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Abstract

Determining which genes contribute to the development of certain diseases, such as
cancer, is an important goal in the forefront of today’s clinical research. This can pro-
vide insights on how diseases develop, can lead to new treatments and to diagnostic
tests that detect diseases earlier in their development, increasing patients chances of
recovery.

Today, many gene expression datasets are publicly available. These generally con-
sist of DNA microarray data with information on the activation (or not) of thousands
of genes, in specific patients, that exhibit a certain disease. However, these clinical
datasets consist of high-dimensional feature vectors, which raises difficulties for clin-
ical human analysis and interpretability - given the large amounts of features and the
comparatively small amounts of instances, it is difficult to identify the most relevant
genes related to the presence of a particular disease.

In this thesis, we explore the usage of feature discretization, feature selection, and clas-
sification techniques applied towards the problem of identifying the most relevant set
of features (genes), within DNA microarray datasets, that can predict the presence of
a given disease. We propose a machine learning pipeline with different feature dis-
cretization, feature selection, and classification techniques, to different datasets, and
compare/interpret the achieved results with different combinations of techniques.

On most datasets, we were able to obtain lower classification errors by applying either
feature discretization or feature selection techniques (but not both). When applying
feature selection techniques, we were also able to reduce the number of features fed to
each classifier, while maintaining or improving the classification results. These smaller
subsets of genes are thus easier to interpret by human clinical experts, improving the
explainability of the results.
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Resumo

Determinar os genes que contribuem para o desenvolvimento de certas doenças, como
o cancro, é um objectivo importante na vanguarda da investigação clínica de hoje. Isto
pode fornecer conhecimentos sobre como as doenças se desenvolvem, pode levar a
novos tratamentos e a testes de diagnóstico que detectam doenças mais cedo no seu
desenvolvimento, aumentando as hipóteses de recuperação dos pacientes.

Hoje em dia, muitos conjuntos de dados de expressão genética estão disponíveis publi-
camente. Estes consistem geralmente em dados de microarray com informação sobre a
activação (ou não) de milhares de genes, em pacientes específicos, que exibem uma de-
terminada doença. No entanto, estes conjuntos de dados clínicos consistem em vetores
de características de elevada dimensionalidade, o que levanta dificuldades à análise
humana clínica e à interpretabilidade - dadas as grandes quantidades de característi-
cas e as quantidades comparativamente pequenas de instâncias, é difícil identificar os
genes mais relevantes relacionados com a presença de uma determinada doença.

Nesta tese, exploramos a utilização da discretização de características, selecção de ca-
racterísticas e técnicas de classificação aplicadas ao problema de identificação do con-
junto mais relevante de características (genes), dentro de conjuntos de dados de micro-
array, que podem prever a presença de uma dada doença. Construímos um pipeline
onde aplicamos diferentes técnicas de discretização, selecção e classificação, a diferen-
tes conjuntos de dados, e comparamos/interpretamos os resultados obtidos com cada
combinação de técnicas.

Na maioria dos conjuntos de dados, conseguimos obter erros de classificação mais bai-
xos aplicando quer técnicas de discretização quer técnicas de selecção (mas não ambas).
Ao aplicar técnicas de selecção, conseguimos também reduzir o número de caracterís-
ticas alimentadas a cada classificador, mantendo ou melhorando os resultados da clas-
sificação. Estes pequenos subconjuntos de genes são assim mais fáceis de interpretar
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pelos especialistas clínicos humanos, melhorando a explicabilidade dos resultados.

Palavras-chave: seleção de características, discretização de características, dados de
microarray, cancro, explicabilidade da classificação.
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1
Introduction

This Chapter describes the motivation, the context in which the problem arises, as well
as the key goals of this work. In addition, the problem formulation and the handled
datasets are also presented. Finally, an overview of the entire document is provided as
well as the scientific contributions of this work.

1.1 Motivation

Nowadays, disease detection from clinical data has assumed great importance. New
techniques have been developed that allow healthcare professionals to analyze each
patient’s deoxyribonucleic acid (DNA) and to identify the presence of specific genes,
which may be indicative of certain diseases, such as cancer.

Given these developments, many gene expression datasets are publicly available. These
generally consist of microarray data that contains information on the activation (or not)
of thousands of genes, in specific patients, that exhibit a certain disease. Ideally, one
would like to use these datasets, to predict the presence of diseases on new patients,
given their microarray data.

However, these clinical datasets consist of high dimensionality feature1 vectors, which
raises analysis problems for humans. It is laborious or almost impossible to identify
the most important, decisive factors that lead to the appearance of a particular disease.

1Also referred as dimensions in the literature, and genes in this work. Henceforth, for the sake of
consistency, we will use the term "features".
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In addition to their high dimensionality, the publicly available datasets usually have
a small number of instances2. This is due to the high cost of acquiring a new instance
using this process.

Thus, applying data mining and machine learning techniques on these datasets poses
equally high challenges, due to the curse of dimensionality issues [12, 20, 48]. For
instance, the performance of the classifiers is sub-optimal and it is often not possible to
determine, in detail, which genes are relevant to the presence of a given disease.

Given these constraints, the main goal of this work is to determine the smallest set of
features that are indicative of a given disease. The identified features can also be used
to the human interpretability of the data and to explain the presence of a given disease.

1.2 Datasets

The clinical data used for this work consists in publicly available DNA microarray
datasets, which can be found in [72].

This type of data, reviewed in [6], stores information about the gene expression, col-
lected from cell samples. Thus, it is very helpful in the process of disease diagnosis, in
this particular study, cancer.

Table 1.1 presents the name and description for each microarray dataset considered in
this work. More details about the datasets can be found in Appendix A.

Table 1.1: Microarray Datasets.

Name Description

Breast Breast cancer diagnosis
CNS Central nervous system (CNS) tumor diagnosis
Colon Colon tumor diagnosis
Leukemia Acute lymphocytic leukemia (ALL) and

Acute myelogenous leukemia (AML) diagnosis
Leukemia_3c Distinguishes types of blood cells which became cancerous
Leukemia_4c Distinguishes types of blood cells which became cancerous
Lung Lung cancer diagnosis
Lymphoma Distinguishes subtypes of non-Hodgkin lymphoma
MLL Distinguishes types of acute leukemia, including

Mixed lineage leukemia (MLL)
Ovarian Ovarian cancer diagnosis
SRBCT Distinguishes types of small round blue cell tumors (SRBCT)

2Also referred as patterns, examples, and samples in the literature. Henceforth, for the sake of con-
sistency, we will use the term "instances".
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1.3 Problem Formulation

Given a DNA microarray dataset, consisting of a relatively small number of instances,
each represented by a row in the dataset per individual, as depicted in Figure 1.1, each
containing a high dimensionality feature vector with the activation/expression of a set
of genes, classified under specific criteria (e.g. the presence/absence of a disease or the
phase of a disease) we would like to determine the smallest subset of features (gene
activations) that can be used to correctly classify new instances. With this approach,
we aim to find the most relevant and disease related genes (features) to explain the
presence or absence of a given disease.

Figure 1.1 depicts the process of generating a dataset from a DNA microarray [47]. The
datasets considered in this work were obtained using this process.

Figure 1.1: DNA Microarray Dataset Generation.

Cancer comes in second as the leading cause of mortality worldwide. Approximately
10 million people died from cancer in 2020, from which lung, colon, and breast cancer
were the most common causes [70].

Early and accurate disease detection often leads to higher chances of survival and
lower cost of treatment. As an example, according to the World Health Organization,
early detection of cancer increases survival rates, decreases morbidity and typically
leads to less expensive treatments (for instance, see "Early Diagnosis" section of [70]).

In studying this problem, we hope we can improve the accuracy of DNA based clinical
tests while minimizing the risk of false negatives, and thus making a positive contri-
bution in society worldwide.

3



1. INTRODUCTION 1.4. Goals

1.4 Goals

Given the problem formulated above, the goal of this study is to apply several data
mining and machine learning techniques to publicly available datasets, compare their
performance and conclude which one is best fitted to the task of identifying the small-
est set of features capable to correctly classify new data.

In order to achieve this goal, we will have the following approach:

• review the scientific literature on this subject;

• choose which techniques to evaluate;

• build a machine learning pipeline using data representation/discretization, di-
mensionality reduction and data classification techniques;

• compare the performance of each technique;

• and finally, identify the best suited technique as well as the best subset of features
to the problem and datasets under consideration.

