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Abstract

Diffuse Idiopathic Skeletal Hyperostosis, or DISH, is a disease characterized by ossification
of the entheses and the anterior longitudinal ligament. The diagnosis is made by visual
analysis of an X-ray by a professional using the Resnick Criterion. The different experience
among professionals and the fact that this criterion is only suitable in advanced stages
of the disease make diagnosis difficult. Therefore, this work aims to contribute to the
development of an auxiliary diagnostic tool for this disease.

For this, a semi-automatic vertebral segmentation algorithm based on active morpho-
logical contours was proposed, comparing it with previous work and with segmentations
made by experts on two radiographic images. Next, the corners of the vertebrae, where
the disease manifests itself, were analyzed in order to characterize images with DISH. To
accomplish this, it was assumed symmetry of the vertebrae and a Gaussian distribution
of the histograms of those corners to analyze them and calculate two ratios: Left upper
corner mean value / Right upper corner mean value (LS/RS) and Left lower corner mean
value / Right lower corner mean value (LI/RI), in order to find a differentiating metric
between vertebrae with pathology and those without.

The results achieved by the algorithm were clearly superior to the previous work and
similar to that of the experts. The analysis of pathologic vertebrae revealed a difference in
the shift of the distributions of pathologic corners relative to non-pathologic ones, which
is not seen in vertebrae without apparent pathology. Regarding the ratios, the LI/RI
proved to be particularly effective in differentiating, being closer to 1 when pathology is
not present.
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Resumo

A Hiperostose Esquelética Idiopática Difusa, ou DISH, é uma doença caracterizada pela
ossificação das entéses e do ligamento longitudinal anterior. O diagnóstico é realizado
pela análise visual de um raio-X, por um profissional, utilizando o Critério de Resnick. A
diferente experiência entre profissionais e o facto de este critério só ser adequado em fases
avançadas da doença tornam o diagnóstico difícil. Por isso, este trabalho visa contribuir
para o desenvolvimento de um instrumento auxiliar de diagnóstico desta doença.

Para isso, foi proposto um algoritmo de segmentação de vertebras, semi-automático,
baseado em contornos morfológicos ativos, comparando-o com o trabalho anterior e com
as segmentações feitas por especialistas em duas imagens radiográficas. De seguida, foram
analisadas as extremidades das vértebras, onde a doença se manifesta, com o objetivo
de identificar imagens com DISH. Para tal, assumiu-se a simetria das vértebras e uma
distribuição Gaussiana dos histogramas das extremidades para analisar as mesmas e
calcular dois rácios: Valor médio do canto superior esquerdo / Valor médio do canto
superior direito(LS/RS) e valor médio do canto inferior esquerdo /Valor médio do canto
inferior direito(LI/RI), a fim de encontrar uma métrica diferenciadora das vértebras com
patologia das não patológicas.

Os resultados conseguidos pelo algoritmo foram claramente superiores ao do trabalho
anterior e semelhantes ao dos peritos. A análise das vértebras patológicas revelou uma
diferença na deslocação das distribuições dos cantos patológicos relativamente aos não
patológicos, o que não se verifica em vértebras sem patologia aparente. Relativamente aos
rácios, o LI/RI mostrou ser particularmente eficaz na diferenciação, estando mais próximo
de 1 quando a patologia não está presente.

Palavras-chave: Hiperostose Esquelética Idiopática Difusa, Raios-X, Processamento de
Imagem, Segmentação, Contornos Ativos Morfológicos
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Introduction

This chapter provides a brief description of the motivation and context this work. Also,
the objectives and questions to be answered are described here.

1.1 Motivation

Diffuse Idiopathic Skeletal Hyperostosis (DISH) is a non-inflammatory and systemic
disease, which is characterized by a continuous bone formation on ligaments and entheses,
which are the connective tissues between the tendons or ligaments and the bone.

The disease can appear in the cervical, thoracic and lumbar spine, but normally
manifests in the thoracic section. Also, it frequently manifests as flowing mantles of
ossifications in the anterior longitudinal ligament [2]. According to [3], the ossifications
in the thoracic spine are usually found on the right side of spine and it is thought that
this occurs due to the protective function provided by the arterial distribution, such as
the descending aorta. Beyond this structures, the ossifications can be present in the
ligaments connecting the laminae, in the spinal and transverse processes. Also, the
posterior longitudinal ligament can also be proned to this disease, specially in the cervical
spine [2]. Figure 1.1 shows an example of a sagitall X-ray image of the spine ,showing,
with white arrows, the ossification of the anterior longitudinal ligament.

As consequence of this disease, there are some complications associated, such as: dys-
phagia or difficulty to swallow[5], vocal cord paresis[3], a rare complication of DISH, and
airway obstruction[6]. Dysphagia can results of compression of esophagus by ossifications
in the cervical spine[7]. Concerning the vocal cord paresis, a possible mechanism is the
compression by ossification in the cervical spine of the laryngeal nerve, which innervate
the vocal folds, and is responsible for production of sound [7]. The latter complication
is caused by bone formation in cervical spine which can cause pressure over the trachea,
deviating it from the normal position, and limiting the air flow[8]. A Sagitall X-ray of the
spine of a patient with DISH and dysphagia(Left image) and a Sagitall X-ray of the Spine
of another patient without DISH(Right image) can be seen in Figure 1.2. In both images,
the blue curves and the white arrows point to the vertebrae C4 and C5. In the left image,
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Figure 1.1: Sagittal X-ray of the DISH spine showing,with white arrows,the thickening
and ossification of anterior longitudinal ligament[4].

the ossifications (blue curve and white arrow) present anteriorly to the vertebrae can cause
pressure on the esophagus, limiting the swallowing process. In the right image, there is
no presence of ossifications and, therefore, are not limiting the swallowing process.

Other complications, such as restrictive lung disease, can occur when this disease is
present in sternocostal or chondrocostal junctions, which may reduce the thorax movement.
Also, in end-stage DISH subjects, this disease can lead to a vulnerable spine and make it
fracture, even for low-level load trauma[10].

Beyond this complications, DISH has been associated with other diseases, such as
cardiovascular diseases[11] and metabolic derangements[12].

There are three major diagnosing criteria to evaluate this disease. The criteria created
by Resnick and Niwayama states that the ossifications must encompass at least four
contiguous vertebrae and do not involve degenerative changes in the intervertebral discs
or apophyseal and sacroiliac joints[8]. Julkunen et al.[13] created a criteria which only
differs from Resnick and Niwayama’s in the fact that they include bridged connecting two
vertebral bodies in at least two sites of the thoracic spine. Utsinger et al.[14] considered
that three contiguous vertebral bodies and the presence of peripheral enthesopathies were
only necessary to diagnose DISH[15].

2



1.1. MOTIVATION

Figure 1.2: Two Sagittal X-rays of the spine of two different patients. (Left image): Patient
with DISH and dysphagia showing, with white arrows and the blue curve, the ossifications
in the cervical spine [Adapted from[4]]. (Right image): Non-DISH patient showing, with
white arrows and the blue curve, that there are no ossifications [Adapted from[9]].

The diagnosis of this disease is mainly through imaging, specially radiography. This
technique is more frequently used due to economic issues and usually anterior-posterior
and lateral spine radiographs are recommended[16]. Moreover, Computed Tomography
(CT) and Magnetic Ressonance Imaging (MRI) can also be used. Both imaging modalities
have higher resolution than X-ray and provide a three dimensional visualization of
structures and are good to detect spinal injuries. Also, both can be used to evaluate the
extent of ossifications in the cervical spine and their impact on the esophagus[17]. These
imaging modalities can, as well, be useful in differentiating this disease from Ankylosis
Spondylitis (AS). AS, on contrary to DISH, usually affects the facet joints, which are
connections between adjacent vertebrae, and CT can be useful in identifying changes
in these structures. MRI, on the other hand, can provide insight into inflammatory
changes[10], which are present in AS and not in DISH.

However, the diagnosis of the disease is rather difficult, requiring careful examination
of images by expert professionals. These professionals have different experiences, thus,
there is a high chance of variability of diagnoses[18]. Also, according to [19], in contrary
to other spine injuries, DISH diagnosis is very delayed and the reason behind this fact
is that pre-existent abnormalities on the radiographs may mask small fractures. In [20],
it is stated that the criteria proposed by Resnick, Julkunen and Ustinger are only visible,
and mostly applicable, 10 to 15 years after the onset of the disease, limiting their use.
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Thus, an early recognition of this disease is very desirable, in order to allow for a better
management of metabolic diseases associated with DISH with the goal of reducing the
progress rate of the disease[2].

1.2 Contextualization

As stated earlier, DISH is usually diagnosed through analysis of X-ray images by pro-
fessionals. Some limitations of these analysis are the possible misevalutations due to
the intervariability between professionals. Therefore, an automatic and reproducible
diagnosis of DISH would be of utmost importance nowadays. Some works have been
proposed to achieve these automatic diagnostic tools, such as [21] and [18]. In 2019,
Lopes [21] developed a semi-automatic segmentation pipeline for X-ray images of healthy
individuals, with the ultimate goal of being applied to DISH patients. The results were
satisfactory, although some limitations regarding the vertebrae segmentation persisted.
In 2021, Viegas [18] proposed an algorithmic approach to develop generic model of spinal
vertebral bodies using manual segmentations made by experts. The results showed that
segmentation was effective on non-pathological X-ray images. Nevertheless, and a func-
tion of the generality of the obtained models, each vertebra presented abnormally smooth
edges.

The present work fits in the context of the aforementioned works and builds on them,
in particular [18], to achieve individualized vertebra segmentation, as well as an automatic
tool for the diagnosis of DISH.

1.3 Objetives

In a general way, this work aims to contribute to the development of an accurate diagnostic
tool for physicians and doctors to analyse DISH patients.

In a particular way, this work has two main goals: Firstly, since this work follows
the work made by [18], it aims to show that the algorithm proposed here is better in
evaluating the specific morphology of each vertebra. Secondly, this work aims mainly to
build a patient-specific segmentation of vertebrae and, then, develop tools to characterize
deformations on vertebral bodies in the spine, based on X-ray images caused by DISH. To
do so, this work aims to provide a vertebrae segmentation algorithm and evaluating the
differences between pathological vertebrae from non-pathological in X-ray images.

1.4 Questions to be answered in this work

The general questions aimed to be answered in the present work are the following:

1. Does this algorithm outperforms the segmentation performance of Viegas [18]?
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2. Is the segmentation performance of this algorithm similar to the performance of
experts in the area?

3. Are left-right discrepancies in x-ray intensities usable to distinguish pathological
vertebrae from non-pathological ones?

4. Is there a difference between the histograms distributions of pathological corners
and non pathological corners?

5. Is there a criteria based on intensity values able to diagnose DISH?

1.5 Structure of the Document

This document is organized in eight chapters and three annexes. The first chapter is
the Introduction and it describes the work’s motivation and contextualization as well
as the its objetives and research questions. In the second chapter, important theoretical
concepts needed to understand the current work and the literature review made on DISH
assessment methods, automatic and diagnosing tools of spinal diseases are presented.
The third chapter is dedicated to image processing concepts, including noise removal and
contrast enhancement techniques and, specially, segmentation algorithms. The fourth
chapter describes the material and the methodology applied in the work. The fifth chapter
presents the results of segmentation evaluation as well as the discussion of them. In
the sixth chapter, the results of the segmentation of vertebrae segmentations and their
analysis, for DISH evaluation, are presented. The seventh chapter discusses the results
described in the previous chapter. Finally, the eighth chapter summarizes the conclusions
achieved by this work and also describes its limitations. Some proposals for future work
are also mentioned here.

Concerning the annexes, the first one describes the size of each image used for the
segmentation and analysis of vertebrae. The second annex shows the professionals’
annotations used for the segmentation evaluation described in chapter five. The third
annex shows the remainder of segmentations and the correspondent analysis for each
image used for the DISH evaluation.
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2

Theoretical Concepts

This chapter presents some theoretical concepts to contextualize the proposed work. First,
a brief review of the anatomy of the spine, with a particular attention to the morphology
of the vertebrae. Then, a brief description of the most used imaging modality for Spine:
X-ray. After this, a description of DISH and its consequences on the spine health is made.
Finally, a literature review of the works that have been done in order to contribute to the
improvement of DISH and AS diagnosis is shown.

2.1 Anatomy of the Spine

The spine is a bone structure that comprises 33 vertebrae. It starts at the end of the skull
and extends to the pelvis. In this anatomical structure, there are five sections and each one
has a specific number of vertebrae. Also, the normal spine has three curves: the cervical
curve is called lordosis, the thoracic curve is called kyphosis and the lumbar curve is called
lordosis. These curves are important for balance and help one to stand up. As shown in
Figure 2.1, the spine can be seen through different views: Anterior, Lateral or Posterior.
This is quite important for professionals because it helps them to assess the angles of the
spine and deviations to the natural curves.

The following enumeration describes each section in terms of number of vertebrae
and the name given to the correspondent natural curves:

1. Cervical-Seven vertebrae(C1-C7)-Lordosis ;

2. Thoracic- Twelve vertebrae(T1-T12)-Kyphosis;

3. Lumbar- Five vertebrae(L1-L5)-Lordosis;

4. Sacrum- Five vertebrae(S1-S5)-;

5. Coccyx- Four unified vertebrae.

The spinal column has many functions such as protection of the spinal cord and load-
bearing, by withstanding external forces and providing support for flexible movement
[22].
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Figure 2.1: Different views of the spine and section division: Anterior View (Left), Left
Lateral View (Middle), Posterior View (Right) [23].

2.1.1 Vertebrae

Vertebrae are structures with a basic morphology comprised by the anterior vertebral
body and the posterior vertebral arch, as shown in Figure 2.2. Between these two areas, it
is possible to find the foramen, which allows the spinal nerves and vessels to pass through
the full length of the spine.

The anterior vertebral body is the load-bearing component and the size of this structure
varies with the position in the collumn (bigger size in the lower sections) due to the need
to cope with an increased weight load[24].

Concerning the posterior arch, this is constituted by various elements:

• Pedicles;

• Transverse processes;

• Laminae;

• Articular Processes;

8



2.1. ANATOMY OF THE SPINE

• Spinous processes.

Pedicles connect the vertebral body to the transverse processes, which are two in each
vertebra, projecting laterally and posteriorly. These structures connect the vertebral body
to the transverse processes. The transverse processes are two in each vertebra and projected
laterally and posteriorly. The laminae link the transverse processes to the spinous process
and the articular processes link two consecutive vertebrae. Finally, spinous processes are
bony proeminences where the two laminae of each vertebrae meet and act as the point
where the muscles and ligaments of the spine attach to [25][24].

Figure 2.2: Superior view of a typical vertebra showing its basic morphology [26].

2.1.2 Intervertebral Disc

The inverterbral disk is a structure located between vertebrae in the cervical (except for C1
and C2), thoracic and lumbar sections. It has the function of preventing vertebrae from
fracturing by reducing load and allow their movement, as well as permit nutrients to flow
to the spine and spinal cord. Figure 2.3 shows a representation of an intervertebral disk.

Each intervertebral disk is composed of three components: the nucleus pulposus, the
annulus fibrosus and the cartilaginous endplates, that anchor the discs to adjacent vertebrae.
The nucleus pulpusus is located in the center of this structure and is gel-like. It is responsible
for most of the flexibility and strength of the spine. The annulus pulpusus surrounds the
nucleus pulpusus, and it is made of concentric collagen fibres. Each layer has a different
orientation from the previous, conferring resistance in many directions. Lastly, the
cartilaginous endplates cover either the superior or the inferior aspects of the intervertebral
disk and are responsible for allowing the diffusion of nutrients and are the main source
of nutrition in the disc[28].
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Figure 2.3: Representation of an intervertebral disc, indicating the Nucleus Pulpusus and
Annulus Fibrosus[27].

2.1.3 Spinal ligaments

Spine is also composed of ligaments, which are fibrous band. They act as stabilizers of
the the spine and protectors of the discs. Figure 2.4 shows the ligaments present in the
spine, with a particular attention to three ligaments (green curves): the ligamentum flavum,
the Anterior Longitudinal Ligament (AAL); and the Posterior Longitudinal ligament [29].
These are the major ligaments in the spine because contribute the most for its stabilization.
The ligamentum flavum connects the laminae of adjacent vertebrae and the AAL covers the
anterior part of the vertebrae throughout the spine. The Posterior Longitudinal ligament
is located inside the spinal canal, throughout the spine.

Figure 2.4: Ligaments present in the Spine showing, with green circles, the three major
ligaments [Adapted from [23]].
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2.2 X-ray imaging

X-ray imaging is a type of medical imaging used to obtain structural information of a
specific region of human body. It has excellent properties for imaging, especially, to
detect spinal diseases: fast and low-cost [30]. Figure 2.5 represents a normal radiograph
system. In this technique, x-rays are produced in a x-ray tube through a process called
bremsstrahlung effect. Then, the x-rays are passed through a collimator, which adjusts and
shapes the x-rays coming from the tube [31]. Before reaching the patient region, this x-rays
may be subjected to a filter in order to avoid, for example, low-energy x-rays, because these
contribute to patient dose and not to the image formation [32]. After passing through the
body and before reaching the imaging film, there may be a grid to avoid x-ray scattering
and, then, prevent image blurring.

Figure 2.5: Conventional radiograph system [32].

2.3 Diagnosis of DISH

There are three major diagnosing criteria to evaluate this disease. The criterion created by
Resnick and Niwayama, which is the standard diagnosing criterion, states that the ossifica-
tions must encompass at least four contiguous vertebrae and do not involve degenerative
changes in the intervertebral discs. Also, the facet joints must be preserved. Finally, the
apophyseal and sacroiliac. joints[8] must not be involved. Figure 2.6 is a illustration of this
criterion. In the left image, the red arrows indicate the features of spine characterizing this
criterion: Ossification of the AAL in at least four contiguous vertebrae (A); Preservation
of interverterbral space (B) and facet joints (C); In the right image, the red curves indicate
the sacroiliac joints, which must no be involved[33].

Beyond this criterion, other authors proposed other criteria for diagnosing DISH.
Julkunen et al.[13] created a criterion which only differs from Resnick and Niwayama’s in
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the fact that they include bridged connecting two vertebral bodies in at least two sites of
the thoracic spine.

Utsinger et al.[14] considered that three contiguous vertebral bodies and the presence
of pheripheral enthesopathies were only necessary to diagnose DISH[15].

Figure 2.6: Criteria created by Resnick and Niwayma to diagnose DISH. (Left image): Red
arrows indicate the (A) Presence of ossification in at least four contiguous vertebrae. (B)
Preservation of the interverterbral space and (C) of the facet joints. (Right image): (D)
Lack of involvement of the sacroliac joints (red curves) [33].

The diagnosis of this disease is mainly through imaging, specially radiography. This
technique is more frequently used due to economic issues and usually anterior-posterior
and lateral spine radiographs are recommended[16]. However, CT and MRI can also be
used. Both imaging modalities have higher resolution than X-ray and provide a three
dimensional visualization of structures, making it good to detect spinal injuries. Also,
both can be used to evaluate the extent of ossifications in the spine. For example, they
can be use to assess the extent of ossifications in the cervical spine and their impact on
the esophagus[17]. These imaging modalites can, as well, be useful in differentiaing this
disease from AS. AS, on contrary to DISH, usually affects the facet joints, which are
connections between adjacent vertebrae, and CT can be useful in identifying changes in
these structures. MRI, on the other hand, provides insight into inflammatory changes[10]
in the spine, which are present in the AS.

