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Abstract

Machine Learning (ML) models are able to predict a variety of diseases, with perfor-
mances that can be superior to those achieved by healthcare professionals. However,
when implemented in clinical settings as decision support systems, their generalisation
capabilities are often compromised, rendering healthcare professionals more susceptible
into delivering erroneous diagnostics. This research focuses on uncertainty measures
as a key method to abstain from classifying samples with high uncertainty as well as a
selection criterion for active learning strategies.

For this purpose, it was employed four large public multi-label Electrocardiogram
(ECG) databases for the classification of cardiac arrhythmias. Regarding the uncertainty
measures, single distribution uncertainty and classical information-theoretic measures of
entropy were tested and compared. Thus, three Deep Learning models were developed: a
single convolutional neural network and two multiple-models using Monte-Carlo Dropout
and Deep Ensemble techniques. When tested with samples from the same database used
for training, all models achieved performances higher than 95% for F1-score. However,
when tested on an external dataset, their performances dropped to approximately 70%,
indicating a probable scenario of dataset shift. The Deep Ensemble model obtained the
highest F1-score in both test sets with a maximum difference of 3% from the others. The
classification with rejection option increased from a rejection of 10% to a range between 30%
to 50% depending on the model or uncertainty measure, with the highest rejection rates
being obtained on external data. This reveals that external dataset’s classifications have
higher uncertainty, also an indication of dataset shift. For the active learning approach,
10% of the highest uncertainty samples were used to retrain the models. The performances
results increased by almost 5%, suggesting uncertainty as a good selection method.

Although there are still challenges to the implementation of ML models, the prelimi-
nary studies show that uncertainty quantification is a valuable method for classification
with rejection option and active learning approaches under dataset shift conditions.

Keywords: Uncertainty Quantification, Monte Carlo Dropout, Deep Ensemble, Dataset
shift, Active Learning
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Resumo

Modelos de aprendizagem automática conseguem prever um leque de doenças, muitas
vezes com desempenhos superiores aos obtidos pelos profissionais de saúde. Contudo,
quando integrados em ambientes clínicos como sistemas de apoio à decisão, a genera-
lização destes fica comprometida, o que leva a que profissionais de saúde fiquem mais
suscetíveis de fornecer diagnósticos incorretos. Deste modo, este projeto foca-se no papel
da incerteza na rejeição de classificações com elevada incerteza e na aprendizagem ativa.

Quatro bases de dados públicas de sinais ECG multi-label foram utilizadas na classifi-
cação de arritmias cardíacas. Relativamente à quantificação da incerteza, foram testadas e
comparadas incertezas provenientes das distribuições e da teoria de informação clássica
da entropia. Para tal, foram desenvolvidos três tipos de redes neurais convolucionais: um
modelo único e dois modelos obtidos através das técnicas de Monte-Carlo Dropout e Deep
Ensemble. Quando testados com dados da mesma base de dados de treino, os modelos
alcançaram desempenhos superiores a 95% de F1-score. No entanto, quando testados com
dados externos, os desempenhos desceram para cerca de 70%, revelando a possibilidade
de dataset shift. O modelo Deep Ensemble obteve os melhores resultados em ambos os dados
de teste, com uma diferença máxima de 3% em relação aos outros modelos. O threshold
de rejeição de 10% em treino aumentou para valores entre 30% a 50%, dependendo do
modelo e da medida de incerteza, sendo que as rejeições mais elevadas são obtidas nos
dados externos. Isto revela que estes dados têm maior incerteza nas suas classificações,
confirmando a presença de dataset shift. Para a abordagem de aprendizagem ativa, 10% de
dados com elevada incerteza foram utilizados para retreinar os modelos. O desempenho
destes aumentou quase 5%, sugerindo a incerteza como um bom critério de seleção.

Apesar de ainda existirem desafios na implementação de modelos de aprendizagem
automática, os resultados preliminares revelam que a quantificação da incerteza é um
método valioso na classificação com rejeição e na aprendizagem ativa, em condições de
dataset shift.

Palavras-chave: Quantificação da Incerteza, Monte-Carlo Dropout, Deep Ensemble, Dataset
shift, Aprendizagem ativa
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1

Introduction

This chapter presents the context and motivation of this dissertation, its main goals and
the overall structure of this document.

1.1 Context and Motivation

Over the years, medical technology has been developed and improved in order to ensure
the most effective healthcare to the general public. Artificial Intelligence (AI) is quickly
evolving due to its potential to assist evidence-based clinical decision-making and achieve
value-based care [2]. As a result, there has been a growing amount of scientific research
regarding the use of ML algorithms in the medical domain. This is achievable because ML
models are trained with patient data in order to identify patterns that would otherwise
be undetected and, thereby, produce an estimate of a patient’s current or future clinical
state. ML models have progressed to the point that they can predict a variety of diseases,
with performances that can be superior to those achieved by healthcare professionals.

However, these models, while showing promising results, still have some limitations
for their deployment on a clinical setting. When they are implemented in the real world
as decision support systems, their generalization capabilities are often compromised,
resulting in lower performances and render healthcare professionals more susceptible
into delivering erroneous diagnostics. As a result, it is critical that ML models include
safety mechanisms to mitigate these situations and improve the trustworthiness of these
models.

Quantifying the uncertainty of the models in their classifications is a method that has
been explored in order to assess the model’s confidence in their decisions. The devel-
opment of uncertainty aware models will provide healthcare professionals with access
to the model’s confidence in its predictions but also refrain the model from delivering
classifications with high uncertainty. Furthermore, since samples with high uncertainty
have different characteristics and distributions than the ones learned by the model, these
data can be used to retrain the ML model and improve its generalisation.

Therefore, the main motivation behind this dissertation is to explore the potential

1



CHAPTER 1. INTRODUCTION

of Uncertainty Quantification (UQ) on ML models, in particular Deep Learning (DL)
models, in providing a more careful and safer application, as well as help to increase trust
among healthcare professionals when using these models as decision support systems.
This research will use as supporting application the classification of cardiac arrhythmias
using ECG data, as this sort of data can vary significantly among patients and these heart
disorders are relatively common diagnoses.

1.2 Goals

This dissertation aims to explore how to build and evaluate a DL model through a
probabilistic approach. The primary focus will be on developing a classification approach
with rejection option based on uncertainty measures and evaluate the uncertainty as a
selection method for active learning. Although the main purpose is to develop an agnostic
framework for the classification of cardiac arrhythmias, this work will concentrate on
establishing the practical value of UQ applied in three types of DL models in different
medical datasets and their role in the referred methods. This research aims at providing
a better understanding of the capacity of the model’s generalization through uncertainty
estimation as well as demonstrate that uncertainty aware models are capable of containing
safety mechanisms and, therefore, be considered trustworthy clinical decision support
systems.
In summary, this dissertation will be divided into five main sequential goals:

1. Development of different types of DL models for the selected datasets;

Three types of CNN models will be developed: a single model, a model obtained
through MC Dropout and another through DE.

2. Distinction andquantification of the different sources ofuncertainty on the developed
algorithms;

Shannon entropy and maximum probability will be calculated for the single model
while the DE andMC Dropoutmodels have theiruncertainty separated into epistemic
and aleatoric, with these two uncertainties and their combination (total uncertainty)
being estimated.

3. Classification with rejection option using UQ measures;

This method will be applied to the 3 models using all the calculated uncertainties.
The performance of the models will be evaluated according to the rejection curve
employing the F1-Score and the AUC-ROC. In addition, a possible optimal rejection
threshold will be investigated.

4. Use of UQ as a sample selection criteria for active learning purposes;

The samples with the highest level of uncertainty are chosen to retrain the models
and determine whether the model’s performance improves.

2



1.3. DOCUMENT STRUCTURE

5. Identification of dataset shift through UQ;

The difference in uncertainty behaviour between two test sets, one with data from
the same training database and the other with data from an external database, will
be evaluated through the employed approaches and compared.

1.3 Document Structure

This document is organised into 7 chapters. The current chapter introduces the motivation
behind the developed project and its main goals. The second Chapter presents the
theoretical concepts required for a proper comprehension of the research conducted. The
Chapter three provides a literature review on the topics of uncertainty estimation and
related approaches, as well as their application in ECG data. The forth Chapter describes
the datasets and labels selected for this work in addition to the fundamental background
associated with the ECG data. The methodologies employed in this work and the analyses
of the obtained results are discussed in Chapters five and six, respectively. Lastly, the
seventh chapter summarizes the main conclusions of the developed research as well as its
limitations and recommendations for future work.

3



2

Theoretical concepts

2.1 Probability

Probability is the field of mathematics that studies random phenomena and analyses the
chance of a certain event occurring. If it is very likely to happen a certain event, the
probability is considered high. If the possibility is low, so is the probability.

However, there are two distinct interpretations of probability. One is known as the
Frequentist interpretation, in which probabilities describe the long-term frequency of
events that can occur several times [3]. The other is called the Bayesian interpretation,
where probability quantifies the degree of belief or uncertainty regarding an occurrence.
As a result, it is intrinsically related to information rather than repetitive experiments
[4, 5]. Bayesian interpretation is relevant in the uncertainty field since it can be used to
represent the uncertainty of one-off events that do not have long term frequencies.

It should be emphasized that the rules of probability theory are the same regardless
of the interpretation adopted [3].

Due to the evolution of computer technologies, the Bayesian approach has become of
real practical use in machine learning, as many algorithms rely on probabilistic data [5, 6].

2.1.1 Probability Theory

Probability theory provides a framework for manipulation and quantification of un-
certainty [7]. In AI applications, the ML algorithms compute or approximate various
expressions employing probability theory and the probability is used to theoretically
analyse the behavior of proposed ML systems [8].

Probability theory is defined by three properties called The Axioms of Probability [5,
9]. Thus, for a sample space Ω and the probability 𝑃 of a certain event 𝐴 with an event
space 𝐹:

• Ω is a set of all the outcomes of a random experiment, where each outcome 𝜔 ∈ Ω

can be seen as a complete description of the state of the real world on the experiment.
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• A set of 𝐴 ∈ 𝐹 are subsets of Ω (i.e. A ⊆ Ω is a collection of possible outcomes of an
experiment)

• Probability measure: A function 𝑃 : 𝐹 → R that satisfies the following properties :

– 𝑃(𝐴) ≥ 0, 𝐴 ∈ 𝐹;

– 𝑃(Ω) = 1;

– If 𝐴1, 𝐴2, ... are disjoint events (i.e. 𝐴𝑖 ∩ 𝐴 𝑗 = ∅ whenever i ≠ j), then

𝑃(∪𝑖𝐴𝑖) =
∑

𝑖 𝑃(𝐴𝑖) ;

One of the most important tools in probability theory is conditional probability. It is
represented as 𝑃(𝑌 |𝑋) and measures the probability of an event𝑌 happen when the event
𝑋 is known. It is defined as:

𝑃(𝑌 |𝑋) = 𝑃(𝑌, 𝑋)
𝑃(𝑋) (2.1)

where 𝑃(𝑌, 𝑋) is the joint probability of 𝑋 and 𝑌. Note that this is not defined when 𝑃(𝑋)
is 0. Also, Iif the events 𝑋 and 𝑌 are independent, that is, if the occurrence of one does
not influence the probability of the other, 𝑃(𝑋 |𝑌) can be reduced to:

𝑃(𝑌 |𝑋) = 𝑃(𝑌) (2.2)

and
𝑃(𝑌, 𝑋) = 𝑃(𝑌)𝑃(𝑋) (2.3)

In the Bayesian approach, the conditional probability is known as Bayes rule:

𝑃(𝐻 |𝐷) = 𝑃(𝐷 |𝐻)𝑃(𝐻)
𝑃(𝐷) (2.4)

where 𝐷 is the data and 𝐻 the hypothesis. The term 𝑃(𝐷 |𝐻) is called the likelihood and
represents the probability of the observed data from the hypothesis. The term 𝑃(𝐻) is
known as the prior, as it reflects one’s prior knowledge before the data. Furthermore,
the term 𝑃(𝐻 |𝐷) is named the posterior and is the probability of the hypothesis after
consideration of the data [10].

The evidence, 𝑃(𝐷), is regarded irrelevant as it is considered a normalizing constant.
By eliminating this scale factor, we reduce the Bayes theorem into:

𝑝𝑜𝑠𝑡𝑒𝑟𝑖𝑜𝑟 ∝ 𝑙𝑖𝑘𝑒 𝑙𝑖ℎ𝑜𝑜𝑑 × 𝑝𝑟𝑖𝑜𝑟 (2.5)

2.1.2 Decision Theory

Decision theory combined with probability theory enables the best decisions to be made
in conditions of uncertainty, such as observed in pattern recognition [11]. In decision
theory, the decision maker has a set of available actions, 𝐴, to select from. Each option has
benefits and costs that are dependent on the � ∈ Θ that parameterises the model. This
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information can be translated into a loss function ℓ (�, 𝑎), that indicates the loss associated
with 𝑎 ∈ 𝐴 [3, 12].

The posterior expected loss, i.e. the risk, given the known data x, can be estimated by:

𝑅(𝑎 |x) =
∑
�∈Θ

ℓ (�, 𝑎)𝑝(� |x) (2.6)

The optimal policy, also known as Bayes estimator, determines what action to take for
each potential observation so as to minimize the risk [3]:

𝜋∗(x) = argmin
𝑎∈𝑎

[𝑅(𝑎 |x)] (2.7)

Furthermore, the utility function 𝑈(�, 𝑎) estimates the desirability of each possible
action in each possible state [3]. The lost function and the utility function are equivalent
if we consider the utility to be merely the negative of the loss, 𝑈(�, 𝑎) =-ℓ (�, 𝑎). Thus, the
optimal policy can be given by the maximum expected utility principle:

𝜋∗(x) = argmax
𝑎∈𝑎

[𝑈(�, 𝑎)𝑝(� |x)] (2.8)

2.1.3 Information Theory

Information theory assesses a number of measures related to the transmission and pro-
cessing of uncertainty and information, within the framework of probability theory [13].

If x is a random variable that can take the values 𝑥1,𝑥2, ..., 𝑥𝑁 and 𝑝(𝑥𝑘) is the probability
that x takes on the value 𝑥𝑘 , the self-information i(𝑥𝑘) of the event x takes on 𝑥𝑘 is defined
by [14]:

𝑖(𝑥𝑘) = log2
1

𝑝(𝑥𝑘)
= − log2 𝑝(𝑥𝑘) (2.9)

Indubitably, if the probability of an event is high, there is very little information
associated with its occurrence, while the occurrence of an event of low probability has
more information associated with it [14]. The measure of information, therefore, depends
on the probability distribution 𝑝(𝑥𝑘). The expected value of the self-information is known
as Shannon entropy. The entropy 𝐻 of a random variable 𝑥𝑘 is given by [15]:

H(𝑋) = −
∑
x∈𝑋

𝑝(𝑥𝑘) log2 𝑝(𝑥𝑘) (2.10)

Furthermore, we can define a conditional entropy of𝑋 given𝑊 represented as 𝐻(𝑋 |𝑊)
[16]:

𝐻(𝑋 |𝑌) = −
∑
𝑥,𝑦

𝑝(𝑥, 𝑦) log2 𝑝(𝑥, 𝑦) (2.11)

This metric can be described as the uncertainty that exists regarding the value 𝑋 when
𝑊 is known.
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The difference between the uncertainty of 𝑋, 𝐻(𝑋), and 𝐻(𝑋 |𝑊) is the information
regarding 𝑋 contained in 𝑊 . This value is known as the Mutual Information and is
represented by 𝐼(𝑋,𝑊) [14, 16]:

𝐼(𝑋,𝑊) = 𝐻(𝑋) − 𝐻(𝑋 |𝑊). (2.12)

Some of the properties of Mutual Information are that it is always non-negative, is
symmetric in X and W and is zero if X and W are independent [17].

2.2 Machine Learning

ML is a field of AI concerned with the development of computational methods capable of
learning through known information and improving their own performance in order to
execute a certain task.

A well-known definition of ML is given by Tom Mitchell that defined it as a computer
program that can "learn from experience E with respect to some class of tasks T and
performance measure P, if its performance at tasks in T, as measured by P, improves with
experience E" [18].

These algorithms are capable of resolving a variety of learning problems through the
aforementioned learning process. ML can be sub-divided into three main categories:

• Supervised Learning

Supervised Learning (SL) is the form of ML most widely used in practice [19].
Predictive models are learned from a large training dataset where each training
sample corresponds to an event. A training example is a vector of inputs, mostly
known as features, that describes the event and an output, i.e. a label attributing
the class to which the training example belongs [20]. Classification problems are
suitable to be solved by SL models, as they require the deduction of a mapping from
the features to their respective labels [19].

• Unsupervised Learning

In Unsupervised Classification, the training examples are unlabeled and the objective
of the model is to subdivide the dataset into clusters of similar examples or learn the
entire probability distribution of the data. Self-SL, dimensionality reduction and
clustering are some of the regularly used unsupervised learning methods [21].

• Reinforcement Learning

In Reinforcement learning, the agent (i.e. the model) learns through trial-and-error
interactions with a dynamic environment [22]. On each step of interaction, it is
received an input and the information about the current state of the environment.
For every action chosen, the state of the environment changes and the value of this
state transition is communicated through a scalar reinforcement signal, typically
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between 0 and 1. The decision is the behavior that has the maximum value of the
reinforcement signal.

2.2.1 Traditional Machine Learning

The development of a traditional ML model usually involves a set of core components, as
represented in Figure 2.1.

Feature Extraction Data Prediction ResultTraining

Figure 2.1: Traditional Machine Learning Components.

The initial step in traditional ML is data collection and data preparation. Data used as
input in ML models is, in general, unstructured and incorporates a lot of noise. Therefore,
data preprocessing is commonly applied. The next step is the feature extraction process
that consists of transforming the data available in a way that highlights the relevant
information contained in the dataset [23]. It results in a high number of features, some of
which are not important to the learning process. Thus, a subset of features that are both
relevant and nonredundant are selected, mitigating the negative impact of unnecessary
features on the performance of the model.

