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ABSTRACT ARTICLE HISTORY
The use of social media and location-based networks through Received 3 March 2022
GPS-enabled devices provides geospatial data for a plethora of  Accepted 4 May 2023
applications in urban studies. However, the extent to which infor-

mation found in geo-tagged social media activity corresponds to ~ KEYWORDS )
the spatial context is still a topic of debate. In this article, we Cﬁ”t?"J'ch’fa“o” reIaugn—
developed a framework aimed at retrieving the thematic and spa- cht’i)vsilty‘ toﬁigcer?l-;fjgﬁﬁg
tial relationships between content originated from space-based !

(Twitter) and place-based (Google Places and OSM) sources of

geographic user-generated content based on topics identified by

the embedding-based BERTopic model. The contribution of the

framework lies on the combination of methods that were selected

to improve previous works focused on content-location relation-

ships. Using the city of Lisbon (Portugal) to test our methodology,

we first applied the embedding-based topic model to aggregated

textual data coming from each source. Results of the analysis evi-

denced the complexity of content-location relationships, which

are mostly based on thematic profiles. Nonetheless, the frame-

work can be employed in other cities and extended with other

metrics to enrich the research aimed at exploring the correlation

between online discourse and geography.

1. Introduction

Cities are multi-layered systems, hosting complex human-environment interactions in
the form of activities, functions, flows, places and meanings embedded into the sur-
rounding urban landscape (Gao et al. 2017, Iranmanesh et al. 2022). Today, the wide-
spread use of online platforms through mobile phones and location-based services
provides fast and voluminous georeferenced data in urban areas. Geospatial big data
from user-generated content (UGC) are a major data source for urban studies, with appli-
cations such as identifying regions of interest (Shang et al. 2016), examining urban
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perception and functional structure (Hu et al. 2021), unraveling mobility patterns, map-
ping sentiments, among many others (Belcastro et al. 2021, Gao et al. 2021). When loca-
tion is attached to published content, users are regarded as social sensors and their
footprints are often used as a spatial proxy for obtaining place-based information
(Goodchild 2007, Papadakis et al. 2020). Therefore, exploring the degree of correlation
between space-based thematic information and the surrounding place-based informa-
tion is crucial when geo-tagged UGC is an ubiquitous source of data in the literature.

Platforms such as Twitter, with approximately 200 million daily active users and more
than 500 million tweets per day (Jay 2022), provide extensive location-based data in
densely populated areas. Textual information linked to geographic coordinates, however,
do not necessarily reflect the thematic signatures associated with the geographic con-
text from where the user has posted (McKenzie and Adams 2017). Another widely
exploited type of location-based UGC data in the literature is represented by points of
interest (POI), sourced from platforms such as OpenStreetMap (OSM), Foursquare and
Yelp (Niu and Silva 2020). Attributes such as thematic tags, user reviews and number of
check-ins are more enriched in place-based information and better mirror the encom-
passing spatial context, portrayed by place names, functions and affordances (Psyllidis
et al. 2022). The discrepancies between content and location are naturally more evident
in geo-tagged activity from social networks (eg Twitter and Instagram), where relation-
ships between what is said and where it is said are not obvious.

Previous research has addressed the content-location relationships through different
lenses. One such avenue is the inference of geography in both non-georeferenced and
geo-tagged textual content by extracting topononyms, geocoding as well as investigat-
ing ‘geo-indicativeness’ — the degree to which lexica semantically indicates geographic
features (Adams and Janowicz 2021, Melo and Martins 2017, Qiu et al. 2022). In place
semantics, natural language processing (NLP) methods have been applied to geo-tagged
UGC to obtain thematic and cognitive dimensions of places (Hu 2018a, 2021). In NLP,
efforts to incorporate location into topic modeling algorithms are examples of how
researchers have acknowledged that location is not just another attribute, but is often
intertwined with content (Bo and Martin 2013, Wang et al. 2020). However, studies that
focus specifically on addressing the extent to which location and content are related in
geo-tagged social media activity are still scarce. In addition, most of the works employ-
ing topic modeling rely on the latent Dirichlet allocation (LDA), which has been outper-
formed by more recent algorithms, making room for improvements regarding the NLP
methods of choice (Egger and Yu 2022).

The extent to which everyday conversation in social networks is geo-indicative may
vary depending on temporal and spatial scales, as well as the thematic signatures of the
text (Gao et al. 2017, Fu et al. 2018). As these data sources continue to support research
in urban studies, we need to outline reproducible and straightforward steps aimed at
assessing the correlation between text and the urban environment for a given city (de
Oliveira and Painho 2021). Limitations found in previous works include employing out-
dated topic models, relying on manual classification steps, performing content analysis
based on individual point-based short-text activity and restricting context information to
place types (Hahmann et al. 2014, Herfort et al. 2014, McKenzie and Adams 2017).
Furthermore, traditional bag of words topic models, such as LDA, do not consider the
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syntactic and semantic relationships between words within a document, but recent algo-
rithms are supported by methods that enable the contextualized representation of
words (Yang et al. 2023). As content-location correlations are the bridge between spatial
context and the content of online activity, the efforts to investigate these relationships
should invest in up-to-date topic modeling techniques.