Nonetheless, the diagnosis of the disease is rather difficult because it is usually per-
formed by experts, by analysing radiographs, and these professionals have different
experiences, which leads a high probability of variability of diagnoses among them[18].
Another problem in the diagnosis is the fact that there is the possibility of delayed diagno-
sis due to the presence of pre-existent abnormalities on the radiographs, maskering small
fractures[19], and the fact that the aforementioned criteria are only visible, and mostly
applicable, in later stages of the disease. Therefore, it is of utmost importance an early
recognition of this disease in order to allow for a better management of metabolic diseases
associated with DISH with the goal of reducing the progress rate of the disease[2].
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2.4 Effect of DISH on the spine

As said before, DISH is characterized by the ossification of the AAL. The normal spine, this
ligament is separated from the anterior aspect of the vertebral body by a thin radiolucent
line. However, when this disease manifests, this separation is broken, and the ligament
becomes fused to the anterior aspect of the vertebral body[34].

The changes in spine due to this disease typically occur in the anterolateral part of
thoracic spine, contralateral to the descending aorta, due to the impact of the pulsating
aorta. In the early stage of this disease, it is possible to see, in sagitall radiographs, small
bony areas ahead of the disk space. As the disease evolves, the ossifications grow in size
and thicken, particularly in the right and anterior side of verterbral bodies. In a lateral
view of the spine, these ossifications resemble flowing candle wax, which can be attributed
to the presence of segmental arteries which cross the vertebral bodies horizontally.

Nonetheless, DISH can also manifest in other sections such as Lumbar Spine and
Cervical spine. Concerning lumbar spine, on contrary to the thoracic section, the flowing
ossifications are frequent in both right and left sides of lumbar spine. Also, in this section,
it possible to see the ossification of spinous processes and interspinous ligaments. Other
possible consequences of the disease in this region are the spinal stenosis, mild to moderate
narrowing of the intervertebral space and degenerative changes in the lumbosacral joint
[4].

The cervical spine is another section prone to this disease. Here, the hyperostosis occurs
in the lower half of the anterior vertebral body as a drooping drops. Then, these increase
their size until they form enthesophytes and binding together. These enthesophytes
extends themselves to the anterior and superior segment of the underlying vertebral body,
which ultimately results in “candle flame” or “ bridge”. Also, other features of DISH in
this section may occur in the cervico-occipital junction, where, due to bone formation, the
vertebral bodies increase in diameter.

The difference between the cervical and thoracic spine ossification pattern can be
explained by the fact that, in the neck, the main vessels are located lateral to the vertebral
bodies and there are no segmental arteries. As a result, these arteries act as barriers to
the development of DISH. Also, the fact that there no crossing segmental vessels in this
section, lead to bar-like bony structure, on contrary to the flowing wax pattern of thoracic
spine [8]. This difference can be seen in Figure 2.7. Here, images A and B are two sagitall
images of the spine showing the different pattern of ossifications in the cervical spine (in
blue) and the thoracic spine (in green). The images C and D are CT images, showing in
yellow the position of the ossifications in the anterior part of the vertebral body in the
cervical spine((c) and thoracic spine((d)). It is clearly that the position of ossifications
are different in the two sections of spine. In the cervical spine, the ossifications are
symmetrically disposed in the anterior part of the vertebral body, whereas, in the thoracic
spine, the newly formed bone is located in the right anterolateral side of the vertebra, due
to the impact of the pulsating aorta. Another important feature in image C is the fact that
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the location of ossfications can lead to the displacement of the trachea(brown circle) and,
then, causing airway obstruction.

Figure 2.7: Patterns of DISH in cervical and thoracic spine. (A) Ossifications’ Bar-like
pattern (blue rectangle) in a sagitall radiograph of cervical spine. (B) Ossifications’ "flowing
wax " pattern (green rectangle) in a sagitall CT of thoracic spine. (C) Axial CT of cervical
vertebra showing, in yellow and brown, the ossifications and the trachea, respetively. (D)
Axial CT of a thoracic vertebra showing, in yellow, the ossifications [Adapted from[8]].

Despite the variety of ossifications patterns in DISH patients, these ossifications can
be differentiated by those caused by AS, which is, as well, a hyperostotic disease, because
it causes abnormal bone proliferation in spine.

The ossifications caused by this disease are called syndesmophytes. At early stages,
their arise from the ossification of outer fibers of annulus fibrosus intervertebral disc,
projecting vertically. As they develop and grow, they bridge the intervertebral disc,
ultimately causing ankylosis, which is the fusion of vertebrae. The results of this is the
so-called bammboo spine. This can be seen in Figure 2.8. Here, in a Sagitall radiograph
of a 47 year old male, the white arrows point to the vertical syndesmophytes which led
to the bridging of the anterior vertebral corners. It is also noteworthy the fusion of facet
joints, specially at C2/C3 level(blue circle)[35].

As reported before, DISH is characterized by the presence of bridging osteophytes
on the AAL. Nonetheless, in AS, the ossifications are called syndesmophytes, because
they are calcifications present inside the spinal ligament or of the annulus fibrosus, and are
often thinner and symmetrical [8]. Another differentiating feature of AS is the fact that
this disease affects the facet joints, on contrary to DISH.
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Figure 2.8: Sagitall X-ray image of a patient with AS showing, with white arrows and the
blue circle, the syndesmophytes and the fusion of facet joints at C2/C3 level, respectively
[Adapted from [35]].

2.5 Deformations in the spine caused by DISH

DISH and other spinal diseases cause deformations in the spine and vertebrae. In this
sub-section, a description of the impact of DISH ossifications in the spine is provided.

As reported before in this chapter, DISH causes the abnormal formation of bone on
the AAL. These ossifications can lead to an improper loading in the vertebrae, which can
cause fractures on them, even with minor trauma, specially in advanced DISH patients[36].
These fractures are more frequent in the cervical and thoracic spine.

Patients diagnosed with DISH may develop fractures in the vertebral bodies due to
loss of flexibility. This can be caused by greater stress due the ossification of the AAL [19].
This can lead to compressions fractures, that is, the collapse of the vertebral body, and
dislocation injuries, where the vertebrae are displace from the normal position.

The most common mechanism of injury of the spine by DISH is the Hyperextension,
which occurs when there is a sudden extension of the spine, leading to the compression
of the vertebrae and dislocation of the spinal cord. In Figure 2.9, the image (A) shows an
example of a fracture of a vertebral body caused by DISH, through the hyperextension
mechanism.

Also, beyond involving the vertebral bodies, the endplates can also be involved, which
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Figure 2.9: Fracture in a vertebral body caused by DISH, indicated by the black elipse
[Adapted from [37]].

can lead to the disruption of the interverterbral disk[36], and,then, to irritation of nerves
inside the annulus fibrosus, causing pain.

Moreover, DISH can lead to fractures in the cervical spine and cause, for example,
odontoid fractures, which occur at C2 vertebra. Also, DISH can cause fractures or
dislocations in the facet joints, leading to the disruption of the articulation between
adjacent vertebrae and, consequent, destabilization of the motion of spine in the segment,
where the facet joints are injured.

Beyond fractures on vertebral bodies, spinal deformations, such as scoliosis, can occur
due to DISH. The pressure caused by the ossifications on the spine can be so huge that
the normal architecture of the spine ca be altered, resulting in abnormal spine curvatures.

One commonly used metric to assess scoliosis is the Cobb angle. To calculate this
angle, one need to define the two end vertebrae of the curve deformity. These are usually
the ones with the endplates most tilted towards each other, as shown in Figure 2.10. Then,
it is necessary to draw two tangents along the endplates, in a lateral spine radiograph.
After this, it is also necessary to draw two lines perpendicular to the tangents ones, so that
they intersect. Then, the angle at the point of intersection is calculated [38].

Several studies proved the impact of DISH on spine curvatures. For example, Yamada
et al. [40] concluded that DISH patients had significantly more thoracic kyphosis, which
is a condition where the curvature of the thoracic region is abnormal (bigger than 50
degrees), than non-DISH patients. The same study concluded as well that the patients
with pathology had an increased lumbar lordosis, which is an excessive inward curvature
at lumbar level, when compared with patients without DISH. In another work, Lorenzo
Nardo et al. [34] found that high values of Cobb angles have been associated with DISH
disease in older people only when the thoracic region is the pathological one. These
findings can be useful to identify the extent of the disease and it’s progression.
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Figure 2.10: Schematic representation of how to calculate the Cobb angle [39].

2.6 Literature review

This chapter provides a literature review on the DISH assessment methods and automatic
segmentation and diagnosing tools that have been proposed to segment pathological
spine images spine, specially AS.

2.6.1 DISH assessment methods

As said in chapter 1, the normal diagnoses process of DISH passes through visualizing a
X-ray image by experts in the area and then using the Resnick Criterion. However, this
criterion is only suitable in later stages and it does not provide insight into the evolution
of the disease. Thus, some other criteria have been developed to surpass these problems.
For example, one of the approaches have been the grading of the extent of ossifications
in the spine caused by DISH. To do so, in 1998, Mata et al. [41] created a score, usually
known as Mata Score, to reveal insight into the degree of progression of this disease. In
their work, the authors used both categorical and continuous measures to that purpose.
The categorical evaluation was associated with the presence or not of ossifications and
the extent of bridging of the disk space. Regarding the continuous measure, this was
accomplished by a ruler, which was used to measure the ossifications size in the upper and
lower endplates. This score ranges from 0 to 3, according to the following: 0 corresponds to
lack of ossification in the ligaments and 1 correspond to ossifications without any bridging.
2 corresponds to ossification with incomplete bridging, and 3 corresponds to a complete
bridging of the interverterbral space. Some [42] used the Mata Score to diagnose patients
with DISH based on lumbar-spine X-ray images and the results showed that there is a
huge probability that this method is capable of diagnosing DISH.

In another work, Kuperus et al [43] set out to find a criteria, based on a score system,
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to evaluate Spinal CT images from patients and segregate them in three groups: no DISH,
Early DISH and definite DISH. The method used in this work was a score system, which
assessed the progression of bone formation in each segment of the spine. The score ranged
from from 0 to 3, according to the presence of osteophytes, their length and the distance
between the ossifications in adjacent vertebrae. After that, they found the best criteria
combination to identify No DISH, Early DISH and DISH patients. The validity of this
criteria was then assessed and the results showed that this criteria were acceptable to
good.

2.6.2 Automatic segmentation and diagnosing tools

Although DISH has not been yet subject to a automatic diagnosing tool, some studies have
developed automatic tools to evaluate AS a very similar disease to DISH. For example,
Tan et al. [44] proposed a computer aided evaluation tool for AS in CT images. In this work,
the authors resorted to a 3-D multiscale cascade of successive level sets, which follow
the geodesic active contour formulation, to provide the segmentation of vertebral bodies
and the syndesmosphytes, which are abnormal bone structures present in vertebrae. It
aimed to measure the volume of this structures in order to assess the pathology. These
results were then compared to a semi-quantitative evaluation made by a medical expert
who visually inspected the CT scans.The results showed more than 90.00% of correlation
between the specialist assessment and the algorithm.

In another work, Koo et al. [45] proposed an assessment tool based on deep learning
algorithm to grade the structural damage from 0-3, as as result of AS, in radiographs.
The results revealed a good performance, with an accuracy near 90.00% in all grades,
demonstrating that it is possible to assess this structural changes in radiographs, where it
is very hard to visualize using the visual observation method.

The present work aims to contribute to the diagnosing tool of DISH by using an
algorithm of the family of active contours to achieve it.

Some studies have been proposed in this area. For instance, Sardjono et al. [46]
proposed an algorithm based on interactive active contours to provided the segmentation
of radiographs from scoliotic patients. Initially, the user had to put the initial contour
close to the objects shape, which evolves until finds a homogeneous shape and the edges
of the object. After this process, the resultant segmentation is converted into a binary
image, which is used for segmentation evaluation. This is done by using two metrics:
Misclassification Error and Relative Foreground Area Error. The first metric refers to the
fraction of pixels which are misclassified relative to a ground truth segmentation and
values close to 0 mean a good segmentation performance [47]. The second metric used
is related with the amount of overlap between the area of the proposed segmentation
and the ground truth and values close to 0 mean there is a perfect match between both
areas[47].

The performance of this algorithm was compared with another segmentation called
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interactive region splitting, which aims to split an image or region of image in subregions
with similar features. The results showed that the use of active contours resulted in more
effective segmentation, demonstrated by the 12.98% for Misclassification Error and 26.75%
for Relative Foreground Area Error. The other segmentation method had 21.17% and
89.27%, respectively.

Juying Huang et al. [48] proposed an algorithm based on a improved Level-Set method
for segmentation of pathological vertebrae in CT images. In this work, level-set methods
were combined with active contours. The main feature of this algorithm is the lesser
sensitivity to the initial contour, which is a common problem when using active contours.
The results were very promising for the 56 patient datasets, indicated by 94.00% of
Dice Coefficient. It is noteworthy that it was able to segment images with intensity
inhomogeneity and blurry boundaries, which is another common problem in the active
contour approach.

2.6.3 Previous works

The proposed work follows two previous works: Lopes[21] and Viegas [18]. Lopes [21], in
his work, proposed an semi-automatic algorithm, based on empirical methods, to provide
the segmentation of non-pathological vertebrae, with the goal of being applied to DISH
radiographs. The algorithm needed a previous knowledge of the anatomy and appearance
of the vertebrae on radiographs, in order to provide the segmentation. The results of
segmentation were good and, when compared with manual segmentation of experts,
revealed that the performance of the algorithm was equal or superior to the performance
of the experts. Despite this results, the algorithm proposed had limitations.

Thus, Viegas [18] proposed vertebrae models of non-pathological radiographs based
on manual segmentation of experts in 21 extra-long coronal radiographs. The algorithm
required the user to indicate the intervertebral disc location between L4/L5. Hence, the
proposed algorithm was semi-automatic. The results were good, which is proven by the
following segmentation metrics: Dice coefficient of 89.57 ± 3.91%, and Hausdorff distance
of 4.01 ± 1.52 mm. Despite the results, the work has some limitations, for example, the
algorithm leads to a soft segmentation of vertebrae and, therefore, it does not capture
their specific morphology. This is quite important in pathological vertebrae (i.e, DISH
vertebrae) because their morphology may be altered and to assess the impact of the disease
in these structures, it is necessary to obtain a specific segmentation of them.

2.6.4 Conclusion

Despite the Resnick Criterion is the current standard method to diagnose DISH, other
studies tried to make use of score systems to evaluate DISH and its progression, based on
the size of ossifications, with good results.

Other authors tried to make automatic diagnosing tools of AS, by using algorithm from
the active contour family, and combining them with deep learning, with good performance
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results.
Despite this good progress in trying to assess the severity and progress of DISH as

well of similar diseases, an automatic diagnosing tool has not been created yet for this
disease.

The work project, in which this work fits, have been trying to find a way to provide
automatic diagnosing tool of DISH. Firstly, with Lopes [21], where a semi-automatic
algorithm for the segmentation of non-pathological was created and the results obtained
were good, although with vertebrae segmentation limitations. Then, with Viegas [18],
who created generic vertebrae models to provide the segmentation of vertebrae, obtained
good results. However, with the limitation of providing a smooth contour of the vertebrae,
instead of capturing their specific morphology.

Thus, further work is needed to improve the segmentation of these previous works, in
order to obtain a specific segmentation of vertebrae, specially in pathological cases.
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Image processing

3.1 Image processing

In order to achieve the goal of this thesis, some image processing concepts need to be
clarified. In this chapter, concepts related with image contrast enhancement, type of noise
present in radiographs and examples of method to reduce them are described. Also, other
concepts, such as morphological operations, affine transformations and segmentation
methods, are also mentioned here, for a better understanding of the present work.

3.1.1 Noise present in X-ray images

Medical images, such as radiographs, in their raw state, are often corrupted by noise and
many artifacts. The result is the poor quality of images which can lead to misinterpretations
in clinical context [49]. Therefore, there are many image processing techniques able to
reduce or eliminate the impact of these undesirable elements in images.

In X-ray images, two commonly types of noise are Poisson Noise and Gaussian Noise.
The first is usually present due to the stochastic nature of the photons collection at the
receptor. These follow Poisson processes, which means that the probability of arrival of
a photon to the x-ray detector is not affected (independent) by the arrival of another and
the average rate of arrival of a photon at the detector is constant. Therefore, follow the
Poisson distribution, represented mathematically in equation 3.1. This equations refer to
the probability of k (𝑘 = 1, 2, 3, ...,∞) number of arriving photons to the x-ray detectors,
𝑃(𝑘,�). This probability is dependent on a constant average rate �, which is the average
number of photons arriving to the x-ray detector in a fixed time interval and is constant
in Poisson processes.

𝑃(𝑘,�) = 𝑒−��𝐾

𝑘! (3.1)

This is a signal dependent noise, thus, it could be attenuated by increasing the dose
value, when obtaining the X-ray images. However, this is not recommended, due to health
issues. Hence, the use of image denoisin methods is the best approach. One possible filter
to remove this kind of noise is the Median filter[50]. This is a non-linear filter, which runs

21



CHAPTER 3. IMAGE PROCESSING

through each pixel of the image and replaces its value by the median of the neighbouring
pixels. It allows removing outliers (i.e, noise), without losing the quality of images and,
specially, near the edges of objects[51].

The second type of noise is Gaussian noise, which follows a Gaussian distribution,
whose mathematically representations is in equation 3.2. This equation refers to the
probability density function of a Gaussian distribution 𝑓𝑔(𝑥) with mean value a and a
standard deviation of 𝜎. This noise is additive, which can be formulated as follows:
𝑣(𝑥, 𝑦) = 𝐼(𝑥, 𝑦)+�(𝑥, 𝑦), where 𝑥, 𝑦 ∈ 𝐼, I(x,y) is the original image, �(𝑥, 𝑦) is the gaussian
noise and v(x,y) is the final image corrupted with Gaussian noise. This noise is the result
of contributions from a large number of independent signals (large number of photons),
as a consequence of application of the Central Limit Theorem. One way to remove this
type of noise is by applying a Gaussian filter. This is a linear and low-pass filter and it
works by running through the image, pixel by pixel, and replacing the value of that pixel
by the value obtained by a Gaussian-weighted averaging of the pixel’s neighborhood. The
image pixels are smoothed and, therefore, it allows reducing noise[51].

𝑓𝑔(𝑥) =
1√

2𝜋𝜎2
𝑒

−(𝑥−𝑎)2
2𝜎2 (3.2)

3.1.2 Histogram equalization

Histogram equalization is part of image processing techniques aiming to improve the
contrast of images. An histogram consists a representation of the frequency of each
gray-value pixel in a image. Histogram equalization consists spreading the pixels over
all grayscale values in a image, in order to obtain an histogram in which all pixels have,
approximately, the same frequency. Figure 3.1 demonstrates the histogram equalization
on a X-ray image of the spine. The top image is the image before equalization and the
correspondent histogram. The bottom image is the image after the equalization and the
correspondent histogram after equalization. The histogram of the top image is not equally
distributed over all bins, however, after the application of the histogram equalization, the
result (bottom image) is an histogram, in which the pixels have, approximately, the same
frequency. As a result, the image associated with the equalized histogram reveals an
increase in contrast, specially near the edges of vertebrae.

However, this technique is suitable when a global contrast is needed. Since one of the
most important features in X-ray images of spine and specially in the context of this work
are the edges of vertebrae, the adaptive histogram equalization technique seems to be
useful. This method allows local contrast enhancement by dividing the image in different
blocks and computing histogram equalization in each of them, providing a local contrast.

