here. That said the main classes of the
domain ontology presented here are: Situation, InformationEntity, Object,
Event and Abstract. The definition of these classes and their sub-classes
is presented in the next, where each of the constituent parts of the
domain ontology proposed is explained in detail.

In Fig. 4 the AllObjects class represents, any physical, social, or men-
tal object, or a substance. Following DOLCE, objects are always partici-
pating in some event (at least their own life), and are spatially located.
The class Social_object represent any Object that exists only within some
communication Event, in which at least one Object participates in. The
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definitions of classes AllObjects and Social_object are expressed based
on the upper ontology DOLCE. The class Types_Devices is a collection of
properties that define different components and behaviours of a type
of device (i.e., actuators, sensors, etc.).

In Fig. 5 the Agent class is shown, which based on DOLCE,7 is
defined as: ‘‘Any agentive Object, either physical (e.g., a whale, a robot, or
an oak tree) or social (e.g., a corporation, an institution, or a community)’’.
This class is further subdivided into human_agent and robotic_agent. To
cover the agents that can interact in the environment (e.g. robotic
agent, human, etc.).

The robotic_agent class is subdivided into:

• mobile_robot: robot that is able to move in the surrounding (loco-
motion) (i.e., autonomous mobile robot (AMR)).

• robotic_arm: is a type of mechanical arm, usually programmable,
with similar functions to a human arm.

Different classes were defined in the domain ontology to improve
the robotic arm agent planning task based on semantic knowledge
(Figs. 6 and 8). The knowledge-based reasoning engine reads the initial
state of the world and extracts abstract knowledge related to the agent’s
environment, such as the type of objects in the manipulation zone, the
manipulation constraints (e.g. FixedObjects, and ManipulatableObject)
(Fig. 6), the state of the goal, the state of the agents, etc. (Fig. 7) Based
on a reasoning process, the instantiated knowledge is inferred from
the abstract knowledge and fills the data structures in the Actions and
Motion layer (such as the current manipulation constraints, the trajec-
tory state (e.g. CollidingTrajectory, FreePath, etc.), which are periodically
updated.

The Regions class defines different types of regions is subdivided into
tree classes:

• GoalRegion is a region defined around the goal state.
• The ObjectRegions class is subdivided into the ManipulationRe-
gion This is the region that defines the manipulator’s workspace
(e.g. objects contained in this region are possible manipulable
objects). The NonManipulationRegion is a inverse of a Manipula-
tionRegion.

• Rooms is a space that can be occupied or where something can be
done (e.g. Living Room, Bedroom, etc.).

When moving in the environment, the robotic agent collects infor-
mation from the environment that it stores in the ontology to update
it. One of these parameters is the euclidean distance between the
geometric centre of each object and the agent’s referential. Based on
the knowledge of how far away the object is and based on the reach
of the robot’s arm, the following SWRL rule can be written, using the
ontology concepts, to automatically identify which objects are in the
workspace (ManipulationRegion).

𝐴𝑙𝑙𝑂𝑏𝑗𝑒𝑐𝑡𝑠(?𝑜𝑏𝑗) ∧ 𝑟𝑜𝑏𝑜𝑡𝑖𝑐_𝑎𝑟𝑚(?𝑟) ∧ 𝑅𝑒𝑎𝑐ℎ(?𝑟, ?𝑟𝑒)

∧ 𝐸𝑢𝑐𝑙𝑖𝑑𝑒𝑎𝑛𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒(?𝑜𝑏𝑗, ?𝑑𝑖𝑠𝑡) ∧ 𝑠𝑤𝑟𝑙𝑏 ∶ 𝑙𝑒𝑠𝑠𝑇 ℎ𝑎𝑛(?𝑑𝑖𝑠𝑡, ?𝑟𝑒)

→ 𝑙𝑜𝑐𝑎𝑡𝑒𝑑_𝑎𝑡(?𝑂𝑏𝑗,𝑀𝑎𝑛𝑖𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛𝑅𝑒𝑔𝑖𝑜𝑛) (4)

In Fig. 7 are depicted the relations of the Situation class. Based on
upper ontology DOLCE. A view, consistent with (‘‘satisfying’’) a Descrip-
tion, on a set of entities. It can also be seen as a ‘‘relational context’’ created
by an observer on the basis of a ‘‘frame’’ (i.e. a description). For example,
a Plan_execution is a context including some actions executed by agents
according to certain parameters and expected tasks to be achieved from a
Plan;

The Configuration class defines the states of the agents at each
instant they operate (e.g. ArmCollisingState, BaseAtPoseState, etc.).