In this paper, we introduce a framework for modeling and comparing similar
thematic signatures derived from space-based and place-based online activity. The
content-location relationships are better represented as the relations between topics
originated from geo-tagged social media text and those from POI reviews and tags.
Since georeferenced social media data reveals information that is attached to space
while not necessarily being thematically related to it, we refer to these sources as
space-based. In contrast, POl information and reviews are considered place-based
sources as they are better at disclosing urban functions, affordances and perceptions
that describe and are related to space. Our contribution relies on providing a meth-
odological framework that can be employed in other cities to enhance the content-
location discussions and that is based on more recent methods for topic modeling
which have not been applied for this task, more specifically the Bidirectional Encoder
Representations from Transformers topic model (BERTopic, Grootendorst (2022)). We
also attempt to improve previous efforts by aggregating textual content based on a
grid, extracting statistically significant thematic regions, using metrics to objectively
assess spatial and thematic similarity, as well as using place reviews as our proxy of
the urban landscape. The framework is employed using geo-tagged Twitter posts as
our space-based source and reviews and names from Google Places and
OpenStreetMap as our place-based reference. All platforms provide large datasets
from extensive activity in the majority of urban regions across the globe, including the
city of Lisbon (Portugal), where we chose to test the framework.

The remainder of this paper is organized as follows. In Section 2, we present the lit-
erature that covers theoretical and methodological aspects of our study. Sections 3
and 4 bring forward our data and methods respectively, from which we obtained our
results, found in Section 5. Section 6 is dedicated to our interpretation and discussion
of the findings, and lastly, we present our concluding remarks in Section 7.

2, Background and related work
2.1. The relationships between content and location in social networks

Natural language in explicitly geo-tagged social media activity can either disclose
information about a place or merely from a place (Hu 2018b). In both cases, content
may be influenced or caused by features and events from users’ origins at different
scales, such as the locale, neighborhood, city and country. This is particularly exploited
in previous works that analyze geo-tagged social media data for situational awareness
and emergency response in natural disasters including floods, earthquakes and
typhoons (Herfort et al 2014, Huang and Xiao 2015, Suwaileh et al. 2022). Although
extreme circumstances might generate a higher correlation between content and loca-
tion, geo-tagged user-generated content can also reflect everyday urban life. In
GlScience, these have become common sources for spatially assessing urban thematic
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characteristics derived from websites, digital gazetteers, social media (Twitter,
Foursquare, Instagram, Flickr), Wikipedia, among others (Hobel et al. 2015, 2016, Chen
et al. 2019, Twaroch et al. 2019, Belcastro et al. 2021, Gao et al. 2021). In social media,
textual content can act as location-based proxies for urban life in regard to activities
(eg shopping, working, eating out, recreation) and functions (eg commercial, transpor-
tation, residential) that cities can support in different places and regions (Gao et al.
2017). However, we need to be aware of the limitations in relying on social media
posts with coordinates, as its attachment to space might not necessarily indicate cor-
relation with the neighboring settings (Fu et al. 2018).

The vast number of works that explore urban dynamics from geo-text data is evi-
dence that correlation between content and location is generally assumed to be high.
Using tweets and POI classes, Hahmann et al. (2014) demonstrated that content-
location correlation is often low and varies according to place types, arguing that
studies should acknowledge this relationship in their applications while also discussing
the need to critically consider the link between a piece of information to a pair of
coordinates. With that in mind, McKenzie and Adams (2017) used place labels from
Foursquare in a supervised topic modeling of geo-text data from social media plat-
forms, showing that content related to built-up places seem to have a lower correl-
ation while content characterized by physiographic features exhibit a higher
alignment between data sources. Their theoretical underpinnings stem from the dis-
cussion between space and place, which is in fact fundamental in content-location
relationships. Other similar examples in the literature seem to focus on the space-
based aspects, such as extracting user positions based on tweet meta-data and match-
ing to correspondent locations found in GeoNames and OSM data (Zohar 2021). More
place-oriented approaches for discussing the relationships between content and loca-
tion are timid: while Lansley and Longley (2016) revealed the influence of land-use
and urban activities on the content of tweets, Yu et al. (2022) standpoint was to con-
sider POI reviews as adequate spatial proxies of place-based information. Therefore,
content-location relationships must be seen through an extended perspective, where
comparisons are based not only on positions but also on meanings, functions, activ-
ities and affordances of the urban landscape.

2.2. Natural language processing and geo-tagged user-generated content

NLP consists in several techniques that aims at structuring, extracting information and
making sense of human natural language (Lamurias and Couto 2019). As geo-tagged
UGC carries information on people’s in-space activities, opinions and experiences, it
provides discursive information that can be used to explore different thematic attrib-
utes related to the urban landscape (Dunkel 2015, Marti et al. 2019). According to
Twaroch et al. (2019), UGC does reflect people’s experiences, focus, opinions and inter-
ests to a significant degree, and therefore NLP is a crucial tool to find relevant pat-
terns in unstructured text data. The most prevalent NLP method found in the
literature is topic modeling, which is able to reduce the complexity of massive geo--
text datasets to extract thematic signatures linked to places, activities and perceptions
(Fu et al. 2018).
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From the wide range of available topic models, the LDA algorithm became perva-
sive in the literature (Liu et al. 2019). LDA is an unsupervised probabilistic model based
on word co-occurrences (Blei et al. 2003, Jenkins et al. 2016). Some of the countless
examples include extracting cognitive regions of Northern and Southern California
(Gao et al. 2017); identifying urban functional regions in cities with check-in informa-
tion (Gao et al. 2017); estimating geographic regions from unstructured text (Adams
and Janowicz 2021); as well as the previously mentioned works of Lansley and
Longley (2016), McKenzie and Adams (2017) and Yu et al. (2022). Nonetheless, research
on topic modeling methods has empirically demonstrated the disadvantages of LDA,
including careful tuning of hyper-parameters for generating cohesive topics, the
requirement of detailed assumptions, overlapping topics, user-defined number of
topics and restrictions in assessing the correlation between topics as word correlations
are ignored (Egger and Yu 2022).