3.1.3 Inverse Gaussian gradient operator

Inverse Gaussian operator is another concept of image processing that will be use in this
work. This operator allows one to identify the edges of structures in a grayscale Image
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Figure 3.1: Histogram equalization: (Top image)- Before equalization and (Bottom Image)
After equalization.

I and it is usually applied as a pre-processing step for morphological geodesic active
contour, which will be discussed later in this chapter.

This operator depends on two parameters: 𝜎 and 𝛼. The first parameter is used to
compute the magnitude of gaussian gradient and represents the standard deviation of
the Gaussian filter. Figure 3.2 shows an example of this step. The magnitude of gaussian
gradient with 𝜎=5 is computed over the image on the left and the results is shown on the
right. In the image on the left, the black regions refer to uniform areas of the right image
and the white regions represent the edges of objects of the right image.

Figure 3.2: Application of gaussian gradient with 𝜎=5. (Image on the left): Original image.
(Image on the right): Result.

After this step, the values of the magnitude obtained are inverted to the interval
[0,1], according to the equation 3.3. In this equation, 𝛼 represents the parameter which
controls the steepness of inversion and gaus_magn is the image after the magnitude of
gaussian gradient is computed. The first parameter allows one to control the transitions
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between flat and border areas and larger values enhances this transitions, allowing a better
differentiation of both areas.

1√
1 + 𝛼 ∗ 𝑔𝑎𝑢𝑠_𝑚𝑎𝑔𝑛

(3.3)

The resultant image after application of this inversion of magnitude operator is found
in Figure 3.3. It is possible to see here that uniform areas on the left image (regions in
black) are set to values close to 1 and the edges of the objects (white) are set to values close
to 0. The result of the applications of this operator is the right image.

Figure 3.3: Application of gaussian gradient magnitude inversion with 𝛼=100. (Image on
the left) Before of application. (Image on the left): Result.

3.1.4 Morphological Operations

Morphological operations are part of image processing techniques used to remove imper-
fections that causes distortions in shapes and textures of images. These operations make
use of structuring elements, which are used to interact with the image. These elements
have three characteristics: shape, size and origin, or seed point, which must be chosen
according to the need of processing. The first is related with the arrangement of zeros
and ones in a matrix. The size can be seen as windows in which the operation is done in
images. The origin is the pixel chosen to be processed. The interaction is done in such a
way that the origin pixel must be translated to all possible pixels in the image. Figure 3.4
shows an example of a structure element[52].

The two fundamental morphological operations are Erosion and Dilation and the other
build on these two.

3.1.4.1 Erosion

This morphological operation aims to reduce an object’s size and unwanted or small-scale
details [52] by increasing the pixels with zero value and decreasing the ones with set to
one. It removes elements lower in size than the structure element. This can be useful, for
example, in removing noisy connections between objects[52].

The definition of this morphological operation is: The erosion of a binary image A by
a structuring element S produces a new binary image g, according to equation 3.4.
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Figure 3.4: Example of structuring elements with different sizes and shapes [53].

𝑔 = 𝐴 ⊖ 𝑆 (3.4)

After the transformation, the new image g has ones in all seed points of S, where the
pattern of S match exactly the input image A pattern, and zero where this is not seen.
Figure 3.5 shows a example of erosion and it is possible to see that there are white pixels
from letter D, shown by the red arrows in the right image, that were eroded and removed
from original image (left image).

Figure 3.5: Example of erosion [53]. (Left Image) Original Image and (Right Image) after
erosion [52]. The red arrows show the pixels removed by Erosion.

It is noteworthy that the larger the size of the structuring element, the larger the effect
of erosion.

3.1.4.2 Dilation

In contrast to Erosion, Dilation increases objects in size and also fills holes in continuous
objects, by increasing the number of pixels with value one and decreasing the ones with
zero[52].
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The definition of this morphological operation is: Dilation of a binary image A by a
structuring element S produces a new binary image g, according to equation 3.5:

𝑔 = 𝐴 ⊕ 𝑆 (3.5)

After the transformation, the new image g has ones in all seed points of S where A
image pattern and structure element S pattern has 1 matched pixel and zero where there
is none. This transform adds more pixels to the boundaries of regions, as it possible to see
in Figure 3.6 in the grey pixels. In this case, the original image, on the left, was subject to
Dilation, and there was a increase in size of the object (D letter). Example of pixels added
to this object are represented by the red arrows, on the right image.

Figure 3.6: Example of dilation.(Left Image) Original Image and (Right Image) after
dilation [52]. The red arrows show the pixels added by Dilation.

Many combinations of these two operations can be made. Some applications of these
combinations is the removal of noise and extraction of external edges, internal edges and
the pixels on the edges of objects.

3.1.5 Affine transformations

Affine transformations belong to the class of 2D geometric transformation in which the
parallelism of lines are preserved, however, the angles and lengths can change. In these
transformations, intensity values of pixels located in (x,y) position in images are mapped
to other coordinates in the output image by applying linear operations, such as translation,
rotation, scaling and/or shearing [54]. The four linear operations are represented in
Figure 3.7. These type of affine transformations have been applied to biomedical images
processing, specially in spinal diseases. In [55], for example, affine transformations were
used to registrate the vertebrae models the authors constructed to the spine of a patient, in
order to provide the segmentation of vertebrae and estimating their position and rotation
in spine.
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Figure 3.7: Examples of linear operations applied in affine transformations [54].

3.1.6 Segmentation methods

Segmentation of medical images is of utmost importance nowadays. The vast amount of
medical image data which is produced nowadays make necessary the use of computer-
aided-diagnosis tools to help clinicians and radiological experts to separate a certain region
of interest from the rest in order to evaluate it in a more precise way. This segmentation
process is accomplished by dividing an image into a set of pixels, characterized by an
intrinsic feature or features such as the color, grayscale value, brightness, contrast [56].
The result of this segmentation is easier to analyse and provides more insight regarding,
for example, a disease.

3.1.6.1 Local Segmentation

One category for segmentation methods is local segmentation. This is accomplished by
operating on a small amount of pixels, and is used to target image processing techniques,
such as denoising, pixel classification and edge detection, to regions of the image that
present rather similar characteristics [56]. This type of segmentation is useful when a very
small object, for example, a small tumor, is being overshadowed by the background[57].

3.1.6.2 Global segmentation

This type of segmentation is concerned about providing the segmentation of the whole
image and dividing it according to some characteristics, for instance, the color or the
brightness. In this category, there are three subcategories such as: Region-based approach,
Boundary approach and Edge detection [56]. For the scope of this work, it will be only
focused the Edge detection approach.

3.1.6.3 Active contours

Active contours, or snake models, are part of segmentation methods that exploit defor-
mation models, which make use of image forces (i.e, the gradient in images’s intensities)
and external constraints (i.e, balloon forces, used to push the contour to the boundaries)
to isolate pixels of interest for posterior analysis. There are two types of active contours
models: Edge-based and Region-based models. Essentially, in the former, the initial
curve evolution is determined by edge indicators, for example, gradients in the image’s
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intensities, and it should provide the contour of high gradient magnitude boundaries.
In the latter, the initial curve evolves due to regional information, for example, intensity
statistical information inside and outside of the contour and it should stop at regions
where there is balance between inside and outside regional informations. Examples of
active contours are the snake model, the snake model with balloon forces as external
constraint and snake model with gradient vector flow as external constraint, which are
parametric active contour models. As non-parametric active contour models, there are the
geometric or geodesic active contour [58]. An example of application of active contours
in medical images is represented in Figure 3.8. Here, it was proposed to segment the
ventricles (represented in black at the center of a Brain CT, on the left image), which are
hypointense regarding the surroundings. After applying the active contour algorithm,
the result is found on the right image, in green.

Figure 3.8: Example of application of active contours in the segmentation of ventricles
in a Brain CT. (Left image): Original image. (Right image): Original image with the
segmentation result in green [58].

Snake Model
A snake is a parametric spline curve C defined as 𝐶(𝑠, 𝑡) = (𝑥(𝑠, 𝑡), 𝑦(𝑠, 𝑡)), where x

and y are the coordinates of the two-dimensional curve, s is a linear parameter, s ∈ [0, 1]
and t is the time parameter 𝑡 ∈ [0,∞].

The curve movement and evolution in the searching for the boundaries of an certain
object, for example, is influenced by it’s energy. This energy, also called 𝐸𝑠𝑛𝑎𝑘𝑒(𝑐𝑜𝑛𝑡𝑜𝑢𝑟),
is composed of two energies, as seen in equation 3.8: The first term corresponds to the
internal energy(𝐸𝑖𝑛𝑡𝑒𝑟𝑛𝑎𝑙) and the second term to the image energy(𝐸𝑖𝑚𝑎𝑔𝑒). As seen in
equation 3.6, the first terms depends on two parameters: 𝛼, which controls how far the
snake can be extended and it’s elasticity, and 𝛽, which controls the smoothness of the
snake. This energy is minimum when the snake has a relevant shape to be regarded as
the real shape of the object. Also, in this equation, 𝐶′(𝑠) refers to the first derivative of the
curve C and 𝐶′′(𝑠) to the second derivative of the curve C.

On the other side, the second energy, whose mathematical representation is in equation
3.7, represents an image force, which leads the snakes to the edges of the image. Thus,
its minimum is achieved at the object boundary position. This energy depends on two
parameters: 𝑤𝑙𝑖𝑛𝑒 and 𝑤𝑒𝑑𝑔𝑒 . The first is called the line efficient and controls the attraction
to brightness. Negative values of this parameter will push the snake away from bright
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regions. The second is called the edge efficient and it controls the attraction to the edges.
Negative values of this parameter will push the snake away from the edges[58].

The snake C(s,t) gradually moves in a image in order to minimize the energy functional
represented in equation 3.8. Also, this snake evolves according to a predefined number
of iterations, which is set by the user. Beyond that, at each iteration, the snake moves
according to a predefined time step. This parameterwill influence the speedof convergence.
At the end of each iteration, the curve is subject to a smooth step, where the shape of
curve is revised. This is illustrated in Figure 3.9, which shows a representation of the
snake evolution process during the search for an object boundary. At the beginning of
the evolution process, the energy of the curve Γ0 (green) is at its maximum as well as the
velocity −→𝑣 of evolution, because the image forces here are maximum. As it evolves, the
curve changes the morphology (dark blue and light blue curves) and moves gradually in
order to minimize it’s energy. As it gets closer to the edges (lower image forces) of the
object, the velocity of curve motion decreases, until it finally hits the final curve (red).

Figure 3.9: Representation of active contour segmentation. The initial contour Γ0 (green)
deforms as it evolves (dark blue and light blue curves) to adapt to the edges of the object
(red curve) [59].

𝐸𝑖𝑛𝑡𝑒𝑟𝑛𝑎𝑙 =

∫ 1

0
1/2(𝛼 |(𝐶′(𝑠))|2 + 𝛽 |(𝐶′′(𝑠))|2 𝑑𝑠 (3.6)

𝐸𝑖𝑚𝑎𝑔𝑒 = 𝑤1 |∇𝐼(𝐶(𝑠)| + 𝑤2 |∇𝐼(𝐶(𝑠))|2 (3.7)

𝐸𝑠𝑛𝑎𝑘𝑒(𝑐𝑜𝑛𝑡𝑜𝑢𝑟) =

∫ 1

0
1/2(𝛼 |(𝐶′(𝑠))|2 + 𝛽 |(𝐶′′(𝑠))|2 𝑑𝑠 + 𝑤1 |∇𝐼(𝐶(𝑠))| + 𝑤2 |∇𝐼(𝐶(𝑠))|2 (3.8)

Despite this two energies being the only usually applied in these models, other external
forces can be imposed by the user, such as inflation forces (balloon model), which will be
discussed later in this chapter.
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According to [60], there are three key limitations in these models. One is the fact that
that the curve must be initialized near the desired boundary, otherwise the curve can get
trapped in false or weak minima. The other is that it cannot handle concave boundaries
and variations in topology, due to the fact the snake is parameterized . Moreover, this
approach is characterized by having numerical instabilities [61][62]. This can be related
with the fact that the introduction of discrete time step can lead the snake to oscillate
between the minima or even get trapped in different local minima.

Balloon Model
The Balloon model was designed to overcome some weaknesses of the snake model.

Those limitations are related with the initial position of the snake. For example, if the
snake is smaller than the real contour, the snake will not be able to find the right contour
and will collapse totally. To demonstrate this, one can imagine a black rectangle in a white
background. If the snake is put inside the black rectangle, despite the good edge detection,
the snake will shrink, until is completely gone[58]. Also, in the snake model approach, if
the initial curve is set far from the edges, the curve will not be attracted by those edges.

To surpass these problems, in this model, as shown in equation 3.9, new forces acting on
the snake are introduced, where 𝑘1 stands for the magnitude of the force. This parameter
can be either positive or negative: if positive, it will inflate, if negative, it will deflate. Thus,
in the case of the black rectangle mentioned before, the sign of 𝑘1 could be set positive
and the curve would inflate until reaching the edges of the rectangle[63].

𝐹𝑖𝑛 𝑓 𝑙𝑎𝑡𝑖𝑜𝑛 = 𝑘1
−→𝑛 (𝑠) (3.9)

Here, 𝑘1 represents the magnitude of the curve and −→𝑛 represents the normal unity
vector of the curve.

One advantage of this model is that it stops the curve from staying trapped in false
weak edges (i.e, noise isolated points) and goes on with the evolving process until it finds
the real strong edges. This advantage leads to another, which is the widening of the
spectrum of the initial guess position possibilities[63][58]. This allows the curve to be
initialized far from the objects boundaries, on contrary to the traditional snake models.

An example of the improvement this model brought to the traditional snake model
approach is found in Figure 3.1.6.3. Here, it was proposed the segmentation of a oval
shape within a image corrupted with noise. The initial contour used is found in the top
image (red). The results for the Snake model is found in the left image of the bottom
(red). The result for the Balloon model is found in the right image of the bottom (red). As
possible to see, with the Balloon model, the initial contour had a better adjustment to the
edges of the shape. On the contrary, with snake model, due to the noise, some points of
the initial contour stopped at those noise points, during the evolution of the curve.

Despite these advantages, the value for this 𝑘1 cannot be either too small or too big,
because must be in balance with the the regularization forces (i.e, smoothness energy)
and the edge forces (i.e, image energy). Essentially, the inflation force must be enough, so
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Figure 3.10: Improvement on segmentation of an oval curve in a noisy image that the
Balloon model brought to the original snake model approach. (Top image): Initial contour
(red curve) used for segmentation. (Bottom Left image): Segmentation result (red curve)
by traditional active contour algorithm. (Bottom right image): Segmentation result (red
curve) by using traditional active contour algorithm with Balloon forces [64].

that the image force is able to adjust with it, in order to find the right edges. For example,
the case of the Figure 3.11. In this case, the initial contour (red rectangle) is supposed to
evolve until it reaches the edges of the shape. In both cases, the value of 𝑘1 was not set
properly. On the left image, the value is not big enough to let the curve fit the entire shape,
however, it is too big to, in certain regions of the curve, let the curve leak beyond the edges
of the object (see white arrows). Thus, the initial contour was not able to adjust perfectly
to the right shape. On the other hand, if the inflation term is increased, as in case of the
Right image, the curve may fit the shape of the object in some regions and in other regions
evolve beyond the edges (see white arrows) and finish in weak ones (ie, weak boundaries
or noise points)[65].

Another drawback of this model is the slow processing [58].

Figure 3.11: Example of difficulties in determining the right value for 𝑘1 in the active
contour segmentation with balloon forces [65]

Gradient vector flow
The Gradient Vector Flow (GVF) was designed to overcome some other limitations

of the snake models, namely, the poor performance on concave boundaries and low
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performance on the segmentation of objects far from the position of the initial contour
[58].

In this approach, it is necessary to compute the gradient vector flow field. To do so,
firstly, it is computed the edge mapping function f(x,y) from Image I(x,y) 𝐼 : 𝑅2 → 𝑅. This
accomplished by convolving a 2D gaussian function G(x,y) with I(x,y) and calculate the
magnitude of the gradient, as seen in equation 3.10

𝑓 (𝑥, 𝑦) = −∇|[𝐺(𝑥, 𝑦) ∗ 𝐼(𝑥, 𝑦)]| (3.10)

Then, the gradient vector flow is determined as the vector �(𝑥, 𝑦) = (𝑢(𝑥, 𝑦), 𝑣(𝑥, 𝑦)),
which minimizes the energy functional 𝜖, represented in equation 3.11. This equation has
two terms: The first, on the left, is a smoothing term. The second term, on the right, is
related with the image gradient. The first term is dependent on a parameter �, whose
value is dependent on the noise level, for example, if noise is high, this parameters must
be high as well[58].

𝜖 =

∫ ∫
�(𝑢2

𝑥 + 𝑢2
𝑦 + 𝑣2

𝑥 + 𝑣2
𝑦) + |∇ 𝑓 |2 |𝑣 − ∇ 𝑓 |2𝑑𝑥𝑑𝑦 (3.11)

where 𝜖 represent the energy functional to be minimized, u and v represent the
coordinates of the function � and f is the edge mapping function. The parameter �

controls the effect of noise level in the segmentation process.
After computing the vector �(𝑥, 𝑦), the image term in equation 3.8 is replaced by this

vector. As a results, the the equation for a gradient vector flow snake, seen in equation
3.12, is obtained.

𝐸𝑠𝑛𝑎𝑘𝑒(𝑐𝑜𝑛𝑡𝑜𝑢𝑟) =

∫ 1

0
1/2(𝛼 |(𝐶′(𝑠))|2 + 𝛽 |(𝐶′′(𝑠))|2 𝑑𝑠 + 𝑣 (3.12)

Figure 3.12 shows an example of the improvement GVF modes brought to the original
snake model. In this figure, it is proposed the segmentation of a scissors, characterized
by it’s concave boundaries, with the initial contour seen in the leftmost image(blue). The
snake model result, seen in the middle image, was not able to provide the segmentation
because of the concave boundaries of the object. However, as seen in the right image, the
application of GVF led to the segmentation of the whole object[64].

Figure 3.13 shows another example of using GVF as segmentation algorithm for the
Left ventricle of human heart in a MRI image. Here, the whole process of obtaining this
segmentation is shown: from the edge mapping function computing to the final result. In
this figure, (a) shows the left ventricle in a MRI image of the heart (short axis). (b) shows
the edge mapping function f(x,y) of the image with 𝜎=2.5. (c) shows the the gradient
vector flow of the image. The segmentation result in a white curve is shown in (d).
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Figure 3.12: Representation of improvement of segmentation on concave boundaries that
the GVF models brought to the traditional snake model approach. (a) Initial contour(blue).
(b) Traditional active contour segmentation. (c) Traditional active contour segmentation
with GVF as external force [64].

Figure 3.13: Whole process of application of GVF as external force for active contour
segmentation of a medical image. (a) MRI of the left ventricle of a human heart(a). (b)-
the edge mapping function f(x,y), with 𝜎=2.5. (c)- GVF of image. (d)- Left ventricle
segmentation shown as a white curve [60].

3.1.6.4 Geodesic active contour models

To surpass other drawbacks of traditional active contours models, for example, the fact
that the original snake model cannot handle topology changes during the curve evolution,
Caselles et al. [61] proposed a new active contour model approach: geodesic active
contours models.