7 http://www.ontologydesignpatterns.org/ont/dul/DUL.owl

http://www.ontologydesignpatterns.org/ont/dul/DUL.owl
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Fig. 3. Snapshot of the main ontology (relations is-a).
Fig. 4. Representation in the ontology of subclasses of class Object (relations is-a).
Fig. 5. Relationships of the class Agent.
Tree classes, derived from a general Actions class (i.e. contains the
possible actions of the agents) have been defined (Fig. 8):

• Mobile_actions actions of mobile agent.
• Gripper_actions actions of gripper.
• Manipulator_actions actions of manipulator agent.

4. Real world implementation

In the real world implementation, an autonomous mobile manip-
ulator robot (AMMR) was used, consisting of a mobile base and the
Universal Robot UR3 equipped with a Robotiq gripper. These robots
6

combine autonomous navigation with autonomous manipulation capa-
bilities. With a wheeled mobile base and sensors that allow the robot
to sense where it is in the environment, AMMRs can navigate from
point A to B with the ability to ‘‘see’’. These robots are also equipped
with an arm and end-effector to pick up different items physically.
The goal of autonomous mobile manipulation as defined by the IEEE
Robotics & Automation Society8 is to execute complex manipulation
tasks in an unstructured and dynamic environment where cooperation
with humans may be required. For the experimental validation of the
proposed framework, only the UR3 manipulator was used.

8 https://www.ieee-ras.org/mobile-manipulation

https://www.ieee-ras.org/mobile-manipulation
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Fig. 6. Representation in the domain ontology of the environment (Regions class), and motion planning (Motion class).

Fig. 7. Representation in the domain ontology of the actions status.

Fig. 8. Representation in the domain ontology of the Actions that the agent can perform (relations is-a).
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Fig. 9. Smart-home environment, built on the robotics laboratory of Instituto Politécnico de Castelo Branco.
The experimental validation is realized in a simple environment
of a house, based on a smart-home environment built in the robotics
laboratory of Instituto Politécnico de Castelo Branco (Fig. 9).

The framework has been implemented and tested within Robot
Operating System (ROS) Noetic and Ubuntu 20.04.4 LTS operating
system with an Intel®Core™ i7-7740X CPU @ 3.30 GHz × 8 proces-
sor, 16 GB RAM, and Quadro P2000/PCIe/SSE2 Graphics. The input
video is obtained using Intel® RealSense™ D415i Depth Camera (It is
represented in Fig. 10b with frame ‘‘camera_link’’).

4.1. Hardware and software low-level

The AMMR used in the study is composed of (Fig. 10): An omni-
directional mobile base with mecanum wheels, giving the robot the
ability to move in any direction; A UR3.9 robotic arm from Universal
Robotics for object manipulation, equipped with a Robotiq 2f-140
gripper10 A set of sensors (e.g. rear and front lasers, and cameras for
autonomous navigation and obstacle recognition) are also present on
the mobile base.

Fig. 10b shows the transformation (tf11) of the different constituent
systems of the robot. The tf maintains the relationship between the
coordinate structures in a time-buffered tree structure and allows the
user to transform points, vectors, etc., between any two coordinate
structures at any point in the desired time. Based on this, it is possible
to quickly calculate the robot’s coordinate on the map, or for example,
the coordinate of a particular observed object concerning any of the
robot’s coordinate systems.

4.2. Information of robotic agent(s)

As previously mentioned, an AMMR is used. Based on our ontology,
our agent (AMMR) is subdivided into two agents that work together
a mobile agent (instantiated as ‘‘idmind’’) and a manipulator agent
(instantiated as ‘‘ur3_arm’’) (Fig. 11). We use the part_of property to
link both agents together as a whole.

A node was then created in ROS, which subscribes to all the in-
formation from the sensors present in the agents and updates the
properties of our agents in the ontology. In Fig. 12 are depicted the
different properties of the agents that are constantly updated. These
properties are later used to improve reasoning. In order to generate a

9 https://www.universal-robots.com/pt/produtos/ur3-robot/
10 https://robotiq.com/products/2f85-140-adaptive-robot-gripper
11 https://wiki.ros.org/tf
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set of tasks that our agent has to perform (e.g. pick objects, transport
an object from one point to another, etc.)

4.3. Representation of the environment - semantic map

Previously the environment was represented using a semantic map
(Bernardo et al., 2021). In this paper, the previous work was enhanced
because it was possible to identify the room where the agent was based
on the objects around it. For example, based on picture 13, if the agent
sees a chair, a bedside table and a bed, he automatically knows its
location (‘‘BedRoom’’).