Although LDA has been one of the best-known and widely used models, other
methods for text representation have been developed in the last years. In particular,
algorithms that use word or sentence embeddings have been applied in more recent
topic models such as the Top2Vec (Egger 2022). Word embeddings are vector repre-
sentations of text data that enable semantic properties to be encoded whereby similar
pieces of text information are nearer in vector space (Naseem et al. 2021). Therefore,
by embedding words in a continuous vector space, words with similar semantic and
syntactic meaning can be mapped to nearby points (Comber and Arribas-Bel 2019).
Embeddings have been used within GlScience for tasks such as address geocoding,
fine-scale land-use identification from POl data and even for building algorithms
aimed at reasoning the complex spatial semantics of place types (Place2Vec), among
others (Yao et al. 2017, Yan et al. 2017, Zhang et al. 2022). However, works in the field
that employ topic models supported by word embeddings are still not commonplace,
especially for exploring location-content relationships.

As embedding-based models are able to generate contextual representations, relation-
ships that emerge in the vector space might be related to context emerging from the
geographic space. Therefore, even without inserting spatial variables, the use of embed-
ding-based topic modeling is more effective in unraveling latent geographic topics of
interest and in the separation of geographic and non-geographic clusters (Yang et al.
2023). Among recent algorithms, Grootendorst (2022) has developed the BERTopic, a
model that combines BERT embeddings (Bidirectional Enconder Representations From
Transformers, developed by Devlin et al. (2019)) and other methods that enable higher
flexibility for different use cases. The model works by first creating embeddings that use a
pretrained language model, followed by reducing the dimensionality of documents and
grouping semantically similar documents into clusters that represent distinct topics.
Lastly, the model employs a class-based TF-IDF (term frequency-inverse document
frequency) to compare the importance of terms and retrieve the most representative
words per topic (Grootendorst 2022, Egger and Yu 2022).

BERTopic has been employed in social media text analysis such as investigating
public sentiments regarding the monkeypox outbreak (Ng et al. 2022) and detecting
cognitively distorted thinking patterns in Twitter (Alhaj et al. 2022). BERT embeddings
have also been implemented in methods aimed at extracting geospatial information
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and toponyms in unstructured text (Chu et al. 2022, Berragan et al. 2023). In addition
to outperforming other topic models, BERTopic is able to generate more interpretable
topics, allows multilingual analysis and automatically finds the number of topics
(Egger and Yu 2022, Egger 2022). In this paper, we have opted for implementing the
model not only because the vector space might reflect the spatial context better than
traditional approaches such as LDA, but also because the use of BERTopic in exploring
location-content relationships in UGC has not been carried out in the literature.

3. Data and preprocessing

Using the Twitter Search API, we retrieved all georeferenced tweets posted roughly
within the metropolitan area of the city of Lisbon, Portugal. Our search query collected
tweets that lay within a 40km radius around the centroid of Lisbon’s municipality
without time constraints. The following filtering and selection are exemplified in
Figure 1.

First, tweets without explicit coordinate-based geo-tagging were removed to best
represent users’ active location sharing. Then, we selected those tweets whose
assigned language field was Portuguese as the high number of tourists in the city
might influence the data distribution. The next steps were to remove tweets with
duplicated text entries to reduce contamination of spams, followed by clipping the
data to Lisbon’s municipality extent. Based on a 200 m-spaced hexagonal grid, we fil-
tered user contribution in space by allowing up to 10 tweets per user per cell with
the objective of reducing users that might skew data distribution in specific locations.
The chosen spatial unit of analysis has an area of approximately 0.03 km?, which is
able to embed most city blocks but not enough to cover neighborhoods. We believe
that this resolution is reasonable for our analysis based on the city’s urban fabric and
similar grid-based implementations (Andrade et al. 2020). As for limiting user contribu-
tion, our goal was to reduce the effects of potential dominating spatial bias from the

Twitter API

Python client
Search query User contribution =
—>1 11-]
n=10,088,848 n=811,596 Gelkastd aggrsgation
Geo-tagged Lisbon municipality Documents
n=6,547,967 n=1,046,333 n=1333
Language: pt Unique text .
—> Te
n=4,682,037 n=4246,778 extprocessing

\V/

BERTopic

Figure 1. Twitter data filtering and preprocessing steps prior to topic modeling.
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most active users (Gao et al. 2017). We also removed the cells containing less than the
median value of tweets per cell across the study area. In combination, the previous
tasks were aimed at both spatially leveraging user contribution and ensuring that
areas with reduced user activity would not contribute to the topic modeling. Since
there are no standards on these procedures, our choice of thresholds per cell was
done arbitrarily both for the cell removal and for limiting user contribution.

The publishing dates of filtered tweets ranged from 2010 to 2021 and thus we
assume that more than a decade of space-based online activity might have substan-
tially contributed to shaping thematic information regarding different aspects of the
city. After obtaining the final tweet distribution, we spatially aggregated their textual
within each cell of the hexagonal grid covering the city. Therefore, each hexagonal
cell represented a document in our topic modeling analysis. Throughout the paper,
we will use the word ‘document’, ‘hexagon’ and ‘cell’ interchangeably depending on
the context, although they are the same in our analysis. Lastly, we processed the text
for the model by removing unwanted text such as special characters, emojis, urls and
stop words.

Representing the thematic place-based counterpart, we sourced data from Google
Places APl and OSM (Figure 2). We gathered all POl from Google Places within the
city, as well as POl and building centroids across Lisbon from OSM. Features extracted
from Google Places consisted of user reviews and place names, whereas we retrieved
non-empty place names from OSM. We opted not to use place type tags from both
sources as we intended to mainly focus on textual information generated by users
(place reviews) and place names that act as specific information linked to places. Place
type tags not only might not represent specific locations in the city but also are not
necessarily defined by users. Following feature extraction, we aggregated the text-
based data based on the previous hexagonal grid, succeeded by the same text proc-
essing prior to topic modeling. Most text data originated from users’ reviews on
Google Places, where publishing dates ranged from 2011 to 2022.