In order to achieve the best results, it is important to select the best ML algorithm
taking into account the data characteristics. The majority of ML algorithms need initial
intervention by the user in order to choose the right values of various parameters for
the given dataset [24]. Once all of the conditions are met, the model is trained using a
portion of the chosen dataset as training data. Finally, once the model has learned from
the training dataset, it can be used to classify test data.

Commonly used traditional ML models are Naive Bayes, Support Vector Machine,
K-Nearest Neighbour, Decision Tree and Random Forest.

2.2.2 Deep Learning

Many traditional ML models have a simple two-layer architecture with the form of input
x → output y. Nevertheless, when we take into account the role of the brain in learning
and decision-making, it can be observed that the brain has several levels of information
processing. It is believed that in each level occurs the learning of features or representations
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2.2. MACHINE LEARNING

at increasing levels of abstraction [19]. This revelation prompted a new field in ML, named
DL, which aims to reproduce this type of architecture..

Artificial Neural Network (ANN) is at the very core of DL. The network is versatile,
powerful, scalable and can extract high level features automatically, making it ideal
to tackle large and highly complex DL tasks, such as classifying billions of data [25].
The behaviour of a single neuron is the key component for studying the non-linear
characteristics of models such as the multi-layer neural networks [26]. An artificial single
neuron is represented in Figure 2.2.
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Figure 2.2: Artificial single neuron representation. Adapted from [27].

The input channels, represented by 𝑥𝑖 , are the components that contain the data. The
transformations applied to its input are parameterized by each weight, 𝑤𝑖 , usually selected
randomly [28]. The neuron sums the various weighted input signals and is passed through
an activation function as soon as a threshold, in this case, the bias value c, is exceeded. The
activation function adds non-linear and monotonic factors to the network and improves
the model fitting [29].

The activation function of the neuron represented in Figure 2.2 is the sigmoid function
that is defined by Equation 2.13.

𝑓 (𝑥) = 1
1 + 𝑒−𝛼𝑥

(2.13)

This function converts the values to a range between 0 and 1 and it’s continuity allows
the calculation of the derivative [27]. Although there are several activation functions, for
this work development, besides sigmoid activation function, a Parametric Rectified Linear
Units (PRelu) activitation function was also used. PRelu is expressed by Equation 2.14.

𝑓 (𝑥) =

𝑥 if 𝑥 >= 0

𝛼𝑥 if 𝑥 < 0
(2.14)

In this function, if the sample in the neuron has a value greater than zero, the output
is linearly related to the sample’s value. When the value in the neuron is a fixed non-zero
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lower number, the output is proportional to a learning parameter 𝑎, that is learned from
the data. It was verified that the PRelu function has lower error rates than most activation
functions and helps to overcome overfitting [30]. Overfitting is a problem that occurs
when the model performs so well on training data that it is unable to generalize to new
data [28].

Deep Neural Network (DNN) are more complex forms of ANN. These networks
receive the inputs and map them via a sequence of layered transformations which are
learned by exposure to the samples used to train the model [28]. This type of model
consists of one input layer, one or more hidden layers and one final layer designed as the
output layer. A representation of a common DL model pipeline is presented in Figure 2.3.

Data Deep Neural Network Prediction Result

Input Layer Hidden Layers Output Layer

Figure 2.3: Deep Learning pipeline. In the Deep Neural Network, the green layer is the
input layer, the yellow layers are the hidden layers and the blue layer is the output layer.

The input layer receives raw information and no operations are performed at this layer.
The nodes simply relay information to the hidden layers. It is in the hidden layers that
the low and high-level features necessary for classification are extracted, with higher-level
learned features defined in terms of lower-level features [31, 32]. This final layer brings
the information learned through the hidden layer and delivers the final value as a result.

Furthermore, learning can be defined as the process of finding the values of the
network’s layers in such a way that the input examples can be accurately assigned to their
associated labels [28].

In order to evaluate the learning of the algorithm, it is necessary to quantify how far
the calculated outputs of the network are from the true values. This is obtained by using
a loss function. This result is then used as a feedback signal to adjust the weights and
biases of the network, reducing the loss score for the current samples [28]. This process is
known as back-propagation.

A network has learnt when the output values are as near as possible to the target
values i.e. the loss function is at its minimum.

There are a wide range of DL architectures. The fully connected neural and CNN are
two of the most used and almost all other DL neural networks stem from these.
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2.2.2.1 Fully connected networks

A fully connected network, also known as dense network, is a combination of several simple
neurons, where they are all connectedwith the preceding andsubsequent layers. The layers
transmit the transformations made by succeeding simple mathematical combinations and,
subsequently, formulate complex non-linear calculus that ends in an activation function,
as aforementioned. These networks have two main purposes: interconnecting layers with
different dimensions and developing relations between the extracted features and the
outputs [27].

2.2.2.2 Convolutional Neural Network

The CNN is a DL architecture which applies convolution operations between the kernels
and a tensor. The kernels can be considered filters that detect features within local regions
of the input data (called local receptive field), mapping it to a feature map [28]. The size
of the receptive field is the same as the size of the filter.

The kernels are composed of weights that change as the network learns during the
training process. In the forward propagation step, the kernels are activated by an activation
function, as explained in Section 2.2.2. All the layers in a CNN are called convolutional
layers and their output is the stacking of feature maps. After convolution, a pooling
layer can be applied to decrease the dimensions of the feature maps and minimize the
computational effort [27].

The final outputs are further flattened and submitted to one or more dense layers until
the class with the highest probability is selected as the predicted class. The CNN can also
include optional layers like batch normalization to improve the training time and Dropout
layers to reduce the overfitting.

2.2.3 Multi-label classification

In single-label classification, the algorithm is learning from a set of examples that are
categorized with a single label 𝑙 from a set of disjoint labels L, |L| > 1. The learning
problem is referred to as a binary classification if |L| = 2, while if |L| > 2, then it is called
a multi-class classification problem. In multi-label classification, the data is categorized
with a set of labels Y ⊆ L.

The main difference between traditional and multi-label classification is in the label
format. Where a traditional classifier returns only one value, a multi-label model produces
a vector of output values. There are two main approaches in multi-label learning: data
transformation and method adaptation. The first is based on transformation techniques
that, when applied, are able to produce one or more binary or multi-class datasets [33].
The method adaptation focuses on adapting existing classification algorithms, so they are
capable of dealing with multi-label data.
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Two of the most popular transformations are the Binary Relevance (BR) and the Label
Power Set (LP). The BR method converts a multi-label sample into several single-label
samples [34]. After the multi-label data has been transformed, a set of binary classifiers
are constructed for each class using the respective training dataset. In this technique each
class is independent from each other, neglecting the relationship between different classes,
which may have negative effects [35].

LP transforms the multi-label problem into one single-label multi-class classification,
where each distinct labelset assignment is treated as a class, resulting in 2𝑞 transformed
labels. Although this technique models labels together and achieve better predictive
performances, many label sets only occur once or very rarely, resulting in an unbalanced
problem that is difficult to learn from [36].

Furthermore, the Method Adaptation Approach focuses on classification models such
as kNN classifiers, classification trees and neural networks that have been used to tackle
both binary and multi-class classifications.

Multi-label classification can be supported directly by neural networks simply by
selecting the number of target labels as the number of nodes in the output layer. As a
result, the model will have one output node per class to address the multi-labelled data
[37]. By applying a sigmoid function as activation function to each output node, we
transform the algorithm into a binary classification for each class. The output probabilities
will not sum 1 and the predictive possibility of each class is independent [35].

2.2.4 Performance Evaluation

In ML, datasets are usually divided into training, validation and testing set. Once the
model has learned on a training dataset, it is expected to have a good performance on
unseen data.

Validation is crucial since it allows us to identify if the classifiers suffer from underfitting
or overfitting, both of which contribute to poor performance. Underfitting occurs when a
model is incapable to understand the variability of the data, i.e. the model is too simple
to describe the given set of data [38]. Overfitting, as explained previously, is associated
with the model’s inability to generalise to different data, This is one of the most prevalent
problems in ML models.

Thus, before the system can be implemented, a validation technique must be selected
to evaluate how much the model learned. The three most commonly used are:

• k-fold Cross-Validation

The dataset is distributed in k folds and, in each iteration, the classifier uses one fold
for evaluating the model and the remaining k-1 folds for training.

• Leave one out
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For the total number of n samples on the dataset, in each iteration, a single sample is
used for evaluating the model and n-1 samples are used for training. This method
is a specific case of k-fold Cross-Validation and is used for small datasets.

• Bootstrapping

Multiple bootstrap training sets with n samples are produced with uniform resam-
pling. The performance of the model is calculated on the out-of-sample examples.
Usually, resampling with replacement includes around 60% of the original samples
in each bootstrap dataset, with the remaining used as out-of-sample test sets [39].

There are several evaluation metrics from which to choose when evaluating the
performance and results of the model with the testing set. The commonly used are:
Accuracy, Sensitivity, Specificity, Precision and F1-score [40]. The model’s performance
can also be evaluated using the Confusion Matrix [41].

The metrics presented below take into account when the sample is classified as the
evaluated class correctly (True Positive (TP)), when the sample is classified as not being
part of the evaluated class correctly (True Negative (TN)), when the sample is classified
as the evaluated class incorrectly (False Positive (FP)) and when the sample is classified
as not being part of the evaluated class incorrectly (False Negative (FN)).

2.2.4.1 Accuracy

The model’s accuracy is expressed as a percentage of the properly identified samples in
all classes. It’s represented by the total number of samples successfully classified divided
by the total number of samples. For a binary classifier, it is defined by:

𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
. (2.15)

2.2.4.2 Sensitivity

Sensitivity, also known as recall, is the True Positive Rate (TPR), i.e. it is the probability of
identify correctly a positive sample. It is calculated by the number of correctly identified
positive samples divided by the total number of positive samples.

𝑇𝑃𝑅 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
. (2.16)

2.2.4.3 Specificity

Specificity, also known as the True Negative Rate (TNR), is the probability of identify
correctly a negative sample. It is represented by the number of correctly identified negative
samples divided by the total number of negative samples. It is given by:

𝑇𝑁𝑅 =
𝑇𝑁

𝑇𝑁 + 𝐹𝑃
. (2.17)
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2.2.4.4 Precision

Precision, also known as the Positive Predictive Value (PPV), is defined by the percentage
of TP samples among the samples that were classified as positive.

𝑃𝑃𝑉 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
. (2.18)

2.2.4.5 F1-Score

The F1-score may be interpreted as the harmonic mean of the precision and recall. The
metric’s greatest score is 1 and its poorest is 0. Precision and recall both contribute equally
to the F1-score. This metric is calculated as follows:

𝐹1 − 𝑆𝑐𝑜𝑟𝑒 = 2 ∗ 𝑃𝑟𝑒𝑐𝑖𝑐𝑖𝑜𝑛 ∗ 𝑅𝑒𝑐𝑎𝑙𝑙
𝑃𝑟𝑒𝑐𝑖𝑐𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙

. (2.19)

2.2.4.6 Aggregate Metrics

Aggregate metrics such as macro, micro and weighted average provide a high-level view
of how the model is performing. This is highly valuable to metrics such as precision,
recall and F1-score. For imbalance datasets, F1-score is one of the most used metrics for
performance evaluation, since it is a combination of both precision and recall. In the
following points, macro, micro and weighted average F1-score are detailed.

• Macro average F1-score

This metric computes the arithmetic mean (unweighted mean) of the F1-score of all
classes. It does not take label imbalance into account. In a multi-label classification,
the macro-average for F1-score is as follow:

macro avg F1-score =

∑𝑁
𝑖=1 F1-score(𝑙𝑖)

𝑁
(2.20)

where 𝑙𝑖 is a single label 𝑙 from a set of disjoint labels L and N the number of labels.

• Micro average F1-score

Micro averaging computes a global average F1-score by counting the sums of the
True Positives, False Negatives and False Positives. First, it is summed the respective
TP, FP, and FN values across all classes and then it is calculated the F1-score.

micro avg F1-score =

∑𝑁
𝑖=1 𝑇𝑃∑𝑁

𝑖=1 𝑇𝑃 + 1
2
∑𝑁

𝑖=1(𝐹𝑃 + 𝐹𝑁)
(2.21)

• Weighted average F1-score

The weighted-averaged F1-score is calculated by taking the weighted mean of the
labels F1-score while considering each class’s occurrences (𝑠𝑢𝑝𝑝𝑜𝑟𝑡(𝑙𝑖)) in the dataset.
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Weighted avg F1-score =

∑𝑁
𝑖=1 F1-score(𝑙𝑖) ∗ support(𝑙𝑖)∑𝑁

𝑖=1 support(𝑙𝑖)
(2.22)

2.2.4.7 Receiver Operator Characteristic Curve

Receiver Operator Characteristic (ROC) curves is a graphical representation of TPR as a
function of False Positive Rate (FPR) (equals to 1 - TPR) of the test samples. This curve
shows how the number of correctly classified positive examples varies with the number
of incorrectly classified negative examples, illustrating the conditional probabilities of
belonging to a particular predicted class given the true classification in a two-class
classification [42]. However, ROC curves can present an overly optimistic view of an
algorithm’s performance if there is a large skew in the class distribution [43]. The AUC-
ROC can also be calculated, and is a widely used metric to evaluate the performance of a
model.

Figure 2.4: An example of a ROC Curve

2.2.4.8 Precision-Recall Curve

Precision-Recall (PR) curve is an evaluation tool for binary classification that allows the
visualization of the trade-off between precision and recall for different thresholds. PR
curves are increasingly used to evaluate performances, particularly for imbalanced datasets
where one class is observed more frequently than the other [44]. A big area under the
curve implies a low false positive rate, associated with a high precision, and a low false
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negative rate which is related with a high recall. Besides the visual inspection of a PR
curve, the Area under a PR Curve is used as a general measure of performance regardless
of any specific threshold or operating point [44].

2.3 Uncertainty in Machine Learning

Uncertainty is ubiquitous and happens in every step of a ML pipeline. Thus, uncertainty
managing in ML should be considered a key component of any ML system. In the general
literature [45, 46], a distinction between two intrinsically different sources of uncertainty
is done: aleatoric and epistemic.

Aleatoric Uncertainty (AU) is associated with the variability in the outcome of an
experiment which is due to intrinsic randomness of the data generating process that
cannot be explained away given more observations or data samples [45]. This uncertainty
cannot be reduced even if more data is provided. Aleatoric uncertainty can be subdivided
into two types: Homoscedastic and Heteroscedastic. In the first, uncertainty is assumed
to be constant for all the inputs. Heteroscedastic uncertainty is relevant when modeling
assumptions include variable noise on the input space [47].

Epistemic Uncertainty (EU) refers to the lack of knowledge of the model. This uncer-
tainty can be decreased by increasing the training data, better modeling or better data
analysis [46]. The EU can be further divided into model uncertainty and Knowledge
Uncertainty (KU) [48]. Model uncertainty addresses the uncertainty in the adequacy
and the parameters of the model. KU is caused by incomplete domain coverage, since
unknown regions of the data space will always be presented. Furthermore, the presence
of new classes that were not contemplated in the training of the model, constitutes an
example of high KU.

An illustration of AU and KU in a classification problem can be seen in Figure 2.5. The
KU is present in test samples located in regions without training samples and AU occurs
in the overlapping region of the classes.

2.3.1 Uncertainty Quantification

In traditional probabilistic modeling and Bayesian inference, the uncertainty of a prediction
is given by the posterior distribution [46]. As aforementioned, the posterior distribution
can be obtained via the Bayes rule, mentioned in Section 2.1.1. The belief about the
prediction 𝑦𝑖 for an instance 𝑥 is represented by the probability distribution of probability
distributions [17]. Thus, a prediction is computed through averaging the predictions
provided by different hypotheses ℎ for a certain dataset 𝐷. The predicted posterior
distribution is presented as follows:

𝑝(𝑦 |𝑥) =
∫

𝑝(𝑦 |𝑥, ℎ)𝑑𝑃(ℎ |𝐷) (2.23)
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Figure 2.5: Aleatoric and knowledge uncertainty example for a classification problem.
The blue and orange points indicate the train samples, the green triangle corresponds to
aleatoric uncertainty and the green square corresponds to the knowledge uncertainty.

Since model averaging is computationally costly in ML, predictions are calculated
considering a single probability distribution for each class. Therefore, the uncertainty of
a single probability distribution can be calculated through the maximum probability of
the predicted class that can be obtained by:

𝑝(�̂� |𝑥) = 𝑚𝑎𝑥
𝑘

𝑝(𝑦𝑖 |𝑥, 𝐷) (2.24)

, where 𝑦𝑖 ∈ { 𝑦1, ... , 𝑦𝑘 } consists of a finite set of 𝑘 class labels in dataset 𝐷. This
uncertainty measure combines both aleatoric and epistemic uncertainty.

Shannon’s entropy, described in Section 2.1.3, is the most well-known measure of
uncertainty of a single probability distribution. This uncertainty measure captures the
shape of the distribution and is mostly associated with the aleatoric part of the uncertainty
[46].

In the context of DL, the randomness induced during training and inference can be
used to obtain an uncertainty estimation [49]. Ensembling and Dropout are techniques
commonly used for this quantification. Ensembling consists of training repeatedly different
models or the same model with different parameters. When applied to to same DNN, the
ensembling is called DE. In this method, due to the randomness in the initialization and
training process, it is provided different samples of trained network parameters [50, 51].
Each model makes its own prediction independently of the other models in the ensemble.
The final prediction is then derived from the composition of all models in the ensemble.
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Dropout, in DL, is a method that omits a certain percentage of neurons at each layer
of a neural network during training, with the missed neurons randomly selected for each
iteration [52]. In MC Dropout the neural network is trained with Dropout at training
time, and at test time the output is evaluated by dropping units randomly to generate
samples from the predictive distribution [53]. Similarly to ensemble, the final prediction
is obtained from the composition of all the predictions with distinct dropouts.