Now besides being able to identify the room based on the objects
observed (Figs. 9a and 13), rules were created to identify the room
where the agent is present. For this, it is only necessary the knowledge
of the floor plan of the environment (Fig. 9b), and the knowledge of
the position of the agent in the environment (e.g. localizing the robot
within it using an Adaptive Monte-Carlo Localizer (AMCL12)). Examples
of rules are as follows:

• Rule to check if the agent is in the ‘‘LivingRoom_1’’:

𝐴𝑔𝑒𝑛𝑡(?𝐴𝑔) ∧ 𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛_𝑥(?𝐴𝑔, ?𝑝𝑥) ∧ 𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛_𝑦(?𝐴𝑔, ?𝑝𝑦) ∧

𝑠𝑤𝑟𝑙𝑏 ∶ 𝑔𝑟𝑒𝑎𝑡𝑒𝑟𝑇 ℎ𝑎𝑛𝑂𝑟𝐸𝑞𝑢𝑎𝑙(?𝑝𝑥, 0) ∧ 𝑠𝑤𝑟𝑙𝑏 ∶ 𝑙𝑒𝑠𝑠𝑇 ℎ𝑎𝑛𝑂𝑟𝐸𝑞𝑢𝑎𝑙(?𝑝𝑥, 3) ∧

𝑠𝑤𝑟𝑙𝑏 ∶ 𝑔𝑟𝑒𝑎𝑡𝑒𝑟𝑇 ℎ𝑎𝑛𝑂𝑟𝐸𝑞𝑢𝑎𝑙(?𝑝𝑦,−3) ∧ 𝑠𝑤𝑟𝑙𝑏 ∶ 𝑙𝑒𝑠𝑠𝑇 ℎ𝑎𝑛𝑂𝑟𝐸𝑞𝑢𝑎𝑙(?𝑝𝑦, 2) ∧

→ 𝑙𝑜𝑐𝑎𝑡𝑒𝑑_𝑎𝑡(?𝐴𝑔,𝐿𝑖𝑣𝑖𝑛𝑔𝑅𝑜𝑜𝑚_1) (5)

• Rule to check if the agent is in the ‘‘BathRoom_1’’:

𝐴𝑔𝑒𝑛𝑡(?𝐴𝑔) ∧ 𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛_𝑥(?𝐴𝑔, ?𝑝𝑥) ∧ 𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛_𝑦(?𝐴𝑔, ?𝑝𝑦) ∧

𝑠𝑠𝑤𝑟𝑙𝑏 ∶ 𝑔𝑟𝑒𝑎𝑡𝑒𝑟𝑇 ℎ𝑎𝑛(?𝑝𝑥, 3) ∧ 𝑠𝑤𝑟𝑙𝑏 ∶ 𝑙𝑒𝑠𝑠𝑇 ℎ𝑎𝑛𝑂𝑟𝐸𝑞𝑢𝑎𝑙(?𝑝𝑥, 5.5) ∧

𝑠𝑤𝑟𝑙𝑏 ∶ 𝑔𝑟𝑒𝑎𝑡𝑒𝑟𝑇 ℎ𝑎𝑛(?𝑝𝑦,−0.2) ∧ 𝑠𝑤𝑟𝑙𝑏 ∶ 𝑙𝑒𝑠𝑠𝑇 ℎ𝑎𝑛𝑂𝑟𝐸𝑞𝑢𝑎𝑙(?𝑝𝑦, 2)

→ 𝑙𝑜𝑐𝑎𝑡𝑒𝑑_𝑎𝑡(?𝐴𝑔,𝐵𝑎𝑡ℎ𝑅𝑜𝑜𝑚_1) (6)

• Rule to check if the agent is in the ‘‘BedRoom_1’’:

𝐴𝑔𝑒𝑛𝑡(?𝐴𝑔) ∧ 𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛_𝑥(?𝐴𝑔, ?𝑝𝑥) ∧ 𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛_𝑦(?𝐴𝑔, ?𝑝𝑦) ∧

𝑠𝑠𝑤𝑟𝑙𝑏 ∶ 𝑔𝑟𝑒𝑎𝑡𝑒𝑟𝑇 ℎ𝑎𝑛(?𝑝𝑥, 3) ∧ 𝑠𝑤𝑟𝑙𝑏 ∶ 𝑙𝑒𝑠𝑠𝑇 ℎ𝑎𝑛𝑂𝑟𝐸𝑞𝑢𝑎𝑙(?𝑝𝑥, 5.5) ∧

𝑠𝑤𝑟𝑙𝑏 ∶ 𝑔𝑟𝑒𝑎𝑡𝑒𝑟𝑇 ℎ𝑎𝑛𝑂𝑟𝐸𝑞𝑢𝑎𝑙(?𝑝𝑦,−3) ∧ 𝑠𝑤𝑟𝑙𝑏 ∶ 𝑙𝑒𝑠𝑠𝑇 ℎ𝑎𝑛𝑂𝑟𝐸𝑞𝑢𝑎𝑙(?𝑝𝑦,−0.2)

→ 𝑙𝑜𝑐𝑎𝑡𝑒𝑑_𝑎𝑡(?𝐴𝑔,𝐵𝑒𝑑𝑅𝑜𝑜𝑚_1) (7)

12 https://wiki.ros.org/amcl

https://www.universal-robots.com/pt/produtos/ur3-robot/
https://robotiq.com/products/2f85-140-adaptive-robot-gripper
https://wiki.ros.org/tf
https://wiki.ros.org/amcl
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Fig. 10. Autonomous Mobile Manipulator Robot used in experimental validation.