By having similar temporal distributions, both datasets from Twitter and Google
may thematically reflect consolidated place-based urban dimensions, even though POI
might appear or cease to exist. Figure 3 shows the data distribution of instances from
the space-based and place-based data sources prior to cell-based aggregation.

Google Places API POls;in L.'Sbon with e Documents
reviews Reviews and names
n=23584 n=1778
n=8086
AV V
OpenStreetMap -
POls in Lisbon Names 5 <
= l—l> 1I- Te
n = 346,736 n= 11140 n = 8583 Cell-based aggregation ‘ext processing
A
Buildings in Lisbon Names BERTopic
D (centroids) n=1778
n =40948

Figure 2. Google Places and OSM data filtering and preprocessing steps prior to topic modeling.
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Twitter Google Places and OSM

n = 811596 n = 18447

[ T I
0 2.5 5 km

Figure 3. Point locations of data instances from Twitter, Google Places and OSM prior to hex-
agonal cell aggregation.

4, Methods

The framework we introduce is visually described in Figure 4. Our spatial unit of ana-
lysis are the cells that compose the hexagon-based grid across the city. The main com-
ponents of the framework include: setting the aggregated textual data from Twitter
and place-based sources (Google and OSM); employing the BERTopic transformer-
based topic modeling for each source; comparing topics emerged from each source
using the cosine similarity metric; carrying out Getis-Ord G hotspot analysis for
retrieving statistically representative topic-based cells; applying the Jaccard similarity
index aimed at ultimately comparing thematic and spatial similarities that support the
discussion on content-location relationships for the case study.

4.1. Topic modeling

In order to extract thematic signatures from our space-based and place-based sources
of textual information, we applied the BERTopic algorithm developed by Grootendorst
(2022). Each cell of our hexagonal grid covering the city of Lisbon contained aggre-
gated text-based data, acting as our documents for topic extraction. The BERTopic
algorithm uses pre-trained transformer models, rooted in neural network architectures
and able to encode words in vector-based representations (Saidi et al. 2022). In add-
ition, it merges machine learning approaches to both reduce dimensionality through
UMAP (Uniform Manifold Approximation and Projection for Dimension Reduction) and
cluster similar embeddings for topic identification through HDBSCAN (Hierarchical
Clustering and Density-Based Spatial Clustering of Applications with Noise).

We employed the BERTopic model for each data source independently, although
we have set the same hyper-parameters to reduce any model-driven variations in the
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Twitter
BERTopic

Space-based
content

topics

Hotspot
analysis
Getis-Ord
Gi*

Spatial
similarity
Jaccard's
index

Topic similarity
. matrix
same hyper-parameters

Cosine similarity

Google
osM

topics

BERTopic

Place-based Content-location relationships:

content

Figure 4. Methodological framework developed in the study.

originated topics. Whereas most parameters were kept as default given the lack of
similar frameworks that use BERTopic, we did modify others for our implementation.
For the HDBSCAN hyper-parameters, we set the minimum cluster size to 10 docu-
ments while keeping the minimum number of samples as 5 to potentially minimize
the number of outliers (Grootendorst 2022). Since topics are generated through dens-
ity-based clustering, documents are not forced to fit clusters and hence those that fail
to belong to a topic are considered outliers, which helps reducing noise and generat-
ing more meaningful topics (Egger and Yu 2022). In addition, this also means that
although hyper-parameters can be tuned to reduce outliers or change the minimum
number of documents for topic generation, there is no prior selection regarding the
number of topics. The embedding-based model reduces the dimensions and clusters
documents into an optimal number of topics given the input parameters and data.

As for the UMAP, we set the number of neighboring sample points to 5 to con-
strain local neighborhood size and focus on local as opposed to global patterns.
Increasing the number of neighbors provides a more global view of the embedding
structure whereas lower values output a more local perspective (Grootendorst 2022).
As UMAP is stochastic in nature, we also set a random state to guarantee the reprodu-
cibility of the model. For each topic, we retrieved the top 15 words that contributed
the most in representing the information for the topic cluster. Lastly, we chose a
multilingual embedding model, as not only Google Places reviews might be in differ-
ent languages, but also in tweets, as languages assigned by Twitter are not always
accurate. For each data source, the final output is the topic probability distributions
across the grid cells, which are the input of the hotspot analysis, whereas word prob-
ability distributions for each topic are compared using the cosine similarity between
topics.

4.2. Cosine similarity

To objectively compare the topics identified in the model between data sources, we
used the cosine similarity metric. The similarity metric represents the angle between
vectors. As the output topic information from BERTopic consists of the 15 most impor-
tant words that form the topic cluster and their respective values of importance or
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probability, we treated topics as 15-dimensional vectors. The smaller the angle
between vectors, the more similar the topics are in the vector space (Liu et al. 2019).
The cosine similarity is defined as follows:

oo A-B
similarity = cos (A, B) AT T8I (1)
Where A and B are vectors, and similarity is given by calculating the product
between vectors divided by the cross product of their lengths (Fu et al. 2018). With
values ranging from 0 to 1, we computed the cosine similarity for all topics retrieved
from Twitter against those from the place-based sources. We then filtered the output
pairwise matrix to select the highest values for each Twitter-based topic, showing the
most similar corresponding place-based topics within the vector space. Following the
selection, we assess the spatial relationship between corresponding topics to charac-
terize and visualize the content-location relationships.