The total uncertainty can be computed as the entropy of the predictive posterior
distribution𝐻[𝑝(𝑦 |𝑥)] and the aleatoric uncertainty is measured in terms of the expectation
of entropy with regard to the posterior probability 𝐸𝑝(ℎ |𝐷)𝐻[𝑝(𝑦 |𝑥, ℎ)] [54, 55].

Given the computational complexity of these measures, an approximation based on
combinations of 𝑀 hypotheses can be achieved. This approximation is shown as follow:

𝑢𝑡𝑜𝑡𝑎𝑙(𝑥) = 𝐻[𝐸𝑝(ℎ,𝐷)𝑝(𝑦 |𝑥, ℎ)] ≈ 𝐻[ 1
𝑀

𝑀∑
𝑖=1

𝑃(𝑦 |𝑥, ℎ𝑖) (2.25)

𝑢𝑎𝑙𝑒𝑎𝑡(𝑥) = 𝐸𝑝(ℎ,𝐷)𝐻[𝑝(𝑦 |𝑥, ℎ)] ≈ 1
𝑀

𝑀∑
𝑖=1

𝐻[𝑝(𝑦 |𝑥, ℎ𝑖)] (2.26)

The AU can be measured since, by fixing a hypothesis ℎ, the EU is essentially removed.
Thus, the EU is measured in terms of the mutual information between hypotheses and
outcomes, 𝐼(𝑦, ℎ |𝑥, 𝐷) [46]. The expression of this uncertainty and its approximation is
given as follow:

𝑢𝑒𝑝𝑖𝑠𝑡(𝑥) = 𝐼(𝑦, ℎ |𝑥, 𝐷) = 𝐻[𝐸𝑝(ℎ,𝐷)𝑝(𝑦 |𝑥, ℎ)] − 𝐸𝑝(ℎ,𝐷)𝐻[𝑝(𝑦 |𝑥, ℎ)] (2.27)

2.3.2 Classification with Rejection Option

When a classifier is not sufficiently confident in the prediction, the model can abstain
from producing an answer or discard a prediction if the uncertainty is sufficiently high.
Therefore, a classifier with rejection can cope with unknown information, reducing the
threat caused by the existence of unknown samples or mislabeled training samples that
can compromise the performance of the model.

Frequently, rejected samples are divided into two distinct classes: confusion rejection
and distance rejection [56, 57]. The first concerns the samples belonging to known classes
and have associated aleatoric uncertainty. The distance rejection concerns samples that
belong to unknown classes thus having high epistemic uncertainty. In classification with
rejection that can distinguish between aleatoric and epistemic uncertainty, a confidence
threshold value needs to be defined indicating the rejection point [58]. The evaluation
of the performance of classifiers with rejection option typically uses standard metrics,
such as accuracy, to obtain an Accuracy-Rejection Curve (ARC). The ARC represents the
accuracy of a classifier against its rejection rate, varying from 0 to 1 [59]. This curve plot
has an accuracy of 100% for a rejection rate of 100%, i.e. corresponds to the point (1, 1).
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It starts at a point (0, 𝑎), where 𝑎 is the accuracy percentage of the classifier when none
of the events are rejected. The ARC is generated by adjusting the rejection threshold and,
therefore, rejecting progressively the samples with the highest uncertainty values.

Some examples of performance measures for classification with rejection are Nonre-
jected accuracy (NRA), Rejection quality (RQ) and Classification quality (CQ) [60]. The one
applied in this work was the NRA that measures the ability of the classifier to accurately
classify nonrejected samples.

Assuming 𝐴 is a subset of accurately classified samples and 𝑁 is a subset of nonrejected
samples, this metric can be determined as:

𝑁𝑅𝐴 =
|𝐴 ∩ 𝑁 |
|𝑁 | (2.28)

2.3.3 Uncertainty problems in medical domain

ML models, mainly DL models, demand a vast labelled dataset to learn properly. The
number of labelled data required grows with the complexity of the problem or the
complexity of the input data.

This issue is particularly dominant in the medical field. For example, in order to
automate the analysis of a given medical exam, it would be necessary an expert to annotate
a large number of exams, labelling them to indicate if the patient has certain condition or
not. However, obtaining the amount of the needed labelled data is time-consuming and
expensive.

One possible solution to this problem is active learning. In this approach, the model
chooses what unlabelled data is appropriate for training, and request an external “oracle”,
for example a medical work, for the label of the selected data [61].

unlabelled data
Select the data 

needed for training
oracle deliver the

 labelled data requested
Trained Classifier

Figure 2.6: Active Learning visualization panel

The choice of the data to be labelled is selected by an acquisition function, which ranks
points based on their potential informativeness [62]. There are a variety of acquisition
functions and many of them rely on model uncertainty to evaluate the potential informa-
tiveness of the unlabelled data points. The more informative is the selected data, the fewer
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labelled training examples are necessary to achieve a greater classifier accuracy. Therefore,
the quantification of uncertainty plays a central role in active learning.

Another problem impacting the medical field is the shift of the dataset. In the real
world, the conditions in which we use the medical systems diverge from the conditions in
which these systems were created. Environments are nonstationary thus it is impractical
and too expensive trying to match the development scenario to a particular environment
[63]. This leads to mismatches between the training data and the data intended to be
classified.

In general, the greater the degree of shift, the poorer is the model’s performance [64,
65]. As a result, it’s becoming increasingly vital to improve the model’s robustness to
distribution shifts and its estimates of predictive uncertainty [64], so that these distribution
shifts can be detected and the model can be adjusted accordingly.
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Literature Review

Uncertainty is a key factor in the evaluation of the robustness of ML classifiers, particularly
when applied in risk-sensitive domains like Healthcare. Nevertheless, most ML models
either fail to measure uncertainty or require additional methods to do so. Furthermore,
understanding and separating uncertainty makes it easier to comprehend and adapt the
ML models to increase their reliability.

This chapter reviews relevant work regarding uncertainty in ML models. It is organized
into 5 sections that comprise Uncertainty Quantification, Classification with Rejection
Option, the problem of dataset shift, Active Learning and the role of uncertainty in ECG
data.

3.1 Uncertainty Quantification

DNN have shown impressive state-of-the-art accuracy performances but poor uncertainty
estimations. As a result, they are predispose to produce overconfident predictions that,
when incorrect, can be harmful. Therefore, it is essential to address UQ in real-world
scenarios.

Recently, different approaches have been developed to address UQ. In several pub-
lished papers [66, 67, 68], Bayesian Neural Network (BNN) have been employed to quantify
uncertainty, where the authors demonstrated that aleatoric and epistemic uncertainties
can be estimated by setting a distribution across the model’s weight and model’s output.
These works showed that UQ plays a major role in improving models’ performance and,
consequently, their safety. However, due to the substantial modifications on the training
procedure, BNN approaches are computationally more demanding and conceptually
more complicated than non-Bayesian neural networks [69].

MC Droupout is a different technique to estimate uncertainty. The study conducted
by Srivastava et al. [70] revealed that Dropout produces state of art results on a variety of
benchmark datasets. It also showed that Dropout neural networks, in comparison with
BNN, are much faster to train and operate at test time. Gal and Ghahramani established a
new theoretical framework that incorporates a probabilistic interpretation of Dropout in
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deep neural networks [62]. The results showed that this approach improves the problem of
representing aleatoric and epistemic uncertainty without losing computational complexity
and test accuracy.

Lakshminarayanan et al. [71] trained a combination of probabilistic neural network
with DE and demonstrated that their method produced well-calibrated uncertainty as
good as or better than an single BNN. They concluded that ensembles improve robustness
because each model provides a functionally different explanation of the data. Malinin
is known to adopt a Bayesian viewpoint on ensembles in DNN to estimate the total
uncertainty of the model using the entropy of the predictive posterior [55]. The formulation
of mutual information allows the total uncertainty to be decomposed into EU and AU. His
recent work includes the distillation of an ensemble into a single model. Such approach
obtained equivalent accuracy while reducing the computational costs.

CNN’s have rarely provide uncertainty estimations [72], although having a state-of-
the-art performance and being one of the most used DL models in the medical field.
Wang et al. [72] analysed epistemic and aleatoric uncertainty using CNN in 2D and
3D fetal brain segmentation from Magnetic resonance imaging (MRI) slices and volumes
respectively. The aleatoric uncertainty was estimated based on the entropy of the predicted
posterior distribution of their formulated test-time augmentation. The entropy of the
predictions calculated by MC Dropout was used to obtain the epistemic uncertainty. It
was also demonstrated that a DE of networks can be used as an alternative for uncertainty
estimation. Stoean et al. [73] presented a hybrid CNN to obtain information regarding
the model uncertainty for Electrooculogram time-series data. MC Dropout was used to
estimate the predicted uncertainty and was not only able to capture the thin delineation
between the two similar classes but also discriminate between them.

Caldeira et al. [51], in their research, compared methods for UQ in DL algorithms such
as BNN, Concrete Dropout and DE. Concrete Dropout usually offers better-calibrated
uncertainty estimates than MC Dropout since it allows automatic tuning of Dropout rates
using a principled optimization objective. For all the methods, fully-connected networks
were trained and both predicted the same relative uncertainty regardless of the noise
within the examples. The AU was well modelled but when the test set contained samples
far from the training distribution, it was found that the methods failed to sufficiently
increase the uncertainties associated with the predictions. This problem was particularly
evident for Concrete Dropout. Overall, this study concluded that DE delivered the best
results in all the performed tests.

Although several studies present promising results in the quantification of uncer-
tainties, there are still several limitations in the separation of aleatoric and epistemic
uncertainty, which remains an open research field. Furthermore, it would be valuable to
expand these studies to different neural networks and larger datasets, to better reflect the
UQ methods and model’s potential.
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3.2 Classification with Rejection Option

The standard approach for classification with rejection option, also known as Chow’s
theory [74], is the calculation of a rejection threshold that minimises the classification
risk. This requires the estimation of the posterior probabilities as well as the employment
of a cost function that quantifies the cost of both the misclassification and the rejection.
However, using the class posterior probability ignores the possibility of having objects
from unknown classes, hence typically rejecting samples with high AU and disregarding
samples with high EU.

Mena et al. [75] proposed a black-box model with a rejection technique in order
to increase the classifier’s accuracy. By combining a Dirichlet output distribution with
MC Dropout, it was possible to model the uncertainty while observing the black-box
restrictions. The results showed that, in 34 different datasets, by measuring the sampling
uncertainty and using it for rejection, the accuracy in all problems was improved 4% to
8% by rejecting only 10% of the samples. However, because it is not possible to neither
alter the definition of a black-box model nor access to the internals, this work could not
estimate and reject based on EU, only focusing on the AU.

Shaker and Hüllermeier [76] derived meaningful measures of aleatoric and epistemic
uncertainty with an ensemble-based approach and analysed the corresponding measures
in a classification with a reject option. The evaluation was made by producing a ARC. The
experiments were realised in various well-known datasets from the UCI repository [77]
and showed that the rejection performs well in general. The total uncertainty performed
better than epistemic and aleatoric uncertainty, proving the benefit of combining both
types of uncertainties compared to using either one of them.

The majority of the work in the field of rejection option use single thresholds and
mostly with binary classification only. Pillai and Fumera, in [78], developed a specific
framework that has precision and recall as rejection measures to attain a desired trade-off
between classifier accuracy on non-rejected decisions. For different ML models, the use
of a rejection option revealed an increase of the performance measures for increasing
rejection rates, which was the desired behaviour.

Recently, Barandas et al. [46] studied uncertainty-based rejection for different ML
tasks taking into account aleatoric, knowledge and model uncertainties. It was applied
a rejection rule for each type of uncertainty, using rejection performance measures to
define the confidence threshold. Using a Human Activity Recognition dataset, it was
demonstrated that NRA was always higher than the baseline accuracy for all training sizes
and classifiers being analysed. This indicates that the model uncertainty measure detected
the regions in the feature space responsible for a high number of misclassifications and,
by rejecting those samples, the accuracy of the model improved.

To summarise, the field of uncertainty in classifications with rejection option is mainly
focused on rejection based on the difficulty in class distinction with no proper uncertainty
estimation explicitly done. Therefore, the rejection taking into account the separation in
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epistemic and aleatoric uncertainty needs to be further developed and expanded to more
complex data, such as multi-class and multi-label data.

3.3 Dataset Shift

DNN have achieved state-of-art performance, allowing the models to fit to data with high
precision. However, these networks make generalisation to unseen data a challenge. In
general, the greater the degree of distributional shift of the data, the poorer is the model’s
performance.

Ovadia et al. [79] suggested that there is not a comprehensive evaluation of uncertainty
estimation from different methods, such as MC Dropout and DE, under dataset shift. Thus,
their work focuses on the effect of dataset shift on accuracy and calibration on DNN. For a
diverse classification of benchmarks datasets, the results showed that the models with best
accuracy and calibration do not usually translate to better results under dataset shift. The
investigation also disclosed that the quality of uncertainty consistently deteriorates with
increasing dataset shift regardless of method, i.e, the networks give wrong predictions
with high confidence on out-of-distribution data. Furthermore, it was concluded DE seem
to perform best and be more robust to dataset shift.

In the work of Malinin et al. [64], it was also proposed the evaluation of dataset shift
through uncertainty estimation in order to evaluate the robustness of neural networks to
distributional shift. Thus, a comparison was conducted of different uncertainty measures,
obtained in an ensemble-based approach, such as Area Under the F1 curve and AUC-ROC.
The dataset consists of data taken from large-scale industrial sources where distributional
shift is present. According to the results, for out-of-distribution detection, measures that
detetect KU perform best, as suggested by the high AUC-ROC values. The measure of
total uncertainty performs best for detecting misclassification errors since it is associated
with a high Area Under the F1 curve.

In [80], Stacke et al. evaluated the generalisation performance to unseen data and
presented a metric, called representation shift, to measure the statistical difference between
source and target domains on histopathology data. The experiments, done using two
datasets and training CNN for tumour classification, showed that a small difference in
image characteristics, such as intensity augmentation, can result in completely separated
distributions in the representation domain. Furthermore, the results showed that the out-
of-distribution data can be measured with the representation shift metric, as classifications
with a high decrease in accuracy have high values of representation shift.

Also in the medical imaging field, Pooch et al. [81] analysed the extent of domain
shift on four of the largest datasets of chest radiographs. To that end, it was used a
CNN for multi-label classification at each of the four datasets and was evaluated their
performance using the AUC-ROC. The results revealed that each dataset has the highest
average AUC-ROC when tested with its own test set, but when tested in other datasets, it
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displays a significant performance drop, as expected given the diversity of distributions
among images based on the equipment that produces them.

Considering the current state of the field, ML models are not prepared to classify data
with a wide range of possible distributional shifts, resulting in lower performances and
wrong predictions with high confidence. It is therefore increasingly important to evaluate
and improve uncertainty estimation, as well as develop strategies to increase both model’s
robustness to generalisation and distribution shift.

3.4 Active learning

Most DNN require large amounts of well-annotated training data to achieve state-of-the-
art performance. However, obtaining labelled data can be a time-consuming and difficult
procedure, specially in the medical field where annotations depend on the availability
of a qualified expert whose time is expensive and scarce. Thus, only the most relevant
samples should be delivered to the expert.

Gal et al. [82] introduced an active learning framework combined with a Bayesian
CNN, achieving significant improvements in the field, notably on high dimensional data
such as skin cancer diagnosis images. It was performed an approximate inference using
MC Dropout in order to select the data to be labelled based on the uncertainty of the
predictions. The training procedure, which began with 20 data samples, was repeated 100
times, each time acquiring 10 samples to the training set . The framework’s performance
was measured using AUC-ROC and the results indicated that, despite the longer run
time associated, the strategy reduces the number of expert labels needed and the costs
associated with such a system. Furthermore, it was studied the importance of model
uncertainty in active learning by comparing the used model to a deterministic CNN. The
Bayesian CNN achieved better performance results, demonstrating that the uncertainty
measured throughout the Bayesian model represents more accurately the prediction
confidence. This occurs since a deterministic model can only capture AU but not EU.

A few years later, Sadafi et al. [83] developed an active learning framework that extract
the most relevant samples from a large set of unannotated data for expert annotation. A
DNN was trained on images of red blood cells with seven subtypes and the confidence
score was computed using Dropout variational inference. The selection of the data to
be labelled takes into account the uncertainty of the detection of a single cell and the
rarity of the classes presented in the image. This strategy was evaluated by comparing its
performance with a baseline method in which the expert was asked to annotate randomly
selected images. The results revealed that the performance increases by 5% as it was added
1000 newly annotated cells using active learning while with the same number of randomly
annotated cells is around only 2%. Considering the prioritisation of rare classes in the
data, the approach has a performance ranging from 15% to 50% for the same number of
newly added, while the performance is unchanged in the random approach.
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Nguyen et al. [84] investigated the usefulness of distinguishing different sources of
uncertainty and to compare their performance in active learning. Their experiments were
conducted on a binary classification using datasets from the UCI Repository [77] and,
in each iteration, the data was evaluated and the samples with the highest degrees of
uncertainty were selected. The procedure was repeated 1000 times and the results showed
that the framework using EU outperformed the same framework using AU. This behaviour
was expected since EU provides more useful information for the expert, whereas AU is
unlikely to do so. Furthermore, it was suggested the potential of EU to serve as a stopping
criterion for an active learning process. If the EU is low for the samples remaining in the
pool set, this implies that additional sampling will brings little to no new information
to the model. According to Nguyen et al., the difficulty with this strategy was setting
an acceptable size of the training data set or a targeted performance level. The targeted
performance level can be implemented by defining an uncertainty threshold and stopping
the active learning process when the threshold is reached. This allows improving the time
and cost of the training of the ML model.