Fig. 11. Agent instances (AMMR) in the ontology.

Fig. 12. The three instances that make up the AMMR and their respective properties.

Fig. 13. Semantic map of a Bedroom (Bernardo et al., 2021).
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Fig. 14. Detection of the objects based on YOLO v3, and representation of the space occupied by the object with a box.
This approach allows us to increase further the confidence level in
predicting the agent’s location in the environment. A new system is
thus presented to solve the problems to obtain an accurate localization
of agents in indoor environments (Yassin et al., 2016).

4.4. Object detection algorithm

For the obstacle detection test, two objects (a chair and a cell
phone) were placed in front of the robot in a random position, as
we can see in Fig. 14a. We see the detection of two objects of two
different classes (class ‘‘chair ’’ and class ‘‘cell phone’’), in a practical
example, based on YOLO v3. The darknet algorithm publishes a set of
bounding boxes which gives information about the position and size
of the bounding box in pixel coordinates of each object (Information
regarding the camera frame ‘‘camera_link’’). Using the darknet_ros_3d
library,13 the information from the darknet_ros topic is combined with
the point cloud information from the RGBD (Red Green Blue and
Depth) camera, delimiting a 3D bounding box of each observed object
(Fig. 14b) already in metric units. The geometric centre of the 3D
bounding box of the object is also calculated. Finally, the previously
calculated coordinates are converted from the RGBD camera frame to
the map frame (Fig. 10b).

All the information collected regarding the detected objects now has
to be stored in the ontology (Fig. 15). For this, a node was created in
ROS, which will update our knowledge base (ontology). In this node,
it is verified if the class to which the observed object belongs already
exists (The object classes defined in the ontology have the same name
as the classes defined in the YOLO v3). If not, a new class is created
that corresponds to the observed object, which will be a sub-class
of the AllObjects class already defined in the ontology (Fig. 4). After
creating the object class it is then instantiated. The name of the object
instance is defined based on the class it belongs to + prefix. The prefix is
‘‘_number’’ where the number is incremental according to the number
of already detected objects belonging to the object class, going from
1 to inf. The object is then instantiated along with all known object
information.

Before instantiating a new object, the ontology is always consulted
in order to check if the object observed had not already been observed
at a previous moment. If it has already been observed, only the object’s
information is updated if appropriate.

According to Fig. 9b, knowing the metric dimensions of the rooms,
together with the information collected from each object, we can thus
write the following rules to identify the room in which each observed
object is located:

13 https://github.com/IntelligentRoboticsLabs/gb_visual_detection_3d
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• Objects contained in the area belong to the room instantiated as
‘‘LivingRoom_1’’:

𝐴𝑙𝑙𝑂𝑏𝑗𝑒𝑐𝑡𝑠(?𝑜𝑏𝑗) ∧ 𝑃𝑜𝑠_𝑥(?𝑜𝑏𝑗, ?𝑝𝑥) ∧ 𝑃𝑜𝑠_𝑦(?𝑜𝑏𝑗, ?𝑝𝑦) ∧

𝑠𝑤𝑟𝑙𝑏 ∶ 𝑔𝑟𝑒𝑎𝑡𝑒𝑟𝑇 ℎ𝑎𝑛𝑂𝑟𝐸𝑞𝑢𝑎𝑙(?𝑝𝑥, 0) ∧ 𝑠𝑤𝑟𝑙𝑏 ∶ 𝑙𝑒𝑠𝑠𝑇 ℎ𝑎𝑛𝑂𝑟𝐸𝑞𝑢𝑎𝑙(?𝑝𝑥, 3) ∧

𝑠𝑤𝑟𝑙𝑏 ∶ 𝑔𝑟𝑒𝑎𝑡𝑒𝑟𝑇 ℎ𝑎𝑛𝑂𝑟𝐸𝑞𝑢𝑎𝑙(?𝑝𝑦,−3) ∧ 𝑠𝑤𝑟𝑙𝑏 ∶ 𝑙𝑒𝑠𝑠𝑇 ℎ𝑎𝑛𝑂𝑟𝐸𝑞𝑢𝑎𝑙(?𝑝𝑦, 2) ∧

→ ℎ𝑎𝑠𝐿𝑜𝑐𝑎𝑡𝑖𝑜𝑛(?𝑜𝑏𝑗, 𝐿𝑖𝑣𝑖𝑛𝑔𝑅𝑜𝑜𝑚_1) (8)