1.5 Thesis Contribution

A condensed version of the contents of this work was published as followed:
Adara Nogueira, Artur Ferreira and Mário Figueiredo, “A Step Towards the Explain-
ability of Microarray Data for Cancer Diagnosis with Machine Learning Techniques", In-
ternational Conference on Pattern Recognition Applications and Methods (ICPRAM),
February 2022, pages 362-369, ISBN 978-989-758-549-4, ISSN 2184-4313, DOI:10.5220/
0010980100003122.

This paper was the recipient of the best poster award.

1.6 Thesis Structure

The remainder of the main text of this document is organized in five chapters, followed
by three appendix.

Chapter 2, State of the Art, focuses on both the clinical, as well as the computational,
aspects of this problem. It starts with a brief explanation of what is a DNA microarray,
what types of data it produces and how it is used in clinical studies. It is followed by
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a description on the machine learning techniques mentioned in the remainder of this
thesis. This chapter ends with a review on the scientific literature on the data represen-
tation, dimensionality reduction, and classification techniques applied to microarray
data.

Chapter 3, Data Analysis, consists in the analysis of the publicly available datasets,
exploring their characteristics and correlations.

In Chapter 4, Machine Learning Pipeline Implementation, we describe the proposed
approach to compare and select the best techniques. In particular, the proposed pipeline
and each of its phases are described in detail.

Chapter 5, Experimental Results, contains the experimental results, their evaluation
and analysis. Several metrics, such as error and false negative rates, will be used to
derive conclusions for each dataset.

Chapter 6, Conclusions, provides an overview of what was achieved, describes the
conclusions and directions of future work.

Appendix A, Dataset Description, contains the description of each DNA microarray
dataset used in the context of this work.

In Appendix B, Pipeline’s Configurations, we describe the analysis of the best fitted
techniques for each dataset used in the machine learning pipeline.

Finally, Appendix C, Additional Experimental Results, provides additional experimen-
tal results about the most relevant features.
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2
State of the Art

This Chapter describes the main concepts underlying this work. Section 2.1 addresses
the DNA microarray technique from a clinical perspective. Section 2.2 outlines the
machine learning commonly techniques used in this area. Finally, Section 2.3 describes
the existing approaches to this problem.

2.1 DNA Microarray Technique

Every biological organism has a set of genes encoded in its DNA. These may be ex-
pressed, i.e. active, in different cells at different points in time. In the context of biolog-
ical/medical research it’s important to understand which genes are being expressed
(active/inactive) in a given cell, at a given point in time.

However, living beings have thousands of genes, e.g. a human has approximately
21000 [15, 49]. Each one of these genes is responsible for encoding a protein, which is
in charge of a specific functionality. Given the complexity and amount of information,
healthcare professionals are unable to analyze this data one gene at a time. Even if it
were possible, it would take a very long time and the efficiency and accuracy of the
analysis would be extremely low.

The DNA microarray technique [47] addresses this issue. A DNA microarray allows
researchers and healthcare professionals to carry out an investigation on thousands of
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2. STATE OF THE ART 2.1. DNA Microarray Technique

genes at the same time, i.e. in one single experiment1, and determine which genes are
being expressed by a cell.

A DNA microarray has the following characteristics:

• a microarray is a solid surface with thousands of spots arranged in well-ordered
columns and rows;

• each spot on this microarray characterizes only one gene and contains multiple
strands of the same DNA, i.e. the DNA sequence is unique;

• each spot location and its respective DNA sequence is recorded in a database.

Among other uses, DNA microarrays can identify dissimilarities between cancer cells
and healthy cells, more specifically, which genes in a cancer cell are being expressed
which are not in a healthy cell.

Figure 2.1 presents an overview of the DNA microarray technique.

Figure 2.1: DNA Microarray Technique.

First, it’s necessary to extract the ribonucleic acid (RNA) from the sample cells and then
draw out the messenger RNA (mRNA) from the existing RNA, because only the mRNA
develops gene expression.

Second, a DNA copy is made from the mRNA with the aid of the reverse transcriptase
enzyme, which will generate the complementary DNA (cDNA). In this process, a label is
added in the cDNA representing each cell sample, e.g. a fluorescent red for the cancer
cell and a fluorescent green for the healthy cell. This step is necessary because the DNA
is a more stable molecule than RNA and the labeling allows us to identify the genes in
each sample, at a later stage.

1An example of a DNA microarray experiment can be found in [16]
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Third, both cDNA types previously created are added to the DNA microarray and
because each spot of it already has many unique cDNA, when mixed together they
will base pair each other due to the DNA property, designated complementary base
pairing. This process is denominated "hybridization". Not all cDNA strands will bind
to each other, some may not hybridize therefore they need to be washed off.

Finally, the DNA microarray is analyzed with a scanner, which can find patterns of
hybridization by detecting the fluorescent colors. As a result, we can observe the fol-
lowing:

• only a few red cDNA molecules bound to a spot, which means that the gene was
being expressed only in the red (cancer) cell;

• only a few green cDNA molecules bound to another spot, which means that the
gene was being expressed only in the green (healthy) cell;

• some of both red and green cDNA molecules bound to a single spot on the mi-
croarray (forming a yellow spot), which means that the gene was being expressed
both in the cancer and the healthy cell;

• several spots of the microarray don’t have a single red or green cDNA strand
bound to it, because the gene is not being expressed in either cell.

Thus, on the one hand the red color on a spot indicates the higher production of mRNA
in the cancer cell as compared to the healthy cell. On the other hand, the green color
specifies the higher production of mRNA in the healthy cell as compared to the can-
cer cell. However, a yellow spot suggests that the gene is expressed equally in both
cells and therefore, they are not relevant as the cause of the disease, because when the
healthy cell becomes cancerous their activity does not undergo a change.

In conclusion, with DNA microarray we can analyze a large amount of genes at the
same time, find which genes are being expressed and decide on a better prognosis
based on the previous analyzes.

2.2 Machine Learning Techniques

Machine Learning (ML) [36, 63] is a branch of artificial intelligence (AI) [59] that focuses
on designing algorithms that learn from past experience, or existing data, in order to
solve new tasks.
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Rather than explicitly "programming" a computer, or telling it what to do, ML tech-
niques rely on showing a computer a set of data associated with a given task, and
having the computer analyze it in order to learn and build its own internal model.
This model can be used to solve future tasks based on new data, that was not used on
the model building phase.

ML algorithms can be applied to different tasks, such as data representation, dimen-
sionality reduction and data classification, among others.

The following concepts are relevant to machine learning:

• Instance - refers to a vector containing the data from one patient (in the context
of this work);

• Feature - refers to the set of dimensions associated to an instance, e.g. in this
work each feature corresponds to one specific gene activation;

• Class label2 - refers to the values that tag each data instance;

• Dataset - refers to the set of instances available to be used by the learning algo-
rithm. In the context of this work, datasets contain gene activations from several
DNA microarrays and we have labeled instances;

• Training Dataset - refers to the subset of instances and the corresponding class
labels used to train the learning algorithm;

• Test Dataset - refers to the subset of instances and the corresponding class labels
used to evaluate the learning algorithm’s performance.

ML techniques can be grouped in two major approaches: supervised learning and
unsupervised learning.

In supervised learning, the algorithm receives a set of labeled instances, i.e. it receives
the input and the expected output/classification for each instance. Its goal is to learn
an internal model/representation that can be used to classify/identify the label for
unseen instances, correctly.

In unsupervised learning, the training dataset which the algorithm receives does not
have classes and the learning process is conducted based on the analysis of the in-
stances present in the data.

2Also referred as label, for the sake of simplicity.
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In the context of this work, the focus will be on supervised learning techniques, since
the problem to be solved relies on labeled datasets of DNA microarray data. Unsu-
pervised learning and other machine learning techniques, will not be explored further
here.

Figure 2.2 summarizes the supervised learning process, regarding the use of the avail-
able data.

Figure 2.2: Supervised Learning Process.

As depicted in Figure 2.2, the process of supervised learning relies on a labeled dataset
that is divided into two subsets of training and test data. The former is used to train a
classifier, whereas the latter is used to evaluate the trained classifier by classifying the
instances in the test set and comparing the classifier’s predictions to the actual class
labels in the dataset.

This is the general approach, however we can partition the training and test set using a
different methodology, e.g. applying a cross-validation (CV) technique, such as 10-fold
or leave-one-out cross-validation (LOOCV) [13].

The CV is a resampling procedure used to assess the performance of an algorithm,
i.e., to estimate the accuracy of a learning algorithm. In this methodology, the original
dataset is randomly partitioned into k subsets of data, each called a fold. Then, the
learning algorithm is applied k times, using k-1 folds as a training set and the remaining
as a test set. A 10-fold technique is a common case of CV where the number of folds
is equal to 10 (k=10). In comparison, a LOOCV is a particular case of CV in which the
number of folds is equal to the number of instances in the dataset. Hence, the learning
algorithm is applied as many times as the number of instances, and for each time a
single unique instance is used as a test set and the remaining as a training set.