Several active learning strategies have been proposed in the machine learning literature.
However, active learning approaches that capture and distinguish the different types of
uncertainty, particularly in multi-class and multi-label classification, are highly challenging
and very sparse in the existing literature, leaving an open research field for future work.

3.5 The role of uncertainty in ECG data

There is a wide field of research in cardiology with ECG analysis, in which ML has
become one of the most useful tools in a variety of medical problems, including the
diagnosis of arrhythmias. Several studies [85, 86, 87, 88] demonstrated that multi-label
ECG classification is effective, with the highest values of F1-score for each class above 80%.
As for single label arrhythmia classification on DNNs, the accuracies range from 94% to
99% [89, 90, 91]. Despite these results, few of these models are ready to be implemented
in clinical practice since limited attention has been devoted to whether such results can
be trusted. Thus, quantifying predictions’ uncertainty is critical to develop trust among
healthcare workers and may even be more important than improving model’s accuracy.

In [92], Vranken et al. studied uncertainty estimation methods applied to three 12-lead
ECG datasets. The uncertainties were calculated using DE and the MC Dropout method.
The results demonstrated that the combined uncertainty obtained better results overall.
When using only one type of uncertainty, the results showed the largest dataset had a better
performance when AU was applied, unlike the smaller datasets, which performed better
when dealing with EU. The experience also highlighted that the regular DNN was 30%
either over or underconfident, emphasising the need to incorporate uncertainty estimation
in classification. Additionally, a rejection threshold was implemented to samples of each
dataset test set. The accuracy of all models increased when the samples with the lowest
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confidence were removed, showing that the samples with highest EU were rejected first,
as expected.

Aseeri [93] introduced an uncertainty-aware DNN for cardiac arrhythmia classification
using three benchmark medical datasets. The model’s uncertainty was computed using
MC Dropout and the uncertainty was evaluated using F1-score and AUC-ROC. The results
revealed that the proposed framework outperforms existing approaches in multiclass clas-
sification. The average AUC-ROC’s was 98.91% and the average of the macro F1-score was
98.10%. It was also applied DE method as a stress test to assess the model’s performance
and, when compared with the MC Dropout, the results showed the performances were
similar, indicating the effectiveness of the proposed model. Aseer suggested, for future
work, to combine DE with Dropout in order to obtain a strong method of rejecting wrong
predictions with high uncertainty.

Recently, Zhang et al. [94] performed experiments on the multi-label 12-lead The China
Physiological Signal Challenge 2018 (CPSC2018) dataset to classify ECG’s with rejection
based on uncertainty. Although the dataset contains multi-label samples, in order to
facilitate the classification, it was only used the first labels. The aleatoric and epistemic
uncertainties were computed using MC Dropout in a Bayesian CNN and then combined
for each classification prediction. The results showed that the average F1-score of the
nine classes was 66.35%. Furthermore, it was tested the predictions of the model with
rejection under different thresholds, showing that the performance has better results when
it is applied rejection to samples with the highest uncertainty. The highest F1-score was
86,88% with a threshold of 0.40, which is 21% higher than the F1-score without rejection.
The study concluded the samples with less uncertainty are more likely to be classified
correctly and the rejection can improve the model’s performance, as was expected.

There has been relatively little research on the field of uncertainty in ECG classification.
And even those works have several limitations. It is critical to try to correct the unmet needs
of health professionals, such as addressing the presence of unknown medical conditions.
A possible strategy to address these problems is the UQ and the rejection of samples with
high uncertainty. A possible solution to handle inputs from unseen patients, rare diseases
or difficult data to diagnose could be the use of active learning applied to rejected samples,
avoiding delivering incorrect predictions to health workers. Furthermore, several diseases
are frequently present within the same ECG. Therefore, it is important to investigate UQ
for multi-label classification networks.

To the best of my knowledge, there are a few works that address UQ in a multi-label
ECG classification. In particular, the only found was from Xie et al. [95] that presented
a ECG classification framework applied to 5 datasets of cardiac arrhythmias and the
uncertainty was only used to assess the robustness of the proposed method. As for the
use of uncertainty for active learning in ECG data, no works were found.
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Electrocardiogram Datasets

This Chapter introduces the theorical concepts associated with the functioning of the
heart and the procedures necessary to collect ECG recordings. Furthermore, the types of
arrhythmia chosen as classes in the proposed model will be addressed, as well as a brief
description of the databases used.

4.1 Electrocardiography

The mechanical cyclic behaviour of the heart,which pumps blood from the atria and the
ventricles, is interrelated with an electrical stimulation, as can be seen in Figure 4.1.

The cardiac muscle has a resting potential, which is defined as the potential difference
between the interior and the exterior of the cell, which is approximately -90 mV [98].
Each heartbeat starts when the sinoatrial node produces the sinus rhythm action potential
that travels through the right and left atria, reaching a potential of +20 mV [98]. As a
result, both atria contract almost simultaneously. Once the action potential reaches the
atrioventricular node, there is a delay of almost 100ms that enables the blood to move
into the ventricles before the impulse is transmitted to the bundle branches [99]. The
impulse travels across the right and left bundle branches as well as to the Purkinje fibres,
generating a contraction on both ventricles and pumping the rest of the blood to the
respective arteries. The impulse fades after ventricular contraction, and the ventricles
repolarise in preparation for the next heartbeat.

The different repolarisations and depolarisations produced in the different areas of the
heart generate distinctive waves which when added together result in the characteristic
ECG signal. The waves and the intervals between them are identified as follow [97]:

• P Wave

This wave represents the depolarisation of the atria and has a frequency interval
between 5 and 30Hz. Atrial repolarisation is masked by the QRS complex and, thus,
does not have a characteristic wave. Is during this phase that the blood travels from
the atria to the ventricles.
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Figure 4.1: Schematic representation of the heart, the ECG signal and action potentials
obtained from different regions of the heart. Adapted from [96, 97].

• PR interval

The PR interval is the period between the formation of the P wave and before the
QRS complex. It includes the PR segment, which represents the conduction of the
signal through the atrioventricular bundle.

• QRS complex

The QRS complex is composed of the waves Q, R, and S and, when combined,
correspond to the depolarisation of the ventricles. The frequencies associated with
this depolarisation are between 8 and 50Hz. The QRS complex has a duration
similar to the P wave since the conduction in the ventricular conducting system is
considerably faster than in the atrial system. It is during this phase that the ventricles
are filled and inject blood to the respective arteries.

• T wave
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The T wave represents the ventricular repolarisation and marks the beginning of
ventricular relaxation, with frequencies between 0 and 10 Hz.

• QT interval

The QRS complex, ST segment and T wave are included in the QT interval. This
interval represents the duration of the ventricular depolarisation and repolarisation.
The ST segment is an isoelectric region that corresponds to the period in which the
contraction of the ventricles is maintained to expel the blood from the heart.

Although it is not represented in Figure 4.1, there is a small deflection after the T wave,
known as the U wave, that is not always visible. Its source is still undetermined although
it is thought to be associated with the repolarization of the Purkinje fibres.

The ECG signal can be detected using electrodes that sense the potentials generated
by the cardiac electrical behaviour [100]. These electrodes are placed in specific positions
on the body and their measurement is influenced by the properties of the dermal and
epidermal layers of the skin, the electrolytic gel that is applied to the skin and the contact
between the electrode and the skin [101]. The electrical potentials obtained are then
converted into leads, and each lead views the heart from a different perspective.

These leads are bipolar since are derived from the potential difference between two
electrodes, one designed positive input and the other negative input [101]. The actual
potential in each electrode is not known, just the difference between them. In most leads,
the negative output is a combination of two or three electrodes electrically connected
together. This arrangement of electrodes can also be referred to as a reference electrode.

There are three types of leads: Standard Limb Leads, Augmented Limb Leads and
Precordial Leads. The placement of the electrodes and its respective leads can be seen in
Figure 4.2

Standard Limb Leads

The standard limb leads, also known as Willem Einthoven’s original leads, are con-
stituted by Lead I, II and III. As shown in Figure 4.2, Lead I results from the difference
between the potential of the electrode on the left arm with the potential of the electrode
on the right arm. Similarly, Lead II displays the potential difference between the left leg
and right arm while Lead III shows the potential difference between the left leg and left
arm. These leads represent the heart with an angle of 0º, 60º and 120º respectively.

The spatial organisation of these leads forms a triangle, known as Einthoven’s triangle.
In it, the potential in lead II equals the sum of potentials sensed in leads I and III, as shown
by the Equation 4.1:

Lead II = Lead I + Lead III (4.1)

Although not depicted in Figure 4.2, a right leg electrode can be used as an electrical
reference, minimizing artifacts [101].
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Figure 4.2: A.Electrode positions for the Standard Limb Leads I, II and III. RA, LA, and LL
represent the locations of the electrodes on the right arm, left arm and left leg respectively.
B. Electrode positions for recording the Augmented Limb Leads avR, avL and aVF. The
location of the eletrodes are the same as in A. C. Electrode positions for recording the
Precordial Leads V1, V2, V3, V4, V5 e V6. The location of the eletrodes are indicated with
the leads name. Adapted from [98, 101, 102].

Augmented Limb Leads
The three augmented limb leads are identified as aVR, aVL and aVF. For the lead aVR

the positive input is the right arm electrode RA, for lead aVL is the left arm electrode LA
and for lead aVF is the left leg electrode LL. The reference input is formed by averaging
the potentials in the three limb LA, RA and LL. This combination of the three limb lead
electrodes is known as Wilson’s central terminal [103]. Due to this reference, the potential
of these leads suffer “augmentation” i.e. it is increased the size of the deflections of
the potential measured. As a result of the arrangement of the leads, aVR, aVL and aVF
capture the eletrical activity of the heart with angles of -150º, -30º and 90º respectively on
the frontal plane.

These leads are also know as unipolar limb leads since, unlike the standard limb leads,
the reference input - Wilson’s central terminal - potential is close to zero [104].

Precordial Leads

The precordial leads detect the action potential at each of the six defined torso locations
V1, V2, V3, V4, V5 and V6. The positive input of each lead is the electrode placed on
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each precordial location [104]: The electrode V1 and V2 are located to the right and left of
the sternum in the fourth intercostal space respectively; electrode V3 is located midway
between leads V2 and V4; electrode V4 is placed in the mid-clavicular line in the fifth
interspace and electrode V5 and V6 are located in the anterior axillary and mid-axillary
line respectively, at the same level as lead V4.

The reference input is the Wilson central terminal mentioned previously. Thus, these
leads are also considered unipolar. The leads V1, V2, V3, V4, V5 and V6 record the
behaviour of the heart on the horizontal plane with angles of 0º, 30º, 60º, 75º, 80º and 100º
respectively [105].

The standard 12-lead ECG, represented in Figure 4.3, is composed by the three standard
bipolar limb leads, three augmented unipolar limb leads and by the six precordial leads.
Together, these leads grant a three-dimensional representation of depolarization and
repolarization of the atria and ventricules [104]. A summary of the position of the
standard 12-lead ECG electrodes is given in Table 4.1.

Figure 4.3: A standard 12-lead ECG.

4.2 Arrhythmia Classification

Automaticity refers to the capacity of cardiac cells to generate spontaneous action potentials.
This property allows the mechanical and electrical connectivity of all the areas of the heart,
ensuring appropriate cardiac function and rhythm. The normal heart rhythm is called
Sinus rhythm (NSR) and has the following characteristics [106]:

• Rate of 60–100 beats/min;

• P wave precedes each QRS complex;
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Table 4.1: Location of Standard 12-Lead ECG electrodes.

Lead Type Positive Input Negative Input Angle*

Standard Limb Leads

Lead I Left arm Right arm 0º

Lead II Left leg Right arm 60º

Lead III Left leg Left arm 120º

Augmented Limb Leads

aVR Right arm -150º

aVL Left arm -30º

aVF Left leg

Wilson’s central
terminal

90º

Precordial Leads

V1 Right sternal margin; 4th intercostal space 100º

V2 Left sternal margin; 4th intercostal space 80º

V3 Midway between V2 and V4 75º

V4 Mid-clavicular line; 5th interspace 60º

V5 Anterior axillary line; same level as V4 30º

V6 Mid-axillary line; same level as V5

Wilson’s central
terminal

0º

*The angles are on the frontal plane for the limb leads and on the horizontal plane for
the chest leads.

• P wave is upright in leads III, aVF and inverted in lead aVR;

• PR interval 0.12–0.21 s;

• QRS duration ≤ 0.10 s;

• QTc ≤ 0.44 s ,

where QTc is known as the corrected QT interval and is determined by selecting the longest
QT interval and dividing it by the square root of the cycle length [106]. The heartbeat of a
healthy person is represented in Figure 4.4.

When the automaticity of the heart is disrupted, the heart has a condition called cardiac
arrhythmia. Understanding the electrophysiological mechanism of an arrhythmia and
conducting an accurate interpretation of an ECG can successfully diagnose and select the
appropriate treatment for these conditions [107].

For the realisation of this work, four cardiac arrhythmia databases were used. Each
dataset has at least one type of arrhythmia, which is identified by a numerical distinct
code, known as SNOMED-CT. A subset of five codes have been selected as classes for
classification. These classes were chosen since almost all of them are presented in each
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Figure 4.4: Representation of Sinus rhythm.

dataset and are the most frequent classes overall. All other codes were ignored in this
study. Table 4.2 presents a summary of the selected classes and their proportions in the
datasets.

Table 4.2: Classification classes with their abbreviation, SNOMED-CT code, count and
percentage in the four datasets.

Class Abbreviation SNOMED-CT Count (%)

Atrial fibrillation AF 164889003 3320 (11,12%)
First-degree atrioventricular block IAVB 270492004 2288 (7,66%)

Left bundle branch block LBBB 164909002 1003 (3,36%)
Sinus rhythm NSR 426783006 20842 (69,82%)

Right bundle branch block RBBB 59118001 2399 (8,04%)

Atrial fibrillation (AF)
AF is the most common cardiac arrhythmia and is defined by a totally irregular

ventricular rhythm and absence of P waves [106]. This pathology is represented in
Figure 4.5.

Figure 4.5: Representation of Atrial Fibrillation.

During AF, the atria discharge at a rate of 350 to 600 beats per minute, which results in
several wave of electrical activity with low amplitude haphazardly circulating in the atria.
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The effective atrial contraction in reduced, leading to the absence of P waves. The AV node
do not conduct every atrial impulse to the ventricles, blocking and delaying succeeding
impulses. As a result, the ventricular rhythm becomes irregular. This is evident in the
ECG by the appearance of irregular QRS complex, also described as variant RR.

First-degree atrioventricular block (IAVB)
IAVB is characterized by a PR interval longer than 200ms and is represented in Fig-

ure 4.6.

Figure 4.6: Representation of First-degree atrioventricular block.

This condition occurs when the atrial impulse is delayed and takes longer to reach the
ventricles. As a result, there will be a greater distance between the P wave and the QRS
complex and, thus, a prolongation of the PR interval.

Left bundle branch block (LBBB)
A LBBB is charecterized by a QRS duration of more than 100 ms with a complex

leftward skew in the second half of the QRS complex [106]. This pathology is represented
in Figure 4.7.

Figure 4.7: Representation of Left bundle branch block.

In LBBB, the impulses arises first from the right bundle branch. As a result, the
activation of the left ventricle is delayed and occurs the prolongation of the duration of
the QRS complex. The small negative Q waves seen in left ventricular leads (V5, V6, I and
aVL) are replaced by a larger positive R waves. Deep S waves can also be seen in the leads
V1,V2 and V3. LBBB can be intermittent.
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Right bundle branch block (RBBB)
RBBB is defined as having a QRS complex duration that surpasses 120 ms and the

second half of the QRS complex is skewed rightward [106].This pathology is represented
in Figure 4.8.

Figure 4.8: Representation of Reft bundle branch block.

In this condition there is delay in the right ventricular activation, resulting in the right
ventricle depolarizing after the left ventricle. This leads to an increase in duration of the
QRS complex and a secondary R wave in leads V1 and V2, forming an M-shaped complex.
It can also be found a wide S wave in the leads V5, V6, I and aVL.

4.3 Datasets

As previously mentioned, four public datasets with multi-label data from various countries
were used in this work. These datasets were provided by the PhysioNet/Computing in
Cardiology Challenge 2020, as proposed by Perez Alday et. al [108].

All records are 12-leads ECG and the data is provided in WFDB format. The length
of the records and the number of arrhythmia classes vary for each dataset. Also, other
details such as patient sex and age are also disclosed.

The data of each dataset was obtained in 16 bits with a 24 bit offset. The amplitude
resolution is 1000 mV, the analog-to-digital converter resolution is 16 bits, and the baseline
value corresponding to 0 physical units is 0.

4.3.1 CPSC2018 dataset

CPSC2018 dataset was provided in the 1st China Physiological Signal Challenge. The data
was collected from 11 hospitals and contains 6877 records - 3178 female and 3699 male,
with a mean age of 60.2 years [109]. The 12 leads ECG records have a length from 6 s to 60
s. The recordings were sampled at 500 Hz.

For the five classes selected in this work, the dataset has 4735 records, 1996 female
and 2739 male. There is in total 1221 AF, 722 IAVB, 918 NSR, 236 LBBB and 1857 RBBB
diagnoses.
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4.3.2 PTB dataset

This database is named after and provided by the Physikalisch Technische Bundesanstalt
(PTB) University and contains 516 records (male: 377, female: 139) with mean age of 56.3
years [108]. Each signal is digitized at 1000 samples per second and the records vary in
length, having a mean duration of 110.8 seconds. This database has only 4 diagnoses as
classes, in which one is AF and the other is NSR. For these 2 classes, there is in total 95
records, 25 female and 70 male, with 15 AF and 80 NSR diagnoses.