• Objects contained in the area belong to the room instantiated as
‘‘BathRoom_1’’:

𝐴𝑙𝑙𝑂𝑏𝑗𝑒𝑐𝑡𝑠(?𝑜𝑏𝑗) ∧ 𝑃𝑜𝑠_𝑥(?𝑜𝑏𝑗, ?𝑝𝑥) ∧ 𝑃𝑜𝑠_𝑦(?𝑜𝑏𝑗, ?𝑝𝑦) ∧
𝑠𝑠𝑤𝑟𝑙𝑏 ∶ 𝑔𝑟𝑒𝑎𝑡𝑒𝑟𝑇 ℎ𝑎𝑛(?𝑝𝑥, 3) ∧ 𝑠𝑤𝑟𝑙𝑏 ∶ 𝑙𝑒𝑠𝑠𝑇 ℎ𝑎𝑛𝑂𝑟𝐸𝑞𝑢𝑎𝑙(?𝑝𝑥, 5.5) ∧

𝑠𝑤𝑟𝑙𝑏 ∶ 𝑔𝑟𝑒𝑎𝑡𝑒𝑟𝑇 ℎ𝑎𝑛(?𝑝𝑦,−0.2) ∧ 𝑠𝑤𝑟𝑙𝑏 ∶ 𝑙𝑒𝑠𝑠𝑇 ℎ𝑎𝑛𝑂𝑟𝐸𝑞𝑢𝑎𝑙(?𝑝𝑦, 2)

→ ℎ𝑎𝑠𝐿𝑜𝑐𝑎𝑡𝑖𝑜𝑛(?𝑜𝑏𝑗, 𝐵𝑎𝑡ℎ𝑅𝑜𝑜𝑚_1) (9)

• Objects contained in the area belong to the room instantiated as
‘‘BedRoom_1’’:

𝐴𝑙𝑙𝑂𝑏𝑗𝑒𝑐𝑡𝑠(?𝑜𝑏𝑗) ∧ 𝑃𝑜𝑠_𝑥(?𝑜𝑏𝑗, ?𝑝𝑥) ∧ 𝑃𝑜𝑠_𝑦(?𝑜𝑏𝑗, ?𝑝𝑦) ∧

𝑠𝑠𝑤𝑟𝑙𝑏 ∶ 𝑔𝑟𝑒𝑎𝑡𝑒𝑟𝑇 ℎ𝑎𝑛(?𝑝𝑥, 3) ∧ 𝑠𝑤𝑟𝑙𝑏 ∶ 𝑙𝑒𝑠𝑠𝑇 ℎ𝑎𝑛𝑂𝑟𝐸𝑞𝑢𝑎𝑙(?𝑝𝑥, 5.5) ∧

𝑠𝑤𝑟𝑙𝑏 ∶ 𝑔𝑟𝑒𝑎𝑡𝑒𝑟𝑇 ℎ𝑎𝑛𝑂𝑟𝐸𝑞𝑢𝑎𝑙(?𝑝𝑦,−3) ∧ 𝑠𝑤𝑟𝑙𝑏 ∶ 𝑙𝑒𝑠𝑠𝑇 ℎ𝑎𝑛𝑂𝑟𝐸𝑞𝑢𝑎𝑙(?𝑝𝑦,−0.2)

→ ℎ𝑎𝑠𝐿𝑜𝑐𝑎𝑡𝑖𝑜𝑛(?𝑜𝑏𝑗, 𝐵𝑒𝑑𝑅𝑜𝑜𝑚_1) (10)

4.5. Implementation of the motion planning

The agent (AMMR) was modelled in 3D software, except for UR3
where we used the .step files that are available on the Universal
Robotics website.14 (Fig. 16). In order to define the constraints imposed
by the shape of its own body of the agent. As previously mentioned,
all information regarding each object observed in the environment has
been stored in the ontology, as shown in Fig. 15 All the information
about each object can be consulted at any time to improve the agents’
reasoning, whenever necessary.

In Fig. 16 is depicted the scenario created based on the information
in Fig. 14a that was previously stored in the ontology. In the scenario,
only the objects that are considered fixed are represented because
those that you want to manipulate cannot be represented, or it would
generate an error in the creation of the plan, that is, only the ‘‘chair_1’’
appears defined, the ‘‘cell_phone_1’’ is the object that you want to move
to another position.