4.3. Getis-Ord G;

The last two steps consist in assessing the spatial relationship between the space-
based and place-based topics across the city, ultimately aimed at providing insights
regarding the content-location relationships. In the first stage, we carried out a hot-
spot analysis to retrieve statistically significant cells in regard to topic distributions,
represented by the probability values assigned to documents or hexagons of belong-
ing to each topic retrieved by the algorithm. For this task, we chose to calculate the
Getis-Ord Gi* statistic, part of the G family of statistics developed by Getis and Ord
(2010) aimed at characterizing pronounced local clusters of high and low values. In a
study area with n points and X = [X1, ...,Xn] Measurements, and assuming weights
w;,; to be defined between all pairs of points i and j (for all i,j € {1, ..., n}), the Getis-
Ord G is denoted as:

—1 Wi jXj — XZ, 1Wi,j

rG; =
I7
\/ Z/w i j= 1W’/)
n—

1

Where X is the mean of all measurements and S is the standard deviation of all
measurements (Kumar and Parida 2021). In our implementation, we ran the hotspot
analysis for all topics extracted in the previous stage and identified cells with z-scores
higher than 1.65, which are samples with standard deviations that have 90% or higher
confidence or significance in regard to not responding to a random spatial distribution
(Rossi and Becker 2019).

4.4. Jaccard index

In the second stage, we computed the Jaccard index metric for the identified hotspot
areas corresponding to the pairwise comparison of similar topics derived from space-
based and place-based sources. In other words, after selecting significant spatial distri-
butions of the topics that yielded higher values of cosine similarity between sources,
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we computed the spatial similarity between these distributions. The metric is defined
as:

_|AnB|
- JAUSB|

J(A,B) 3)

Where the result corresponds to the intersection divided by the unions of two sets
A and B. Ranging from 0 to 1, the metric measures the similarity of two sets, repre-
sented in our case by the hotspot areas computed previously, similar to the approach
of Heikinheimo et al. (2020). More precisely, sets A and B are the areal extent com-
posed by cells identified as hotspots with z-scores higher than 1.65 from each source
respectively. We then discussed the spatial and thematic similarities between the
topics derived from Twitter and the corresponding ones derived from POl names and
reviews.

5. Results
5.1. Topics

As described in the previous section, we ran the BERTopic algorithm using the same
hyper-parameters for the cell-based documents derived from our space-based (Twitter)
and place-based (Google and OSM) data sources. While Twitter data yielded 31 topics
with 376 outlier documents, Google and OSM data yielded 35 topics with 381 outliers.
We present a selection of interesting topics, their words and probabilities as well as
word translations from the space-based and place-based sources in Tables 1 and 2
respectively. We have listed all identified topics and their information in the appendix
(Tables A1-A4), including the ones we do not mention or discuss throughout the
paper. The topic order is based on the descending count of documents (hexagonal
cells) that were assigned by the algorithm as belonging to the topics. Topic belonging
corresponds to the dominant topic of each hexagon or the topic with the highest
probability for the document, as each cell yielded probability values ranging from 0 to
1 for all topics. In addition, topic information also includes the corresponding number
of instances that were originally aggregated in the documents: tweets, OSM features
and Google Places POI. In total, the 31 Twitter topics were modeled based on the
aggregated text of 610,593 tweets and the 35 topics of place-based sources originated
from 11,392 Google and OSM instances.

Alfama, a historic neighborhood in Lisbon known for Fado - a famous style of
Portuguese folk music (Cocola-Gant and Gago 2021) - was the theme identified in
Topic 4. The words thematically characterize the neighborhood as common in-situ
activities include concerts (fado music) and dining out. Words that build the football
topic (Topic 2) include mostly references to the two largest stadiums in Lisbon and
their respective football teams, Benfica and Sporting (Borges 2019). The location-
specific airport topic (Topic 22) mainly consists of references to Lisbon’s airport,
whereas the university topic (Topic 28) contains words that are both generally related
to higher education as well as specific faculties of the University of Lisbon. Overall,
interpretable topics emerged from the social media network yielded thematic profiles
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Table 1. Selected sample of interesting topics from Twitter.

Football (Topic 2) Alfama (Topic 4)
Hexagons: 49/tweets: 41079 Hexagons: 43/tweets: 26754
Word Translation Prob. Word Translation Prob.
Estadio Stadium 0.1462 Duetos Duet 0.0698
Benfica Benfica football team 0.1183 Bar Bar 0.0472
Sport Benfica football team 0.0995 Amp Organization in Alfama 0.0434
Alvalade José Alvalade stadium 0.0604 Alfama Alfama neighborhood 0.0420
José José Alvalade stadium 0.0568 Gastronomia Gastronomy 0.0400
Slbenfica Benfica football team 0.0470 Restaurant Restaurant 0.0375
XXi - 0.0414 Café Café 0.0341
Sporting Sporting football team 0.0374 Praca Plaza/square 0.0299
Luz Luz stadium 0.0301 Mercado Market 0.0297
Carregabenfica Benfica football team 0.0267 Ribeira Area in Lisbon 0.0277
Campo field 0.0266 Fado Fado music 0.0269
Bairro Neighborhood 0.0235 Sobremesa Dessert 0.0268
Alto Tall/high 0.0232 Comércio Business 0.0260
Slb Benfica football team 0.0214 Mdsica Music 0.0252
sportingcp Sporting football team 0.0204 Concerto Concert 0.0248
Airport (Topic 22) University (Topic 28)
Hexagons: 16/tweets: 14991 Hexagons: 11/tweets: 3580
Word Translation Prob. Word Translation Prob.
Aeroporto Airport 0.3283 Faculdade Faculty/university 0.1310
Lis Lisbon airport 0.1976 Ciéncias Sciences 0.1254
Others - 0.0559 Universidade University 0.1218
Delgado Lisbon airport 0.0467 Colombo Colombo mall 0.0557
Humberto Lisbon airport 0.0466 Cinemas - 0.0552
Chegadas arrivals 0.0446 Campus - 0.0530
Airport - 0.0432 Justica Justice 0.0505
Arrivals - 0.0431 FCUL University of Lisbon 0.0381
Terminal - 0.0423 Medicina Medicine 0.0355
Departures - 0.0367 Dentaria Dental 0.0343
Partidas Departures 0.0367 Holmes Local gym chain 0.0265
(Holme’s place)
Comunidades Communities 0.0332 Campo Field 0.0264
Lisboalis Lisbon airport 0.0321 Place Local gym chain 0.0208
(Holme's place)
Internacional International 0.0318 Filme Film 0.0168
Portuguesas Portuguese 0.0312 IMAX IMAX cinema 0.0160

mostly related to neighborhoods, locations and areas of interest, rather than general
place-mediated activities.