Training and evaluating a classifier with the LOOCV procedure, we have no bias in the
results, caused by the sampling procedure.

With a CV technique, k tests are performed, and the final result is obtained by averag-
ing the evaluation metric from these k tests, e.g. the error rate. As long as the dataset is
representative of the problem, this average result is a reliable estimate. Therefore, if by
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any chance a new instance from the same distribution as the original dataset is created,
the algorithm is capable to manifest, in this new instance, a performance as good and
as reliable as the averaged one attained with the CV procedure.

The advantage of applying a CV technique is that by performing k number of tests,
biased conclusions can be avoided, and we will be able to understand how well our
algorithm generalizes to new data. With only one test set the result of the algorithm’s
performance might only be a fluke. In addition, it also allows us to evaluate and com-
pare different algorithms’ performance instead of only one per time.

On the other hand, the disadvantage of applying a CV technique is the high computa-
tion cost, which increases as the number of folds (k) grows.

2.2.1 Data Representation

The datasets considered in this work consist of high dimensionality feature vectors.
Since these features contain a large amount of information regarding gene expressions,
they may contain irrelevant fluctuations (noise) [47]. These fluctuations lead to com-
plexity hence bad performance, when applying some machine learning algorithms.
Data representation techniques allow us to handle such problems [2, 37].

Data representation refers to how real world information is stored inside a computer
system, for the purposes of storing, transforming or transmitting such information. In
the context of this thesis, several techniques are used to generate, or transform between
different representations of the same real world information, such as feature normal-
ization and feature discretization (FD) [2, 53]. In addition, data analysis (e.g. statistical
analysis [37]) is also regarded as a form of data representation.

There are many feature normalization methods in the literature [25]. However, in this
work we consider only the MinMaxScaler. This procedure consists in scaling each
feature between a minimum and maximum range (such as 0 and 1).

The FD procedure [2] consists in transforming continuous features into discrete ones.
This transformation can be achieved through unsupervised and supervised approaches.

The unsupervised equal frequency binning (EFB) method [26] divides continuous fea-
tures into a given number of intervals (bins) which contain approximately the same
number of instances.

The unsupervised Linde-Buzo-Gray 1 (U-LBG1) [3] is a technique that discretizes each
feature into a specified number of intervals. This discretization process is applied until
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the minimum mean squared error (MSE) between the original and the discretized fea-
ture falls under a determined threshold (∆) or when the maximum number of bits per
feature (q) is reached.

The supervised minimum description length principle (MDLP) method recursively di-
vides the features values into multiple intervals, using a information gain minimiza-
tion heuristic (entropy). Please, refer to [65] for a formal description of this method.

The relevance-based Linde-Buzo-Gray (R-LBG) [5] is a supervised FD technique similar to
U-LBG1. The difference is that, instead of relying on the MSE, it relies on a relevance
function and a stop criterion: each feature is discretized until there is no significant
increase on its relevance. The relevance function can be computed using, for instance,
the Fisher’s ratio (FiR) [52], a supervised metric.

Please refer to [26, 53] for some additional insights on other FD approaches.

2.2.2 Dimensionality Reduction

In the presence of high-dimensional data, dimensionality reduction techniques [18, 24]
have proven essential to generate adequate representations of the data and to improve
the machine learning results. There are many dimensionality reduction techniques in
the literature, which can be broadly categorized as feature selection (FS) approaches or
feature reduction (FR) approaches. We now briefly review some of these dimensionality
reduction techniques.

FS techniques [18, 24] consist in selecting a subset of features from the original one.
One way to perform feature selection is to rank features according to their relevance.
This relevance is computed using some similarity based methods. Some well-known
methods in the literature are:

• Unsupervised methods - Laplacian score (LS) [71], Spectral (also known as SPEC)
[73], and term-variance [33];

• Supervised methods - FiR [52] and ReliefF [23].

Relevance-redundancy feature selection (RRFS) [1] works in unsupervised mode using the
mean-median (MM), an unsupervised relevance metric, and in supervised mode using
the FiR metric.

FR techniques [18, 24] consist in generating a new and smaller subset of features, com-
puted from the original ones. Some well-known methods in the literature are:
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• Unsupervised methods - principal component analysis [21], factor analysis [18],
and multidimensional scaling [18];

• Supervised methods - linear discriminant analysis [18], canonical correlation anal-
ysis [18], and partial least squares [24].

Please refer to [18, 24] for additional insights on dimensionality reduction techniques.

2.2.3 Data Classification

2.2.3.1 Support Vector Machine

Support vector machines (SVM) [13, 18] are a set of supervised methods used in ML for
the task of classification. They treat the input as a set of d-dimensional feature vectors
in a d-dimensional vector space and try to identify a hyperplane that can separate
the instances of each class, maximizing the distance between the hyperplane and each
feature vector.

The method separates the data by finding support vectors to move them apart between
different classes, in the form of f(x) = wx + b. The support vectors are calculated with
an iterative process using an optimization algorithm. That is, the support vectors are
given by a kernel function, which divides the feature space.

The kernel functions, also called cost functions, considered in this work are: linear,
polynomial, radial-basis function (rbf), and sigmoid. In kernel functions, two param-
eters must be considered, C and gamma. The parameter C can be used in any of the
four kernel functions while gamma is used in all but the linear kernel function. The
C parameter is a regularization parameter - the higher this parameter is, the more the
classifier tries to correctly classify the training examples. Fine tuning the gamma pa-
rameter may yield better results.

2.2.3.2 Decision Trees

Decision trees (DT) [13, 18] is another classification technique. This method employs a
hierarchical tree-like model, which contains decisions and their corresponding labels.
The DT will work from top to bottom, testing each feature and comparing them. It is
also an iterative technique, like SVM, dividing the data among its classes, with rules
defined through iterative decisions.

We have four well-known DT algorithms. The ID3 (search for each node, the categor-
ical feature), C4.5 (successor to ID3, removing the categorical feature exception), C5.0
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(uses less memory, but less precise than C4.5), and CART (similar to C4.5, but supports
numeric variables). Each algorithm uses different criteria for splitting the nodes of the
tree (Gini index and entropy).

The parameters to take into consideration are: the depth of the tree and randomization,
which controls the randomness of the estimator.

2.2.4 Evaluation Metrics

We now describe commonly used metrics for evaluating the classifiers’ performance.

A confusion matrix [13] summarizes the performance of a classification algorithm. In
this work, its rows represent the actual class labels and the columns the predicted class
labels.

Figure 2.3 shows the structure of a confusion matrix for a binary classification task: a
(2x2) matrix.

Figure 2.3: Confusion Matrix.

Each cell contains the count of correct/incorrect classifications (being the total value
the same as the number of instances). The cells are designated as:

• A true negative (TN) occurs when the instance is negative and it is classified as
negative;

• A true positive (TP) occurs when the instance is positive and it is classified as
positive;
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• A false positive (FP) occurs when the instance is negative and it is classified as
positive;

• A false negative (FN) occurs when the instance is positive and it is classified as
negative.

Good classifier performance corresponds to a scenario with large numbers down the
main diagonal, and small numbers (ideally zero) in the remaining cells.

Additional metrics are built on top of this confusion matrix.

The accuracy measures the proportion of correct classifications out of all predictions,
and is given by

accuracy “
T N ` T P

T N ` T P` FN ` FP
. (2.1)

The error rate (Err) measures the proportion of incorrect classifications out of all pre-
dictions, which is given by

Err “ 1´ accuracy. (2.2)

The false negative rate (FNR) measures the proportion of actual positive instances which
are incorrectly identified as negative, which is given by

FNR “
FN

FN ` T P
. (2.3)

The false positive rate (FPR) measures the proportion of actual negative instances which
are incorrectly identified as positive, which is given by

FPR “
FP

FP` T N
. (2.4)

Besides the accuracy, the most important metric to be assessed in this type of data is
the FNR. When it comes to human beings, the cost of FN is too high, since we would
be classifying cancer patients as healthy when in reality they would not be - this could
result in a loss of human lives.

Please refer to [14] for additional insights on evaluation metrics.
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2.3 Existing Approaches and Related Work

Given its applications in the fields of medical and biological research, the problem of
"selecting the smallest set of features, from high dimensionality feature vectors, that
can be used to best classify new instances" has been the focus of considerable attention
from the research community.

In the last decades, for the purpose of diagnosing diseases such as cancer, there has
been considerable research on microarray data classification. In addition, to assess bet-
ter performance, before classification takes place, many unsupervised and supervised
FD and FS techniques have been employed on this type of data.