4.3.3 PTB-XL dataset

The PTB-XL is a large dataset also provided by the PTB University and has 21837 clinical
12-lead ECGs (male: 11,379 and female: 10,458), with a mean age of 59.8 years [108]. The
records are of 10 second length with a sampling frequency of 500 Hz. The labels assigned
to each data sample were annotated by two cardiologists. This dataset does not have all
the 5 chosen classes, only missing the class RBBB. Futhermore, for the remaining 4 classes,
the dataset has a total of 19814 records ( 9577 female and 10237 male), with 1514 AF, 797
IAVB, 18082 NSR and 536 LBBB diagnoses.

4.3.4 G12EC dataset

The Georgia 12-lead ECG Challenge (G12EC) database was collected in Georgia, having a
distinct demography of the Southeastern United States. This database has 10344 12-lead
ECGs records - 5551 male and 4793 female - with a mean age of 60.5 years [108]. The
length of the ECG recordings is 10 seconds and they were sampled at 500 Hz.

For the five classes chosen, there are 3629 records in total (1622 female and 2007 male),
with 570 AF, 769 IAVB, 542 RBBB, 231 LBBB and 1752 NSR diagnoses.
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Methodologies

This Chapter provides a detailed description of methods deployed and developed during
this dissertation, from the procedures involved in the DL model development to the UQ
experiments for classification with rejection option and active learning. The most relevant
Python Libraries and Modules used can be found in Table A.1 and A.2 of Appendix A.

5.1 Overview

This work methodology comprises several steps that address the development of a DL
model, the UQ methods and their application for classification with rejection option and
active learning. In more detail, the DL model was trained with two databases and tested
using two test sets: 1) an independent test set originated from the same databases where
the model was trained, and 2) a test set from two different databases. For the uncertainty
estimation, three different approaches were employed for comparison purposes: 1) A
single model using entropy-based measures; 2) A model that used MC Dropout as UQ
method; and 3) A model developed using ensemble techniques. Finally, the UQ methods
were applied to the classification with rejection option to investigate the occurrence of
dataset shift and explore the role of uncertainty in active learning. An overview of this
research is summarized in Figure 5.1

5.2 Deep Learning Model

5.2.1 ECG Data Preparation

As previously mentioned, four public available databases were used. The details of each
database are described in Section 4.3.

To reduce the computational cost of the adopted approach, only one ECG lead was
used. The lead chosen was aVR, since it was showed that, for the selected arrhythmia
types, this lead produced the best results in the work of Chen et al. [110].

The data was downsampled to 125 Hz in order to reduce computational cost. For
sample length, a 10 seconds window size was used. Thus, data below 10 seconds were
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Figure 5.1: Overview of this work methodology

excluded and data above 10 seconds were truncated, so that all data has 1250 sample
points.

The ECG signals were filtered using a 2nd order band-pass Butterworth filter between
1 and 40 Hz to remove high frequency noise such as Electromyogram noise, Additive
white Gaussian noise and power line interference (50 Hz) as well as low frequency noises
such as Baseline Wander [111]. It was also employed a smooth function using a window
of 10 samples. This method is based on the convolution of the selected window to average
the sample points with their neighbors. This filter also reduces high frequencies and
enhances low frequencies in the signal.

Lastly, the data was standardised through a z-normalisation, where the data has the
mean removed and is scaled to unit variance. It ought to be emphasised that the mean
and standard deviation used in the normalisation are solely derived from training data.
Figure 5.2 depicts a diagram of the preprocessing procedures adopted.

5.2.2 Deep Learning Model Architecture

The model developed is a one-dimensional CNN. The architecture consists of three
convolutional blocks, each with a convolutional layer followed by a batch normalization
layer, a PRelu activation function, a pooling layer and a Dropout layer with rate of 0.25.
Each convolutional layer has the same kernel size (31x31) but different number of filters.
The PRelu function has an initializer of 0.25. The pooling layer employed is a max pooling
layer that consists of replacing consecutive patches of size 𝑛 by their maximum value.
Lastly, the algorithm has a flatten layer, to reduce the multidimensionality of the third
block output After the convolutional blocks, a flatten layer was applied, resulting in a
Latent Vector. Three fully connected layers are added and the last one has a sigmoid
activation function with the same number of neurons as classes. Figure 5.3 and Table 5.1
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Figure 5.2: Flow chart diagram of the preprocessing approach

present the architecture and all the parameters used in the developed algorithm as well
as the features map of each layer.

Figure 5.3: The flowchart of the designed algorithm.

The model was trained in 30 epochs with a batch size of 64. The loss function employed
was the binary cross-entropy as well as an Adam optimizer with a learning rate of 0.1%.
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Table 5.1: Feature interpretation in the developed CNN model. Inspired by [112]

Layer Filters Size Stride Output Feature Interpretation

Input - - - (1250,1) 1 lead with 1250
sample points

Convolution 1 512 31x31 2 (610,512) 512 feature map

Max Pooling 1 - 2x2 2 (305,512) Feature map reduction

Convolution 2 256 31x31 2 (153,256) 256 feature map

Max Pooling 2 - 2x2 2 (77,256) Feature map reduction

Convolution 3 128 31x31 2 (39,128) 128 feature map

Max Pooling 3 - 2x2 2 (20,128) Feature map reduction

Flatten 1 - - - 2560
Reduction of the

multidimensionality
Fully Connected 1 - - - 256 Weight parameters

Fully Connected 2 - - - 128 Weight parameters

Fully Connected 3 - - - 5 Classes

Since the model is trained with imbalanced datasets, it was added the class weight
parameter that defines the weighting to adopt for each class when fitting the model.

5.2.3 Training and Testing

The data used to train the model was composed by two datasets, CPSC2018 and the
PTB-XL. These datasets were equally split into 60% training, 20% validation and 20%
testing. The test set from CPSC2018 and PTB-XL was used as an in-distribution set and
will be referred as test-in from now on. Additionally, a test set composed from PTB and
G12EC datasets were used and named as test-out, since the data come from different
sources.

Firstly a single model was trained and its hyperaramenters tuned. The final hyper-
parameters can be consulted in Section 5.2.2. Then, based on the obtained model, two
different approaches were employed: the MC Dropout and the DE.

The MC Dropout method, as mentioned in Section 2.3.1, consists in removing neurons
from the network during training and testing. Therefore, this method consists in testing a
number of times in a given set but in each classification, different weights are removed.
This approach was applied 30 times to both test sets.

Regarding the DE, also described in Section 2.3.1, is a method in which the results
from every classification are obtained with models with the same structure but initialised
with different data. Thus, DE was performed with 30 distinct initialisation resulting in 30
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models used for each prediction. In addition, another DE model was created using the
same data but different leads. This ensemble was then developed by training 3 models,
each one with a different lead: lead aVR (the standard lead used in this work), lead V1
and lead V6. Thus, the result obtained is 3 different outputs for each sample of both test
sets.

Lastly, to obtain the final prediction for both MC Dropout and DE approaches an
aggregation mechanism was implemented. In order to compare the best aggregation
mechanism, three aggregation methods were tested, namely the arithmetic mean, the
mode per class and the mode per diagnosis (mode per vector). An example of the three
aggregation methods is exemplified in Figure 5.4.

[A0, A1, A2, A3, A4]
[B5, B6, B2, B3, B4]
[C0,C1, C2, C3, C4]
[D0, D1, D2, D3,D4]

 

matrix [5, 4] per record, 
where 5 is the number of 

classes and 4 is the 
number of classifications 

Mean :

[   0   ,  1   ,   0  ,  1   ,  0   ]
[   1   ,  1   ,   1  ,  0   ,  0   ]
[   0   ,  0   ,   1  ,  0   ,  0   ]
[   0   ,  1   ,   0  ,  1   ,  0   ]

  [0, 0, 0, 1, 0]

[0.48, 0.01, 0.09, 0.98, 0.12]

Mode : 

[ 0, 1, 1, 0, 0]

[   0   ,  1   ,   0  ,  1   ,  0   ]
[   1   ,  1   ,   1  ,  0   ,  0   ]
[   0   ,  0   ,   1  ,  0   ,  0   ]
[   0   ,  1   ,   0  ,  1   ,  0   ]

 

Class:

[ 0, 1, 0, 1, 0]

Diagnosis:

Figure 5.4: Diagram of the treatment employed for an example of outputs obtained from
Monte Carlo Dropout and Deep Ensemble method.

5.2.4 Threshold Optimization

In a multi-label classification, the output is a vector with the same size as the number of
classes. Each value of the vector corresponds to the probability of belonging to the given
class. Usually, the probability threshold used to decide the limit in which the sample
belongs to the class is 0.5. However, in imbalance datasets, the threshold of 0.5 may not
produce the best prediction results.

Due to the class imbalance of the datasets used, a threshold optimization procedure
was employed. The ROC and PR curves are commonly used for threshold optimization.

As explained in Section 2.2.4.7, the ROC curve is a graphical representation of TPR
as a function of FPR. A possible optimized threshold is the G-mean value. This value is
the geometric mean of recall and specificity (see Equation 5.1). Thus, for each class, it was
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calculated the G-mean value for all the points in the ROC curve. The optimal threshold
is the maximum value estimated, where the relationship between the TPR and FPR is
optimized.

G-mean =
√

Recall ∗ Specificity =
√
𝑇𝑃𝑅 ∗ (1 − 𝐹𝑃𝑅) (5.1)

Another possible way to calculate an optimal threshold is through the Youden’s index.
This value is the sum of recall and specificity minus one, as shown in Equation 5.2. This
index is defined for all points of an ROC curve and the optimal threshold value is the
maximum difference between TPR - FPR. This optimal threshold was also calculated for
each class.

Youden’s index = Recall + Specificity − 1 = 𝑇𝑃𝑅 − 𝐹𝑃𝑅 (5.2)

Lastly, the PR curve may also be used to determine the optimal threshold. As was
explained in Section 2.2.4.8, the Precision-Recall curve is a graphical representation of
the relation between precision and recall. The third possible optimal threshold for each
class was calculated by determining the F1-score (see Section 2.2.4.5) for each point of the
Precision-Recall curve and choosing the maximum value.

5.3 Uncertainty Quantification

For the comparison purposes of different uncertainty estimation methods, three different
model techniques were trained, namely: 1) A single CNN model; 2) A model using MC
Dropout method; and 3) two models developed using DE.

The applied uncertainty measures depend on the type of model being used. In the first
model, a single CNN was trained, which means that a single probability distribution is
returned. In this case, the maximum probability and the Shannon entropy of the predicted
probabilities were used as uncertainty measures.

In the case of MC Dropout and DE, several models are used on the prediction phase,
meaning that a probability distribution of probabilities distributions are used. In this cases,
the decomposition of uncertainties using the classical information-theoretic measures were
employed as described in Section 2.3.1. The decomposition results in the quantification of
total uncertainty, EU and AU.

In addition, other metrics associated with uncertainty were applied, such as Variation
Ratio (VR) [75], which reflects the statistical dispersion of the samples’ distributions,
and Knowledge Uncertainty Estimation (KUE) [46], that learns the estimation of feature
density from the training data and determines the difference in feature density in the
testing data.

Note that since the models were trained in a multi-label scenario, the outputed sigmoid
values can not be directly interpreted as a probability to be used in the calculation of
every uncertainty measures. For example, the entropy measure assumes the inputs as the
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predictive probabilities of each class, which must sum 1. Since a prediction in a multi-label
classification can return more than one class, the network sigmoid values do not sum 1.
For this reason, in this multi-label scenario, each class was assumed as an independent
binary case and the uncertainty calculated by each class. Besides the uncertainty by class,
the summation of all class uncertainties was employed as the final prediction uncertainty.

5.4 Classification with rejection option

It is essential that the model rejects classifications when it is not confident in them. One
approach to achieve this is through the uncertainty associated with every prediction.

The empirical evaluation of methods for quantifying uncertainty is a non-trivial prob-
lem, due to the lack of ground truth in uncertainty information. A common approach for
indirectly evaluating the predicted uncertainty measures is using ARC (see Section 2.3.2).
Due to the imbalance data, instead of using accuracy as a performance measure, the
F1-score was used and the F1-Rejection curve was computed to evaluate the behaviour
of the developed models. These curves were performed for the uncertainties referred
in the previous section, with the rejection occurring from the sample with the highest
uncertainty in its classification to the sample with the lowest uncertainty. This evaluation
was performed considering the overall performance of model and the performance per
class.

As explained in Section 5.3, since the data is multi-label, the uncertainty of an ECG
sample is the sum of each class uncertainty. This results that each sample uncertainty is
represented by a value between 0 and 5.

Furthermore, a optimal uncertainty limit for rejection was estimated for the overall
model and for each class. This threshold is obtained through the Equation 5.3, introduced
in [46]:

𝜏𝑎 = argmax
�

(
|𝑀 ∩ 𝑅� | −

𝑐

1 − 𝑐
· |𝐴 ∩ 𝑅� |

)
(5.3)

where � is a threshold in the interval [0, 5] as previously explained and 𝑐 is a rejection
cost, set to 0.5. Considering A is the samples that were classified correctly, M the misclassi-
fied samples and R the rejected samples, |𝑀 ∩ 𝑅� | represents the true rejects and |𝐴∩ 𝑅� |
represents the false rejects.

5.5 Uncertainty in Active Learning

In active learning, the model itself choose what unlabelled data would be most informative
for it [62]. One approach is to use uncertainty estimates to select the samples with
higher uncertainty, taking advantage of the separation between epistemic and aleatoric
uncertainty, where the former is more relevant as a selection criterion [58]. In principle,
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the potential informativeness of data points with high epistemic uncertainty is higher and
can help the model generalise better.

Following this idea, the retraining process was performed for the single model and
the DE model, where a new set was added to the previous training set for the retraining
process. The data used were exclusively from the test-out set, since these data come from
different origins than the data used for the initial training of the model, and, consequently,
are more informative, Each model was retrained for more four epochs using the newly
dataset and the same parameters previously used to train the initial models.

To validate if samples with high epistemic uncertainty are more informative to the DE
model, three different sets composed by 10% of the test-out were defined to the retraining
process, namely: 1) random samples; 2) samples with the highest epistemic uncertainty; 3)
samples with the total uncertainty. For the single model, the retraining processed occurred
with samples with the highest Shannon Entropy and for random samples as well.

Figure 5.5 represents the pipeline used to validate the information power of uncertainty
estimates for active learning.

10% of data with the highest 
total uncertainty

Evaluate Results

10% of data with the highest 
epistemic uncertainty

10% of random data

10% of data with the highest 
Shannon Entropy uncertainty

Test-out
Retrain the 

models

Figure 5.5: Diagram of the pipeline use for active learning experiments
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Results and Discussion

This chapter presents the results obtained through the methodologies explained in Chapter
5. It is divided into three sections: Performance Evaluation, Classification with Rejection
and Active Learning. This chapter also includes a throughout analysis and discussion of
these results.

6.1 Performance Evaluation

This work comprises the development and evaluation of four models, namely: the single
model, the model obtained using MC Dropout method and 2 models obtained using DE
approaches: Ensemble-1 (trained with different training sets) and Ensemble-2 (trained
with different ECG leads). For a detailed description of the developed models please see
Section 5.2.3.

For the final performance evaluation, a preliminary analysis of different aggrega-
tion mechanisms for ensembles models, followed by the analysis of different threshold
optimization methods was performed.

Regarding the aggregation methods for the DE and MC Dropout models, three ap-
proaches were tested, namely the mean, the mode per class and the mode per diagnosis
(see Section 5.2.3). The performance of the three forms of aggregation in these methods
were evaluated using the metrics of micro average F1-Score and micro average AUC-ROC.
This evaluation was performed taking into account the results obtained with the test-in
set.

Several conclusions can be drawn from Figure 6.1. Looking at the bar charts, it is
possible to conclude that, apart from the mode per class in Ensemble-2, the performances
using the three aggregations methods are quite similar, with the differences between
them being negligible. Therefore, the mode per class was selected as aggregation method
for the remainder of this work. The reasons for this decision are the following: 1) the
mode per diagnosis aggregation has a high computational cost and do not produce higher
performance measures; 2) The mean aggregation method depends on the probabilities
obtained from the sigmoid function, which are not calibrated and can produce unreliable
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Figure 6.1: Micro average F1-score (up) and micro average AUC-ROC (down) metrics
results in the MC Dropout and the DE models. The threshold used was the standard
value and the results were obtained for the mean, mode per class and mode per diagnosis
aggregation.

results between different models; 3) In the literature, the majority vote (mode per class) is
the most common used for ensemble aggregation [113, 114, 115].

It is also possible to observe that the Ensemble-1 model is the one with the best
performance results, followed by the model trained with the MC Dropout method. This
result is in agreement with the literature. A possible reason for the Ensemble-2 model
having the lowest performance of the three is the fact that this ensemble is performed with
only 3 models, compared with the 30 models of Ensemble-1 and MC Dropout. Besides the
number of models, Ensemble-2 is a combination of three models trained with different
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ECG leads. Thus, the information learnt is different and the performance between leads is
also different. Table 6.1 shows the detailed performance measures for each single model
of the Ensemble-2, where the model using aVR obtained the best performance measures.

A possible solution to improve the performance of Ensemble-2 could be to train more
robust models with different leads. However, this would require training more single
models, increasing the computational cost of the ensemble. In view of the results illustrated
in Figure 6.1, the Ensemble-2 model will no longer be considered for further analysis since
it obtained a considerable lower performance comparing with the other two models.

Table 6.1: Precision, Recall, F1-Score and AUC-ROC metrics for the single models trained
with the ECG leads aVR, V1 and V6. This results were obtained using micro average and
test-in set.

Model Micro avg
Precision

Micro avg
Recall

Micro avg
F1-Score

Micro avg
AUC-ROC

Single model - lead aVR 95,80% 95,66% 95,73% 94,97%

Single model - lead V1 91,55% 88,51% 90,00% 85,10%

Single model - lead V6 90,51% 87,62% 89,04% 83,51%

After algorithms’ training and due to the imbalance datasets, a threshold optimization
for each class was employed and its performance evaluated. As there are different meth-
ods for threshold optimization, a comparison between three methods and the standard
threshold of 0.5 for binary classification was done. This comparison was done using the
single model and the test set named test-in. Table 6.2 shows the results obtained using
different thresholds for each class learned from the G-means, the Youden and the F1-Score
method. Micro average precision and micro average recall were the performance metrics
employed. Micro average F1-score and Micro average AUC-ROC were not included in the
evaluation since they are biased toward the techniques used.