14 https://www.universal-robots.com/download/mechanical-cb-series/ur3/
robot-ur3-step-file-cb-series/

https://github.com/IntelligentRoboticsLabs/gb_visual_detection_3d
https://www.universal-robots.com/download/mechanical-cb-series/ur3/robot-ur3-step-file-cb-series/
https://www.universal-robots.com/download/mechanical-cb-series/ur3/robot-ur3-step-file-cb-series/
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Fig. 15. Stored information regarding a detected object (chair_1).
Fig. 16. 3D representation of the agent’s geometric model (AMMR), and representation
of the obstacles (in yellow) that lie within the agent’s workspace.

The ROSPlan framework was used to perform the planning tasks.
Different action interfaces were written in C++ to control the robotic
agent. These actions are as listed in the Manipulator_actions, Mobile_
actions, and Gripper_actions classes (Fig. 8).

Through the inferred knowledge based on semantic knowledge
(i.e., the relationships between objects, the relationships between ob-
jects and the environment, the current location of the robot, existing
constraints, etc.), ROSPlan, generated efficient task plans based on
the actions defined in the ontology. Furthermore, ROSPlan and the
developed interface actions proved to be very efficient in controlling
the low-level interface with the agent’s semantic reasoning.

5. Validation of the proposed framework in a real environment

In order to validate the proposed framework, a test was performed
in the experimental apparatus (Fig. 17a), where the manipulator UR3 is
commanded to pick a known object ‘‘cell_phone_1’’ previously observed
as a goal (Fig. 17b). The information about it was already in the
knowledge base (ontology), along with the position of the robot in
the living room. An object ‘‘bottle_1’’ was positioned in front of the
object to be picked, making it impossible to pick without collision with
the object, and still making the ‘‘cell_phone_1’’ an unobservable object
(Fig. 17c).

For the scenario of Fig. 17b a simple pick and place plan can be
obtained. However, for the scenario in Fig. 17c the same plan will
fail because the position of the ‘‘bottle_1’’, does not allow the pick
movement. In the following, will be presented the several steps to
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implement the first plan and how the system will use the semantic
information gathered along with the inference engine to improve the
motion planning, and make the robot capable to pick and place the
‘‘cell_phone_1’’ when the object ‘‘bottle_1’’ is in front of it.

As a first step it was written the problem in PDDL, to pick and
place the ‘‘cell_phone_1’’, which was later interpreted by the ROSPlan
framework (The Metric -FF,15 planner, is a domain independent plan-
ning system developed by Joerg Hoffmann. The system is an extension
of the FF planner to (ADL combined with) numerical state variables).
The initial generated plan is visible in Fig. 18. After the plan was
generated, the interface actions, interconnect the plan with the lower
level control actions, allowing the robotic agent (AMMR) to complete
the plan (Fig. 19 ‘‘rosplan_perceive_object’’, ‘‘rosplan_interface_pick’’,
‘‘rosplan_interface_drop’’).

During execution, if an action fails due to changes in the en-
vironment, the planning agent reformulates the PDDL problem by
re-planning. To do this, the dispatch of the initial order is cancelled,
and the new plan is dispatched based on the updated information (i.e. a
new problem in pddl is written automatically).

Although the position of the object to pick is known, before picking
any object, its position is always recalculated in order to correct pos-
sible errors in the position of the base in the environment, as well as
to detect new objects that may or may not exist in the environment,
but that previously had or had not been observed (this is performed
by the action: ‘‘perceive_object ’’). After, the pick action is used, which,
through the known position of the object to be picked, calls the action
server of the manipulator (Fig. 20, /ur3_server), which, in turn, calls
the library created to generate the trajectory to perform the pick. After,
the drop action, executes the drop of the object in a desired position,
in this case we use the AMMR base, which is divided into three zones:
‘‘left_platform’’, ‘‘middle_platform’’, and ‘‘right_platform’’.

Fig. 20 shows a simplified graph, depicting the implementation of
the framework. It was obtained based on the rqt_graph,16 available on
ROS, in which the primary nodes and topics of the motion system of
the robotic arm are represented. The node /verifier_path is constantly
subscribing to the /path_arm generated for the robot’s movement and
the file with the geometrical representation of the space surrounding
the manipulator, as shown in Fig. 16. The feedback concerning the path
is constantly being published, updating its state in the ontology (Fig. 6).
Whenever the path is not verified, the order sent to the manipulator is
cancelled, and a new plan for the robot motion is generated based on
the recent information perceived.