We now briefly review some of the existing approaches and related work that uses FD,
FS, and classification techniques.

The work [26] presents a review of continuous FD techniques. The authors consid-
ered three discretization methods: equal width intervals (also known as equal interval
binning), one-rule discretizer proposed by Holte [50], and MDLP. According to the
authors, MDLP proved to have better performance when applied with DT and naive
Bayes (NB) [63] classifiers.

It has been found that unsupervised FD performs well when combined with several
classifiers. For instance, [41] reports that applying equal interval binning and EFB on
microarray data, together with SVM classifiers, yields good results. It has also been
reported in [22], that applying the EFB technique with the NB classifier produces very
good results.

The approaches proposed on [3] (U-LBG1 technique) and [5] (R-LBG technique) are
reported to have yielded good improvements on classification accuracy, when working
with high-dimensional datasets.

The work of [4] shows that FS significantly improves the classification accuracy of
multi-class SVM classifiers and other classification algorithms.

In [45], FS techniques (such as backwards elimination of features) and classification
techniques were explored, both using random forests (RF) [31]. The authors applied the
chosen method on one simulated and nine real microarray datasets and found that RF
has better performance than other classification methods, such as diagonal linear dis-
criminant analysis, K-nearest neighbors (KNN) [63], and SVM. They also demonstrated
that the FS technique used led to a smaller subset of features than alternative tech-
niques, namely nearest shrunken centroids [51] and a combined method using a filter
with a nearest neighbor classifier.
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A FS filter for microarray data, with an information-theoretic criterion named double
input symmetrical relevance (DISR), which measures feature complementarity, was pro-
posed by [41]. The reported experimental results on one synthetic dataset and eleven
microarray datasets show that the DISR criterion is competitive with existing FS filters.

The proposed relevance/redundancy approach from [1] (RRFS technique) has proven
to be adequate for high-dimensional microarray datasets.

In addition, an overview of some of the most popular FS algorithms (such as LS, SPEC,
and FiR) was provided in the study [29]. According to the authors, FS techniques have
proven again to be very effective and efficient when working with high-dimensional
data.

The study [74] introduces the use of large-scale linear support vector machines and
recursive feature elimination with variable step size, as an enhancement to the tradi-
tional technique of FS based upon on support vector machines with recursive feature
elimination [24], which is considered one of the best methods in the literature, but has
vast computational time requirements. The improved approach consists in upgrad-
ing the recursive feature elimination process by varying the step size with the goal
of reducing the number of iterations (the step size is kept higher in the initial stages
of this process where non-relevant features are discarded). In addition, the standard
SVM is upgraded to a large-scale linear SVM and thus accelerating the method of as-
signing weights. The authors compare their approach to FS with SVM and RF, and use
the SVM, NB, KNN and logistic regression (LR) [13] as classifiers. These techniques were
applied on six microarray datasets and the authors demonstrate that the new approach
provides better performance with comparable levels of accuracy. They also observed
that SVM and LR outperform the other two classifiers.

Recently, in the context of the fight against cancer, [7] considered the problem of finding
a small subset of features capable of discerning among six classes of instances. These
classes may be healthy or cancerous. The goal is to define a comprehensive set of rules
based on the most relevant features (selected by their technique) that can distinguish
classes based on their gene expressions. The proposed method combines a genetic al-
gorithm [63] to conduct FS and a fuzzy rule-based system [13] to execute classification
on a single dataset with 21 instances and more than 45 thousand features. In this study,
ten rules were devised such that each rule always takes into account specific features,
which makes these features crucial in explaining the classification results of ovarian
cancer detection.

Finally, a survey of common classification techniques and related methods to increase

18



2. STATE OF THE ART 2.3. Existing Approaches and Related Work

their accuracy for microarray analysis is presented by [6, 67]. The experimental evalu-
ation is carried out in publicly available datasets, as in this work.
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3
Data Analysis

This Chapter describes the data analysis performed on each DNA microarray dataset
used in this work. This analysis aims to better understand the data and to identify
potential problems that may arise (e.g. due to the type of the features and class imbal-
ance). In Section 3.1, we describe the datasets used, in terms of number of features, in-
stances, and classes. Finally, Section 3.2 the statistical analysis on the different datasets
is presented.

3.1 Characteristics and Basic Information

It’s good practice to understand and identify the basic information about the data we
have, such as the total number of instances, features, and classes. This kind of infor-
mation allows us to recognize the dimension of the dataset and, therefore, to conclude
whether if it is necessary or not to apply some technique, such as dimensionality re-
duction. Furthermore, it also makes possible to identify the different types of classifier
to be applied, based on the number of classes, i.e. binary classification or a multi-class
classification.

Table 3.1 presents the main characteristic of all microarray datasets used in this work,
which were introduced in Chapter 1 (please, see Table 1.1). In Table 3.1, n denotes the
number of instances, d indicates the number of features, c the number of classes, and d

n

is the ratio of the number of features to the number of instance, which is a measure of
how many more features we have than instances.
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Table 3.1: Microarray Datasets Characteristics.

Name # Instance (n) # Feature (d) # Class (c) Ratio d
n

Breast 97 24481 2 252.38
CNS 60 7129 2 118.81
Colon 62 2000 2 32.25
Leukemia 72 7129 2 99.01
Leukemia_3c 72 7129 3 99.01
Leukemia_4c 72 7129 4 99.01
Lung 203 12600 5 62.06
Lymphoma 66 4026 3 61.00
MLL 72 12582 3 174.75
Ovarian 253 15154 2 59.89
SRBCT 83 2308 4 27.80

As we can see in the "# Feature" column, all datasets have a large number of features,
ranging from 2000 to 24481. In addition, as evidenced by the "# Instance" column, all
datasets have a small number of instances, ranging from 60 to 253.

The high number of features and the reduced number of instances will make it difficult
to apply standard supervised learning techniques to these data, since we face the curse
of dimensionality problem.

Richard E. Bellman was the first to term the phenomenon known as the "curse of di-
mensionality". He has shown that the number of instances required to achieve the de-
sired knowledge/accuracy grows exponentially with the dimensionality (number of
features) [46]. In high dimensional spaces, the dataset may become sparse due to the
lack of combinations of feature values (lack of instances), and in addition to compu-
tational cost, overfitting problems may arise, therefore resulting in poor performance
[12, 48].

Thus, it’s necessary to select the most relevant features to avoid the curse of dimen-
sionality and to improve the performance by making the classification feasible [24].
However, as we can see in Table 3.1, the d

n ratio is quite high for some datasets, which
convey the difficulty in applying feature selection in these data.

The column entitled "# Class" indicates if the dataset is binary (c equals to 2) or multi-
class (c greater than 2). A binary dataset indicates the presence/absence of a specific
tumor/cancer (such as in the CNS, Colon, and Ovarian datasets), the re-incidence of
a disease (such as in the Breast dataset), or the diagnosis between two types of cancer
(such as in the Leukemia dataset). A multi-class dataset distinguishes between differ-
ent types of cells (such as in the Leukemia_3c, Leukemia_4c, and Lymphoma datasets),
and tumors/cancer (such as in the Lung, MLL, and SRBCT datasets). More details on
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these datasets can be found in Appendix A.

3.2 Statistical Analysis

A statistical analysis of the data helps to point out the presence of an unbalanced class
distribution. It also allows us to check on the type of values and the distribution of
each feature. With this information in mind, it’s possible to decide what is the best
course of action to handle the data.

It’s important to highlight that a numerical or quantitative feature can have one of two
types:

• Discrete - which can only take integer values, e.g. 1 and 3152;

• Continuous - which can take any real values, e.g. float values, such as 2.3, 2.4,
2.5, and 2.6.

Also, a categorical or qualitative feature can be:

• Nominal - which can take values with no natural order among them, such as
colors, e.g. white, red, black, and blue;

• Ordinal - which can take values with an order between them, like a rank, e.g. 1,
2, and 3 or low, medium, and high .

The figures presented in this Section, show the microarray dataset statistical analysis,
including the frequency distribution of classes and feature types. These figures were
generated using Python’s Seaborn [58] and Matplotlib [35] libraries.

As we can observe in Figure 3.1, in the Breast dataset there are 97 instances which are
distributed among two classes: label non-relapse (51 instances) and label relapse (46
instances). In addition, there are 24481 features in total, which can be divided in two
types with the following distribution:

• 24188 continuous features;

• 293 discrete features.

Figure 3.2 shows that in the CNS dataset there are 60 instances which are distributed
among two classes: label 0 (39 instances) and label 1 (21 instances). Moreover, there
are only discrete features, with a total number of 7129.
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(a) (b)

Figure 3.1: Breast Dataset Statistical Analysis.