Interesting topics from the place-based perspective included health (Topic 4), edu-
cation (Topic 7), shopping mall (Topic 18) and sports (Topic 30). Topics originated
from documents based on Google Places and OSM also contained words related to
specific places and areas within the city, yet overall to a lesser extent in comparison
with topics from Twitter.

5.2. Topic similarity

We computed the cosine similarity for all Twitter topics against those originated from
Google and OSM data. For each topic, we selected the highest value of similarity using
the pairwise matrix to obtain the most similar corresponding place-based topic. In
Table 3, we listed each Twitter topic and their matching topics alongside their cosine
similarity values.
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Table 2. Selected sample of interesting topics from Google Places and OSM.

Health (Topic 4) Education (Topic 7)
Hexagons: 41/0SM: 198/Google POI: 232 Hexagons: 35/0SM: 140/Google POI: 96
Word Translation Prob. Word Translation Prob.
Good - 0.0145 Escola School 0.0800
Atendimento Service/treatment 0.0144 School - 0.0652
Excelente Excellent 0.0140 University - 0.0312
Farmacia Pharmacy 0.0133 Faculdade Faculty/university 0.0218
Service - 0.0129 Universidade University 0.0216
Saude Health 0.0127 Azulejos Portuguese tiles 0.0197
Clinica Clinic 0.0124 Registo Registration 0.0181
Centro Center 0.0114 Teachers - 0.0169
Hospital - 0.0112 José José Fontana square 0.0166
Simpatia sympathy 0.0103 Ensino Teaching/education 0.0164
Café - 0.0103 professores Professors 0.0154
Great - 0.0103 Fontana José Fontana square 0.0152
Ida company 0.0102 Faculty - 0.0142
Appointment - 0.0092 Superior Higher (education) 0.0137
Rua Street 0.0091 campus - 0.0131
Shopping mall (Topic 18) Sports (Topic 30)
Hexagons: 20/0SM: 107/Google POI: 156 Hexagons: 12/0SM: 23/Google POI: 26
Word Translation Prob. Word Translation Prob.
Atendimento Customer service 0.0215 Futebol Football 0.0554
Colombo Colombo mall 0.0161 Campo Field 0.0516
Servigo - 0.0147 Musgueira Musgueira sports 0.0451
complex
Good - 0.0144 Bandeiras Flags 0.0451
Ida Company 0.0139 Desportivo Sports 0.0449
loja Store 0.0131 Ténis Tennis 0.0407
Empresa Company 0.0130 Park - 0.0387
Centro Center 0.0127 Universitario University 0.0368
Excelente Excellent 0.0119 Tennis - 0.0346
Really - 0.0111 Clube Club 0.0327
Service - 0.0099 Ferreira Portuguese surname 0.0311
Profissionalismo Professionalism 0.0096 Condigoes Conditions 0.0311
Preco Price 0.0095 Desportiva Sports 0.0306
Telheiras Telheiras neighborhood 0.0094 Court - 0.0302
Equipa Team/staff 0.0093 Amaral Portuguese surname 0.0283

In Table 3, we highlighted the highest values of similarity that represent the most
similar comparisons in the vector space. The most similar topics (0.9527) were repre-
sented by the football topic from Twitter (Topic 2) and Topic 19 from Google and
OSM, whose thematic signatures are related to football as well as Lisbon-based foot-
ball teams and stadiums. The second highest similarity (0.9451) did not yield easy
interpretations regarding the topics’ semantic relationships. While Topic 3 from Twitter
is mostly related to landmarks and POI located in downtown Lisbon, the correspond-
ing Topic 29 thematic signatures are characterized by shopping-related activities.
However, the topic from Twitter has ‘comércio’ (business or commerce) as its first rep-
resentative word, although likely related to a main landmark in the city named ‘Praga
do Comércio’ (Comércio plaza).

The third highest similarity (0.9396) was measured for the comparison between
Topic 19 from Twitter, which refers to landmarks in two different neighborhoods, and
Topic 6, from which words did not point towards a discernible thematic profile. Apart
from the outlier, we noticed that three particular place-based topics were associated
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Table 3. Most similar topic pairs based on the highest cosine similarity values yielded when com-
paring Twitter topics against those from Google Places and OSM.

Topics Topics

Twitter Google and OSM Cosine similarity Twitter Google and OSM Cosine similarity
—1 (outlier) 5 0.9367 15 5 0.9136
0 5 0.9367 16 20 0.8646
1 29 0.9162 17 6 0.927
2 19 0.9527 18 21 0.9163
3 29 0.9451 19 6 0.9396
4 14 0.9338 20 29 0.9286
5 29 0.8268 21 5 0.9038
6 6 0.9018 22 15 0.9275
7 6 0.8898 23 5 0.9218
8 5 0.9225 24 5 0.9221
9 21 0.8486 25 6 0.8911
10 26 0.915 26 14 0.8936
1 5 0.9105 27 29 0.9338
12 28 0.9242 28 7 0.906
13 29 0.9153 29 6 0.9213
14 20 0.8813 30 10 0.9039

with Twitter topics in six different comparisons. Topic 6, with no specific thematic pro-
file; Topic 29 (shopping activities); and Topic 5, which is vaguely related to general
services in the city.