As described above, Fig. 17c, the ‘‘bottle_1’’ makes picking impossi-
ble without a collision, so the initial plan (Fig. 18) is cancelled. Fig. 23
represents the coordinate of the position in the workspace of each
object to perform the picking; this coordinate represents the centre
of mass of each object (‘‘cell_phone_1’’ and ‘‘bottle_1’’). The coordinate
(i.e. [x,y,z] m) of the picking position of the ‘‘cell_phone_1’’ is [0.49,

15 https://fai.cs.uni-saarland.de/hoffmann/metric-ff.html
16 http://wiki.ros.org/rqt_graph

https://fai.cs.uni-saarland.de/hoffmann/metric-ff.html
http://wiki.ros.org/rqt_graph
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Fig. 17. Practical evaluation setup. (a) Apparatus overview. (b) First observation, of the environment. c) Final observation of the environment, where the cell phone is no longer
observed, as a bottle was placed covering it.
Fig. 18. Generated initial plan.

0.16, 0.09] m, being the picking coordinate of the ‘‘bottle_1’’ [0.43,
0.11, 0.11] m. (Note: The Z-coordinate value cannot be used as a ref-
erence because it does not correspond to the real value of the centre of
mass. It is automatically adjusted, based on the gripper characteristics
and the height of the object along the 𝑍-axis, so that the object being
gripped is in the centre of the tool when it is being picked). We can thus
verify that the distance between each object based on the position of
its centre of mass is 6 cm on the 𝑋-axis, 5 cm on the 𝑌 -axis, i.e., based
on the characteristics of the UR3 manipulator, and the dimensions of
the gripper with which it is equipped, it is impractical to pick the
‘‘cell_phone_1’’ without colliding with the ‘‘bottle_1’’.

The ontology is now consulted to know if the object that makes
picking impossible can be manipulated based on the manipulator’s and
the gripper’s characteristics (Fig. 21). As observed in the figure below,
the object is manipulable. Based on this information, a new problem is
generated to execute a plan that enables picking up the ‘‘cell_phone_1’’
without collision (Fig. 22).

Here the strategy/behaviour used is to move the obstacle that causes
the collision, in case it is manipulable, to a known position that is free
on the manipulator’s platform (i.e. ‘‘right_platform’’). If the object that
was responsible for the collision is not manipulable, our system will
send an error message informing us that it is not allowed to reach the
goal.

After re-planning the motion, the initial task to be performed was
successfully accomplished. The newly generated plan can be divided
into three sets of tasks (Fig. 22); each set is composed of: a ‘‘per-
ceive_object’’, ‘‘pick’’ and ‘‘drop’’ actions. The first task consists of mov-
ing the obstacle (‘‘bottle_1’’) to a known position in the mobile agent’s
base, which is present in the knowledge base (e.g. ‘‘right_platform’’). The
second task consists in picking the ‘‘cell_phone_1’’ and dropping it in
another known position in the mobile agent’s base (e.g. ‘‘left_platform’’).
Finally, the last task consists of returning the ‘‘bottle_1’’ to the initial
position where it was initially observed.

In Fig. 23 the paths taken by the robotic manipulator are depicted.
The trajectory refers to the centre point of the tool. The graph at the
top of Fig. 23 represents the trajectories performed by the manipulator
to execute the pick and drop actions of the ‘‘bottle_1’’; the legend of
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the figure follows the chronological order in which the movements are
performed; first the manipulator moves from the manipulator’s home
position to an approach point to perform the picking (red trajectory),
then the manipulator moves linearly until the position to complete
the picking (pink trajectory), after grabbing the ‘‘bottle_1’’, it returns
to perform the previous trajectory (pink trajectory), in the opposite
direction. After this, it begins to move towards the approach point
to complete the drop of the ‘‘bottle_1’’ (dark green trajectory), then it
approaches the drop point of the ‘‘bottle_1’’ linearly (blue trajectory);
after performing the drop, it returns to complete the previous trajectory
(blue trajectory) in the opposite direction. Finally, the manipulator
moves to its home position (light green trajectory), which allows it to
deviate from the angle of view of the RGBD camera.

The graph at the bottom of Fig. 23 represents the trajectories
performed by the manipulator to execute the pick and drop actions of
the ‘‘cell_phone_1’’. Like the graph’s legend above, this one also follows
the chronological order of the manipulator’s steps. First, the manip-
ulator moves from the manipulator’s home position to an approach
point to perform the picking (red trajectory), then the manipulator
moves linearly to the position to complete the picking (pink trajec-
tory); after picking up the ‘‘cell_phone_1’’, it returns to the previous
trajectory (pink trajectory), in the opposite direction. After this, it
begins to move towards the approach point to perform the drop of
the ‘‘cell_phone_1’’ (dark green trajectory), then it approaches the drop
point of the ‘‘cell_phone_1’’ linearly (blue trajectory); after performing
the drop, it returns to complete the previous trajectory (blue trajectory)
in the opposite direction. Finally, the manipulator moves to its home
position (light green trajectory).