(a) (b)

Figure 3.2: CNS Dataset Statistical Analysis.

Figure 3.3 describes that in the Colon dataset there are 62 instances which are dis-
tributed among two classes: label negative (40 instances) and label positive (22 in-
stances). Additionally, there are only continuous features, totaling up to 2000.

(a) (b)

Figure 3.3: Colon Dataset Statistical Analysis.
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Figure 3.4 shows that in the Leukemia dataset there are 72 instances which are dis-
tributed among two classes: label ALL (47 instances) and label AML (25 instances). In
addition, there are only discrete features, with 7129 in total.

(a) (b)

Figure 3.4: Leukemia Dataset Statistical Analysis.

Likewise, Figures 3.5 and 3.6, present the same number of instances and frequency dis-
tribution of feature types as Figure 3.4. On the other hand, the frequency distribution
of the class is different.

Figure 3.5 shows that in the Leukemia_3c dataset there are 72 instances which are dis-
tributed among three classes: label B-cell (38 instances), label AML (25 instances), and
label T-cell (9 instances).

Figure 3.6 shows that in the Leukemia_4c dataset there are 72 instances which are dis-
tributed among four classes: label B-cell (38 instances), label BM (21 instances), label
T-cell (9 instances), and label PB (4 instances).

(a) (b)

Figure 3.5: Leukemia_3c Dataset Statistical Analysis.
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(a) (b)

Figure 3.6: Leukemia_4c Dataset Statistical Analysis.

As we can observe in Figure 3.7, in the Lung dataset there are 203 instances which are
distributed among five classes: label 1 (139 instances), label 2 (17 instances), label 3 (6
instances), label 4 (21 instances), and label 5 (20 instances). Moreover, there are only
continuous features, with a total number of 12600.

(a) (b)

Figure 3.7: Lung Dataset Statistical Analysis.

Figure 3.8 shows that in the Lymphoma dataset there are 66 instances which are dis-
tributed among three classes: label DLBCL (46 instances), label CLL (11 instances), and
label FL (9 instances). Additionally, there are only continuous features, totaling up to
4026.

Figure 3.9 shows that in the MLL dataset there are 72 instances which are distributed
among three classes: label AML (28 instances), label ALL (24 instances), and label MLL
(20 instances). In addition, there are 12582 features in total, which can be divided in
two types with the following distribution:

• 11270 continuous features;

• 1312 discrete features.
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(a) (b)

Figure 3.8: Lymphoma Dataset Statistical Analysis.

(a) (b)

Figure 3.9: MLL Dataset Statistical Analysis.

Figure 3.10 shows that in the Ovarian dataset there are 253 instances which are dis-
tributed among two classes: label Cancer (162 instances) and label Normal (91 in-
stances). Moreover, there are 15154 features in total, which can be divided in two types
with the following distribution:

• 15151 continuous features;

• 3 discrete features.

Figure 3.11 shows that in the SRBCT dataset there are 83 instances which are dis-
tributed among four classes: label 1 (29 instances), label 2 (11 instances), label 3 (18
instances), and label 4 (25 instances). In addition, there are only continuous features,
totaling up to 2308.
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(a) (b)

Figure 3.10: Ovarian Dataset Statistical Analysis.

(a) (b)

Figure 3.11: SRBCT Dataset Statistical Analysis.

Given the fact that the datasets considered in this work consist of a high number of
features and a reduced number of instances, the most suitable CV technique to apply
is the LOOCV. Although, its computational cost is high, the results attained using this
procedure are more accurate than that of 10-fold CV.

As mentioned in Section 2.2, the LOOCV technique uses all but one instance to train
the classifier. This allows us to use the largest training set and make full use of a
small dataset, thus achieving a better estimate of the generalization error and the other
evaluation metrics. Due to this same reason, the chances of overfitting (the classifier
performing well in the training set, but poorly in the test set [48]) and underfitting (the
classifier not performing well neither in the training and nor the test set [18]) are lower.

In addition, the LOOCV doesn’t depend on the data sampling. Thus, the average result
will not vary, and we do not need to be concerned with not having an even distribution
of classes per dataset skewing the results of this study.

Under other circumstances, such as in the presence of datasets in which the dimen-
sionality is not too high and the number of instances is high enough to do a suitable
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sampling (to test the algorithm ability to generalize), the 10-fold CV technique is better
suited than LOOCV, since it is computationally more efficient (faster).

As stated at the beginning of this Chapter, the type of values of each feature can also
generate problems.

This may occur in the data representation phase, when applying discretization tech-
niques. Since in this phase we transform continuous features into discrete features, as
explained in Subsection 2.2.1, we must ensure that categorical features are not changed.
Categorical features already have an inherent meaning, and therefore, don’t need to be
discretized, only numerical features need to.

However, since the datasets in this work only consist of numerical features (as we can
see in the statistical analysis presented above), this is not an issue.
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4
Machine Learning Pipeline

Implementation

This Chapter describes the approach followed to achieve the goals set forth in this
work. In Section 4.1, we comment on the chosen programming language to develop
the machine learning pipeline used in this work. Section 4.2 describes each phase of
the aforementioned pipeline, by presenting the techniques that we applied and the
procedures that we followed. Lastly, Section 4.3 presents the main distinction between
the present work and those described in Section 2.3.

4.1 Programming Languages

The pipeline depicted in Figure 4.1 was developed in Python (version 3.7) [43], using
Visual Studio Code [66] as the integrated development environment (IDE). In addition,
alongside Python, the Weka software [69] was chosen to assist with the data analysis,
described in Chapter 3, due to its built-in tools for standard machine learning problems
and its intuitive user interface.

Python is the de facto standard programming language for machine learning today.
It contains numerous state of the art libraries to handle machine learning problems,
which reduces development time, e.g. Tensorflow [60], Pytorch [44], Scikit-learn [54],
Pandas [42], Numpy [39], and SciPy [55]. Other suitable programming languages
would have been Matlab, R, and Java.
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Matlab [34], allows us to easily deal with machine learning problems by providing a set
of resources such as the capability of building training models with only a point and
click approach, signal processing, feature extraction techniques, automatic machine
learning (e.g. feature selection, model selection, and hyperparameter tuning), large-
scale processing and so on. At its core, it focuses heavily on matrix operations which
is useful for machine learning problems.

R [61], had its roots as an open source statistical package, with a strong emphasis on
vector (and matrix) operations, and a centralized package system through which con-
tributors can add new functionality. Today, it boasts an impressive set of packages for
loading and transforming data, doing exploratory data analysis, executing machine
learning algorithms and displaying results graphically.

Java [40], is one of the oldest and most used programming languages for enterprise
development. Countless mission critical applications in production today are written
in Java. This includes some systems for handling big data (e.g. Apache Hadoop and
Apache Spark), which are important components of production ready pipelines. Other
machine learning software, like Weka, are also written in this language, and most ma-
chine learning stacks, even if not written in Java, have language bindings that allows
them to be used from Java.

Ultimately, it’s up to the programmer to choose which programming language he/she
is more comfortable with. For the problem at hand, Python provides all the necessary
and adequate tools.

4.2 The Proposed Pipeline

The machine learning pipeline developed in the context of this work, consists of a set
of actions that we apply to each dataset. This allows us to compare different tech-
niques and different parameters and evaluate their performance in order to draw our
conclusions. Figure 4.1 depicts the pipeline developed in the context of this thesis.

Figure 4.1: The pipeline of the proposed approach.
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Phase (a), the inputs for the pipeline, consists in one of the eleven publicly available
DNA microarray datasets shown in Table 1.1 and Table 3.1, while phase (f), the exper-
imental results and conclusions, are reported in Chapter 5 and Chapter 6.

Algorithm 1 describes the pipeline developed in this work.

Algorithm 1 Machine learning pipeline
Input: 11 DNA microarray datasets.
Output: Error rate (Err).

False negative rate (FNR).
False positive rate (FPR).
Percentage of the selected features (m1).

1: for data P datasets do
2: Preprocess the data.
3: Instantiate LOOCV.
4: for indexes P LOOCV do
5: Split the instances of the data into training and test sets.
6: Apply normalization on the training and test sets.
7: for f d P FD techniques do
8: Apply phase (b) as described in Algorithm 2.
9: for f s P FS techniques do

10: Apply phase (c) as described in Algorithm 5.
11: Select features on the discretized training and test sets.
12: Compute how many times a feature was selected.
13: for classi f ier P classi f ication techniques do
14: Apply phase (d) as described in Algorithm 7.
15: Save the classifier predictions (phase (e)).
16: end for
17: end for
18: end for
19: end for
20: end for
21: For all datasets and combinations of techniques applied in this pipeline, compute

the confusion matrix using the saved predictions, as described in Algorithm 8
(phase (e)).