The idea behind this approach is to find contours of objects, in a image 𝐼 : 𝑅2 → 𝑅,
relying on the geometrical evolution equation of a geodesic active contour C(t). This
curve, instead of being parameterized, is initially represented as a zero level-set, which
is a surface in a three dimensional space, of a function of higher dimension Φ(𝑥, 𝑦, 𝑡).
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Equation 3.13 shows the mathematical formulation of the zero level-set. This function
embeds the contours of the objects to be found, which are found not directly, but implicitly,
because these models work with whole regions, instead of edges, like the traditional snake
model.

𝐶(𝑡) =
{
𝑥, 𝑦 |𝜙(𝑥, 𝑦, 𝑡) = 0

}
(3.13)

The evolution of the geodesic active contour can be formulated mathematically accord-
ing to the equation 3.14.

𝜕𝜙

𝜕𝑡
= 𝑔(𝐼)|∇𝜙 |(𝑑𝑖𝑣(∇

∇𝜙
|∇𝜙 | + 𝑣)) + ∇𝑔(𝐼)∇𝜙. (3.14)

where 𝜙 represents the level-set function, g(I) represents the edge indicator function,
I is the image and v is a parameter which controls the balloon force.

This equation is composed of two parcels: The first on the left is associated to the
internal energy and the second on the right is associated with the external energy. The
former has two components: one related with the smoothing operator, which smooths the
curve in high curvature segments, and the second related with balloon force. This balloon
force is responsible for inflating or deflating the curve.

The latter component is in charge of evolving the curve to the desired boundaries[66].
The effect of all three components are controlled by the g(I) parameter, which is the edge
indicator function.

The edge indicator is normally formulated as seen in equation 3.15:

𝑔(𝐼) = 1
1 + |∇(𝐺𝜎 ∗ 𝐼)|2 (3.15)

where g(I) represents the edge indicator function, I is the image where the objects to
be segmented are, and G𝜎 represents the gaussian function with a certain value of 𝜎. It is
noteworthy that this functions is low where the gradients are high.

The curve deforms during its evolution, through a velocity influence, which is com-
posed of two terms: one related to the regularity of the curve and the other related to
either the shrinkage or expansion of the curve towards the boundaries of objects.

During the evolution, the model has the capability of automatic changes in topol-
ogy[67], for example, splitting and merging, making it possible to detect more than one
object during the curve evolution, even when there is no previous information regarding
their number.

Figure 3.14 illustrates the evolution of the initial level-set (top Image in red) in order to
segment two objects (bottom image in red). At the beginning (t=0), the initial curve is set
as the zero level-set of the function 𝜙(𝑥, 𝑦, 𝑡) and initial curve does not have a previous
knowledge of the number of objects to be segmented. As it evolves, the curve moves
gradually, according a velocity, which changes over time, dependent on the position
relative to the highest gradient (at it gets closer to the boundaries of the objects, the
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velocity decreases) and the smoothness of the curve (internal energy of the curve, i.e, the
lesser the internal energy, the lesser the velocity). Also, during the evolution, the curve
automatically splits (red curves in the Bottom image), in order to the segment both objects.

Figure 3.14: Example of level-set curve evolution . The black line represents the level-set
function. (Top image) Initial curve C (red dotted curve) at t=0. (Bottom image) Curve at t
[68].

This method has better performance than the other active contours because it allows
the segmentation of various objects and the curve does not stop a local minima, during
the evolution of the curve[69].

On other hand, one drawback associated with level-set solutions by using numerical
operations is that it can result in inaccuracies and sluggishness due to the numerical
approximations.

3.1.6.5 Morphologicalgeodesic Active Contours

Traditional geodesic active contours rely on numerical operations to solve Partial Dif-
ferential Equations (PDE). However, due to the disadvantages named before regarding
numerical approaches, a new approach[70] to this method was created in order tot re-
place numerical operations with morphological operations with the same infinitesimal
behaviour as equation 3.14[66]. According to the authors, the terms in PDEs for contour
evolution algorithm ( balloon force term, attraction force term and smoothing term), seen
in equation 3.14, are replaced by the combination of morphological operators, such as
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dilation and erosion.
Here, the initial level-set curve u : 𝑅2 → 0, 1 corresponds to a binary component

(u(x)=1 inside the contour and u(x)=0 outside the contour). Similar to the geodesic active
contour approach, this level-set comprised the region of interest, where the desired object
or objects to be segmented are denoted.

This initial level-set curve will evolve, according to a predefined number of iterations
n, and a balloon force parameter �, which will determine if the curve inflates or deflates.
In terms of morphological operations, if the curve inflates, it is applied the Dilation,
otherwise, it is applied Erosion. Moreover, as said before, the initial level-set curve
denotes the desired object or objects to be segmented. This can accomplished by applying
the Inverse Gaussian operator of the original image, which was described before in this
chapter, and determines the gradient at each point of the image I: g(I). Another term
which will influence the evolution of the curve is the smoothing operator �. This must as
well be predefined by the user and it will influence the number of time this smoothing
operator will be applied, per iteration, to smooth the curve.

The three terms (the term related with the balloon force, the term related with the
attraction force and the term related with smoothing operator) are also represented
inn equation 3.14, which represents mathematically the evolution of the geodesic active
contour. In the morphological geodesic active contour approach, these three parcels have
discrete versions, which are represented in equations 3.16, 3.17 and 3.18, respectively.

Essentially, the curve 𝑢𝑛+1 is defined by 𝑢𝑛 , which represents one iteration, through
application of three steps and are mathematically represented in equations 3.16, 3.17 and
3.18.

The equation 3.16 refer to the balloon force term. As said before for the geodesic
active contour approach, g(I) is a term which controls the balloon force strength. g(I)
allows the curve to move fast in because the in uninteresting areas (in these low-gradient
areas, g(I) is big). In this equation, the effect of this term can be discretized by using a �

threshold. This parameter controls the velocity of the curve movement at each point 𝑥𝑖 ,
and it helps the curve not to stuck in low gradient areas of the image. If g(I) is high in
an certain point of a curve, that point is updated with the balloon force. If not, the point
is not changed. Moreover, the application of erosion (curve shrinking) or dilation (curve
expansion) depend on the parameter � ∈ [−1, 1]: if � >0, it is applied dilation,if �<0, it is
applied erosion. This parameter is chosen by the user[71].

𝑢𝑛+
1
3 =



𝐷𝑑𝑢
𝑛(𝑥𝑖) if|� |𝑔(𝐼)(𝑥𝑖) > �

𝑎𝑛𝑑 � > 0

𝐸𝑑𝑢
𝑛(𝑥𝑖) if|� |𝑔(𝐼)(𝑥𝑖) > �

𝑎𝑛𝑑 � < 0

𝑢𝑛(𝑥𝑖) 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

(3.16)

where 𝐷𝑑 an 𝐸𝑑 refer to the discrete version of Dilation and Erosion, respectively. g(I)
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is the edge indicator function of Image I, 𝑢𝑛 and 𝑢𝑛+
1
3 represent the level-set curve at

iteration n and 𝑛 + 1
3 , respectively, and 𝑥𝑖 represent a point in the curve u.

On the other hand, the equation 3.17 refers to the attraction force. Here, each point
𝑥𝑖 of the curve u modified (or not) from the last step, is set to 1, 0 or is not modified,
depending on the the gradient of the curve u in that point as wells the value of g(I).

𝑢𝑛+
2
3 =


1 if ∇𝑢𝑛+ 1

3 ∇𝑔(𝐼)(𝑥𝑖) > 0

0 if ∇𝑢𝑛+ 1
3 ∇𝑔(𝐼)(𝑥𝑖) < 0

𝑢𝑛+
1
3 (𝑥𝑖) if ∇𝑢𝑛+ 1

3 ∇𝑔(𝐼)(𝑥𝑖) = 0

(3.17)

where 𝑢𝑛+ 1
3 and 𝑢𝑛+ 2

3 are the snake curve at iteration 𝑛 + 1
3 and 𝑛 + 2

3 , respectively, 𝑥𝑖
represent a point in the curve u and g(I) is the edge indicator function of Image I.

Finally, the equation 3.18 refers to the morphological smoothing operator and is the
last step of an iteration process. Here, each point 𝑥𝑖 of the curve u modified (or not) from
the last step, is subject to the application of the morphological curve operator 𝑆𝐼𝑑 ◦ 𝐼𝑆𝑑,
depending on the g(I) in that point.

𝑢𝑛+1(𝑥𝑖) =

(𝑆𝐼𝑑 ◦ 𝐼𝑆𝑑)�𝑢𝑛+

2
3 if 𝑔(𝐼)(𝑥) > 0

𝑢𝑛+
2
3 (𝑥𝑖) 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

(3.18)

where ,𝑢𝑛+1 𝑢𝑛+
2
3 are the snake curve at iteration n+1 and 𝑛 + 2

3 , respectively and 𝑥𝑖

represent a point in the curve u. 𝑆𝐼𝑑 ◦ 𝐼𝑆𝑑 correspond to a morphological operation, known
as morphological curve operator F. The parameter � refers to the number of time this
smoothing operator is applied by iteration.

This model has some advantages over the methods mentioned before, for example,
this approach is faster, because the operators are fast. Also, it is more stable, because
it use morphological operations instead of numerical[72]. As a result, the curve is not
degraded, resulting in no need for re-initialization, meaning less computation burden[66].
Also, the initial curve is much simpler to define (ones inside the curve and zeros outside
the curve), on contrary to the traditional active contour approach, in which the curve is
parameterized.

Nonetheless, one of the main problems regarding this method is the choice of the initial
level-set initialization, which, in turn, influences the time of computation. If the initial
level-set is initialized far from the object to be segmented, more of time of computation is
needed.

This method has been widely used in medical applications such as in breast tissue
segmentation [73], spinal cord segmentation[74], for instance. One example of application
of this method in breast ultrasound images is found in Figure 3.15. It shows the evolution
of the initial level-set curve (Frame(0)) to the final curve (Frame(80)), where 80 is the
number of iterations. The initial level-set was initialized inside the object to be segmented
(red circle in the left image). To achieve the segmentation , the boundaries of the object
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(breast) had to be denoted, which was possible by the application of the edge indicator.
Furthermore, since the initial contour was set inside the object to be segmented, the balloon
parameter was set positive, in order to inflate the initial contour.

Figure 3.15: Example of application of morphological active contours in breast ultrasound
images. This image represents the evolution of the initial level-set curve (red) (Frame 0)
until the last level-set curve (Frame 80) [66].

3.1.7 Segmentation Evaluation metrics

Medical image segmentation is widely important and critical nowadays. Thus, segmen-
tation of medical images with high precision methods are necessary in order to evaluate
human anatomical structures.

Semi automatic or automatic segmentation methods have been applied in medical
image analysis with the purpose of reducing the drawbacks of manual segmentation, such
as the intra-observer and inter-observer variability errors.

The evaluation of the performance of these segmentation methods is very important
and is usually done by some objective criteria. Among these, there are the Dice Coefficient
(DC)and the Hausdorff Distance (HD) [75].

The first correspond to the amount of spatial overlap between the predicted region
and the ground-truth region[76] and is mathematically represented in equation 3.19.

𝐷𝐶(𝑋,𝑌) = 2 |𝑋 ∩ 𝑌 |
|𝑋 | + |𝑌 | (3.19)

where DC(X,Y) is the Dice Coeffecient between X and Y, which represent the number
of positive pixels/voxels on the ground-truth and predicted result, respetively.

In this metric, the values range from zero percent to one hundred percent. Zero percent
means that both regions are not similar. One hundred percent means that both images
match completely[48].

The second corresponds to maximum distance one has to travel between one point
from one of the two set of points (X and Y, for example) to the closest point in the other
set. The distance is mathematically represented in equation 3.20.

𝐻𝐷(𝑋,𝑌) = 𝑚𝑎𝑥(ℎ𝑑(𝑋,𝑌)), ℎ𝑑(𝑌, 𝑋)) (3.20)
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where HD(X,Y) is the Hausdorff Distance between X and Y, hd(Y,X) is the hausdorff
distance between Y and X and hd(X,Y) is the hausdorff distance between X and Y. These
are also called one-sided hausdorff distances.

The one-side hausdorff Distances are mathematically represented in equations 3.21
and 3.22. ,

ℎ(𝑌, 𝑋) = max
𝑦∈𝑌

min
𝑥∈𝑋

∥𝑦 − 𝑥∥ (3.21)

where h(Y,X) is the maximum distance between the closest points of Y to X and ∥𝑦 − 𝑥 |
is the euclidean distance between y and x.

ℎ(𝑋, 𝑃) = max
𝑥∈𝑋

min
𝑦∈𝑌

∥𝑥 − 𝑦∥ (3.22)

where h(X,Y) is the the maximum distance between the closest points of X to Y and
∥𝑥 − 𝑦 | is the euclidean distance between x and y.

In Figure 3.16, it is possible to see a representation of how to calculate the HD distance
between two set of points X and Y(blue and red curves, respectively). In the image, the
arrows represent the distances represented in equation 3.21 and 3.22, respectively. After
computing these distances, it is necessary to calculates the maximum among these two
and that’s the Hausdorff Distance between these two sets.

Figure 3.16: Representation of calculation of HD between two set of points X(dotted blue
curve) and Y(red curve). The arrows correspond to both one-sided hausdorff distances
[75].

In this metric, the values range from zero to infinite. Zero means that both sets share
the same the borders. High values mean that both sets are distant from one another[48].

For segmentation purposes, it is desirable to have low values of HD and high values
of DC.
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4

Materials and Methods

This chapter presents a description of the materials and methods used in the present work.

4.1 Materials

4.1.1 Computer features information

This work was done on Windows Computer with the following settings: Processor AMD
Ryzen 7 3700U with Radeon Vega Mobile and 16 GB of memory RAM.

4.1.2 X-ray image dataset

In this work, five X-ray images were used, which were found by searching online for X-ray
images from DISH patients. Four of these are pathological and one is non-pathological.
Also, the radiographs are coronal X-ray images with anterior-posterior views of the spine.
Some of them include only thoracic vertebrae while others include both thoracic and
lumbar vertebrae.

This set of images is good for the purpose of the work because, as said before, all
images contain thoracic vertebrae, and, in most of them, these vertebrae pathological. As
reported in chapter 2, the characteristics of DISH in anterior-posterior views of thoracic
spine include ossifications in the right antero-lateral aspects of vertebral bodies, leaving
the other lateral side without any manifestations of the disease. Hence, this type of images
will be useful to understand if there is a difference in intensity values between these two
sides and, ultimately, obtain a metric able to differentiate the pathological vertebrae from
non-pathological, which is one of the objectives of this work.

Despite this advantage, the images have some features which surely will affect the
performance of the segmentation and posterior analysis of the vertebrae. For example,
some radiographs are from patients with deteriorated spines, due to DISH, and because
of it, it is possible to visualize clips and metalic structures that give support to the spine.
Moreover, some of the images have low-resolution.

The dimension of each image can be found in I.1 in Annex I.
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4.1.2.1 Image 1

This image, shown in Figure 4.1, was retrieved from [77], by cropping it. It is a anterior-
posterior X-ray image from a patient with DISH. It shows the thoracic spine (T9-T12) and
lumbar spine (L1-L4). In this image, it is noteworthy the presence of ossifications in the
right side of the following vertebrae: T9-L2.

Figure 4.1: Anterior-posterior view of a patient with DISH. The blue rectangle surrounds
the region of vertebrae where the ossifications originated by DISH are present [Adapted
from [77]].

4.1.2.2 Image 2

This image, shown in Figure 4.2, was retrieved from [36], by cropping it . It is a anterior-
posterior X-ray image from a 51-year-old man with DISH and it shows the thoracic spine
(T7–T11). In this image, it is noteworthy the white arrows, which show penetrating areas
of protruding disk material in flowing ossifications at multiple levels.
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Figure 4.2: Anterior-posterior x-ray of 51-year-old man with DISH showing, with white
arrows, areas of protruding disk material and, with the blue rectangle, the location of the
ossifications [Adapted from [36]].

4.1.2.3 Image 3

This image, shown in Figure 4.3, was retrieved from [78] by cropping it. It is an anterior-
posterior X-ray image from a 48-year-old woman with lower back pain and later diagnosed
with DISH. By this time, there was no ossification or bone bridge formation in the lumbar
section of the anterior longitudinal ligament. It contains vertebrae from thoracic spine
(T11-T12) and lumbar spine (L1-L5).

4.1.2.4 Image 4

This image, shown in Figure 4.4, was also retrieved from [78], by cropping it. It is an
anterior-posterior x-ray image from the same 48-year-old woman, fourteen years later,
now aged 64. During this time, the patient was subject to three surgeries and this image
was taken after the third. Also, the progression of ossifications in the anterior longitudinal
ligament was very fast and the presence of ossifications in it spread to almost its extension:
from the thoracic region to the sacral area. It contains vertebrae from thoracic spine
(T11-T12) and lumbar spine (L1-L5).
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Figure 4.3: Anterior-posterior x-ray image of 48-year-old woman without DISH[78].

4.1.2.5 Image 5

This image, shown in Figure 4.5, was also retrieved from [36], by cropping it, but it is
not from the same person as Images 3 and 4. It is a anterior-posterior X-ray image from
a 52-year-old man with DISH and it shows the thoracic spine (T2-T11). In this image, it
is noticeable more than four contiguous ossified vertebrae (T7-T11) and this finding was
important for DISH diagnoses. The quality of the image is not good, specially the lack
of definition of the boundaries of vertebrae, which make the analysis of vertebrae very
difficult.

4.1.3 Programming language

Images, specially medical images, are rich data sources. According to [79], in order to
obtain the most of these data, it is required sophisticated software tools to deal with them.
Python is one of most sophisticated programming language used in image processing. It
is clear, concise and open-source and possesses a myriad of libraries available to deal with
images and data. The following libraries were used for purpose of this work:
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Figure 4.4: Anterior-posterior x-ray image from 48-year-old woman with DISH showing,
with the blue rectangle, the ossifications of the AAL [78].

Numpy: It is a library used to manipulate arrays and provides efficient storage and
manipulation of dense typed arrays or matrixes, like the images. Moreover, this library
was useful in manipulating the data obtained from the analysis of intensities of vertebrae.

Skimage: This library provides high-quality and easy- to-use image processing algo-
rithms which can be used for professional purposes[79]. By using this library, it was
possible to load images, convert them to grayscale value images and pre-processing them.
Also, this library has plenty of segmentation algorithm which can be applied to images
such as algorithms of the active contour family.

Pandas: It is a widely used library in data science, providing tools to make the data
more organized and obtain information, for example, statistics [80].

Scipy: It is a library used in scientific programming, which can be used to solve
mathematical problems. It can also be applied in the analysis of signals, to characterize
them, for example, find its peaks.

Matplotlib: It is a library used with the purpose of displaying the images as well as
the segmentations proposed by the algorithm.
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Figure 4.5: Anterior-posterior x-ray image from 52-year-old man with DISH showing,
with the blue rectangle, the location of the four contiguous ossified vertebrae (T7-T11)
[Adapted from [36]].

4.2 Methodology

Based on the characteristics of DISH in thoracic vertebrae, it was proposed the development
of a methodology able to segment the vertebrae and capture their specific morphology,
with the ultimate goal of analysing them and find a metric able to differentiate DISH from
NON-DISH vertebrae.

To achieve it, two different methodologies were used: one for the segmentation
of vertebrae and another for their analysis. The methodology for the segmentation of
vertebrae is described first and three main steps are required to achieve the final result:
Loading and conversion of the image into an grayscale value image array. Then, the pre-
processing step, to remove noise of radiographs, enhance important vertebrae features,
such as the edges. Finally, the processing step, in which the segmentation algorithm is
applied.