5.3. Spatial similarity

Based on the previous identified topics, we ran the Getis-Ord G; hotspot analysis to
seek the local high values of the topic distribution. For each output, we selected the
cells with z-scores denoting 90% confidence or higher. Cell-based hotspot areas are
better at depicting the relevant regions in regard to the original distributions of topics,
which oftentimes are spread across the city. Then, for each topic pair we computed
the Jaccard index based on the distribution of the selected cells as shown in Table 4.
The three highest outputs are highlighted.

With their thematic profiles linked to Lisbon’s airport, the Jaccard index between
the Topic 22 (Twitter) and Topic 15 (Google Places and OSM) scored the highest value
(0.18). Terms in the topics include ‘departures’, ‘arrivals’ and ‘taxi’ as well as references
to the name of the airport. Another instance of similar themes in the geographic
space is represented by the football topic pair, which yielded the third-highest Jaccard
index (0.15).

The second highest measurement was yielded by the Topic 5 and 29 pair (0.16). By
itself, the topic from Twitter does not point towards a specific thematic profile, how-
ever, the place-based topic is strongly related to shopping activities in the city.
Therefore, the high spatial relationship suggest that the uncertain thematic profile
might also be linked to shopping, even though the topic is polluted with noise.

5.4. Content-location relationships

The core of this study lies at providing a framework to extract thematic and spatial
relationships between content generated from space-based and place-based sources,



INTERNATIONAL JOURNAL OF GEOGRAPHICAL INFORMATION SCIENCE ‘ 15

Table 4. Jaccard indices between selected hotspot areas of similar topic pairs from space-based
and place-based sources.

Topics Topica

Twitter Google and OSM Jaccard index Twitter Google and OSM Jaccard index
—1 (outlier) 5 - 15 5 0.05
0 5 ~0 16 20 0.07
1 29 0.01 17 6 0.05
2 19 0.15 18 21 ~0

3 29 0 19 6 ~0

4 14 0.03 20 29 0.03
5 29 0.16 21 5 0.04
6 6 ~0 22 15 0.18
7 6 ~0 23 5 0.06
8 5 0.11 24 5 0.02
9 21 0.01 25 6 0.02
10 26 0.04 26 14 0.12
1 5 0.03 27 29 0
12 28 0.04 28 7 ~0
13 29 0.06 29 6 0.03
14 20 0.07 30 10 0.05

ultimately enriching the discussion on content-location relationships within a given
city. Since it is not feasible to discuss about all relationships in regard to comparisons
between the topics’ vector and geographic space, we brought forward visualizations
of topic pairs selected on the basis of their spatial and thematic similarities. In Figures
5 and 6, we display the high-value hotspot distributions from the two most similar
topic pairs according to cosine similarity and Jaccard index, respectively.

The football theme is represented by the topic pair with the highest similarity in
the vector space as well as significant spatial overlap. Visual inspection allow us to
observe their similar hotspot distribution. The output suggests the content-location
correlation for this thematic profile is high. This is not the case for the second most
similar topic pair, which had no spatial overlap whatsoever. The topic from the social
network mainly revealed landmarks of Lisbon’s downtown, while it also contained
words linked to the ‘FIL" exhibition center. Although identified as part of the same
topic, these two thematic signatures are related to distinct regions. The lack of spatial
correlation indicate that despite having high cosine similarity, their thematic profiles
are distinct, as its corresponding place-based topic consisted of shopping-related
words.

As for the most spatially similar topic pair, the airport thematic profile evidences a
high content-location correlation between Twitter and the place-based counterparts.
This might suggest that when users geo-tag content related to airports, they are most
likely engaging in activities afforded by the airport location. However, content-location
relationships become blurry when comparing the distribution of the second-highest
spatially similar topic pair. Contaminated with noise, the topic from Twitter does not
indicate a clear thematic profile, yet the comparison with the corresponding place-
based shopping theme shows a significant spatial correlation. We selected place-based
topics based on the highest cosine similarity against each Twitter topic, yet this pair
had yielded the lowest value from all topic pairs. In Figure 7 we present two final
examples of topic pairs to complement our discussion.
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Figure 5. Hotspot distribution and Jaccard index of the two most similar topic pairs (top and bot-
tom) based on the cosine similarity.
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Figure 6. Hotspot distribution and Jaccard index of the two most spatially similar topic pairs (top
and bottom) based on the Jaccard index.

Similar thematic profiles regarding education showed negligible spatial overlap
across the city. The topic from Twitter was mainly linked to instances related to higher
education and universities, whereas the place-based topic also contained words



INTERNATIONAL JOURNAL OF GEOGRAPHICAL INFORMATION SCIENCE ‘ 17

Topic 28 from Twitter Topic 7 from POI Cosine
University Education 0.906
’:e - Jaccard's
Y
University p §. 1
] ?' of Lisbon

90% hotspot
95% hotspot
[ 99% hotspot

Topic 16 from Twitter

Belém and tourist
attractions

University campuses

Topic 20 from POI
Alfama

Twitter hotspots
POI hotspots

Cosine
0.865

Jaccard's

0.07

4 ik ";'
s w9 ”"'f'.

O Alfama
Belém

Figure 7. Hotspot distribution and Jaccard index of two topic pairs (top and bottom).

related to education in general. While we identified university campuses in both distri-
butions, they pointed towards different areas in the city resulting in significantly low
overlap. In this case, one can argue that content-location correlation is low as the spa-
tial similarity is close to zero. However, the geo-tagged content from Twitter collect-
ively refers to the location of the University of Lisbon. The intricate relationship
between thematic and spatial similarities between geo-tagged activity and the corre-
sponding place-based content is also exemplified in the last topic pair. Despite being
linked to different neighborhood and landmarks, evidenced by a weak cosine similar-
ity, their spatial overlap is mostly located in a historic and touristic region. Both Belém
and Alfama are historic districts in Lisbon, enclosing important landmarks and
attractions.