Table 6.2: Micro average Precision and Micro average Recall of the of the single model
tested on test-in set using various thresholds. Besides the standard threshold, it was also
applied different thresholds for each class obtained from the G-mean,the Youden and
F1-score methods.

Approach Micro avg Precision Micro avg Recall

Standard Threshold 95,80% 95,66%

Maximum G-means value 91,75% 96,20%

Maximum Younden’s Index 91,75% 96,20%

Maximum F1-score value 96,64% 96,06%

From the analysis of Table 6.2 it is possible to conclude that F1-score approach obtained
higher precision and recall compared with the standard threshold. The other two ap-
proaches (G-means and Younden’s index) obtained equal performance measures between
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each other, decreased approximately 4% in precision and increased less than 1% in recall
when compared with standard threshold. For this reason, the maximum F1-score value
was used as threshold optimization method for the rest of the analysis.

Having a form of aggregation and an optimal threshold method selected, it is necessary
to investigate the performances of the single model, the MC Dropout model and Ensemble-
1 in order to observe how they behave with an optimal threshold compared to using the
standard threshold. It is worth mentioning that the optimal thresholds vary depending
on the trained model. Thus, using the PR curve, it was calculated the optimal thresholds
for the MC Dropout and the Ensemble-1 model.

Figure 6.2: Micro average F1-score (up) and micro average AUC-ROC (down) metrics for
the optimal and standard threshold in the MC Dropout and the Ensemble-1 models.

Figure 6.2 shows that the three models have similar performances. However, the
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Ensemble-1 and MC Dropout methods outperform the single model, as expected since
these models assist in reducing models’ high confidence in incorrect classifications. A
possible justification for the small differences in performance between these models is the
fact that they have learned nearly the same information and, even though MC Dropout
and Ensemble-1 obtained their outputs through different models, the structure of these
models is the same, only the parameters vary. However, when classifying a large number
of test samples, several discrepancies in the number of right classifications are required in
order for the performance metrics to present high variations in their results. Thus, even
the small differences presented in the results might be considered significant for model
evaluation and comparison.

Interestingly, while the optimal thresholds for each class outperform the standard
threshold in the single model, this is not the case in the MC Dropout and Ensemble-1
models. A possible justification for this difference can be related with the non calibrated
probabilities. Since the Ensemble-1 and MC Dropout model are composed by 30 models,
the global optimal threshold can negatively influence the predictions of some models,
resulting in a lower performance. Additionally, adopting optimal thresholds that are
different from the value 0.5 requires modifications on the calculation on the various
uncertainties (presented in Section 2.3.1), which are not trivial. For these reasons, the
remaining results will be presented using only the standard threshold.

The preliminary analysis was done using the test-in set for evaluation, which belongs to
the same database as the training set, producing performance results that are comparable
to the state of the art. Additionally, a test set from an external database, i.e. a database from
a different domain than the train and test-in set, was used to validate the generalization
capabilities of all models. Thus, the same models were tested with the test-out, and the
obtained results are presented in in Figure 6.3.

Through the analysis of Figure 6.3, it can be observed that even when tested with the
test-out, the Ensemble-1 model still has the best performance whereas the single model is
the weakest of the three. However, and perhaps the most important conclusion to draw, is
that the performance decreases significantly in all three models, going from micro-average
F1-Score around 96% to 70%. The same is also true for the micro average AUC-ROC metric.

Table 6.3 presents the micro average F1-scores for each class of the three models. These
results support the conclusions drawn since all class performances drop for the test-out
set, with classes reaching approximately 50% of F1-score. The same behavior was seen
for the AUC-ROC results, found in Table B.1 of Appendix B. However, it should be noted
that, while the F1-score of the MC Dropout is higher than the single model in the test-out
set, the F1-score of each class is slightly higher for single model, with the exception of the
f1-score of the NSR class. This is due to the fact that, although the micro average F1-score
takes unbalanced data into account, the performance of the classes with more data always
have more weight in the overall performance than classes with less samples. Thus, for
multi-class data, it is necessary to consider not only the model’s performance but also the
performance of each class.
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Figure 6.3: Micro average F1-score (up) and micro average AUC-ROC (down) metrics
results for the test-in and test-out sets when tested in the three developed models.

The results presented in Figure 6.3 and Table 6.3 were expected and are a major
indication of dataset shift. As mentioned in Section 2.3.3, this occurs when models are
tested with data with different distributions from the ones used to train the models. As a
result, these models become unable to classify the data with the same efficiency since they
do no recognise the new distributions, as demonstrated through the use of the test-out.
One way to try to mitigate this problem would be through data augmentation in the
training set, in order to generate new information and therefore, turn the trained models
more robust. The tsaug library [116] was employed to add noise and drift to the samples
with the least common classifications. However, the strategy was abandoned since the
performance of the single model tested with the test-in dropped considerably, leading to
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Table 6.3: Micro average F1-score per class for both test sets tested in the three developed
model.

Model AF IAVB LBBB NSR RBBB

test-in set

Single model 97.29% 87.83% 87.14% 97.28% 88.16%

MC Dropout 97.38% 87.74% 86.96% 97.71% 90.07%

Ensemble-1 98.00% 89.13% 89.44% 98.05% 92.99%

test-out set

Single model 72.59% 64.41% 61.62% 76.97% 51.31%

MC Dropout 71.50% 59.13% 60.16% 80.80% 52.67%

Ensemble-1 75.30% 60.00% 62.60% 80.76% 52.89%

believe that the performance of the remaining models would not improve either.
Even if this approach succeeded, it would not be a viable solution since there are

always data with new distributions. In the following sections, several techniques on how
to identify and mitigate the dataset shift problem will be discussed.

6.2 Classification with Rejection

Although the classification with rejection option does not solve the problem of model’s
generalization that leads to poor performance results under data shift, it can be a viable
approach to abstain to predict a class under high uncertainty conditions.

Thus, the uncertainty estimation is calculated in order to identify possible misclassifica-
tions. In the single model, the uncertainties are calculated through maximum probability
and Shannon entropy whereas in the MC Dropout and Ensemble-1 models the aleatoric,
epistemic and total uncertainty are estimated using the classical information-theoric mea-
sures. These uncertainties are calculated for the test-in and test-out sets and the results
can be seen in Figures 6.4 and 6.5.

In both test sets for the single model, the behaviour of both measures are similar,
increasing their value from test-in to test-out. The Shannon entropy captures higher
uncertainty than the maximum probability, as it can be seen in Figure 6.4.

As for the results in Figure 6.5, for the test-in set, the Ensemble-1 and the MC Dropout
estimate similar values of uncertainty, presenting the same median and the same range of
total uncertainty. The MC Dropout presents a higher range of AU while the Ensemble-1
detects higher EU. As for the test-out set, all uncertainties tested suffer an increase when
compared with the test-in set. Ensemble-1 captures higher total and epistemic uncertainty
while the MC Dropout estimate higher aleatoric uncertainty.

As it can be observed in both Figures, while models have very good performance
results (micro avg F1-score above 90%) for the test-in set, some samples were classified
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Figure 6.4: Uncertainty Quantification for both test sets in the single model.

with high uncertainty values. Also, the uncertainties calculated for the three models are
much higher in the test-out than in the test-in set. This is a indication that test-out is
from a different distribution, being the concept of dataset shift be applied in this situation.
Given the high level of uncertainties shown in the test-out results, this suggests that the
model is quite indecisive of which cardiac arrhythmia are presented in the samples and,
as a result, there is a possibility of misclassified samples. It is important to mention that it
was expected that the EU would be higher than the AU in the test-out since the data have
different distributions. This reveals that there are still challenges in capturing these two
uncertainties correctly.

Additionally, the VR was applied to both test-sets to see if the results obtained through
this method are consistent with the ones obtained using EU.

The Figure 6.6 shows that, as expected, the ratio is higher in the test-out than in the
test-in. Moreover, the Ensemble-1 has higher values of VR than the MC Dropout model,
which is consistent with the values of EU estimated in these two models.

Although the previous analysis gives a indication about the differences between test-in
and test-out sets in terms of UQ measures, it is important to understand whereas the
samples with high uncertainty represent the majority of misclassifcations.

Since the empirical evaluation of methods for quantifying uncertainty is non-trivial,
due to the lack of ground truth in uncertainty information, a common approach for
indirectly evaluating the predicted uncertainty measures is using performance rejection
curves.

Thus, to investigate the role of uncertainty in rejection, the F1-rejection curves were
produced for the three models, rejecting the samples according to the highest calculated
uncertainties.

As shown in the Figures 6.7, 6.8 and 6.9, we observe that, for the three models, the
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Figure 6.5: Uncertainty quantification for both test sets in the Ensemble-1 (up) and MC
Dropout (down) models.

more samples rejected, the better is the models’ performance. These results indicate that
the higher the uncertainty in a given classification, the less confident the model is of it,
implying that the model has misclassified the sample, as observed by the growing of
the curve with the increasing rejection. To validate the rejection rate in both sets, a 10%
rejection in the training set was applied and the uncertainty thresholds obtained. Using the
same thresholds on test-in and test-out, the rejection rates increased to approximately 12%
and 40%, respectively, using the single model for both probability and entropy measures.
For the MC Dropout the rejection in test-in was 9% and vary between 31% and 34%
for test-out depending on the uncertainty measure used. For the Ensemble-1 model,
the rejections rates vary between the intervals [13%-16%] and [45%-51%] for test-in and
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Figure 6.6: Variation ratio for both test sets in the MC Dropout and Ensemble-1 models.
The variation ratio in the test-in set for the MC Dropout model and the Ensemble-1 model
have a median of 0.0 and a range of uncertainty below 0.2. As a result, the median values
for this two cases are not depicted in the figure.

test-out, respectively. These rejection thresholds are identified by a star shape and their
coordinates, which represent the rejection threshold and the micro average F1-score of
the model when that threshold is applied. This rise in rejection threshold percentage
indicates that the models are not as confident to classify the test-in and test-out data
since these samples have higher uncertainties than the training data. This increase in the
reject threshold percentages is quite substantial for the test-out data for all the models
and applied uncertainties. This is another evidence of the dataset shift effect, revealing
that the models are not as prepared to classify data with different distributions.

Looking at Figure 6.7, the curves obtained for the single model with the maximum
probability and Shannon entropy are similar. KUE was also applied to this model by
extracting deep features from the DL single model. KUE obtains lower results than
Shannon entropy and maximum probability, which was expected since it only detects
different distributions between classes. However, it was expected that KUE would grow
faster at the beginning of the curve than the other uncertainties, especially in the test-out
[46]. A possible explanation may be due to the fact that the measure was designed in a
single-label setting and it cannot capture uncertainty as effectively as it would in multi-
label data. For the multi-label setting, the independence between classes was applied
and the independent KUE values by class were summed. This method must be further
validate to understand if KUE is suitable to be applied in multi-label setting.

The F1-Rejection curves of the MC Dropout and Ensemble-1 models were examined
and the Ensemble-1 model presents better micro average F1-Score results for the same
rejection rate although the curves based on the different uncertainty methods are quite
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Figure 6.7: F1-rejection curve for both test sets in the single model. The star shaped points
are the rejection threshold obtained from an initial rejection using the training data and
the diamond shape points are the optimal rejection thresholds calculated.

similar for the two models. Even though the differences between rejection curves with
the different uncertainties are minimal, the total uncertainty shows better results along
the rejection curve than the epistemic and aleatoric uncertainty. This demonstrates the
importance of combining these two uncertainties in the analysis of the model confidence
in the classification.
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Figure 6.8: F1-rejection curve for both test sets in the MC model. The star shaped points
are the rejection threshold obtained from an initial rejection using the training data and
the diamond shape points are the optimal rejection thresholds calculated.

Figures 6.8 and 6.9 also show that AU grows faster than the EU at the beginning in
both models and for both tests sets. However, the EU manages to overcome the AU in the
second half of the curve, particularly in the test-out set. This fact reveals that the samples
with higher uncertainty are dominated by AU. However, as noted above, it was expected
that the test-out set would possess more EU than aleatoric since the major distinction
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Figure 6.9: F1-rejection curve for both test sets in the Ensemble-1 model.. The star shaped
points are the rejection threshold obtained from an initial rejection using the training data
and the diamond shape points are the optimal rejection thresholds calculated.

between test-in and test-out data is the difference between distributions.
The optimal rejection threshold was estimated for each model and for each type of

uncertainty method using Equation 5.3. These thresholds are represented in Figures 6.7, 6.8
and 6.9 by diamond-shaped points. This approach shows that the optimal rejection
threshold, in all cases presented, rejects samples with uncertainty above 1. Since this
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works deals with multi-label data, where the sum of uncertainty of each class varies from
0 to 5, this method provides very high rejection rates, especially in test-out data. This
level of rejection is not viable to be implemented in the real world, since the models would
reject more samples than classify them. The estimation of the optimal rejection threshold
it is an important subject that should be address in future work.

Finally, the F1-rejection curves were evaluated for each class. Figure 6.9 presents these
curves for the Ensemble-1 model for test-in and test-out sets. The uncertainty employed
was the total uncertainty since, as mentioned previously, has the better performance of
the three.

As observed in the curves produced for each model, the performance of each class’s
classification improves with rejection. However, for the test-out set, when the model
rejects samples with low uncertainty, the performance drops significantly for almost all
classes. This shows that even for the Ensemble-1, which presents the best performance
of the three models, the model is quite confident in misclassification data, confirmed by
the drop in performance for classifications with low uncertainty. This behaviour can be
visualised in the other two models in Figures B.1 and B.2 found in Appendix B, where
total uncertainty was used for the MC Dropout model and the Shannon entropy for the
single model. These results prove once again that the models are under the dataset shift
effect, presenting more uncertainty and false confidence in their classifications.

All the results presented in this section were also reproduced for the AUC-ROC
metric, whose results drawn the same conclusions. These results can be consulted in
Figures B.3, B.4, B.5, B.6, B.7 and B.8 in Appendix B.

6.3 Active Learning

Apart from employing the rejection option, a possible method to deal with dataset shift
through uncertainty can be employing active learning.

Thus, 10% of the test-out samples (which corresponds to 370 samples) with the highest
uncertainty were chosen to test this approach. Only the test-out set was used in this
approach since it yields much lower results than those obtained with the test-in method,
indicating that these data includes information that the models have yet to learn.

This was performed for the single model and for the Ensemble-1, as the latter showed
better results in capturing uncertainty than MC Dropout. The total uncertainty and
Shannon entropy were employed since presented the highest performance. It was also
selected the EU in order to evaluate the performance of this uncertainty in this method.
These 10% samples were then removed from the test set and the model was retrained with
them.

Furthermore, to serve as control, this process was performed for 10% of random
samples in order to observe the role of uncertainty in this approach. To obtain statistically
significant results, this procedure was conducted 10 times.

59



CHAPTER 6. RESULTS AND DISCUSSION

Figure 6.10: F1-rejection curve per class for both test sets in the Ensemble-1 model.

To evaluate the three methods, the retrained models were tested with the test-out
set without the 10% samples to fairly compare the increase between the retrained model
and the baseline model. Thus, the following nomenclature was used: 1) Previous trained
model using the complete test-out set (Baseline - test-out); 2) Previous trained model
tested only on 90% of test-out, i.e 10% of test-out was used to retrain the model (Baseline -
test-out-90); 3) Retrained model using the selected 10% data and tested on the remaining
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90% (Retrain - test-out-90). The results can be observed in Figure 6.11 and Table 6.4.
Only the micro average F1-Score was used in this section since the results obtained using
AUC-ROC have been consistent with the results obtained using the F1-Score measure.

Figure 6.11: Micro average F1-score for the Active learning approach for the highest
uncertainties (up) and for random samples (down).

Figure 6.11 exhibits that, when the samples with the highest uncertainty are removed
from the test-out, the model performance increases slightly. This indicates that these
samples were misclassified, as concluded previously. After retraining the model with
these samples and evaluating it without them, a slight increase in performance is observed
above compared to the baseline models that are tested without these samples. This fact, as
expected, indicates that samples with high uncertainty have information that the model
has not learned and cannot handle. By retraining the model with the chosen samples,
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Table 6.4: Micro average F1-score per class for each step of the active learning approach in
the single and Ensemble-1 models.

Model AF IAVB LBBB NSR RBBB

Baseline - test-out-100

Single model 72.59% 64.42% 61.62% 76.97% 51.31%

Ensemble-1 75.30% 60.02% 62.60% 80.76% 52.89%

Baseline - test-out-90

Single model
(Shannon Entropy)

77.15% 66.91% 62.03% 79.09% 52.61%

Ensemble-1
(Epistemic uncertainty)

79.46% 64.46% 67.27% 82.64% 52.93%

Ensemble-1
(Total uncertainty)

80.08% 65.38% 68.39% 82.74% 55.64%

Retrain - test-out-90

Single model
(Shannon Entropy)

78.47% 62.08% 63.58% 85.57% 55.20%

Ensemble-1
(Epistemic uncertainty)

80.20% 65.25% 67.29% 84.06% 54.45%

Ensemble-1
(Total uncertainty)

79.46% 63.66% 69.08% 84.49% 59.38%

which are quite a few considering the number of samples needed for a DL model to
learn, allows the model to acquire that information, improving its ability to appropriately
classify other samples. Furthermore, these results demonstrate that a small number of
samples with relevant information can have an impact on model performance, suggesting
the possibility of training models with less data as long as they provide valuable insights.
One possible way to identify such data, as observed, is through the uncertainty values
associated with its classification. The method with the highest performance improvement
was the Shannon entropy in the single model. This is due to the fact that this model is less
robust than Ensemble-1, so any new valuable information learned has a greater impact
on the performance of the single model.