22: Compute Err, FNR, and FPR using the confusion matrix.
23: Compute m1, the percentage of selected features.

At line 2, we preprocess each dataset. This procedure was accomplished in four steps:

1. We splitted the dataset into features set (X) and class labels (y).

2. We mapped all nominal class labels to a representative number (for instance: no
cancer is given by 0, whereas having cancer is specified by 1). This was done
because some algorithms don’t accept nominal class labels.
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3. We completed the missing values with the most frequent value in the correspond-
ing feature. We used the SimpleImputer method from Scikit-learn [54]. This was
only required for the Lymphoma dataset, as it was the only one with missing
values.

4. We removed all constant features, since they didn’t provide relevant information
for the algorithms applied. This was only required for the Breast dataset, where
d, the number of features, was reduced from 24481 to 24188.

In line 3, we instantiate and initialize the LOOCV technique, the methodology we used
for training and testing classifiers, which is then applied to all evaluations throughout.
By using LOOCV, we achieved a better estimate of the generalization error and the
other evaluation metrics, when compared to standard 10-fold CV, since as the number
of instances n is small, there is no standard deviation due to the data sampling proce-
dure as it happens on the latter CV technique. More information on this technique can
be found at the end of Section 3.2.

At line 12, we compute how many times a feature was selected in the FS phase of
the pipeline. For this, we considered a d dimensional counter for each dataset. The
counter was implemented as a dictionary, in which each entry was represented by a
(key : value) pair corresponding to (feature index : count). At the beginning, we set all
count values to zero, and at line 12, for each feature index selected, we increment the
counter by 1. Since we are using the LOOCV technique, each feature can be selected (at
maximum) n times. In the best case scenario, a feature is selected n times, and at worst,
0 times. Once the pipeline process is finalized, we remove from the map all the pairs
(feature index : count) in which the count value is still zero. Next, we sort the values of
the remaining pairs by descending order of count, since the higher the value presented
in the count, the more relevant the feature will be. This way, we can determine the
most relevant features in a dataset and by doing so, we accomplish phase (f) of the
pipeline.

4.2.1 Data Representation

Phase (b) was accomplished by applying the feature normalization and FD, data rep-
resentation techniques as described in Subsection 2.2.1. In addition, Chapter 3 which
provides a thorough analysis of each dataset, contains alternative data representations
used for analysis purposes: these include tables, charts, summary statistics, statistical
analysis, and others.
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The feature normalization procedure consisted in scaling each feature between zero
and one, which was achieved using the Scikit-learn’s MinMaxScaler method. This
allows us to balance all features in terms of the range of values they are represented
with, and avoid crushing small values in the presence of large ones when performing
floating-point computations.

Regarding FD, we noticed that this technique has had little attention in the literature,
since it was harder to find algorithms to apply on the pipeline. However, this phase
may cause an impact on the data and improve the results as irrelevant fluctuations
are removed. That being the case, the storage space is reduced, given that the integer
representation can occupy less space than the original floating-point values (e.g. when
using short integers vs float64 values). This procedure, was carried out through four
techniques:

• Unsupervised EFB, a method (KBinsDiscretizer) from Scikit-learn used as de-
scribed in Algorithm 2, without the class labels;

• Supervised MDLP, a publicly available FD algorithm implementation from [32]
(under BSD 3-Clause License) used as described in Algorithm 2;

• Unsupervised U-LBG1, a FD algorithm proposed in [3], which was implemented
as described in Algorithm 3;

• Supervised R-LBG, a FD algorithm proposed in [5], which was implemented as
described in Algorithm 4.

Algorithm 2 Data representation, phase (b) of the pipeline
Input: Training set.

Actual class labels.
Test set.

Output: Discretized training set.
Discretized test set.

1: Instantiate a discretization algorithm.
2: Learn the discretization interval for each feature, on the training set.
3: Discretize the training and test sets, with the learned quantizer.

We have chosen the EFB method because even though it’s a simple approach, it is
known to produce adequate results in the literature when applied to microarray data
(in addition to other types of data and machine learning problems). We have also
chosen MDLP because it is a different discretization approach compared to EFB. In
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addition, the U-LBG1 and R-LBG are reported in the literature to achieve good results
on multi-class high-dimensional datasets.

Algorithm 3 U-LBG1 - unsupervised Linde-Buzo-Gray 1
Input: Training set.

Test set.
Maximum number of bits per feature (q).
Minimum allowed distortion (∆).

Output: Discretized training set.
Discretized test set.

1: for i “ 0 to d do Ź d is the number of features
2: for j “ 1 to q do
3: Apply the kmeans method to the current feature from the training set, yield-

ing the centroids.
4: if MS E ă ∆ or j “ q then
5: Apply the vq method to discretize the training and test sets.
6: break ŹMove on to the next feature.
7: end if
8: end for
9: end for

Algorithm 4 R-LBG - relevance-based Linde-Buzo-Gray, with FiR relevance
Input: Training set.

Actual class labels.
Test set.
Maximum number of bits per feature (q).
Minimum increase in relevance (∆).

Output: Discretized training set.
Discretized test set.

1: for i “ 0 to d do Ź d is the number of features
2: Previous feature relevance set to zero.
3: for j “ 1 to q do
4: Apply the kmeans method to the current feature from the training set, yield-

ing the centroids.
5: For each feature, compute current relevance using FiR.
6: if pcurrent relevance´ previous relevanceq ą ∆ or j “ q then
7: Apply the vq method to discretize the training and test sets.
8: break ŹMove on to the next feature.
9: end if

10: Set previous relevance feature value to the current relevance value.
11: end for
12: end for
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For the EFB technique, we tuned the number of discretization bins, the (n_bins) pa-
rameter, since its optimal value may vary for each dataset. Since the MDLP results in
a random number of intervals, for its remaining parameters we proceeded with the
default values.

As for the U-LBG1 discretizer, we decided not to tune its parameter in this work, be-
cause in the literature ∆ set to 0.05 and q to 4 has proven adequate for many problems.
Thus, we used these values. In R-LBG, we set ∆ to 0.1 and q to 4 for the same reason.
Additionally, instead of using the Linde-Buzo-Gray algorithm as in [3] and [5], we de-
cided to use the kmeans and vq methods from SciPy. The kmeans algorithm generates
a codebook (mapped centroids to codes) with minimum distortion (MSE) between fea-
tures and centroids. The vq method discretizes the features, assigning to each feature
value a code from the codebook.

4.2.2 Dimensionality Reduction

Phase (c) was accomplished by applying the dimensionality reduction techniques de-
scribed in Subsection 2.2.2, specifically the FS procedure.

We chose to use FS instead of FR techniques, because it has advantages when it comes
to performance, processing time and result interpretability. FS selects a subset of the
original features rather than generating new ones, which allowed us to remove irrele-
vant and redundant features, improving the results and time performance. In addition,
in FS the feature point of reference in the dimensional space remains the same as in the
original, whereas with FR we lose this information, which makes results interpretation
much more difficult.

This procedure, was carried out through four techniques:

• Unsupervised LS, a publicly available FS algorithm implementation from [28, 29]
(under GPL-2.0 License) used as described in Algorithm 5;

• Unsupervised SPEC, a publicly available FS algorithm implementation from [28,
29] (under GPL-2.0 License) used as described in Algorithm 5;

• Unsupervised and supervised RRFS (with MM and FiR as a relevance metric), a
FS algorithm proposed in [1], which was implemented as described in Algorithm
6;

• Supervised FiR, a publicly available FS algorithm implementation from [28, 29]
(under GPL-2.0 License) used as described in Algorithm 5.
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We have chosen the LS, SPEC, and FiR methods, because they are well-known tech-
niques in the literature. We have also chosen RRFS because unlike other approaches,
it keeps only features with high relevance and low similarity among themselves, thus
also removing redundant features.

With the exception of the RRFS technique, we decided to not fine tune these technique’s
parameters, and have used their default values. For the RRFS technique, we set the
maximum similarity (ms) parameter to 0.7, since it was reported to produce adequate
results, in the literature

Algorithm 5 Dimensionality reduction, phase (c) of the pipeline
Input: Training set.

Actual class labels.
Output: Indexes of selected features.

1: Obtain the scores of all the features by using a FS algorithm.
2: Sort these scores by descending order.
3: Compute the cumulative sum of these scores.
4: Select features with the most accumulated relevance (90%).

Algorithm 6 RRFS - relevance-redundancy feature selection
Input: Training set.