6. Discussion

The information we harvested from space-based and place-based sources of unstruc-
tured text were collectively analyzed in the form of topics. Both sources yielded the-
matic profiles that described locations, activities and functions of the urban landscape.
The steps of our framework are able to quantitatively compare topics derived from
geo-tagged social media activity with the most similar topics emerged from place-
based sources (Google Places and OSM). However, elucidating content-location rela-
tionships based on thematic and spatial correlations depend on careful interpretations
of the results.

Although we applied the embedding-based BERTopic without others models for
comparison, the topic clusters showed that the algorithm was able to output many
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coherent and interpretable topics, including geo-indicative topics of interest that are
related to specific activities, functions and affordances of different regions within the
city. The algorithm is freely available to the public and does not require substantial
text preprocessing. In addition, the algorithm vyields an optimal number of topics
according to cluster parameters and hence does not force instances to belong to
topics, which is a better option for oftentimes noisy or incomplete data. Therefore,
studies that source data from geo-tagged online activity should not only take advan-
tage of the advances in embedding-based models, but also compare with other trad-
itional and novel topic models

On the other hand, topics with unclear thematic profiles (such as Topic 5 and 6
from place-based sources) frequently scored high values of cosine similarity with
topics retrieved from Twitter. Textual data sourced from user-generated content is
noisy, unstructured and messy by nature. When adding the spatial dimension, a new
layer of complexity is included and researchers must be aware of the limitations of
the data themselves prior to the analysis. By developing a straightforward reprodu-
cible framework using an embedding-based topic model, researchers can test thematic
content-location relationships by changing model parameters, confidence levels,
thresholds, preprocessing steps as well as the resolution of the spatial unit of analysis.

We observed that the degree to which geo-tagged content from social media is con-
nected to the corresponding place-based characteristics of the city will vary depending
on thematic profiles. Similar insights were found in related literature, but differences
were portrayed by place types (Hahmann et al. 2014, McKenzie and Adams 2017). Here,
we represent both space-based and place-based geo-text dimensions as collective
topics to be objectively evaluated against each other. Although previous works have
developed methods to geo-locating social media activity, we developed an approach to
extend the discussion on how discursive information in intentionally geo-tagged text
might be associated with urban settings and activities (Adams and Janowicz 2021).

Football, a topic that potentially has a high disconnect between content and loca-
tion, was characterized by one of the highest interpretable correlation between sour-
ces. The relation suggests that in Lisbon, geo-tagged content linked to football is
connected to locations that afford football related activities. We observed the same
relationship in the airport topic, indicating that geo-tagged content thematically asso-
ciated with airports is mostly generated near the airport location. However, uncertain
thematic profiles and different types of categories (activities, neighborhoods and pla-
ces) show that choosing topic modeling to explore content also reveals that correla-
tions between content and spatial context is intricate and open to discussion.

We were able to identify similar topic pairs coming from space-based and place-
based sources using the cosine similarity metric. The following spatial similarity ana-
lysis disclosed distinct relationships from which interpretations are not necessarily
straightforward. Our results can be translated through two somewhat contrasting
viewpoints. One hand, dissimilarities reinforce the limitation of using geo-tagged UGC,
as it only connects spatial footprints with textual data (Papadakis et al. 2020). On the
other hand, similarities between sources strengthen the justifications of using UGC to
infer the interaction between people and places within the urban environment
(Lansley and Longley 2016, Heikinheimo et al. 2020).
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Furthermore, our study supports the inquisitive discussions on the reliability and
accuracy of geospatial information collected or inferred from online sources, problems
that are not only a product of well-known biases (Twaroch et al. 2019), but also of the
theoretical and methodological approaches behind these practices. Although our ana-
lysis was bounded to the same limitations and biases, we hope to incite other
researchers to extend analytical and conceptual frameworks aimed at validating the
use of geo-tagged UGC to unravel human-centered urban dimensions.

Some limitations should be pointed out. First, both sources of user-generated con-
tent are biased regarding their users’ demographic profiles and do not fully cover the
whole extent of the city, which in turn affects representativeness (Zhang et al. 2018,
Gao et al. 2021). In addition, aggregating geo-tagged textual data into cells can result
in biases that stem from the MAUP problem (Openshaw effect), whereby thematic and
spatial relationships might differ according to cell size or scale (Goodchild 2022).
Lastly, results also show that interpretation of thematic and spatial relationships are
often constrained to prior familiarity with and knowledge about the city in regard to
specific places, activities and neighborhoods. To improve interpretability as well as
insights about content-location relationships, future work should consider applying
spatially explicit topic models, gathering additional data from online sources as well as
implementing alternative metrics and spatial and temporal units of analysis.

7. Conclusions

Geo-tagged social network data has become an extremely popular data source in
urban studies as information is used to map, explore and infer the several dimensions
of human-environment interactions, including human mobility, urban perception,
sentiment analysis among many other activities and opinions. However, the content-
location relationships in social media activity are intricate and not always clear. In this
article, we introduced a methodological framework to explore the vector-space and
geographic-space similarities between thematic profiles emerged from space-based
(Twitter) and place-based (Google Places and OSM) sources of geographic user-gener-
ated content.

The stages included applying a transformer-based topic modeling, retrieving cosine
similarity measurements between topics, running Getis-Ord G; hotspot analysis to
extract representative topic cells as well as computing Jaccard indices to calculate spa-
tial similarities. The results showed that content-location relationship between the sur-
rounding urban settings and the thematic content of in-situ online activity are heavily
dependent on the thematic signatures. Nonetheless, the framework can easily be
implemented and extended in other cities in order to explore novel insights and sup-
port discussions on the use of geo-tagged UGC in GlScience.
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