These conclusions are supported through the results served as a control, where the
samples selected are random. Observing the second graphic of the Figure 6.11, the
retrained models have similar performance as the original models. The small increase
in the performance for the retrained models may be due to the fact that even though
the samples are randomly selected, they still learn from data that has information that
can help improve the models. The maximum difference between the Baseline-test-out-90
and the retrained model is only 2%, less than half of the improvement observed in the
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retrained models based on uncertainty.
Lastly, Table 6.4, which displays the micro average F1-score values for each class,

reiterates the conclusions drawn. However, it is possible to observe that there is a
trade-off in the performance of the classes: while some classes have their performance
improved, others have it decreased. This does not occur when applied EU in the active
learning approach, where all classes have their performance improved. This confirms the
importance of EU as a method to identify samples with relevant information for model
improvement.
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Conclusions and Future Work

This chapter concludes this dissertation by providing a summary of the developed methods
and achievements of the this research. Furthermore, future work is suggested for the
proposed strategies.

7.1 Conclusions

To make the decision support systems as trustworthy as possible, it is critical to access the
confidence that ML models have in their classifications. UQ has shown to be one of the most
effective techniques for that purpose. This work studied these concepts using four large
public ECG databases for the classification of cardiac arrhythmias. As multiple cardiac
arrhythmias can be presented within the same recording, a multi-label classification
setting was adopted for the development of DL models. Regarding the UQ measures,
single distribution uncertainty measures and the decomposition of uncertainty using
classical information-theoretic measures of entropy by means of ensemble approaches
were tested and compared. Thus, three types of DL models were developed, including
a single CNN-based model, a model obtained using MC Dropout techniques, and a DE
model, known in this work as Ensemble-1.

The performance of these models was assessed for two test sets, where the test-in
has data from the same database as the training and the test-out presents data from
a different database. Although these models produced similar performance results for
the same test set, the Ensemble-1 model revealed to have a better performance than the
other models, which it is consistent with the literature. When tested with the test-out
set, the performance of all the three models decreases significantly, confirmed by the
decrease of F1-Score from around 95% to 70% and an AUC-ROC from 97% to 81%. These
results indicate the presence of dataset shift since the data from test-out has different
characteristics and distributions than the data used for training.

Regarding UQ, the Shannon entropy and maximum probability were estimated for the
single model as were the aleatoric, epistemic, and total uncertainty for the MC Dropout and
Ensemble-1 models. For the single model, Shannon entropy was the method that captured
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the highest range of uncertainty in the samples, while for the MC Dropout and Ensemble-
1 model was the total uncertainty. This suggests the benefit of estimating uncertainty
using the combination of epistemic and aleatoric uncertainty. The VR was also applied
for the MC Dropout and Ensemble-1 model, having a behavior similar to the epistemic
uncertainty in these models, as expected. Additionally, all the uncertainties computed for
the test-out were significantly higher than for the test-in set. This demonstrates that the
models are not as confident in the test-out classifications as they were for the test-in set
hence an indication of dataset shift.

In order to improve the trustworthiness of the models, the classification with rejection
option was applied, where models can abstain from providing a prediction when there is a
large amount of uncertainty for a given sample. For both test sets, the models performance
increased with rejection, revealing that the higher the uncertainty in a given classification,
higher is the probability of the models to misclassify the samples. Additionally, the
uncertainty threshold, selected from the training data, increased from 10 % to a range
between 30% to 50% depending on the model or uncertainty measure employed. The
increase in rejection rate confirms that high uncertainty was presented in the classification
and the uncertainty is higher in the test-out set. The KUE was applied for the single
model by extracting deep features. The results obtained were lower than expected but
since this method was designed for single-label, it is necessary to validate the suitability
of this method in multi-label data in future work. Lastly, a method for the calculation of
an optimal rejection threshold was applied. However, due to the multi-label setting, the
obtained thresholds rejected all the samples with an uncertainty higher than 1, rejecting
more samples than classifying them. Therefore, further analysis in a multi-label setting
should be carry out in future work.

Another alternative to improve the models’ performance and reliability is through
the active learning approach. This was applied only for the test-out and the 10% of
samples with the highest uncertainty were selected. The total and epistemic uncertainty
were used in Ensemble-1 and the Shannon entropy for the single model. This strategy
was also applied to 10% of random samples of the test-out to serve as baseline. The
results showed that the models improved their performance by almost 5% when using
uncertainty versus 2% when using a random selection. These results demonstrate that
data with high uncertainty has information that the model has not yet learned and hence
the models benefit from the retraining with this selection method.

To conclude, the results of this work suggest that UQ should be considered a key feature
of any ML model as a safety mechanism. It is also possible to infer the role of uncertainty as
a valuable method under dataset shift conditions and in strategies such classification with
rejection option and active learning approaches. Since data with different characteristics
and distributions from those learnt by the ML models will always exist, predictions with
the employed methods produce safer models to implement as a decision support system
in clinical settings.
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7.2 Future Work

Although the preliminary work revealed promising results, this dissertation possesses a
few limitations which should be address in future research.

Firstly, there is a lack of available literature devoted to the estimation of uncertainty in
a multi-label setting. However, in a ECG recording more than one cardiac arrythimia can
be presented and, thus, it is critical to conduct a more in-depth investigation on this topic
for a trustworthy representation of uncertainty in ML models.

Model calibration was not addressed in this work. However, the probabilities obtained
through DL models are usually not calibrated, which results in the probability values being
either too low or too high for each class. Therefore, it is essential to employ calibration
methods in future work, which will allow the probabilities to be better distributed so that
the models are not overly confident in its classifications, and, consequently, the results
obtained in UQ approaches more reliable.

The CNN’s employed for the MC Dropout and DE models have their classifications’
uncertainties calculated using classical information-theoric measures. However, several
works in the literature have shown the potential of BNN as a source of uncertainty since
aleatoric and epistemic uncertainties can be estimated by setting a distribution across
the BNN’s weights and outputs. Thus, it would be interesting to analyse and validate
the behaviour of this model in the classification with rejection option and in the active
learning method approached.

The role of uncertainty as a safety mechanism has been widely explored in DL models,
however, such research has not been applied to traditional ML models. It would be relevant
to apply the same approaches presented in this work to traditional models and compare
the results, including the generalization ability when submitted to dataset shift.

Finally, despite the promising results obtained when applied the rejection and active
learning approaches, there are still no viable methods for obtaining optimal uncertainty
thresholds. It is essential, therefore, the developmentofmethods to obtain these thresholds,
especially considering multi-label data for that purpose.
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A

Python Libraries and Modules

This Appendix is composed by two tables. The first one (Table A.1) lists and briefly
describes the Python libraries employed in this project. Table A.2 provides a brief an
overview of some important modules used in different stages of this work.

Table A.1: Python libraries employed in this dissertation

Library Description

Matplotlib A collection of Python visualisation tools.

NumPy Library of various mathematical functions to operate upon arrays and
matrices.

Pandas Data analysis and manipulation methods for machine learning algo-
rithms.

Scikit-learn Library that provides tools for predictive data analysis such as model
fitting, data pre-processing and model evaluation.

Scikit-
multilearn Library that provides methods for multi-label classification.

SciPy Collection of mathematical operations for optimization, interpolation,
statistics and algebraic equations, among other functions.

Seaborn Interface that produces informative statistical graphics.

TensorFlow High-level library for data processing and the development of machine
learning models.
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Table A.2: Relevant modules used in this project.

Library Module Description

preprocessing.StandardScaler. Z-score normalization of data.

metrics.classification_report Calculates evaluation metrics over a set of
predictions.

metrics.f1_score F1-Score value over a set of predictions.

metrics.precision_recall_curve Computes the precision-recall curve

metrics.roc_auc_score AUC-ROC value over a set of predictions.

Scikit-learn

metrics.roc_curve Computes the ROC curve.
Scikit-
multilearn iterative_train_test_split Encoding methods for categorical multi-

label data.

keras.layers.Conv1D Computes a convolution kernel over a sin-
gle temporal dimension.

keras.layers.MaxPooling1D Downsamples by taking the maximum
value over a spatial window.

keras.layers.BatchNormalization. Normalization to mantain mean close to 0
and the standard deviation close to 1.

keras.layers.Dropout Randomly sets units to 0 with a certain
frequency during training time.

keras.layers.Activation Applies the rectified linear unit activation
function.

keras.layers.Flatten Removes a dimention.

keras.layers.Dense Applies the operation of a fully-connected
neural layer.

TensorFlow

keras.losses.BinaryCrossentropy Computes the cross-entropy loss between
true labels and predicted labels.
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B

Complementary Results

Table B.1: AUC-ROC per class for both test sets tested in the three developed model.

Model AF IAVB LBBB NSR RBBB

Test-in set

Single model 98.94% 93.51% 89.57% 95.13% 97.69%

MC Dropout 98.97% 87.31% 87.98% 93.72% 88.78%

Ensemble-1 99.14% 86.99% 90.90% 94.42% 94.41%

Test-out set

Single model 84.53% 76.26% 75.79% 76.79% 73.64%

MC Dropout 82.36% 72.76% 73.64% 78.65% 70.24%

Ensemble-1 85.52% 72.88% 76.06% 79.71% 70.98%
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Figure B.1: F1-rejection curve per class for both test sets in the Monte Carlo Dropout
model.
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Figure B.2: F1-rejection curve per class for both test sets in the single model.
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Figure B.3: AUC-ROC-rejection curve for both test sets in the single model.
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Figure B.4: AUC-ROC-rejection curve for both test sets in the Monte Carlo Dropout model.
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Figure B.5: AUC-ROC-rejection curve for both test sets in the Ensemble-1 model.
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Figure B.6: AUC-ROC-rejection curve per class for both test sets in the single model.
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Figure B.7: AUC-ROC-rejection curve per class for both test sets in the Monte Carlo
Dropout model.

87



APPENDIX B. COMPLEMENTARY RESULTS

Figure B.8: AUC-ROC-rejection curve per class for both test sets in the Ensemble-1 model.
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I

Publications

In this Annex is included the scientific paper reporting some of the results obtained in
this research, which is entitled "Study of uncertainty quantification using multi-label
ECG in deep learning models". The paper was submitted and accepted at the conference
BIOSIGNALS 2023 of the "16th International Joint Conference on Biomedical Engineering
Systems and Technologies" (BIOSTEC 2023), that will take place on the 16th, 17th and
18th of February of 2023.
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Study of uncertainty quantification using multi-label ECG in deep
learning models

Raquel Simão 12∗ a, Marı́lia Barandas12∗ b, David Belo2 c and Hugo Gamboa 12 d

1 LIBPhys (Laboratory for Instrumentation, Biomedical Engineering and Radiation Physics), NOVA School of Science and
Technology, Campus da Caparica, 2829-516, Portugal

2 Associação Fraunhofer Portugal Research, Rua Alfredo Allen 455/461, 4200-135 Porto, Portugal
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Abstract: Machine Learning (ML) models can predict diseases with noteworthy results. However, when implemented,
their generalization are compromised, resulting in lower performances and render healthcare professionals
more susceptible into delivering erroneous diagnostics. This study focuses on the use of uncertainty measures
to abstain from classifying samples and use the rejected samples as a selection criterion for active learning.
For the multi-label classification of cardiac arrhythmias different methods for uncertainty quantification were
compared using three Deep Learning (DL) models: a single model and two pseudoensemble models using
Monte-Carlo (MC) Dropout and Deep Ensemble (DE) techniques. When tested with an external dataset, the
models’ performances dropped from a F1-Score of 96% to 70%, indicating the possibility of dataset shift. The
uncertainty measures for classification with rejection resulted in an increase of the rejection rate from 10% in
the training set to a range between 30% to 50% on the external dataset. For the active learning approach, 10%
of the highest uncertainty samples were used to retrain the models and their performance increased by almost
5%. Although there are still challenges to the implementation of ML models, the results show that uncertainty
quantification is a valuable method to employ in safety mechanisms under dataset shift conditions.

1 INTRODUCTION

Over the years, medical technology has been devel-
oped and improved in order to ensure the most effec-
tive healthcare to the general public. Artificial Intel-
ligence (AI) is quickly evolving due to its potential
to assist evidence-based clinical decision-making and
achieve value-based care (Chen and Decary, 2020).
As a result, there has been a growing amount of sci-
entific research regarding the use of ML algorithms
in the medical domain. ML models have progressed
to the point that they can predict a variety of dis-
eases, with performances that can be superior to those
achieved by healthcare professionals. This is achiev-
able because ML models are trained with patient data
in order to identify patterns that would otherwise be
undetected and, thereby, produce an estimate of a pa-
tient’s current or future clinical state.

However, while showing promising results, these

a https://orcid.org/0000-0002-1678-5709
b https://orcid.org/0000-0002-9445-4809
c https://orcid.org/0000-0002-5337-0430
d https://orcid.org/0000-0002-4022-7424

models still have some limitations for their deploy-
ment on clinical settings since their generalization ca-
pabilities are often compromised, resulting in lower
performances and rendering healthcare professionals
more susceptible into delivering erroneous diagnos-
tics. This occurs since conditions in which we use the
medical systems diverge from the conditions in which
these systems were created, leading to mismatches
between the training data and the data intended to be
classified. This problem is called dataset shift and, in
general, the greater the degree of shift, the poorer is
the model’s performance (Malinin et al., 2021). This
is one of many problems that contribute to the limited
number of models implemented in real life setting,
with only 64 AI/ML medical systems approved by the
FDA up until 2020 (Benjamens et al., 2020). As a re-
sult, it is critical that ML models include safety mech-
anisms to mitigate the dataset shift problem and im-
prove the trustworthiness of these models. If AI/ML
models fail to possess these mechanisms, they will be
unable to be effectively implemented with FDA ap-
proval, leading AI/ML models to oblivion as decision
support models.

Quantifying the uncertainty of models’ predic-



tions is a key method to assess the model’s confi-
dence in their decisions. Although uncertainty quan-
tification has already demonstrated promising results
in different fields, the literature on ECG classification
is scarce. The works of (Vranken et al., 2021) and
(Aseeri, 2021) are relevant works under this topic,
however a single-label classification is applied, even
though multi-label datasets are used.

In this paper, we develop a classification approach
with rejection option based on uncertainty measures
and evaluate the uncertainty as a selection method for
active learning. Although the main purpose is to de-
velop an agnostic framework for the classification of
cardiac arrhythmias, this work will concentrate on es-
tablishing the practical value of the uncertainty quan-
tification applied in three types of DL models in dif-
ferent medical datasets and their role in the referred
methods. This research aims at providing a better
understanding of the capacity of the model’s gener-
alization through uncertainty estimation as well as
demonstrate that uncertainty aware models are capa-
ble of containing safety mechanisms and, therefore,
be considered trustworthy systems to be implemented
in clinical settings.

2 RELATED WORK

2.1 Uncertainty Estimation Measures

In the general literature (Shaker and Hüllermeier,
2020; Barandas et al., 2022), a distinction between
two intrinsically different sources of uncertainty is
done: aleatoric and epistemic. Aleatoric Uncertainty
(AU) is associated with the variability in the outcome
of an experiment which is due to intrinsic random-
ness of the data generating process that cannot be ex-
plained away given more observations or data sam-
ples (Shaker and Hüllermeier, 2020). Epistemic Un-
certainty (EU) refers to the lack of knowledge of the
model and usually is caused by incomplete domain
coverage since unknown regions of the data space will
always be presented. The presence of new classes that
were not contemplated in the training of the model,
are an example of high EU. This uncertainty can be
reduced by increasing the training data, better model-
ing or better data analysis (Barandas et al., 2022).

In traditional probabilistic modeling and Bayesian
inference, the uncertainty of a prediction is given by
the posterior distribution. Considering a finite dataset
D composed of instances x ans labels y, where yk ∈
{y1, ...,yK} is a set of K class labels, an hypothesis h
maps the instances x to the outcomes y. The posterior
P(h|D) can be obtained via the Bayes rule:

P(h|D) =
P(D|h)P(h)

P(D)
(1)

where P(D|h) is the probability of data given h and
P(h) is a prior distribution. For a single probabil-
ity distribution, an uncertainty measure that combines
both aleatoric and epistemic uncertainty can be cal-
culated through the probability of the predicted class,
given by:

p(ŷ|x) = max
k

p(yk|x,D) (2)

The entropy of the predictive posterior modeled
by Shannon’s entropy is also an uncertainty measure
for single probability distribution defined by:

H[p(y|x)] =−
K

∑
k=1

p(yk|x) log2 p(yk|x) (3)

In DL the randomness induced during training and
inference can be used to obtain an uncertainty esti-
mation (Mi et al., 2019). DE and MC Dropout are
techniques commonly used for this quantification. DE
consists of training repeatedly the same neural net-
work with different parameters due to the randomness
in the initialization and training process (Ståhl et al.,
2020). Each model makes its own prediction and the
final prediction is derived from the composition of all
models in the ensemble. MC Dropout is a method that
omits a certain percentage of neurons at each layer
of a neural network during training and testing, with
the missed neurons randomly selected for each itera-
tion and each test time (Gal et al., 2016). The final
prediction is obtained from the composition of all the
predictions with distinct dropouts.