Actual class labels.
Maximum similarity between features (ms).

Output: Indexes of selected features.

1: Compute the relevance using a metric (MM or FiR).
2: Sort these relevance by descending order.
3: Keep the most relevant feature (the first one).
4: for i “ 1 to d do Ź d is the number of features
5: Compute the similarity between the current and next feature.
6: if similarity ă ms then
7: Keep feature.
8: end if
9: end for

By using the LOOCV procedure, we compute the number of remaining features for
each fold (m). Using m, we can calculate the percentage of selected features (m1), which
is given by

m1
“

m
d
, (4.1)

where m is the average value for all m and d is the number of features in the dataset.
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4.2.3 Data Classification

Phase (d) was accomplished by applying the data classification techniques described
in Subsection 2.2.3:

• SVM, a method (SVC) from Scikit-learn used as described in Algorithm 7;

• DT, a method (DecisionTreeClassifier) from Scikit-learn used as described in Al-
gorithm 7.

Algorithm 7 Data classification, phase (d) of the pipeline
Input: Training set.

Actual class labels.
Test set.

Output: Classifier prediction.

1: Instantiate a learning algorithm (classifier).
2: Train the classifier using training set and the actual class labels.
3: Classify the test set.

We have chosen the SVM classifier because it is frequently reported in the literature
as the data classification technique that yields the best results in similar contexts. We
have also chosen DT because it is a different classification approach, which is seldom
applied to this type of data.

For the SVM classifier, we tuned the kernel and C parameters and evaluated its perfor-
mance with several values on each dataset. By changing the kernel, we aimed to find a
suitable kernel function for each dataset/problem, and by changing the C parameter,
we aimed to understand the impact that the regularization has in the performance for
this type of data.

As for the DT classifier, we tuned the criterion, random_state, and max_depth param-
eters. By changing the criterion, we aimed to find, for each dataset, a suitable function
to split a node on the tree. As for the other two, we aimed to assess its performance for
this type of data.

We chose to tune these classifiers based on the parameters mentioned above, because
they are the most used when fine tuning these classifiers [19, 68]. It would have been
impossible to explore every possible combination of every parameter since then the
number of combinations would have grown exponentially and the time to produce
results/analyze the data would have been prohibitively large.
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4.2.4 Evaluation Metrics

Phase (e) was accomplished by applying a subset of the evaluation metrics described
in Subsection 2.2.4. We considered the average test error rate for all the datasets. For
the five datasets that have a non-cancer class label, we also considered the FNR and
FPR, which are especially relevant metrics for the cancer detection problem. For the
other six datasets, we don’t report the FNR and FPR metrics, because these datasets
focus on distinguishing between cancer types and they do not have a non-cancer class
label. Please refer to Appendix A for more information about each dataset class labels.

The selected evaluation metrics can be calculated from a confusion matrix. Therefore,
for all datasets and all combinations of techniques applied in this work, we first com-
pute the confusion matrix, as described in Algorithm 8. Then, we calculated the error
rate, FNR, and FPR as described in the equations presented in Section 2.2.4.

Algorithm 8 Compute confusion matrix
Input: n predictions.

Actual class labels.
Output: A cxc confusion matrix (rows: actual class, columns: predicted class).

1: Build a cxc array filled with zeros. Ź c is the number of classes.
2: Build a dictionary to map the class label and the position this label will have on the

confusion matrix.
3: for i “ 0 Ñ n do Ź n is number of instances
4: Get in the dictionary the position corresponding to the current actual class label

and the predicted one, (row, column) respectively.
5: Increment the value in the position (row, column) of the confusion matrix by 1.
6: end for

For consistency and simplicity in interpretability, we ensure that the first position in
the confusion matrix is a non-cancer label (TN), where applicable.

4.2.5 Thesis Repository

The source code of this thesis is publicly available at [38].

The requirements.txt file lists all but one Python packages this work depends on. They
can be installed using the following command: pip install -r requirements.txt.

The additional package [28] was not shared on pip installs packages (PIP), therefore it
has to be installed individually (by cloning or downloading the zip file).
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4.3 Comparison With Other Approaches

This work focuses on the same algorithms and most often used classifiers as those
described in Section 2.3. However, due to its broader scope, this work doesn’t focus
on only one specific technique, but on exploring and evaluating different techniques,
and the combination of those techniques. We also apply these techniques to a larger
number of microarray datasets.

In addition, we also address different data representation and dimensionality reduc-
tion techniques, combining FD and FS techniques, before classification.

Our aim is not solely the correct classification (as expressed by the error rate, FNR, and
FPR), but also to find the subset of features that are more relevant for the classification
task.
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5
Experimental Results

This Chapter describes the experimental evaluation of the proposed approach on the
eleven microarray datasets described in Table 1.1 and Table 3.1. In Section 5.1, we de-
scribe the baseline classification results without FD or FS techniques, using the SVM
and DT classifiers (phases (a), (d), and (e) of the pipeline depicted in Figure 4.1).
Section 5.2 addresses the use of FD techniques (phases (a), (b), (d), and (e) from the
pipeline), whereas Section 5.3 reports the experimental results of FS techniques (phases
(a), (c), (d), and (e) of the pipeline). Section 5.4 shows the results of the entire pipeline
(all phases), using the best configurations found in the previous experiments. Section
5.5 presents experimental results that support the explainability of the classification,
by identifying the best subsets of features for some dataset. In addition, Section 5.6,
compares the results attained in this work with those described in Section 2.3. Finally,
Section 5.7 concludes the chapter with a summary of these results.

For the tables that follow in this Chapter:

• A denotes the average value of a given metric for the eleven datasets in this work
(where applicable), which allows us to identify the best overall techniques;

• σ indicates the standard deviation, which allows us to understand the stability/-
consistency of each technique (the closest to zero the better);

• the criteria used to decide the best overall technique as well as the best suited
one for each dataset, consists in comparing three estimated rates between many
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applied techniques: namely the error rate, FNR, and FPR where applicable. We
always analyse the error rate first because it’s universally applicable across all
datasets.

5.1 Baseline Classification Results

First, we evaluate the data classification phase of the pipeline. We check the perfor-
mance of the selected classifiers, SVM and DT, to establish the baseline results.

Table 5.1 presents the estimates of the error rate, FNR, and FPR of the LOOCV proce-
dure for the SVM classifier with the C parameter set to 1 (its default value) and four dif-
ferent values for the kernel parameter: linear, polynomial (poly), rbf, and sigmoid. The
best overall result was achieved with kernel set to linear (with an Err=0.11, FNR=0.24,
and FPR=0.16). However, this is not the case for each dataset individually, because
in some datasets (such as Lymphoma, MLL, and SRBCT) we achieved the best result
with different kernel values (in addition to linear). Furthermore, in the Colon dataset
only the rbf kernel yielded a good result. We can also observe that, in this phase of the
pipeline, we obtained an ideal error estimate for three datasets: Lymphoma (Err=0),
Ovarian (Err=0, FNR=0, and FPR=0), and SRBCT (Err=0). In these cases, the remaining
challenge consisted in applying other phases of the pipeline and retain these results.

Table 5.1: Test error rate (Err), FNR, and FPR of LOOCV for the SVM classifier (C=1),
with original features (no transformations). Different kernel types are considered. Best
results are presented in bold face.

linear poly rbf sigmoid

Dataset Err FNR FPR Err FNR FPR Err FNR FPR Err FNR FPR

Breast 0.33 0.35 0.31 0.46 0.98 0.00 0.47 1.00 0.00 0.48 1.00 0.02
CNS 0.32 0.52 0.21 0.35 1.00 0.00 0.35 1.00 0.00 0.35 1.00 0.00
Colon 0.19 0.32 0.12 0.23 0.59 0.02 0.15 0.27 0.08 0.39 1.00 0.05
Leukemia 0.03 – – 0.06 – – 0.08 – – 0.35 – –
Leukemia_3c 0.07 – – 0.08 – – 0.17 – – 0.47 – –
Leukemia_4c 0.12 – – 0.14 – – 0.28 – – 0.47 – –
Lung 0.06 0.01 0.18 0.09 0.01 0.24 0.10 0.01 0.24 0.22 0.00 1.00
Lymphoma 0.00 – – 0.12 – – 0.00 – – 0.00 – –
MLL 0.04 – – 0.04 – – 0.06 – – 0.29 – –
Ovarian 0.00 0.00 0.00 0.004 0.00 0.01 0.02 0.01 0.02 0.36 0.00 1.00
SRBCT 0.00 – – 0.00 – – 0.01 – – 0.41 – –

A 0.11 0.24 0.16 0.14 0.52 0.05 0.15 0.46 0.07 0.34 0.60 0.41
σ 0.12 0.20 0.10 0.14 0.44 0.09 0.15 0.45 0.09 0.13 0.49 0.48

Table 5.2 presents the experimental results for the same setup as in Table 5.1, but we
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apply phase (b) of the pipeline to normalize all feature values to the 0 to 1 range. We
can observe that, setting the kernel to linear yielded the best results for all datasets. We
also managed to retain the ideal error estimate (Err=0) for the Lymphoma, Ovarian,
and SRBCT datasets. By comparing the results of Table 5.1 and Table 5.2, we conclude
that SVM with a linear kernel is the best choice and that the use of normalized fea-
tures leads to a slight improvement on the results (A having reduced from Err=0.11 to
Err=0.09). On the other hand, taking into account each dataset, we can observe that on
the CNS and Colon datasets, better results were obtained with original features rather
than normalized ones.