The methodology applied for the analysis of each vertebra is described at the end of
this chapter and three main steps are also required. After the segmentation, each vertebra
is divided in nine squares in order to be possible the analysis of the corners, where the
disease occurs. Then, the corners are analysed based on their intensities values. Lastly,
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based on these values, it is calculated two metrics to verify if can be used to differentiate
pathological from non-pathological vertebrae.

4.2.1 Methodology for segmentation

4.2.1.1 Load and conversion of the image

The images used in this work were loaded into an array using the skimage library. After
this, the images were transformed to grayscale values. This is achieved by using the
skimage library function rgb2gray.

4.2.1.2 Image pre-processing

X-ray images were subject to a pre-processing phase. Firstly, the noise were removed. Then,
it was necessary a contrast enhancement phase, in order to highlight the edges of vertebrae.
Finally, the last step of this phase was the application of the Inverse Gaussian Operator,
which is critical for the application of the morphological active contour segmentation
algorithm.

4.2.1.3 X-ray image denoise

The images were subject to a noise removal step. Here, it was used the function created
by [18] for X-ray images horizontal noise removal, which removes noise acquired during
he acquisition process of radiographs.

This function starts by an initial contrast enhancement phase, by applying the skimage
histogram equalization function equalize_ adapthist, with three arguments: image, kernel
_size, nbins, where image is the image to be processed, the kernel size is the kernel used to
enhance the edges and the nbins correspond to the number of bins used for the histogram.
The parameters chosen were according to the characteristics of the image dataset used
in this work: the original images were decoded in 8 bits and 256 was suitable for being
the number of bins. For the kernel size, it was chosen 113. In order to get a good contrast,
and taking into account the characteristics of the dataset images near boundaries, it
was not reasonable to use small sized kernels, because this would enhance small and
non-important features of the image, so 113 was chosen.

After this, the function computes the mean of the image, along the horizontal axis,
and applies a moving average filter. Then, subtracts the mean with the result of this filter,
obtaining a vector containing the peaks of the horizontal noise. These are then found by
the application of skimage function 𝑓 𝑖𝑛𝑑_𝑝𝑒𝑎𝑘𝑠, which return the vertical coordinates of
the noise points.

At the end, it is applied a uniform filter or mean filter. This filter replaces the value
of a pixel by the mean of the neighbouring pixel, from the scipy library, which is used
to remove the horizontal noise, essential to remove it from the vertebrae, specially at
the edges, which will be very important in this work. Then, by using the information
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of the coordinates of the peaks, the horizontal noise intensity in the original image is
replaced by the correspondent values in the image resultant from the application of the
uniform filter. The result of the application of this function for Image 1 is seen in Figure
4.6. As it is possible to see, the contrast of the original image (on the right) increased (on
the right), specially at the edges of the vertebrae, Also, grey-color rectangles are shown,
which represent the horizontal noise removed from the image on the left (blue arrows and
rectangle).

Figure 4.6: Example of application of image noise removal function:(Left image)Before
removal and (Right image) After removal.

4.2.1.4 Vertebrae edges enhancement

After the removing the noise, there was another contrast enhancement phase because this
work is widely dependent on the edges of vertebrae, and the DISH vertebrae boundaries
can be very ambiguous near the boundaries. To accomplish this, it was used the same
function equalize_ adapthist, with the same values for parameters: kernel _size, nbins. Figure
4.7 shows the application of this step on the image on the left, resulting in the image on the
right. The edges of vertebrae were, once again, the main feature to be enhanced, resulting
in more contrast at those regions. This was important for the next pre-processing step,
which aims at constructing an image to be applied to the morphological geodesic active
contour.
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Figure 4.7: Example of application of image contrast enhancement: (Left image) Before
enhancement and (Right image) After enhancement.

4.2.1.5 Application of the Inverse Gaussian operator

After this two steps, it was necessary to construct an image able to be applied to the mor-
phological active contours algorithm. The efficiency of this algorithm is highly dependent
on this image. Then, to construct this image, the function inverse_gaussian_gradient from
skimage.segmentation library was used in order to highlight the edges of vertebrae. The
theoretical background of this function can be found in chapter 3.

This function requires three arguments, according to the following example:

skimage.segmentation.inverse_gaussian_gradient(image, alpha, sigma)

where image is the image after the contrast enhancement phase, the 𝛼 parameter
controls the steepness of inversion and 𝜎 is the standard deviation of the Gaussian filter.

In the present work, the following parameters were used:

inverse_gaussian_gradient(image after contrast enhancement,80,3)

The 𝛼 parameter was set 80. As said before, this parameter controls the steepness of the
inversion of gaussian gradient. When choosing this parameter, there is a trade-off between
low-values, which would cause the regions ear the edges of vertebrae not to be strong
enough to be found by the algorithm, and high values, which would cause the inversion
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to be sensitive to every point in the image with high gradient (i.e, noise or local minima).
The 𝜎 was set 3 because the goal was to highlight the edges of the vertebrae and bigger
values would smooth the edges in such a way that the segmentation algorithm would not
be possible to find the right edges. Also, with smaller values, although it would enhance
the edges of vertebrae, they would not be strong enough concerning the environment,
and the algorithm would possibly stop at local minima at the surroundings. The image
before application of the Inverse Gaussian operator (left image) and the image after the
application (right image) are shown in Figure 4.8.

Figure 4.8: Example of application of inverse gaussian gradient: Before application (Left
image) and After application (Right image). The right image also shows, with blue circles,
the element that will be removed in the next step of pre-processing.

As it is possible to see in the right image, the edges of vertebrae are represented as
dark pixels, which will be used as image forces for the morphological active contour to
push the curve to this edges.

However, this image has many unnecessary elements (surrounded by the blue circles),
specially near the edges of the vertebrae. These could interfere with the evolution of initial
level-set curve, making it stop at those structures. Thus, these elements were eliminated.
To do so, it was computed it’s histogram and it was found the bin with the most pixels
(threshold), by visual inspection. This bin is marked in red in the histogram found in
Figure 4.9 and is, approximately, 0.65. Then, each bin value bigger or equal than this
was assigned to 1. The result is shown in Figure 4.10. The use of smaller values would
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probably eliminate important features of the image (i.e, edges of the vertebrae, which are
represented by darker pixels in the image), thus, it was chosen a bin value capable of
removing these unnecessary pixels, with minimum interference with the vertebrae edges.

Figure 4.9: Histogram of the image after the inverse gaussian gradient was computed
showing, with a red line, the bin with most pixels.

Figure 4.10: Removal of unnecessary pixels. (Left Image): Before. (Right image) After.

The final image was then considered input for the morphological geodesic active
contours for segmentation, which uses this image as image force to lead the initial level-set
curve to the desired object, in this case a vertebra.
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4.2.1.6 Morphological Geodesic Active contours

In order to provide the segmentation for the vertebrae, it was used the morphological
geodesic active contours algorithm. The skimage library from Python has a function
which enables one to implement this segmentation algorithm. The function with its most
important arguments is represented as follows:

𝑚𝑜𝑟𝑝ℎ𝑜𝑙𝑜𝑔𝑖𝑐𝑎𝑙_𝑔𝑒𝑜𝑑𝑒𝑠𝑖𝑐_𝑎𝑐𝑡𝑖𝑣𝑒_𝑐𝑜𝑛𝑡𝑜𝑢𝑟(𝑔𝑖𝑚𝑎𝑔𝑒, 𝑛𝑢𝑚_𝑖𝑡𝑒𝑟, 𝑖𝑛𝑖𝑡_𝑙𝑒𝑣𝑒𝑙_𝑠𝑒𝑡, 𝑠𝑚𝑜𝑜𝑡ℎ𝑖𝑛𝑔, 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑, 𝑏𝑎𝑙𝑙𝑜𝑜𝑛)

,where gimage represents the image to be segmented after being pre-processed and
computed the 𝑖𝑛𝑣𝑒𝑟𝑠𝑒_𝑔𝑎𝑢𝑠𝑠𝑖𝑎𝑛_𝑔𝑟𝑎𝑑𝑖𝑒𝑛𝑡, 𝑛𝑢𝑚_𝑖𝑡𝑒𝑟 is the number of iterations, the
𝑖𝑛𝑖𝑡_𝑙𝑒𝑣𝑒𝑙_𝑠𝑒𝑡 is the initial level set, the smoothing argument is the number of times the
smoothing operator is applied per iteration, the threshold is a maximum value of an image
to be considered an edge and the balloon force is the guidance force for the contour in
non-informative areas, where the gradient is very small to push the contour to the edges.

The result of application of this function is the final segmentation and the final level-set.
The values for these parameters were chosen based on the segmentation quality, assessed
by visual inspection of the segmentation result, and the time of computation:

𝑚𝑜𝑟𝑝ℎ𝑜𝑙𝑜𝑔𝑖𝑐𝑎𝑙_𝑔𝑒𝑜𝑑𝑒𝑠𝑖𝑐_𝑎𝑐𝑡𝑖𝑣𝑒_𝑐𝑜𝑛𝑡𝑜𝑢𝑟(𝑔𝑖𝑚𝑎𝑔𝑒, 𝑛𝑢𝑚_𝑖𝑡𝑒𝑟 =
300, 𝑖𝑛𝑖𝑡_𝑙𝑒𝑣𝑒𝑙_𝑠𝑒𝑡, 𝑠𝑚𝑜𝑜𝑡ℎ𝑖𝑛𝑔 = 20, 𝑡 ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 = 1, 𝑏𝑎𝑙𝑙𝑜𝑜𝑛 = −1)

For 𝑛𝑢𝑚_𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑠, 300 was chosen because the images are of small shape and the
time of computation for this number of iterations is small (5 minutes). Also, with this value,
it was possible to achieve a reasonable segmentation. On the other hand, the smoothing
parameter was set to 20 because DISH images present very high intensities near the edges
of vertebrae, and, with this value, it is possible to diminish the effect of those intensities
on the final segmentation. The threshold parameter was set to 1 in order to avoid the
contour, as it evolves, to stop at weak edges, and stop at the borders of vertebrae. Finally,
the balloon force parameter was set to -1 because the initial level-set incorporates the
region to be segmented and the contour must shrink until the edges of that region.

Concerning the initial level set, this is a vertebra dependent argument. The initial
contours used in this work were from the algorithm created by [18]. However, since it
was not possible to get the contours for the dataset images used in this work, the contours
are from a non-pathological image with a different size (5882x2024). Due to this fact, it
was necessary to match the contours to the correspondent vertebrae in the dataset images.
To accomplish this, firstly, each contour was centered to the correspondent vertebra, as
shown in Figure 4.11 (top left image). Then, it was applied affine transformations to this
contour in order to place it in the surroundings of the vertebra, as seen in the top right
image in Figure 4.11. After that, it was computed the initial-level-set, as shown in the
bottom left image. This is done using the skimage function polygon, which take as input
the coordinates of the centered contour and return the pixel coordinates of the polygon.
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Then, it is created a blank mask with the same size as the original image. The coordinates
are then used to create a binary mask, which is the initial level set: The pixels inside are
set to 1 and outside are left 0. Then the morphological geodesic active contour algorithm
was applied and the segmentation result is found in the bottom right image.

After obtaining the segmentation result, the course of the algorithm depends on the
result of the last step. If the segmentation capture the specific morphology of the vertebra,
such as in the case of the top right image in Figure 4.12, the search for the contour stops.
If not, as in the case of the bottom right image in Figure 4.12, it is necessary to change the
initial level-set location, by using affine transformation, such as translation and rescaling.

In this case, the visual inspection of the left superior corner reveals that it is not
well segmented, thus, there is a need to displace the initial level set to the left (negative
translation) and also increase size (positive rescaling) (bottom left image), in order to
segment that region. Both initial contours can be seen in left images in Figure 4.12.
Although not very noticeable, the initial contour (blue) represented in the top left image is
slightly bigger and displaced to the left, concerning the initial contour represented in the
bottom left image. As a result, the segmentation results, which are represented in green
in the correspondent right images, are different. This image shows that the segmentation
result is quite sensitive to the initial position of the initial contour.

4.2.1.7 General overview of Segmentation methodology

The general workflow of this methodology is found in Figure 4.13. Firstly, the images
are transformed to grayscale value, by using the aforementioned skimagefunctions. Then,
horizontal noise from the images are removed and the contrast is enhanced, specially near
the edges of vertebrae. The next step is the computation of the Inverse Gaussian Gradient,
by using the skimage correspondent function. This returns an image with the edges of
vertebrae highlighted, necessary for the application of the morphological geodesic active
contour. However, this image has unnecessary pixels, which are removed by, firstly,
computing the histogram and find, by visual inspection, the bin with the greatest number
of pixels. Next, it is the segmentation phase. Here, the algorithm proposed here uses the
contour for a specific vertebra, obtained by using the algorithm proposed by [18], and
uses affine transformations to match the initial contour to the vertebra to be segmented.
Then, with this transformed contour, it is calculated the initial level-set, which is a binary
image, and comprises the desired object. After this, based on the parameters chosen and
the image obtained from the pre-processing phase, this curve is subject to a series of
morphological operations, which transforms it, until reaching the edges of the object(s).

4.2.2 Methodology for analysis of vertebrae

The ossifications caused by DISH influences the intensity values in a X-ray image. In reality,
areas with bigger ossification translates into more intense pixels in X-ray images, due to
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Figure 4.11: Steps needed to obtain the segmentation of a vertebra. (Top left image)
image: Centering of the average contour obtained from [18].(Top right image): result of
the application of affine transformations to the contour on the top left image. (Bottom left
image): Initial level set used in the morphological active contour algorithm. (Bottom right
image): Segmentation obtained for the vertebra.
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higher x-ray absorption and, therefore, fewer x-ray photons reaching the sensor/image
plane [81].

Also, DISH mainly manifests in the corners of the vertebrae and there is a preferential
side for manifestation, in the thoracic region. Figure 4.14 shows an anterior posterior x-ray
image of a column presenting DISH characteristics. The right-hand side vertebrae display
hyperintense regions, when compared to the left-hand side corners. The white arrows
correspond to disc protrusion (hernitation), probably caused by the bridging ossifications
in the right side of the vertebrae.

Taking this into account, it was proposed to analyse each vertebrae in terms of intensity
values, in order to find insight able to help the diagnoses of DISH. Each vertebra was
divided in 9 squares, as shown in the Figure 4.15, and the corner squares (blue squares)
were considered for evaluation.

For each one of those corner squares, it was calculated the average intensity value and
computed the histograms distributions. Also, in order to evaluate the difference between
the pathological side and the non-pathological, it was also calculated the ratios seen in
equations 4.1 and 4.2, assuming a symmetry between the two sides of the vertebra. In
the first equation, the numerator stands for Left superior corner average intensity value
(LS) and the denominator stands for Right superior corner average intensity value (RS).
Regarding the second equation, the numerator stands for Left inferior corner average
intensity value (LI) and the denominator stands for Right inferior corner average intensity
value (RI). During these calculations, it was necessary to ensure that each corner had,
approximately, the same number of pixels as the other.

𝑅𝑎𝑡𝑖𝑜1 =
𝐿𝑆

𝑅𝑆
(4.1)

𝑅𝑎𝑡𝑖𝑜2 =
𝐿𝐼

𝑅𝐼
(4.2)

4.2.2.1 General overview of vertebrae analysis methodology

The general workflow of this methodology is found in Figure 4.16. Firstly, the after getting
the segmentation results of a vertebra, the vertebra is then divided in nine squares, however,
only the corners are considered for evaluation. Then, it is computed the histograms of
those corners as well as the average intensity values. Based on the assumption of Gaussian-
like shape of the distributions and the symmetry of vertebrae, two ratios are calculated:
LS/RS and LI/RI.
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Figure 4.12: Segmentation results of the algorithm depending on the position of the
initial contour.(Top images): (Left) initial contour and (Right) adequate segmentation
result (green). (Bottom images): initial contour (Left ) and (Right) the not reasonable
segmentation result.
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Figure 4.13: General flowchart of the methodology applied for segmentation of vertebrae.
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Figure 4.14: Image of a patient with DISH, showing a preferential side (more white) for
disease manifestation (blue rectangle box) [Adapted from [36]].

Figure 4.15: An example of division of a vertebra in 9 squares (blue and green squares),
where the blue ones represent the corners.
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Figure 4.16: General flowchart of the methodology applied for the analysis of vertebrae.
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5

Results and discussion of
segmentation evaluation

5.1 Results

As said before, [18] developed vertebrae models with the help of experts manual annota-
tions. In his work, each image used held two manual annotations, Annot1 and Annot2, to
be more precised, which were built by experts in the area. It is also said in its work that
after the models are created as well as the algorithm, a third expert organized the Annot
1, Annot2 and the results of the algorithm built in terms of segmentation accuracy. The
results showed that the Annot1 held the highest score.

Thus, in order to evaluate the segmentation performance of this work, Annot 1 was
used as the ground-truth segmentation. The DC and HD were evaluated and compared
for the following pair of segmentations: Annot1/Annot 2, Annot1/ algorithm of [18]
and Annot1/this algorithm. The results allow one to evaluate the similarity of each
segmentation to the segmentation Annot1.

To accomplish this evaluation, two images from the dataset used by [18] were selected.
These images are represented in Figure 5.1. The correspondent annotations can be found
in Annex II. The methodology used was the same as described in 3.1.7. However, there
was slight difference in the parameters of the morphological active contours: the number
of iterations was changed to 30 and the smoothing operator was changed to 6.

These images had to be, firstly, downsized, in order to make it possible to get a
segmentation result in a short number of iterations and, therefore, in short time. By visual
inspection of the segmentations, it was possible to get a good specific segmentation of
the vertebrae in 30 iterations. Also, on contrary to the dataset images used for evaluating
in vertebrae, the images shown in Figure 5.1 are less noisy. Therefore, the smoothing
operator needed not to be big, so 6 was chosen for allowing, as well, get a good and smooth
segmentation result.

The results of these calculations are summarized in Tables 5.1 and 5.2.
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Figure 5.1: Images used by [18] to construct the algorithm and were used in these work
for segmentation evaluation. Left image was labeled as Image 6 and the right image as
Image 7.

A summary of the results is found in Figures 5.2, for Image 6, and 5.3, for Image 7.

5.2 Discussion

According to the results in Tables 5.1 and 5.2, the algorithm proposed here provides good
segmentation results for both Image 6 (DC 93.45±1.72%, HD 3.78±1.15 mm) and Image 7
(DC 92.915±2.04%,HD 3.51±1.23mm). Also, it has better results than[18] for both Image 6
(DC 90.30±2.84,HD 4.31±0.80mm) and Image 7 (DC 91.630±3.1881%,HD 3.90±1.86mm).

According to these results,the algorithm proposed here brought an improvement to
the segmentation presented by the algorithm developed by [18].

Comparing the results with Annot1/Annot2,this has better results for both Image 6
(DC 94.70±1.67%,HD 2.43±0.62mm) and Image 7 (DC 94.91±1.65%,HD 2.48±0.53mm).