For these methods, the approximation proposed
by Depeweg et al (Depeweg et al., 2018) can be used
to obtain a measure of total, aleatoric and epistemic
uncertainty:

utotal(x) := H[
1
M

M

∑
i=1

p(y|x,hi) (4)

ualeat(x) :=
1
M

M

∑
i=1

H[p(y|x,hi)] (5)

uepist(x) := utotal(x)−ualeat(x) (6)

2.2 Classification with Rejection Option

When a classifier is not sufficiently confident in the
prediction, the model can abstain from producing an
answer or discard a prediction if the uncertainty is
sufficiently high. Therefore, a classifier with rejec-
tion can cope with unknown information, reducing



the threat caused by the existence of unknown sam-
ples or mislabeled training samples that can compro-
mise the performance of the model. The standard
approach for classification with rejection option, also
known as Chow’s theory (Chow, 1970), is the calcula-
tion of a rejection threshold that minimises the classi-
fication risk. One approach to achieve this is through
the uncertainty associated with every prediction. The
empirical evaluation of methods for quantifying un-
certainty is a non-trivial problem, due to the lack of
ground truth uncertainty information. A common ap-
proach for indirectly evaluating the predicted uncer-
tainty measures is using Accuracy-Rejection Curve
(ARC). The ARC represents the accuracy of a clas-
sifier against its rejection rate, varying from 0 to 1
(Nadeem et al., 2009).

2.3 Active Learning

ML models, particularly DL models, demand a vast
labelled dataset to learn properly. The number of la-
belled data required grows with the complexity of the
problem or the complexity of the input data. This
issue is particularly dominant in the medical field.
In order to automate the analysis of a given medical
exam, it would be necessary an expert to annotate a
large number of exams, labelling them to indicate if
the patient has certain condition or not. However, ob-
taining the amount of the needed labelled data is time-
consuming and expensive. One possible solution to
this problem is active learning. In this approach, the
model chooses what unlabelled data is appropriate for
training, and request an external “oracle”, for example
a medical work, for the label of the selected data (Set-
tles, 2009). The choice of the data to be labelled is se-
lected by an acquisition function, which ranks points
based on their potential informativeness (Gal et al.,
2016). There are a variety of acquisition functions
and many of them rely on model uncertainty to eval-
uate the potential informativeness of the unlabelled
data points. The more informative is the selected data,
the fewer labelled training examples are necessary to
achieve a greater classifier accuracy. Therefore, the
quantification of uncertainty plays a central role in
active learning and can be valuable to improve the
model’s performance when implemented in clinical
settings.

3 METHODOLOGIES

3.1 Databases

Four public multi-label cardiac arrhythmia datasets
from various countries were employed, having been
provided by the PhysioNet/Computing in Cardiology
Challenge 2020, as proposed by Perez Alday et. al
(Alday et al., 2020). A subset of five classes were
selected for classification: Atrial fibrillation (AF),
First-degree atrioventricular block (IAVB), Left bun-
dle branch block (LBBB), Right bundle branch block
(RBBB) and Sinus rhythm (NSR). These classes were
chosen since almost all of them are presented in each
dataset and are the most frequent classes overall. The
training database is composed of the CPSC2018 and
PTB-XL dataset. The PTB and G12EC databases are
used as external data in this research.

3.2 Data Preparation

To reduce the computational costs, only the ECG aVR
lead was used since this lead produced the best results
in the work of Chen et al. (Chen et al., 2020). The
data was downsampled to 125 Hz and a 10 seconds
window size was used. Data with length below that
value were excluded and data above 10 seconds were
truncated, so that all the samples have 1250 sample
data points. The ECG signals were filtered using a
2nd order band-pass Butterworth filter between 1 and
40 Hz and it was also employed a smooth function
using a window of 10 samples. Lastly, the data was
normalised through a z-normalisation.

3.3 Proposed Algorithm

The model developed is a one-dimensional CNN. The
architecture consists of three convolutional blocks,
each with a convolutional layer followed by a batch
normalization layer, a PRelu activation function with
an initializer of 0.25, a max pooling layer and a
dropout layer with rate of 0.25. Each convolutional
layer has the same kernel size (31x31) but different
number of filters (the first has 512 filters, the second
has 256 and the last one has 128 filters). After the
convolutional blocks, a flatten layer was applied, re-
sulting in a Latent Vector. Three fully connected lay-
ers are added and the last one has a sigmoid activation
function with the same number of neurons as classes.
The flowchart of the proposed algorithm is shown in
Figure 1.

The model was trained in 30 epochs with a batch
size of 64. The loss function employed was the binary
cross-entropy and an Adam optimizer with a learning



Figure 1: The flowchart of the designed algorithm. The algorithm architecture consists of three convolutional blocks, each
with a convolutional layer followed by a batch normalization layer (B̄), a PRelu activation function with an initializer of 0.25,
a max pooling layer and a dropout layer with rate of 0.25. A flatten layer was applied, resulting in a Latent Vector. Three fully
connected layers are added and the last one has a sigmoid activation function with the same number of neurons as classes.

rate of 0.1. Since the model is trained with imbal-
anced datasets, it was added the class weight param-
eter that defines the weighting to adopt for each class
when fitting the model.

3.4 Training and Testing

The data from CPSC2018 and PTB-XL database was
split into 60% training, 20% validation and 20% test-
ing. The test set from this database was used as an
in-distribution set and will be referred as test-in from
now on. The test set composed from all the samples in
the PTB and G12EC datasets is named test-out. Two
approaches were employed: the MC dropout and the
DE. Both approaches were applied 30 times to both
test sets, resulting in 30 models for each. To obtain
the final prediction with both MC Dropout and DE
approach, it was applied the majority vote for each
class.

3.5 Uncertainty Approaches

For the single CNN, the predicted posterior proba-
bility, also known as maximum probability, and the
Shannon entropy of the predicted probabilities were
used as uncertainty measures. In the case of MC
Dropout and DE, the total uncertainty, EU and AU
measures were estimated. Since a prediction in a
multi-label classification can return more than one
class, the network sigmoid values do not sum 1. For
this reason, in this multi-label scenario, each class
was assumed as an independent binary case and the
uncertainty calculated by each class. Besides the un-

certainty by class, an aggregation mechanism based
on the sum of all class uncertainties was employed as
the final prediction uncertainty.

Regarding the uncertainty evaluation, a common
approach for evaluating the predicted uncertainty is
by using ARC. However, due to the imbalance data,
instead of using accuracy as a performance measure,
the F1-score was used and the F1-Rejection curve was
computed to evaluate the behaviour of the developed
models. These curves were performed for the uncer-
tainty measures mentioned previously with the rejec-
tion occurring from the sample with the highest un-
certainty in its classification to the sample with the
lowest uncertainty. This evaluation was performed
considering the overall performance. Since the data
is multi-label, the uncertainty of an ECG sample is
the sum of each class uncertainty and, therefore, each
sample uncertainty is represented by a value between
0 and 5.

3.6 Active Learning

Uncertainty estimation can be used to select the sam-
ples with higher uncertainty, taking advantage of the
separation between epistemic and aleatoric uncer-
tainty, where the former is more relevant as a selection
criterion (Hüllermeier and Waegeman, 2021). Fol-
lowing this idea, the retraining process was performed
for the single model and the DE model, where a new
set was added to the previous training set for the re-
training process. Each model was retrained for four
more epochs using the newly dataset and the same pa-
rameters previously used to train the initial models.



To validate if samples with high epistemic uncer-
tainty are more informative to the DE model, three
different sets composed by 10% of the test-out were
defined to the retraining process, namely: 1) random
samples; 2) samples with the highest epistemic uncer-
tainty; 3) samples with the highest total uncertainty.
For the single model, the retraining was done with
samples with the highest Shannon Entropy and for
random samples as well.

4 RESULTS

In order to access the models’ generalization capaci-
ties, it was compared the performance of the single,
MC Dropout and DE models tested with test-in and
tested with test-out.

Figure 2: Micro average F1-score results for the three de-
veloped models tested in test-in and test-out sets.

As it can be seen in Figure 2, the three models,
when tested with the test-in set, have similar perfor-
mances, with micro average F1-score around 96%-
97%, being comparable to the state of the art results.
However, when the models are tested with the test-
out set, their performances decrease significantly in
all three models, having a micro-average F1-Score
of approximately 70%. The DE model obtained the
highest F1-score in both test sets with a maximum dif-
ference of 3% from the other models.

Regarding the classification with rejection option,
even though this method does not solve the problem
of model’s generalization that leads to poor perfor-
mance results under data shift, it can be a viable ap-
proach to abstain to predict a class under high uncer-
tainty conditions. For each model, the uncertainties
measures presented in Section 2.1 were calculated for
the test-in and test-out sets and the results can be
seen in Figures 3 and 4. For the single model, the be-
haviour of both uncertainties measures in test-in and
test-out are similar. However, both uncertainty mea-
sures obtain higher uncertainty in the test-out set.

As for the results in Figure 4, for the test-in set,

Figure 3: Uncertainty Estimation for both test sets in the
single model.

Figure 4: Uncertainty Estimation for both test sets in the
MC Dropout(up) and DE(down) models.

the MC Dropout and DE models estimate similar val-
ues of uncertainty, presenting the same median and
the same range of total uncertainty. The MC Dropout
presents a higher range of AU while the DE detects
higher EU. As for the test-out set, both models cap-



ture higher uncertainty than for the test-in set in all
the three types of uncertainty measures.

To investigate the role of uncertainty in rejection,
the F1-rejection curve was produced for the three
models, rejecting the samples according to the highest
calculated uncertainties. To validate the rejection rate
in both sets, a 10% rejection in the training set was ap-
plied and the uncertainty thresholds obtained. Using
the same thresholds on test-in and test-out, the rejec-
tion rates increased to approximately 12% and 40%,
respectively, using the single model for both maxi-
mum probability and entropy measures. For the MC
Dropout the rejection in test-in was 9% and vary be-
tween 31% and 34% for test-out depending on the un-
certainty measure used. The DE model vary the rejec-
tions rates between the intervals 13%-16% and 45%-
51% for test-in and test-out, respectively. Further-
more, as it can be deducted for the micro average F1-
Scores presented in the Table 1, for all the three mod-
els and for all uncertainty measures, the more samples
rejected, the better is the models’ performance. Even
though the curves based on the different uncertainty
methods are quite similar, throughout the rejection,
the DE model presents better micro average F1-Score
results for the same rejection rate.

Apart from employing the rejection option, a pos-
sible method to deal with dataset shift is by retraining
the model with samples that have crucial information
to help improve its performance. A potential solution
is the active learning approach, in which the samples
used to retrain the model contain the highest uncer-
tainty associated with their classifications. To eval-
uate the three uncertainties in this approach, the re-
trained models were tested with the test-out set with-
out the 10% samples to fairly compare the increase
between the retrained model and the baseline model.
Thus, the following nomenclature was used: 1) Pre-
vious trained model using the complete test-out set
(Baseline - test-out-100); 2) Previous trained model
tested only on 90% of test-out, i.e 10% of test-out
was used to retrain the model (Baseline - test-out-
90); 3) Retrained model using the selected 10% data
and tested on the remaining 90% (Retrain - test-out-
90). Furthermore, to serve as control, this process
was performed for 10% of random samples in order
to observe the role of uncertainty in this approach.
This procedure was conducted 10 times and the mean
and standard deviation of the results are represented
in Figure 5.

As it can be observed in Figure 5, when the sam-
ples with the highest uncertainty are removed from
the test-out, the model performance increases slightly,
from 2%-4%. After retraining the two models with
these samples and evaluating it without them, a max-

Figure 5: Micro average F1-score for the Active learning
approach for the highest uncertainties and for random sam-
ples.

imum increase of almost 5% is observed when com-
pared to the baseline models that are tested with all
the samples of test-out. These conclusions are sup-
ported through the results served as a control, where
the samples selected are random and the trained mod-
els have similar performance as the original models.

5 DISCUSSION

To make the decision support systems as trustwor-
thy as possible, it is critical to access the confidence
that ML models have in their classifications. This
work studied these concepts using four large public
ECG databases for the classification of cardiac ar-
rhythmias. As multiple cardiac arrhythmias can be
presented within the same recording, a multi-label
classification setting was adopted for the development
of DL models.

The performance of the three models developed
were assessed for two test sets, where the test-in has
data from the same database as the training and the
test-out presents data from a different database. Al-
though these models produced similar performance
results for the same test set, the DE and MC Dropout
outperform the single model, as expected since these
models assist in reducing models’ high confidence in
incorrect classifications. The DE model revealed has
the better performance in both test sets, which it is
consistent with the literature. When tested with the



Table 1: Rejection rate results and the respective F1-Score values for each uncertainty.

Model Uncertainty Test-in Test-out

Rejection F1-Score Rejection F1-Score

Single CNN
Maximum Probability 12.24% 98.54% 39.81% 79.14%

Shannon Entropy 12.16% 98.38% 41.70% 79.89%

MC Dropout Aleatoric 9.51% 98.46% 31.92% 82.25%

Epistemic 9.35% 98.29% 33.68% 83.07%

Total 9.41% 98.47% 34.30% 83.33%

DE Aleatoric 16.21% 99.34% 51.03% 86.26%

Epistemic 13.46% 99.10% 45.05% 85.25%

Total 15.75% 99.41% 49.95% 87.00%

test-out set, the performance of all the three mod-
els drops significantly, confirmed by the decrease of
F1-Score from around 96% to 70%. These results
indicate the possible presence of dataset shift since
the data from test-out has different characteristics and
distributions than the data used for training.

Regarding the uncertainty estimations, the Shan-
non entropy and maximum probability were esti-
mated for the single model and the aleatoric, epis-
temic, and total uncertainty for the MC Dropout and
DE models. For the single model, both maximum
probability and entropy obtained similar results, while
for the MC Dropout and DE the total uncertainty pre-
sented slightly better result. This suggests the ben-
efit of estimating uncertainty using the combination
of epistemic and aleatoric uncertainty. Additionally,
all uncertainties computed for the test-out were sig-
nificantly higher than for the test-in set. This shows
that the model is less confident on the classification of
cardiac arrhytmias and as result there is higher prob-
ability of misclassified samples. This is an indication
of dataset shift and the main reason of models’ perfor-
mance drop in test-out set. Furthermore, it is impor-
tant to mention that it was expected that the EU would
be higher than the AU in test-out since the data comes
from a different source and might be a different dis-
tribution. This reveals that there are still challenges in
capturing these two uncertainties correctly.

In order to improve the trustworthiness of the
models, the classification with rejection option was
applied. For both test sets, the models performance
increased with rejection, revealing that the higher the
uncertainty in a given classification, the higher is the
probability of the models to misclassify the samples.
Additionally, the uncertainty threshold, selected from
the training data, increased from 10% to a range be-

tween 30% to 50% depending on the model or un-
certainty measure employed. The increase in rejec-
tion rate confirms that high uncertainty is presented in
the classifications and the uncertainty is higher in the
test-out set. This is another evidence of the dataset
shift effect and that the models are not as prepared to
classify data with different distributions.

Another alternative to improve the models’ per-
formance and reliability is through the retraining of
models with unseen data. In this manner, it was em-
ployed an active learning approach, using 10% of the
samples with the highest uncertainty in the test-out
set. The results showed that the models improved
their performance by a maximum of almost 5% when
using uncertainty versus 2% when using a random
selection. These results demonstrate that data with
high uncertainty has information that the model has
not yet learned and hence the models benefit from
the retraining with this selection method. Moreover,
when removing the 10% of the samples with the high-
est uncertainty and test 90% of the test-out in the
baseline models, the performance improved, showing
that the samples with highest uncertainty are misclas-
sified. This underlines the importance of the uncer-
tainty quantification in detecting incorrect classifica-
tions.

6 CONCLUSIONS

The evaluation and comparison of uncertainty mea-
sures has proven to be essential in an in-depth anal-
ysis of ML models, allowing us to understand their
limitations. Furthermore, the preliminary results re-
veal that the quantification of uncertainty should be
considered a key feature of any ML model as a safety



mechanism.
Although there are still no ground truth for the es-

timation of uncertainty, all the metrics used were ca-
pable to detect uncertainty in multi-label data. Never-
theless, there are still challenges in capturing the un-
certainty through the employed measures, specially in
the separation of epistemic and aleatoric uncertainty.
It is also possible to infer the role of uncertainty as a
valuable method under dataset shift conditions and in
strategies such classification with rejection option and
active learning approaches.

Thus, the development of uncertainty aware mod-
els will provide healthcare professionals with access
to the model’s confidence in its predictions but also
refrain the model from delivering classifications with
high uncertainty. Furthermore, samples that have dif-
ferent characteristics and distributions than the ones
learned by the models have higher uncertainty asso-
ciated with their classifications and, therefore, can be
used to retrain the ML models and improve its gen-
eralization and robustness. The active learning ap-
proach is a reliable method for this purpose, demon-
strating that it is a technique capable to self-regulate
the learning of the models in a real life setting, with a
reduction in computational cost as well as in the cost
of labelling the data usually required. Despite the en-
couraging results, much more research is needed in
the area of clinical data uncertainty, particularly in
multi-label data.

To conclude, data with different characteristics
and distributions from those learnt by the ML mod-
els will always exist, so it is imperative that AI sys-
tems possess uncertainty associated methods as safety
mechanisms to produce reliable models to implement
as a decision support system in clinical settings.
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The state of artificial intelligence-based fda-approved
medical devices and algorithms: an online database.
NPJ digital medicine, 3(1):1–8.

Chen, M. and Decary, M. (2020). Artificial intelligence
in healthcare: An essential guide for health leaders.
Healthcare Management Forum, 33(1):10–18. PMID:
31550922.

Chen, T.-M., Huang, C.-H., Shih, E. S., Hu, Y.-F., and
Hwang, M.-J. (2020). Detection and classification of
cardiac arrhythmias by a challenge-best deep learning
neural network model. Iscience, 23(3):100886.

Chow, C. (1970). On optimum recognition error and reject
tradeoff. IEEE Transactions on Information Theory,
16(1):41–46.

Depeweg, S., Hernandez-Lobato, J.-M., Doshi-Velez, F.,
and Udluft, S. (2018). Decomposition of uncer-
tainty in Bayesian deep learning for efficient and risk-
sensitive learning. In Dy, J. and Krause, A., editors,
Proceedings of the 35th International Conference on
Machine Learning, volume 80 of Proceedings of Ma-
chine Learning Research, pages 1184–1193. PMLR.

Gal, Y. et al. (2016). Uncertainty in deep learning.
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