In the process of repositioning the ‘‘bottle_1’’ in the position in
which it was initially observed, the manipulator performed the same
trajectories described in the initial process of pick and drop of the
‘‘bottle_1’’ only in the inverse process; that is, it starts in the light green
trajectory and ends the sequence with the red trajectory, which now
goes from the approach point of the drop of the ‘‘bottle_1’’ (i.e. initially
was the pick approach point of the ‘‘bottle_1’’), to the home position of
the manipulator.

The time taken for each set of tasks is shown below; the test was
carried out with the manipulator moving at a low speed, i.e. 10%
of maximum speed. The execution of the plan had a total duration
of 186 s, equivalent to 3 m. The set of tasks executed to move the
obstacle to the base of the robot (‘‘right_platform’’) had a duration of
approximately 53 s; the set of tasks necessary to perform the pick
up of the ‘‘cell_phone_1’’ and drop it in the base of the manipulator
(‘‘left_platform’’), had a duration of 60 s; and the tasks necessary for the

reposition of the obstacle, in the place initially observed, which had a
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Fig. 19. ROSPlan interface actions.
Fig. 20. The topics and nodes created to send and check commands to the manipulator (UR3).
Fig. 21. Question. Are the objects present manipulable?.
Fig. 22. Generated final plan.
duration of 72 s. That is, due to the obstacle, the initial plan had a time
cost of approximately 125.64 s, equivalent to 2 m, or 67.52% more time
than the initial plan would need.

The framework proved effective in solving the proposed problem;
Despite spending 67.52% more time than the initial plan. If an operator
had to intervene to divert the obstacle that caused the collision, this
cost would be higher. A limitation of the presented framework is that
it only works if the objects causing the collision are manipulable. For
example, if the object responsible for the collision were not manipu-
lable, our system would send an error message informing us that it is
13
not allowed to reach the goal, being unable to find a solution. This
problem could be solved if we change the position of the AMMR’s
base to a place that will enable the picking of the ‘‘cell_phone_1’’. This
solution is outside the scope of the work presented here, and will the
focus of future work to implement such behaviour using the mobile
base capability. This strategy is very promising and is easily transferred
to other manipulators, and even can be used by a team of robots. In
this last case, and if a manipulator failed to grasp the object, could
call, e.g., a mobile manipulator that can do the grasping, if equipped
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Fig. 23. The paths taken by the robotic arm are represented. The trajectory refers to the centre point of the tool.
with the proper gripper. The presented framework can also be easily
integrated with a framework for optimization AMMR agents.

6. Conclusions and future work

This work presented an ontological framework to improve the mo-
tion planning process, providing the possibility to reconfigure the
initially defined trajectory (e.g. recovery from a situation where an
unexpected obstacle appears on the path), for a robotics manipulative
agent. Semantic knowledge, and SWRL rules were used to infer new
knowledge based on the known environment and the robotic system.
For reasoning with the ontology, different SPARQL queries were used.
A deep neural network was trained, and used, for the detection and
classification of objects present in the environment where the robotic
agent is located. Based on this information, a semantic map of the envi-
ronment was created. Ontological knowledge was then used to improve
the motion planning of a manipulator agent by inferring manipulation
constraints through reasoning based on logical axioms. Finally, based
on the semantic knowledge, the environment corresponding to the
agent’s manipulation workspace was created so that the planner could
infer from it and the knowledge base, to generate a collision-free path.

The proposed framework was implemented in a real-world scenario,
and its potential was proven through a manipulation problem. Rule-
based prediction of the agent’s location in the environment proved to
be very robust and effective. Finally, knowledge was inferred based on
semantic knowledge, and the ROSPlan framework was used to perform
task planning based on the actions defined in the ontology. In summary,
the presented framework proved to be a strategy with much potential
to improve the planned motion of robotic systems.

In future work, we highlight aspects that we consider relevant to
be solved to improve the implemented framework. Using SWRL rules
proved to be a promising approach to infer new knowledge. However,
the use of rules is still limited due to limitations in rule insertion. For
example, implementing a probabilistic extension of SWRL to handle
incomplete or partial knowledge would be an advantage in inferring
uncertainty and providing a better query service to users, especially
when dealing with mobile manipulators. Creating a mechanism to
avoid conflicts and redundancies when inserting new rules would also
be advantageous. Finally, strategies should be developed following
14
the one presented in this paper, in which, through semantic reason-
ing/knowledge, the actions performed by AMMR agents are optimized.
That is, it is imperative to develop solutions that exploit the capabilities
of a AMMR agent, for example, that optimize manipulation tasks based
on the movement of the mobile base of the robotic agent, etc.
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