Despite the results showing that Annot2 has a bigger similarity with Annot1, the
difference is not very significant. As seen in 5.2 and 5.3, there is bigger intersection of
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Annot1/Annot2 Annot1/Ruben Annot1/Algorithm
Vertebra DC(%) HD(mm) DC(%) HD(mm) DC(%) HD(mm)
L4 97.37 1.59 91.35 4.64 93.56 5.83
L3 93.83 2.76 91.64 5.73 93.48 4.54
L2 97.78 1.55 92.65 4.04 95.51 2.40
L1 94.38 2.44 94.53 3.65 91.68 4.37
T12 94.80 2.08 89.78 5.39 95.35 4.02
T11 94.95 3.28 86.14 4.6 92.53 3.64
T10 93.07 3.35 91.56 3.11 95.75 1.86
T9 94.59 2.24 89.84 3.98 93.43 4.11
T8 92.84 2.25 85.11 4.15 92.80 2.85
T7 93.43 2.76 90.35 3.83 90.43 4.13
𝑥 94.70 2.43 90.30 4.31 93.45 3.78
𝜎 1.67 0.62 2.84 0.80 1.72 1.15

Table 5.1: Segmentation evaluations metrics, DC and HD, for each vertebra from Image 6.

Annot1/Annot2 Annot1/Viegas Annot1/Algorithm
Vertebra DC(%) HD(mm) DC (%) HD(mm) DC(%) HD(mm)
L4 97.37 2.68 87.54 7.27 91.28 6.09
L3 95.20 2.64 94.73 3.55 96.37 2.45
L2 96.58 2.24 91.58 3.79 92.26 3.96
L1 95.93 3.24 86.73 6.24 93.09 3.34
T12 95.20 2.62 87.55 5.52 92.94 3.82
T11 96.64 2.10 92.06 3.10 93.95 2.57
T10 91.35 3.30 94.06 1.90 95.44 1.85
T9 94.53 1.90 94.27 2.59 93.35 2.57
T8 96.22 1.56 94.63 1.73 90.49 4.32
T7 93.60 2.78 93.15 3.29 89.96 4.09
𝑥 94.91 2.48 91.63 3.90 92.92 3.51
STD 1.65 0.53 3.19 1.86 2.04 1.23

Table 5.2: Segmentation evaluations metrics, DC and HD, for each vertebra from Image 7.

Figure 5.2: Graphical comparison between Annot1/Annot2 and Annot1/Viegas and
Annot1/Algorithm for Image 6.
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Figure 5.3: Graphical comparison between Annot1/Annot2 and Annot1/Viegas and
Annot1/Algorithm for Image 7.

values of DC between Annot1/Annot2 and Annot1/Algorithm in both images, being
Image 6 the one with greater intersection. This means that the proposed algorithm
performance comprises the range of intervariability between experts, being similar to
both.

Regarding HD, in both images, Annot1/Annot2 had better results. Despite this, the
results for Annot1/Algorithm are quite similar to Annot1/Annot2, specially for Image
6, because, as shown in Figure 5.3, the range of results Annot1/Algorithm incorporates
practically the variability of results of Annot1/Annot2. Hence, it is possible to state that
both segmentations provided similar results.
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Results of vertebrae segmentations
and analysis

This chapter presents the segmentations provided by the algorithm for some vertebrae
from each image and also the correspondent histograms. The goal here is show the
variability of segmentation results obtained for each image, thus, only a few vertebrae
were chosen. At the end of presenting the segmentations in each image, a table containing
the intensity values for each vertebra in each image and the corresponding ratios is
presented as well as a graphical representation of the ratios for each image.

At the end of this chapter, a general overview of the ratios from all vertebrae analysed
is presented.

6.1 Segmentation results for vertebrae in each Image

6.1.1 Image 1

In this part of this chapter, the segmentation results for some vertebrae from the image
shown in Figure 4.1 is presented. The remainder of the segmentations is found in III, in
section III.1.

6.1.1.1 T10 vertebra

Here, the analysis of vertebra T10, presented in Figs. 6.1 to 6.3, aims to show the behaviour
a vertebra, in which DISH is present.

Figure 6.1 shows the initial-level set used for the segmentation of the T10 vertebra
from Image 1 and the concomitant segmentation.

Figure 6.2 displays the corners of T10 and the correspondent histograms.

Figure 6.3 displays all four corners’ histograms, for visual comparison.
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Figure 6.1: Initial level-set and segmentation result for T10 from Image 1.Image on the left:
Original image; Image on the middle: Initial level-set (blue curve) used for segmentation
of that vertebra; Image on the right: Segmentation result(green) for the correspondent
vertebra.

6.1.1.2 L1 vertebra

Similar to the previous section, the vertebra L1, from Image 1, is now analysed, and
presented in Figures 6.4 to 6.6. This analysis aimed at illustrating a different kind of
behaviour in the absence of DISH.

Figure 6.4 shows the initial-level set used for the segmentation of the L1 vertebra from
Image 1 and the concomitant segmentation.

Figure 6.5 displays the corners of L3 and the correspondent histograms.
Figure 6.6 displays the corners’ histograms, for visual comparison.

6.1.1.3 L3 vertebra

In this section, the analysis of vertebra L3, from Image 1, presented in Figures 6.7 to 6.9,
aims to illustrate a different type of behaviour, occurring in the absence of DISH.

The initial-level set used for the segmentation of the L3 vertebra from Image 1 and the
concomitant segmentation are shown in Figure 6.7.

Figure 6.8 displays the corners of L3 and the correspondent histograms.
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Figure 6.2: Comparison of each corner and its histograms for T10 vertebra from Image 1.

Figure 6.3: Comparison of all corners’ histograms for T10 from Image 1, showing the
difference between right side (green and orange curves) and left side of vertebra (red and
blue curves)

Figure 6.9 displays the corners’ histograms, for visual comparison.

6.1.1.4 L4 vertebra

In this section, as done for the previous vertebra, is presented the analysis of vertebra L5,
from Image 1, presented in Figs.6.10 to 6.12. The initial-level set used for the segmentation
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Figure 6.4: Initial level-set and segmentation result for L1 from Image 1. Image on the left:
Original image; Image on the middle: Initial level-set (blue curve) used for segmentation
of that vertebra; Image on the right: Segmentation result (green) for the correspondent
vertebra.

of vertebra L4, from Image 1, and the concomitant segmentation are represented in Figure
6.10.

Figure 6.11 displays the corners of L4 and the correspondent histograms.
Figure 6.12 displays the four corners’ histograms, for visual comparison.

6.1.1.5 Overview of the results for Image 1

Table 6.1 shows the average intensity values for each corner of each vertebra as well as
the correspondent ratios values. In this table and in all tables in this chapter, DISH(+)
vertebrae correspond to vertebrae with the disease and DISH(-) without. In this table, in
DISH(+) vertebrae, the left intensity Average values (LS and LI) are pretty close to one
another and quite different from the right intensity average values (RS and RI), which
refers to the location in the vertebrae where the diseases manifests.

Figure 6.13 shows the ratio values (LS/RS and LI/RI) for each vertebra from Image
1. For ratio LS/RS, there is not difference between DISH(+) and DISH(-), however, the
difference for ratio LI/RI between both DISH(+) and DISH(-) is quite clear.
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Figure 6.5: Comparison of each corner and its histograms for L1 vertebra from Image 1.

Figure 6.6: Comparison of all corners’ histograms for L1 from Image 1, showing the
difference between right side (green and orange curves) and left side of vertebra(red and
blue curves).

6.1.2 Image 2

Similar to the previous section, all results showed herein are referent to Image 2. The
remainder of the segmentations is found in III in section III.2.
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Figure 6.7: Initial level-set and segmentation result for L3 from Image 1. Image on the left:
Original image; Image on the middle:Initial level-set (blue curve) used for segmentation
of that vertebra; Image on the right: Segmentation result (green) for the correspondent
vertebra.

Vertebra DISH(+/-) LS ± 𝜎(LS) RS ± 𝜎(RS) RI ± 𝜎(RI) LI ± 𝜎(LI) ratio(LS/RS)± 𝛿(ratio(LS/RS)) ratio(LI/RI)± 𝛿(ratio(LI/RI))
T10 DISH(+) 0.66±0.05 0.81±0.03 0.82±0.02 0.69±0.05 0.82±0.07 0.84±0.06
T11 DISH(+) 0.71±0.05 0.80±0.02 0.84±0.03 0.74±0.03 0.88±0.07 0.89±0.05
T12 DISH(+) 0.78±0.03 0.75±0.04 0.83±0.04 0.72±0.03 0.96±0.07 0.86±0.05
L1 DISH(+) 0.74±0.03 0.78±0.03 0.81±0.04 0.67±0.05 0.95±0.06 0.84±0.07
L2 DISH(+) 0.65±0.05 0.82±0.03 0.78±0.04 0.67±0.04 0.80±0.06 0.86±0.07
L3 DISH(-) 0.72±0.06 0.81±0.05 0.75±0.04 0.70±0.04 0.89±0.09 0.94±0.08
L4 DISH(-) 0.72±0.05 0.78±0.05 0.73±0.05 0.70±0.05 0.93±0.09 0.95± 0.10

Table 6.1: Intensity results for Image 1. In this table, it is possible to see the intensity values
for each corner (LS-Left superior, RS-Right superior, RI-Right Inferior, LI-Left Inferior )
and also the values of the ratios LI/RI and LR/RS.
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Figure 6.8: Comparison of each corner and its histograms for L3 vertebra from Image 1.

Figure 6.9: Comparison of all corners’ histograms for L3 from Image 1, showing the
difference between right side (green and orange curves) and left side of vertebra(red and
blue curves).
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Figure 6.10: Initial level-set and segmentation result for L4 from Image 1.Image on the left:
Original image; Image on the middle: Initial level-set (blue curve) used for segmentation
of that vertebra; Image on the right: Segmentation result (green) for the correspondent
vertebra.

6.1.2.1 T8 vertebra

The initial-level set used for the segmentation of vertebra T8, from Image 2, and the
concomitant segmentation are shown in Figure 6.14.

Figure 6.15 displays the corners of L3 and the correspondent histograms.

Figure 6.16 displays the four corners’ histograms, for visual comparison.

6.1.2.2 T9 vertebra

As the previous section, all results, presented in Figures 6.17 to 6.19, are referent to vertebra
T9, from Image 2.

The initial-level set used for the segmentation of vertebra T9, from Image 2, and the
concomitant segmentation are shown in Figure 6.17.

Figure 6.18 displays the corners for vertebra T9 and the correspondent histograms.

Figure 6.19 displays all four corners’ histograms, for visual comparison.
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Figure 6.11: Comparison of each corner and its histograms for the L4 vertebra from Image
1.

Vertebra DISH(+/-) LS ± 𝜎(LS) RS ± 𝜎(RS) RI ± 𝜎(RI) LI ± 𝜎(LI) ratio(LS/RS)± 𝛿(ratio(LS/RS)) ratio(LI/RI)± 𝛿(ratio(LI/RI))
T7 DISH(+) 0.64±0.01 0.71±0.01 0.74±0.01 0.65±0.02 0.89±0.02 0.88±0.03
T8 DISH(+) 0.69±0.015 0.760±0.01 0.77±0.012 0.70±0.03 0.90±0.02 0.90±0.04
T9 DISH(+) 0.74±0.01 0.79±0.01 0.79±0.02 0.74±0.01 0.93±0.02 0.94±0.03
T10 DISH(+) 0.71±0.03 0.80±0.02 0.82±0.01 0.72±0.02 0.88±0.03 0.88±0.03

Table 6.2: Intensity results for Image 2. In this table, it is possible to see the intensity values
for each corner(LS-Left superior,RS-Right superior, RI-Right Inferior,LI-Left Inferior ) and
also the values of the ratios LI/RI and LR/RS.

6.1.2.3 Overview of the results for Image 2

Table 6.2 shows the intensity values for each corner as well the correspondent ratios values.
Similarly to the results obtained for Image 1, the average intensity values for left corners
(LS and LI) are very similar between each other and quite different from the results for
the right corners (RS and RI), where the disease manifests.

Figure 6.20 shows the ratio values(LS/RS and LI/RI) for each vertebra from Image 2.
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Figure 6.12: Comparison of all corners’ histograms for L4 from Image 1, showing the
difference between right side (green and orange curves) and left side of vertebra (red and
blue curves).

6.1.3 Image 3

As done for the two previous sections, the results presented here refer to the analysis
of some vertebrae from Image 3. The remainder of the segmentations is found in III in
section III.3.

6.1.3.1 T12 vertebra

The initial-level set used for the segmentation of vertebra T12, from Image 3, and the
concomitant segmentation are shown in Figure 6.21.

Figure 6.22 displays the four corners of vertebra T12 and the correspondent histograms.
Figure 6.23 displays all four corners’ histograms of T12 vertebra.

6.1.3.2 L2 vertebra

As done for the previous vertebra, in this section, the results, presented in Figures 6.24 to
6.26, refer to the vertebra L2.

The initial level-set used for the segmentation of the vertebra L2, from Image 3, and
the concomitant segmentation are shown in Figure 6.24.

Figure 6.25 displays the four corners of vertebra L2 and the correspondent histograms
are shown.

Figure 6.26 displays all four corners’ histograms, for visual comparison.

6.1.3.3 L3 vertebra

As done for the previous vertebra, the results presented in the section, shown in Figures
6.27 to 6.29.

The initial-level set used for the segmentation of the L3 vertebra from Image 3 and the
concomitant segmentation are shown in Figure 6.27.

Figure 6.28 displays the four corners the corners of L3 vertebra and the correspondent
histograms.

Figure 6.29 displays all four corners’ histograms, for visual comparison.
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Figure 6.13: Comparison of the ratio LS/RS (figure at the top) and ratio LI/RI (figure
at the bottom) for each vertebra from Image 1. The blue points refer to the pathological
vertebra and the red points to the non-pathological.

Vertebra DISH(+/-) LS ± 𝜎(LS) RS ± 𝜎(RS) RI ± 𝜎(RI) LI ± 𝜎(LI) ratio(LS/RS)± 𝛿(ratio(LS/RS)) ratio(LI/RI)± 𝛿(ratio(LI/RI))
T11 DISH(-) 0.47±0.03 0.45±0.03 0.42±0.03 0.40±0.03 0.96±0.09 0.97±0.09
T12 DISH(-) 0.36±0.02 0.39±0.03 0.37±0.03 0.35±0.03 0.94±0.09 0.94±0.10
L1 DISH(-) 0.33±0.03 0.35±0.03 0.32±0.04 0.31±0.03 0.95±0.10 0.97±0.16
L2 DISH(-) 0.34±0.03 0.30±0.04 0.30±0.03 0.30±0.03 0.89±0.17 0.99±0.14
L3 DISH(-) 0.36±0.03 0.35±0.03 0.34±0.05 0.33±0.04 0.99±0.12 0.99±0.18

Table 6.3: Intensity results for Image 3. In this table, it is possible to see the intensity values
for each corner (LS-Left superior, RS-Right superior, RI-Right Inferior,LI-Left Inferior ) of
each vertebra as well as the values of the ratios LI/RI and LR/RS.

6.1.3.4 Results for Image 3

Table 6.3 shows the average intensity values for each corner as well as the correspondent
ratio values for each vertebra from Image 3. As it possible to see, the difference between
the average intensity values for all four corners is not significant for all DISH(-) vertebrae.

Figure 6.30 shows the ratio values (LS/RS and LI/RI) for each vertebra from Image 3.
It is possible to see that the values for LI/RI are bigger than LR/RS, highlighting the lack
of difference between both side of DISH(-) vertebrae.
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Figure 6.14: Initial level-set and segmentation result for T8 from Image 2.Image on the left:
Original image;Image on the middle: Initial level-set(blue curve) used for segmentation
of that vertebra; Image on the right: Segmentation result(green) for the correspondent
vertebra.

Figure 6.15: Comparison of each corner and its histograms for the T8 vertebra from Image
2.
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Figure 6.16: Comparison of all corners’ histograms for T8 from Image 2, showing the
difference between right side (green and orange curves) and left side of vertebra(red and
blue curves)..

Figure 6.17: Initial level-set and segmentation result for T9 from Image 2.Image on the left:
Original image; Image on the middle: Initial level-set (blue curve) used for segmentation
of that vertebra; Image on the right: Segmentation result (green) for the correspondent
vertebra.

6.1.4 Image 4

As done for the other Images, this section refers the results obtained for some vertebrae
of Image 4. The remainder of the results is found in III in section III.4.

6.1.4.1 T12 vertebra

The initial-level set used for the segmentation of vertebra T12, from Image 4, and the
concomitant segmentation are represented in Figure 6.31.

Figure 6.32 displays the corners of vertebra T12 and the correspondent histograms.

Figure 6.33 displays all four corners’ histograms, for visual comparison.
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Figure 6.18: Comparison of each corner and its histograms for T9 vertebra from Image 2.

Figure 6.19: Comparison of all corners’ histograms for T9 from Image 2, showing the
difference between right side (green and orange curves) and left side of vertebra(red and
blue curves) for T9 vertebra from Image 2.

6.1.4.2 L1 vertebra

As done for the previous section, herein the results, presented in Figures 6.34 to 6.36, refer
to the vertebra L1.

The initial-level set used for the segmentation of vertebra L1, from Image 4, and the
concomitant segmentation are shown in Figure 6.34.
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Figure 6.20: Comparison of the ratio LS/RS(figure at the top) and ratio LI/RI (figure at the
bottom) for each vertebra from Image 2. The blue points refer to the pathological(DISH(+))
vertebrae.

Vertebra Type of vertebra LS ± 𝜎(LS) RS ± 𝜎(RS) RI ± 𝜎(RI) LI ± 𝜎(LI) ratio(LS/RS)± 𝛿(ratio(LS/RS)) ratio(LI/RI)± 𝛿(ratio(LI/RI))
T10 DISH(+) 0.57±0.03 0.59±0.04 0.62±0.03 0.56±0.05 0.96±0.09 0.91±0.09
T11 DISH(+) 0.60±0.03 0.68±0.03 0.63±0.02 0.54±0.03 0.88±0.06 0.85±0.05
T12 DISH(+) 0.61±0.03 0.69±0.02 0.67±0.02 0.56±0.04 0.89±0.06 0.84±0.07
L1 DISH(+) 0.69±0.024 0.74±0.02 0.70±0.02 0.63±0.02 0.93±0.04 0.90±0.04

Table 6.4: Intensity results for Image 4. In this table, it is possible to see the intensity values
for each corner (LS-Left superior, RS-Right superior, RI-Right Inferior, LI-Left Inferior )
and also the values of the ratios LI/RI and LR/RS.

Figure 6.35 displays all four corners of L1 vertebra and the correspondent histograms.
Figure 6.36 displays the four corners’ histograms, for visual comparison.

6.1.4.3 Results for Image 4

Table 6.4 shows the intensity values for each corner for vertebra L1 as well as the corre-
spondent ratios. It is noteworthy that the average intensity values for the right corners,
where the disease manifests, are bigger than the correspondent left ones.
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Figure 6.21: Initial level-set and segmentation result for T12 from Image 3. Image on the
left: Initial level-set (blue curve) used for segmentation of that vertebra; Image on the
right: Segmentation result (green) for the correspondent vertebra.

Figure 6.22: Comparison of each corner and its histograms for the T12 vertebra from Image
3.
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Figure 6.23: Comparison of all corners’ histograms for T12 from Image 3, showing the
difference between right side (green and orange curves) and left side of vertebra (red and
blue curves).

Figure 6.24: Initial level-set and segmentation result for L2 from Image 3. Image on the
left: Initial level-set (blue curve) used for segmentation of that vertebra; Image on the
right: Segmentation result (green) for the correspondent vertebra.

Figure 6.37 shows the ratio values (LS/RS and LI/RI) for each vertebra from Image 4.
In this figure, it is possible to see that the ratio LI/RI values, shown in the Right image,
has lower values than LR/RS, highlighting the difference between both sides of DISH(+)
vertebrae.
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Figure 6.25: Comparison of each corner and its histograms for the L2 vertebra from Image
3.

6.1.5 Image 5

Finally, the results obtained for some vertebrae from Image 5 are presented in this section.
The remainder of the segmentations is found in III in section III.5.

6.1.5.1 T7 vertebra

The initial-level set used for the segmentation of the vertebra T7, from Image 5, and the
concomitant segmentation are shown in Figure 6.38.

Figure 6.39 displays the corners of vertebra T7 and the correspondent histograms.
Figure 6.40 displays the four corners’ histograms, for visual comparison.

6.1.5.2 T10 vertebra

Herein, the results for vertebra T10 are represented in Figures 6.41 to 6.43.
The initial-level set used for the segmentation of the T10 vertebra, from Image 5, and

the concomitant segmentation are shown in Figure 6.41.
Figure 6.42 displays the corners of vertebra T10 and the correspondent histograms.
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Figure 6.26: Comparison of all corners’ histograms for L2 from Image 3, showing the
difference between right side (green and orange curves) and left side of vertebra (red and
blue curves).

Figure 6.27: Initial level-set and segmentation result for L3 from Image 3. Image on the
left: Initial level-set (blue curve) used for segmentation of that vertebra; Image on the
right: Segmentation result (green) for the correspondent vertebra.

Figure 6.43 displays the corners’ histograms a comparison between each corner his-
togram of this vertebra is shown.

6.1.5.3 T11 vertebra

The initial-level set used for the segmentation of vertebra T11, from Image 5, and the
concomitant segmentation are shown in Figure 6.44.

Figure 6.45 displays the corners of vertebra T11 and the correspondent histograms.
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Figure 6.28: Comparison of each corner and its histograms for the L3 vertebra from Image
3.

Figure 6.29: Comparison of all corners’ histograms for L3 from Image 3, showing the
difference between right side (green and orange curves) and left side of vertebra (red and
blue curves).

Figure 6.46 displays the corners’ histograms, for visual comparison.

6.1.5.4 Results for Image 5

Table 6.5 shows the intensity values for each corner as well as the correspondent ratios
for this image. In this table, it is noticeable the difference between the average intensity
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Figure 6.30: Comparison of the ratio LS/RS (figure at the left) and ratio LI/RI (figure at
the right) for each vertebra from Image 3. The red points refer to the non-pathological
(DISH(-)) vertebrae.

Vertebra DISH(+/-) LS ± 𝜎(LS) RS ± 𝜎(RS) RI ± 𝜎(RI) LI ± 𝜎(LI) ratio(LS/RS)± 𝛿(ratio(LS/RS)) ratio(LI/RI)± 𝛿(ratio(LI/RI))
T6 DISH(+) 0.59±0.02 0.62±0.01 0.67±0.01 0.61±0.01 0.93±0.03 0.91±0.02
T7 DISH(+) 0.64±0.01 0.69±0.01 0.71±0.02 0.66±0.02 0.92±0.02 0.93±0.04
T8 DISH(+) 0.69±0.01 0.74±0.01 0.78±0.01 0.71±0.02 0.92±0.02 0.91±0.03
T9 DISH(+) 0.74±0.02 0.80±0.01 0.83±0.01 0.78±0.02 0.93±0.02 0.94±0.03
T10 DISH(+) 0.80±0.02 0.85±0.01 0.87±0.01 0.82±0.02 0.94±0.02 0.95±0.02
T11 DISH(+) 0.85±0.01 0.88±0.01 0.91±0.01 0.90±0.02 0.96±0.02 0.98±0.02

Table 6.5: Intensity results for Image 5. In this table, it is possible to see the intensity values
for each corner (LS-Left superior, RS-Right superior, RI-Right Inferior, LI-Left Inferior )
and also the values of the ratios LI/RI and LR/RS.

values of left corners and correspondent right corners, where the disease manifests.

Figure 6.47 shows the ratio values (LS/RS and LI/RI) for each vertebra from Image 5
are plotted.

85



CHAPTER 6. RESULTS OF VERTEBRAE SEGMENTATIONS AND ANALYSIS

Figure 6.31: Initial level-set and segmentation result for T12 from Image 4. Image on
the left: Original image; Image on the middle: Initial level-set (blue curve) used for
segmentation of that vertebra; Image on the right: Segmentation result (green) for the
correspondent vertebra.

6.1.6 Overview of all vertebrae

In this section, it will be provided the graphical representation of the ratios LR/RS, seen
in Figure 6.48, and LI/RS, seen in Figure 6.49, denoting which vertebrae are DISH(+) and
DISH(-). In the graph presenting the values for ratio LI/RI, it is noticeable a difference
between DISH(+) (blue) and DISH(-) (red) ratio values.
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Figure 6.32: Comparison of each corner and its histograms for the T12 vertebra from Image
4.

Figure 6.33: Comparison of all corners’ histograms for T12 from Image 4, showing the
difference between right side (green and orange curves) and left side of vertebra (red and
blue curves).
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Figure 6.34: Initial level-set and segmentation result for L1 from Image 4. Image on the left:
Original image; Image on the middle: Initial level-set (blue curve) used for segmentation
of that vertebra;Image on the right: Segmentation result (green) for the correspondent
vertebra.
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Figure 6.35: Comparison of each corner and its histograms for the L1 vertebra from Image
4.

Figure 6.36: Comparison of all corners’ histograms for L1 from Image 4, showing the
difference between right side (green and orange curves) and left side of vertebra (red and
blue curves).
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Figure 6.37: Comparison of the ratio LS/RS (figure at the top) and ratio LI/RI (figure
at the bottom) for each vertebra from Image 4. The blue points refer to the pathological
(DISH(+)) vertebrae.
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Figure 6.38: Initial level-set and segmentation result for T7 from Image 5. Image on the
left: Initial level-set (blue curve) used for segmentation of that vertebra; Image on the
right: Segmentation result (green) for the correspondent vertebra.
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Figure 6.39: Comparison of each corner and its histograms for the T7 vertebra from Image
5.

Figure 6.40: Comparison of all corners’ histograms for T7 from Image 5, showing the
difference between right side (green and orange curves) and left side of vertebra (red and
blue curves)
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Figure 6.41: Initial level-set and segmentation result for T10 from Image 5. Image on the
left: Initial level-set (blue curve) used for segmentation of that vertebra; Image on the
right: Segmentation result (green) for the correspondent vertebra.
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Figure 6.42: Comparison of each corner and its histograms for the T10 vertebra from Image
5.

Figure 6.43: Comparison of all corners’ histograms for T10 from Image 5, showing the
difference between right side (green and orange curves) and left side of vertebra(red and
blue curves).
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Figure 6.44: Initial level-set and segmentation result for T11 from Image 5. Image on the
left: Initial level-set (blue curve) used for segmentation of that vertebra; Image on the
right: Segmentation result (green) for the correspondent vertebra.
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Figure 6.45: Comparison of each corner and its histograms for the T11 vertebra from Image
5.

Figure 6.46: Comparison of all corners’ histograms for T11 from Image 5, showing the
difference between right side (green and orange curves) and left side of vertebra (red and
blue curves).
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Figure 6.47: Comparison of the ratio LS/RS (figure at the top) and ratio LI/RI (figure
at the bottom) for each vertebra from Image 5. The blue points refer to the pathological
(DISH(+)) vertebrae.
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Figure 6.48: Representation of LS/RS ratio values for all vertebrae. Each vertebra is identi-
fied by the two components, according to the following example: image_numberofvertebra.
Also, the vertebrae in blue correspond to pathological vertebrae and the red ones corre-
spond to non-pathological vertebrae.

Figure 6.49: Representation of LI/RI ratio values for all vertebrae. Each vertebra is identi-
fied by the three components according to the following example: image_vertebra.Also,
the vertebrae in blue correspond to pathological vertebrae and the red ones correspond
to non-pathological vertebrae.

98



7

Discussion of DISH vertebrae
segmentation and analysis results

7.1 Image 1

Regarding Image 1, in Figure 4.1, it was provided the segmentation and analysis for seven
vertebrae. Five of these are pathological (vertebrae L2-T10) and the other two (vertebrae
L4 and L3) are non-pathological. By visual inspection of the X-ray image, it is possible to
notice a whiter appearance in the right side of the pathological vertebrae regarding the
left side. This due to the ossifications originated by DISH.

By visual inspection of the segmentations results, presented in Figures 6.1,6.4, 6.7,
6.10), III.1,III.4, III.7(in the Annex III, section III.1), it is possible to conclude that the
segmentation was able to capture the specific morphology of each vertebra, with slightly
differences near the corners, where DISH manifests. Despite this, there were difficulties
with two particular vertebrae: vertebra L1 and vertebra L4. Regarding the vertebra L1,
Figure 6.4 shows the segmentation results and it is noticeable that the segmentation
presents also some small errors along the contour of the vertebra. This is due to the
presence of local maximum intensities, which make the contour evolution to stop in those
locations. Also, the right inferior corner of this vertebra possesses a great intensity which
enables the algorithm to find the right contour and, then, the segmentation is not perfect
in the location. Regarding the vertebra L4, whose segmentation is found in 6.10, it was
not possible to provide the segmentation for the inferior corners. Those corners display
lower intensities (lower grayscale value) than other regions around, forcing the algorithm
to propose erroneous convergence minima.

Regarding the histograms, it was expected that in pathological vertebrae, there would
be differences in the histograms between right corners and the correspondent left corners.
After analysis of the histograms, it is possible to conclude that in the pathological vertebrae,
the histograms for the right corners are displaced to the right (more intensity) that the
correspondent left corners. It is also important to notice that in vertebra T12, whose
segmentation is present in Figure III.5, the ossifications are found, in greater extent, in
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the right inferior corners. That is the reason why, in this vertebra, only the Right Inferior
corner histogram is more displaced to the right. This is possible to be seen in Figure III.6.

Regarding the non-pathological vertebrae, there is no much difference between the
correspondent corners’ histograms, as seen in Figure 6.9, for vertebra L3, and in Figure
6.12, for vertebra L4. Nonetheless, it is possible to notice a slightly deviation in the right
superior corner histogram for vertebra L3 regarding the left superior corner.

In agreement with what was observed in the previous paragraphs, the analysis of the
intensities and ratios, as seen in the Table 6.1, reveal that the intensities values are bigger
in pathological corners, specially the Right Inferior corner(RI), where this difference is
more noticeable. These values are dependent on the severity of the disease in that corner.
disease in that corner. To be more specific, more severity means higher intensity of the
pixels in the image. Thus, the vertebrae with more severity are T11 and T10, since they
present a higher Right inferior corner average grayscale value.

Concerning the ratios, values close to 1 reveal that correspondent corners have com-
parable average intensity values, which may suggest the absence of pathology. Values
clearly superior to or inferior to 1 suggest that there is a corner with more intense pixels.
This, in its turn, suggest an additional calcification of the corner, leading to a proposal of
classification as a corner presenting signals of DISH.

The ratios values for pathological vertebrae(DISH(+)) reveal the ratio(LI/RI) is the
ratio with the lesser values(range from [0.837:0.891], when comparing with ratio(LR/RS)
(range [0.821:0.956]). Comparing these with the ratios from non-pathological vertebrae,
DISH(-), visible at the Left of Figure 6.13, it is clear that the intensities of these latter
corners present much closer levels of intensity.

Taking this into account, the ratio LI/RI seems to be a good metric to use to differentiate
DISH from NON-DISH vertebrae.

7.2 Image 2

For this image, the segmentations of four pathological vertebrae (T7-T10) were provided.
In this image, seen in Figure 4.2, it is possible to verify that the right side appears whiter
when compared to the left side. This finding is the result of ossifications caused by DISH.

The segmentation process in this image was a little difficult. As it possible to see
in Figure 4.2, there are spiny edges in the left side of vertebrae, making it difficult the
segmentation. However, by visual inspection of the segmentations, presented in Figures
6.14, 6.17, III.10,III.13 (in the Annex III, section III.2), there was a good performance,
although not perfect, specially in the left side, where the edges are not clearly seen.

Regarding the histograms, since this image is a pathological image, it was once again
expected that in pathological vertebrae, there would be differences in the histograms
between right corners and the correspondent left corners. The analysis of these histograms
confirmed this expectation, because there was a displacement for the right (more intensity)
of the right corners (pathological) over the left ones (non-pathological).
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The analysis of intensities and the ratios, as seen in the Table 6.2, reveal that the
intensities values are bigger in pathological corners, specially the Right Inferior corner(RI),
where this difference is more noticeable. However, both ratios (LI/RI) and (LR/RS) are
very similar with values as big as 0.94 for the former and 0.934 for the latter. Although
that, most the ratios are lower than 0.91, depending on the extent of ossifications.

7.3 Image 3

Image 3, seen in Figure 4.5, is a non-pathological image and the segmentations and
analysis of five vertebrae (L3-T11) were provided. The visualizations of the image shows
that there is no significant difference between both sides of vertebrae.

Concerning Image 3 segmentation results, presented in Figs 6.21,6.24,6.27, III.16,III.19
(in the Annex III, section III.3), by visual inspection of them, it is possible to state that the
algorithm had a very good performance, except for the vertebra T12, seen in Figure 6.22.
This vertebra has a very difficult morphology and the algorithm was not able to provide
the segmentation of all the contour of the vertebra, specially the inferior corners, which
are very sharp.

The vertebrae of this image, except the superior corners from the T11 vertebra, don’t
seem present large intensity values. Thus, the results should demonstrate that there are
no differences in the intensities between the two sides of vertebrae.

The analysis of the histograms showed that there was no significant difference in
the histogram distributions for each pair of corners, which is in according to expected.
Moreover, the values of intensities, as seen in Figure 6.3, are not very different from one
corner to another, specially between the correspondent corners. The results obtained for
ratios were high(>=0.89), with most of the vertebrae having values bigger than 0.95. Of
the two ratios, the ratio LI/RI stood out for having values closer to 1. Here, the vertebra
T12 had the smallest value, which is due to the inaccuracy of the segmentation.

These results, once gain, emphasizes the idea that there is no significant difference
between the two sides, suggesting that there is no pathology.

7.4 Image 4

Image 4, seen in Figure 4.3, is a pathological image and the right side is the pathological
side. It is from the same person as Image 3 but 14 years later, now aged 64. By that time,
the patient had already been diagnosed with DISH. Here, four vertebrae (T10-L1) were
segmented and analysed.

The segmentation results obtained for this image, presented in Figures 6.34, 6.31, III.22,
III.25(in the Annex III, section III.4), were acceptable, because the algorithm was able to
capture the specific morphology of each vertebrae, although, locally, the segmentation,
for example, of the Figure 6.31, possesses slight deviations to the real contour.
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Through the analysis of the histograms for each vertebra, similar to what was observed
in other pathological vertebrae before, it was possible to verify a displacement of the right
corners’ histograms to the right (bigger intensities) regarding the left ones. Once again,
the cause of this was the ossifications caused by DISH.

The intensities values, as seen in Figure 6.4, for each corner were also clear. The
right corners have bigger average intensities when comparing to the correspondent left
corners, specially the inferior ones, where this difference is more evident. In this table,
it is also noticeable the values for the ratio LI/RI. These values are lower or equal to
0.90, approximately, when, in the ratio LS/RS, the range of values go from 0.88 to 0.95,
approximately. Thus, once again, the ratio LI/RI stands out and it is important to highlight
that the ratio LI/RI may be a good metric to differentiate the pathological vertebrae from
the non-pathological ones.

7.5 Image 5

In this image, the segmentation and analysis of six pathological vertebrae (T11-T6) was
provided. This image can be found in 4.4 and It is noteworthy that in this image it is
not possible to exactly see the boundaries of the vertebrae in the right side, since the
image is very noisy. The presence of noise had a great impact on the segmentation results,
presented in Figures 6.38, 6.41, 6.44, III.31,III.28, III.34 (in the Annex III, section III.5),
specially of the vertebra represented in Figure 6.44. Despite that, the segmentation results
for the vertebrae showed that it was possible to capture the morphology of each one.

By comparing the histograms for each pair of correspondent corners and for each
vertebrae, it is possible to conclude that, as seen in other pathological images, there is a
deviation to the right for corners in a pathological state, although in T11 , the histograms
distribution for the inferior corners were pretty close, as it is possible to see in Figure 6.46.

Thus, the intensities values, as seen in Figure 6.5, show that for all vertebrae, except
T11, the intensity values are bigger in the pathological side (right side, in this image),
empathizing the difference between the pathological and non-pathological side.

Regarding the ratios LS/RS and LI/RI, the values for the former are lower than 0.96.
In the the latter, the values are lower than 0.981, but most of them are lower or equal than
0.945. Also, it is necessary to say the values 0.96 and 0.981 correspond to the vertebra T11.
In this, both sides appear very similar in terms of intensity values. Since in this image,
and particularly in this vertebra, the right side is very noisy, it was not possible to obtain
the right segmentation of the vertebra. Thus, it explains why the value here is different
from the other DISH vertebrae.

7.6 General Discussion of results

After looking into each specific image results, it is possible to retrieve some general results:
From the seventeen pathological vertebrae (except one) analysed, the pathological corners
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histograms were displaced to the right when comparing to the correspondent corners
histograms in the left side. Regarding the six non-pathological vertebrae, there was no
significant difference in the histograms between each pair of corners.

Concerning the ratios values, sixteen pathological vertebrae have values equal or lower
than 0.945 and only one have a value of 0.981, for ratio LI/RI. The same ratio for the
seven non-pathological vertebrae have values closer to 1. This is graphically represented
in Figure 6.49.

Then, it is possible to conclude that the ratio LI/RI may be a good indicator of the
presence of ossifications caused by DISH, due to it’s capacity of differentiating DISH
corners from NON-DISH corners.
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Conclusion

8.1 Main conclusions

One of objectives of this work was to develop a algorithm to provide a patient specific
segmentation of vertebrae and, then, compare its performance on two radiographs with
the previous work [18] and the mannual annotations of experts.

Then, use this algorithm to provide the segmentation of DISH vertebrae, in order to
analyse them, based on the pattern of ossifications on them, with goal of finding a metric
capable of differentiating pathological from non-pathological vertebrae.

The ultimate goal of this work is to contribute to the construction of diagnosing tool
of DISH based on coronal spine radiographs.

In this work, it was developed an algorithm which allows the segmentation of patholog-
ical and non-pathological vertebrae. This algorithm follows the morphological geodesic
active contour formulation and, comparing with the traditional active contour formulation,
it is faster and requires less number of iterations. Also, the initial level-set curve used in
this approach comprises the region of interest, that is, the vertebrae, and, as it evolves,
the curve changes it’s morphology, in order to adapt to the specific morphology of the
vertebrae, which was quite important for this work.

The segmentation performance evaluation, whose results are shown in chapter 5,
revealed that this algorithm has brought an improvement to the segmentations originated
by the algorithm developed by [18]. Also, the segmentation performance is comparable
to the ones done by experts, that is, Annot 1 e Annot2.

Regarding the results obtained for DISH images showed in chapter 7, the algorithm
developed in this work has a good performance on providing the segmentation of patho-
logical vertebrae, even for very low- quality images, such as the radiographs presented
in Figures 4.2 and 4.4. The algorithm provided specific vertebrae segmentation and this
was of utmost importance for the posterior analysis, which was accomplished by dividing
each vertebra in nine squares, and considering only the corners for evaluation, based on
the characteristics of DISH in vertebrae.

This evaluation was accomplished by analysing the histograms of the corners and
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making a comparison between the correspondent ones. The histograms assessment
clearly show that there is a significant difference between the non-pathological corners
and the correspondent pathological, in pathological vertebrae. The contrary is found in
the non-pathological vertebrae.

Although the histogram-based results show promising abilities to differentiate patho-
logical from non pathological corners, this finding was not enough to provide this differ-
entiation. Thus, it was necessary to use a different metric to emphasize this difference.
To do so, it was necessary to take into account the approximate symmetry between the
two sides of the vertebrae (Left and Right) and the shape of the histograms distributions.
Since the histogram in all vertebrae follow, approximately, a Gaussian distribution, it was
reasonable to use the average value in each corner to represent the intensity value in those
areas. It was proposed to compute two ratios: Left Superior corner mean value / Right
Superior corner mean value (LS/RS) and Left Superior corner mean value / Right Superior
corner mean value (LI/RI). The results were very promising, showing that the ratio LI/RI
seems to have a good performance on making this differentiation more noticeable, as seen
in Figure 6.49.

The introduction of this measure is clearly innovative, since no work was found, in the
literature, with a similar approach. Despite this, it would be necessary to confirm it in a
higher extent the viability of this metric by segmenting more vertebrae with DISH and
non-DISH vertebrae.

Despite these results, the segmentation evaluation was performed only in two images
and, to confirm the improvement this algorithm has brought to the segmentation of
vertebrae, it would be necessary to prove it in more images.

Also, regarding the segmentation results, some vertebrae features, for example, spiny
edges, make it hard to segment. Also, the presence of noise, such as in Figure 8.1, where
the boundaries, on the right side, are ambiguous, difficult this process. These issues have
also been reported in other works such as in [82] and [48].

Besides that, although the promissing results concerning the analysis of vertebrae,
it would be as well necessary to confirm the promissing ability of the ratio LI/RI in
differentiating pathological from non pathological vertebrae in more images.

8.2 Limitations

The work presented in this Dissertation came across with some limitations Firstly, it was
not possible to generate the initial contours, by using the algorithm created by [18], specific
for each image of the dataset. A possible explanation is that the generic models created
by Viegas are from non-pathological images and, therefore, the algorithm is not ideal for.
Thus, to accomplish this work, it was used a vector of contours provided by the same
algorithm, however, from a non-pathological image with a different size. This led to the
need of applying affine transformations, such as scaling and translations, in order to set
the contours in the surroundings of each vertebra.
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Figure 8.1: Low-quality image from dataset with ambiguous edges. Image on the left:
Initial contour (blue curve) used for segmentation of that vertebra; Image on the right:
Segmentation result(green) for the correspondent vertebra.

Other limitations of this work are related with the algorithm itself. This algorithm
is semi-automatic with a very heavy dependence on the user. This is seen, for example,
in the position of the initial level-set, as it is possible to see in Figure 4.12, where small
variations of the initial level-set can lead to different segmentations. Therefore, it is a
cumbersome process, since the initial level-set must be set in a certain position, in order
to provide the desirable segmentation.

Moreover, this algorithm depends on the inverse edge map of the image to be seg-
mented. The presence of noise and other non-important features, such as ribs or spiny
processes, affect in great extent the final segmentation, because the initial level-set, as it
evolves, can get trapped in these false edges, leading to innacurate segmentations. Hence,
it is really necessary to diminish the effect of the structures, by applying noise filters or
using thresholds filters. Also, it is very important to increase the contrast and visualization
of vertebrae edges, by applying a local histogram equalization, for example, in order to
create the inverse edge map able to provide a good segmentation.

Finally, the morphological geodesic active contours algorithm depends on three argu-
ments: number of iterations, the smoothing parameter and the balloon force parameter.
These parameters must be chosen according to the characteristics of the images: image
size and the quality of the inverse edge map, for example. The first affects widely the time
of computations, which is, as well, dependent on computer hardware features. Essentially,
the greater the size of the image, the greater the number of iterations. Also, the better the
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computer features(i.e,larger RAM or more processors) decrease the time of computation.
For example, by using the computer features used in this work(described in chapter 3.1.7),
images sizes with nearly 5000 by 2000 in the smaller dimension, and for 300 iterations, the
time of computation can take up to 3 h for vertebra. However, the images used in this
work were smaller, and for 300 iterations, the algorithm took approximately 5 minutes per
vertebra. On the other side, the second parameter will affect the evolution and deformation
of the initial curve because, in this image, the edges are emphasized in order to push the
contour towards them. In the best situation, the edges must be the only ones emphasized,
otherwise, other features, such as noise, may be enhanced and prevent the curve to fit
perfectly to the object boundaries.

Other parameters the algorithm performance is dependent on are the the smoothing
parameter and balloon force parameters. The first is used to to smooth the contour as it
evolves, at each iteration, and is dependent the amount of noise and false edges present
in the image, which can degrade the contour. On the other hand, the Balloon force must
be chosen carefully, according to the image forces(inverse edge map). It cannot be either
too small or too big, otherwise the contour will not be found.

8.3 Future Work

As said before, this work depends widely on the user to set the initial contour in the
surroundings of the vertebra, making this process very cumbersome. Hence, in future
work, it is recommended to make this algorithm fully automatic or almost fully automatic,
which will pass by creating an algorithm able to find the exact position of initial level-set.
To accomplish this, firstly, it would be important as well to solve the problem of obtaining
the contours for the DISH images by using the algorithm by [18]. This algorithm enables
the finding the Region of Interest of each vertebrae and its average contour, which can be
useful in finding the initial level-set. Moreover, this algorithm provides the Cobb Angle.
This parameter enables the quantification of spinal deformities and has been associated
with DISH, in older patients[34]. This finding will certainly help doctors to make a better
decision and possibly evaluate the progression and severity of the disease. Another
problem reported in this work is the presence of spine edges in the segmentation process,
making it difficult. Thus, it is also a feature which needs to be solved.

Another possible work for the future could be the differentiation of this disease from
AS. These diseases are very similar since both lead to new bone growth but one difference
is that AS is a inflammatory disease. Since X-ray images do not provide insight into
inflammatory changes, this image modality is not the best to differentiate these two
diseases. However, there is one difference between two disease, which can be assessed
through radiographs. According to the Resnick Criterion, one of the criteria for DISH
diagnoses is the lack of degenerative changes of intervertebral disk. AS, however, can be a
risk factor for degenerative changes in the intervertebral disk, according to [83], due to the
higher predispostion of to atherosclerosis. As result, the arteries supplying blood to the
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disc no longer are able to provide it, leading to the degeneration of the disc. In radiographs,
if there is disc degeneration, this can be seen as the narrowing of the intervertebral disc
space. Thus, this feature can be possibly used for differentiating DISH from AS.

Although the present work did not aim to create a classification algorithm, possibly
with a very huge dataset, a machine learning ordeep learning model could be implemented
to segregate DISH from NON-DISH vertebrae. One could use then Supervised learning
models, such as K-means algorithm or Support Vector Machine. Also, a deep learning
approach could be able to find subtle structural changes in the corners of pathological
vertebrae to assess the progression and severity of the disease, like the increase of the size
of ossifications, just like in the work done in [45].
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I

Dimensions of images

In Table I.1 is possible to find information about the size of each image used for evaluation
of DISH.

Image Size
Image 1 594x255
Image 2 586x387
Image 3 460x246
Image 4 618x292
Image 5 700x414

Table I.1: Dimensions of images used for DISH evaluation.
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II

Annotations 1 and 2

In this Annex, it will be provided the annotations 1 and 2 for both images used for
segmentation evaluation.

II.1 Image 6

Figure II.1: Annotations 1 (Left) and 2 (Right) for Image 6.
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ANNEX II. ANNOTATIONS 1 AND 2

II.2 Image 7

Figure II.2: Annotations 1 (Left) and 2 (Middle and Right) for Image 7.
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III

Segmentation Results

In this Annex, the remaining segmentations from each image used in this work will be
presented.

III.1 Image 1

In this section, the remainder of segmentations for Image 1 are presented.

III.1.0.1 T11 vertebra

The initial-level set used for the segmentation of the T11 from Image 1 and the concomitant
segmentation are represented in Figure III.1.

Figure III.2 displays the corners of vertebra T11 and the correspondent histograms.
Figure III.3 displays all four corners’ histograms, for visual comparison.

III.1.0.2 T12 vertebra

As done for the previous vertebra, all results. presented in Figures III.4 to III.6, for T12
vertebra are presented here.

The initial-level set used for the segmentation of the T12 vertebra and the concomitant
segmentation are shown in Figure III.4.

Figure III.5 displays all the corners of vertebra T12 vertebra and the correspondent
histograms.

Figure III.6 displays all four corners’ histograms, for visual comparison.

III.1.0.3 L2 vertebra

As done for the previous vertebra, all results, presented in Figures III.7 to III.9, for L2
vertebra, are presented here.

The initial-level set used for the segmentation of the L2 vertebra from Image 1 and the
concomitant segmentation are represented in Figure III.7.
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ANNEX III . SEGMENTATION RESULTS

Figure III.1: Initial level-set and segmentation result for T11 from Image 1. Image on
the left: Original image; Image on the middle: Initial level-set (blue curve) used for
segmentation of that vertebra; Image on the right: Segmentation result (green) for the
correspondent vertebra.

Figure III.8 displays all the corners of vertebra L2 vertebra and the correspondent
histograms.

Figure III.9 displays all corners’ histograms, for visual comparison.

III.2 Image 2

As done for Image 1, In this section, the remainder of segmentations for Image 2 are
presented.

III.2.0.1 T7 vertebra

The initial-level set used for the segmentation of the T7 vertebra from Image 2 and the
concomitant segmentation are represented in Figure III.10.

Figure III.11 displays the corners of vertebra T7 and the correspondent histograms.
Figure III.12 displays all corners’ histograms, for visual comparison.
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III .2 . IMAGE 2

Figure III.2: Comparison of each corner and its histograms for T11 vertebra from Image 1.

Figure III.3: Comparison of all corners’ histograms for T11 from Image 1, showing the
difference between right side (green and orange curves) and left side of vertebra (red and
blue curves).

III.2.0.2 T10 vertebra

As done for the previous vertebra, all results, presented in Figures III.13 to III.15, for
vertebra T10, are presented here.

The initial-level set used for the segmentation of the T10 vertebra from Image 2 and
the concomitant segmentation are represented in Figure III.13.
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ANNEX III . SEGMENTATION RESULTS

Figure III.4: Initial level-set and segmentation result for T12 from Image 1. Image on
the left: Original image; Image on the middle: Initial level-set (blue curve) used for
segmentation of that vertebra; Image on the right: Segmentation result (green) for the
correspondent vertebra.

Figure III.14 displays the corners of vertebra T10 and the correspondent histograms.
Figure III.15 displays all corners’ histograms, for visual comparison.

III.3 Image 3

III.3.0.1 T11 vertebra

The initial-level set used for the segmentation of the T11 vertebra and the concomitant
segmentation are represented in Figure III.16.

Figure III.17 displays the corners of vertebra T11 and the correspondent histograms.
Figure III.18 displays all corners’ histograms, for visual comparison.

III.3.0.2 L1 vertebra

As done for the previous vertebra, the results for the vertebra L1, from image 3, are
presented here in Figures III.19 to III.21. The initial-level set used for the segmentation of
the L1 vertebra and its concomitant segmentation are represented in Figure III.19.
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III .4 . IMAGE 4

Figure III.5: Comparison of each corner and its histograms for the T12 vertebra from Image
1.

Figure III.20 displays the corners of vertebra L1 and the correspondent histograms.
Figure III.21 displays all corners’ histograms, for visual comparison.

III.4 Image 4

III.4.0.1 T10 vertebra

The initial-level set used for the segmentation of the T10 vertebra from Image 4 and the
concomitant segmentation are represented in Figure III.22.

Figure III.23 displays the corners of vertebra T10 and the correspondent histograms.
Figure III.24 displays all corners’ histograms, for visual comparison.

III.4.0.2 T11 vertebra

As done for the previous vertebra, all results, presented in Figures III.25 to III.27, for
vertebra T11 are presented here.
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ANNEX III . SEGMENTATION RESULTS

Figure III.6: Comparison of all corners’ histograms for T12 from Image 1, showing the
difference between right side (green and orange curves) and left side of vertebra (red and
blue curves).

The initial-level set used for the segmentation of the T11 vertebra from Image 4 and
the concomitant segmentation are represented in Figure III.25.

Figure III.26 displays the corners of vertebra T11 and the correspondent histograms.
Figure III.27 displays all corners’ histograms, for visual comparison.

III.5 Image 5

In this section, the remainder of segmentations for Image 5 are presented.

III.5.0.1 T8 vertebra

The initial-level set used for the segmentation of the vertebra T8 from Image 5 and the
concomitant segmentation are represented in Figure III.28.

Figure III.29 displays the corners of vertebra T8 and the correspondent histograms.
Figure III.30 displays all corners’ histograms, for visual comparison.

III.5.0.2 T9 vertebra

As done for the previous vertebra, all results, presented in Figures III.31 to III.33, for
vertebra T9 are presented here.

The initial-level set used for the segmentation of the vertebra T9 from Image 5 and the
concomitant segmentation are represented in Figure III.31.

Figure III.32 displays the corners of vertebra T9 and the correspondent histograms.
Figure III.33 displays all corners’ histograms, for visual comparison.

III.5.0.3 T6 vertebra

The initial-level set used for the segmentation of vertebra T6, from Image 5, and the
concomitant segmentation are shown in Figure III.34.

Figure III.35 displays the corners of vertebra T6 and the correspondent histograms.
Figure III.36 displays the corners’ histograms, for visual comparison.
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III .5 . IMAGE 5

Figure III.7: Initial level-set and segmentation result for L2 from Image 1. Image on the left:
Original image; Image on the middle: Initial level-set (blue curve) used for segmentation
of that vertebra; Image on the right: Segmentation result (green) for the correspondent
vertebra.
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ANNEX III . SEGMENTATION RESULTS

Figure III.8: Comparison of each corner and its histograms for the L2 vertebra from Image
1.

Figure III.9: Comparison of all corners’ histograms for L2 from Image 1, showing the
difference between right side (green and orange curves) and left side of vertebra (red and
blue curves).
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III .5 . IMAGE 5

Figure III.10: Initial level-set and segmentation result for T7 from Image 2. Image on
the left: Original image; Image on the middle: Initial level-set (blue curve) used for
segmentation of that vertebra; Image on the right: Segmentation result (green) for the
correspondent vertebra.
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ANNEX III . SEGMENTATION RESULTS

Figure III.11: Comparison of each corner and its histograms for the T7 vertebra from Image
2.

Figure III.12: Comparison of all corners’ histograms for T7 from Image 2, showing the
difference between right side (green and orange curves) and left side of vertebra (red and
blue curves).
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III .5 . IMAGE 5

Figure III.13: Initial level-set and segmentation result for T10 from Image 2. Image on
the left: Original image; Image on the middle: Initial level-set (blue curve) used for
segmentation of that vertebra; Image on the right: Segmentation result (green) for the
correspondent vertebra.

135



ANNEX III . SEGMENTATION RESULTS

Figure III.14: Comparison of each corner and its histograms for the T10 vertebra from
Image 2.

Figure III.15: Comparison of all corners’ histograms for T10 from Image 2, showing the
difference between right side (green and orange curves) and left side of vertebra (red and
blue curves).
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III .5 . IMAGE 5

Figure III.16: Initial level-set and segmentation result for T11 from Image 3. Image
on the left: Original image;Image on the middle: Initial level-set (blue curve) used for
segmentation of that vertebra; Image on the right: Segmentation result (green) for the
correspondent vertebra.
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ANNEX III . SEGMENTATION RESULTS

Figure III.17: Comparison of each corner and its histograms for the T11 vertebra from
Image 3.

Figure III.18: Comparison of all corners’ histograms for T11 from Image 3, showing the
difference between right side (green and orange curves) and left side of vertebra (red and
blue curves).
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III .5 . IMAGE 5

Figure III.19: Initial level-set and segmentation result for L1 from Image 3. Image on
the left: Original image; Image on the middle: Initial level-set (blue curve) used for
segmentation of that vertebra; Image on the right: Segmentation result (green) for the
correspondent vertebra.
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ANNEX III . SEGMENTATION RESULTS

Figure III.20: Comparison of each corner and its histograms for the vertebra L1 from Image
3.

Figure III.21: Comparison of all corners’ histograms for L1 from Image 3, showing the
difference between right side (green and orange curves) and left side of vertebra (red and
blue curves).
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III .5 . IMAGE 5

Figure III.22: Initial level-set and segmentation result for T10 from Image 4. Image on
the left: Original image; Image on the middle: Initial level-set(blue curve) used for
segmentation of that vertebra; Image on the right: Segmentation result (green) for the
correspondent vertebra.
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ANNEX III . SEGMENTATION RESULTS

Figure III.23: Comparison of each corner and its histograms for the T10 vertebra from
Image 4.

Figure III.24: Comparison of all corners’ histograms for T10 from Image 4, showing the
difference between right side (green and orange curves) and left side of vertebra (red and
blue curves).
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III .5 . IMAGE 5

Figure III.25: Initial level-set and segmentation result for T11 from Image 4. Image
on the left: Original image;Image on the middle: Initial level-set (blue curve) used for
segmentation of that vertebra; Image on the right: Segmentation result (green) for the
correspondent vertebra.
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ANNEX III . SEGMENTATION RESULTS

Figure III.26: Comparison of each corner and its histograms for the T11 vertebra from
Image 4.

Figure III.27: Comparison of all corners’ histograms for T11 from Image 4, showing the
difference between right side (green and orange curves) and left side of vertebra (red and
blue curves).
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III .5 . IMAGE 5

Figure III.28: Initial level-set and segmentation result for T8 from Image 5. Image on the left:
Original image;Image on the middle: Initial level-set (blue curve) used for segmentation
of that vertebra; Image on the right: Segmentation result (green) for the correspondent
vertebra.
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ANNEX III . SEGMENTATION RESULTS

Figure III.29: Comparison of each corner and its histograms for the T8 vertebra from Image
5.

Figure III.30: Comparison of all corners’ histograms for T8 from Image 5, showing the
difference between right side (green and orange curves) and left side of vertebra (red and
blue curves).
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III .5 . IMAGE 5

Figure III.31: Initial level-set and segmentation result for T9 from Image 5. Image on the left:
Original image;Image on the middle: Initial level-set (blue curve) used for segmentation
of that vertebra; Image on the right: Segmentation result (green) for the correspondent
vertebra.
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ANNEX III . SEGMENTATION RESULTS

Figure III.32: Comparison of each corner and its histograms for the T9 from Image 5.

Figure III.33: Comparison of all corners’ histograms for T9 from Image 5, showing the
difference between right side (green and orange curves) and left side of vertebra (red and
blue curves).
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III .5 . IMAGE 5

Figure III.34: Initial level-set and segmentation result for L6 from Image 5. Image on the
left: Initial level-set (blue curve) used for segmentation of that vertebra; Image on the
right: Segmentation result (green) for the correspondent vertebra.
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ANNEX III . SEGMENTATION RESULTS

Figure III.35: Comparison of each corner and its histograms for the T6 vertebra from Image
5.

Figure III.36: Comparison of all corners’ histograms for T6 from Image 5, showing the
difference between right side (green and orange curves) and left side of vertebra (red and
blue curves).
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