Table 5.2: Test error rate (Err), FNR, and FPR of LOOCV for the SVM classifier (C=1),
with normalized features. Different kernel types are considered. Best results are pre-
sented in bold face.

linear poly rbf sigmoid

Dataset Err FNR FPR Err FNR FPR Err FNR FPR Err FNR FPR

Breast 0.31 0.30 0.31 0.33 0.28 0.37 0.37 0.46 0.29 0.47 1.00 0.00
CNS 0.33 0.62 0.18 0.37 0.62 0.23 0.35 1.00 0.00 0.35 1.00 0.00
Colon 0.18 0.27 0.12 0.27 0.55 0.12 0.21 0.50 0.05 0.39 0.82 0.15
Leukemia 0.01 – – 0.03 – – 0.15 – – 0.35 – –
Leukemia_3c 0.04 – – 0.06 – – 0.26 – – 0.47 – –
Leukemia_4c 0.07 – – 0.10 – – 0.32 – – 0.47 – –
Lung 0.05 0.01 0.12 0.05 0.01 0.18 0.09 0.01 0.24 0.32 0.00 1.00
Lymphoma 0.00 – – 0.00 – – 0.00 – – 0.30 – –
MLL 0.03 – – 0.06 – – 0.10 – – 0.61 – –
Ovarian 0.00 0.00 0.00 0.004 0.00 0.01 0.02 0.01 0.02 0.36 0.00 1.00
SRBCT 0.00 – – 0.01 – – 0.07 – – 0.65 – –

A 0.09 0.24 0.15 0.12 0.29 0.18 0.18 0.40 0.12 0.43 0.56 0.43
σ 0.12 0.23 0.10 0.13 0.26 0.12 0.13 0.37 0.12 0.11 0.47 0.47

For each dataset with normalized features, we also assessed the impact of the C param-
eter in the SVM classifier (with kernel set to linear). We observed that, even though we
used different values for C (specifically 1.5, 2, 10, or 100), we obtained the same results
as those reported in Table 5.2 (see column named linear). These results are the same as
those achieved with C set to 1. Therefore, we concluded that for these datasets (with
this setup), the C parameter does not have an impact on the classification results.

Table 5.3 identifies the best SVM parameter configuration found for each dataset dur-
ing the data classification phase. In this Table, "O" stands for original features while
"N" means normalized features.

Table 5.4 shows the results of the DT classifier with the criterion parameter set to gini
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Table 5.3: Summary of the best results and respective configurations, for each dataset,
obtained during the data classification phase, with the SVM classifier - a, b, and c
denote combinations of techniques.

Configurations

Dataset Processing C kernel Err FNR FPR

Breast N 1 linear 0.31 0.30 0.31
CNS O 1 linear 0.32 0.52 0.21
Colon O 1 rbf 0.15 0.27 0.08
Leukemia N 1 linear 0.01 – –
Leukemia_3c N 1 linear 0.04 – –
Leukemia_4c N 1 linear 0.07 – –
Lung N 1 linear 0.05 0.01 0.12
Lymphoma Oa, Nb 1 linear, polyb, rbf, sigmoida 0.00 – –
MLL N 1 linear 0.03 – –
Ovarian O, N 1 linear 0.00 0.00 0.00
SRBCT O, Nc 1 linearc, poly 0.00 – –

A – – – 0.09 0.22 0.14
σ – – – 0.11 0.20 0.11

and max_depth (the learned tree maximum allowed depth) set to None, both their de-
fault values. Table 5.5 shows a similar evaluation as in Table 5.4, but now considering
entropy as a criterion. With these experiments, we have found that using entropy as a
criterion to build the tree yielded the best results for all datasets. Even though for four
datasets (namely Leukemia, Lymphoma, MLL, and Ovarian) we attained the same re-
sults using gini, we conclude that setting the criterion to entropy is the best choice,
since the best overall result was also achieved using the same value for this parame-
ter. In addition, we can also observe that, since the random_state parameter controls
the randomness of the tree and each dataset has its own characteristics, the best choice
for each one may vary. Nevertheless, setting the random_state to 42 yielded the best
overall results in both Table 5.4 and Table 5.5. Moreover, we obtained an ideal error
estimate only for the Lymphoma dataset, which was acquired with random_state set to
42, as we can see in these tables. We also assessed the impact of feature normalization
on the same setup as in Table 5.4 and Table 5.5. However, the results obtained were
the same as those in these tables. Therefore, for the sake of consistency in the pipeline,
we decided to keep normalizing the features since it doesn’t decrease the quality of the
results.

Table 5.6 assesses the impact of the learned tree maximum allowed depth (max_depth)
for these datasets. As we can see, setting the max_depth to 5, 7 or 10 yielded the
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Table 5.4: Test error rate (Err), FNR, and FPR of LOOCV for the DT classifier (crite-
rion=gini and max_depth=None), with original features. Different values for the ran-
dom_state parameter are evaluated. Best results are presented in bold face.

5 13 29 42

Dataset Err FNR FPR Err FNR FPR Err FNR FPR Err FNR FPR

Breast 0.36 0.37 0.35 0.43 0.46 0.41 0.35 0.35 0.35 0.35 0.30 0.39
CNS 0.27 0.48 0.15 0.43 0.48 0.41 0.32 0.43 0.26 0.33 0.43 0.28
Colon 0.19 0.36 0.10 0.19 0.32 0.12 0.21 0.41 0.10 0.16 0.23 0.12
Leukemia 0.19 – – 0.21 – – 0.22 – – 0.28 – –
Leukemia_3c 0.15 – – 0.22 – – 0.18 – – 0.18 – –
Leukemia_4c 0.26 – – 0.17 – – 0.14 – – 0.22 – –
Lung 0.12 0.02 0.35 0.10 0.02 0.12 0.11 0.02 0.35 0.07 0.03 0.18
Lymphoma 0.06 – – 0.09 – – 0.05 – – 0.00 – –
MLL 0.12 – – 0.07 – – 0.11 – – 0.08 – –
Ovarian 0.03 0.02 0.04 0.02 0.01 0.04 0.02 0.01 0.03 0.03 0.01 0.07
SRBCT 0.18 – – 0.23 – – 0.29 – – 0.20 – –

A 0.18 0.25 0.20 0.20 0.26 0.22 0.18 0.24 0.22 0.17 0.20 0.21
σ 0.09 0.19 0.13 0.13 0.21 0.16 0.10 0.19 0.13 0.11 0.16 0.11

Table 5.5: Test error rate (Err), FNR, and FPR of LOOCV for the DT classifier (crite-
rion=entropy and max_depth=None), with original features. Different values for the
random_state parameter are evaluated. Best results are presented in bold face.

5 13 29 42

Dataset Err FNR FPR Err FNR FPR Err FNR FPR Err FNR FPR

Breast 0.34 0.30 0.37 0.31 0.35 0.27 0.39 0.33 0.45 0.33 0.30 0.35
CNS 0.32 0.33 0.31 0.25 0.38 0.18 0.32 0.43 0.26 0.25 0.33 0.21
Colon 0.13 0.23 0.08 0.21 0.32 0.15 0.23 0.36 0.15 0.19 0.23 0.18
Leukemia 0.24 – – 0.19 – – 0.21 – – 0.26 – –
Leukemia_3c 0.14 – – 0.19 – – 0.18 – – 0.17 – –
Leukemia_4c 0.19 – – 0.15 – – 0.10 – – 0.15 – –
Lung 0.06 0.01 0.18 0.09 0.01 0.12 0.07 0.01 0.29 0.07 0.01 0.12
Lymphoma 0.06 – – 0.09 – – 0.05 – – 0.00 – –
MLL 0.12 – – 0.07 – – 0.11 – – 0.08 – –
Ovarian 0.03 0.02 0.04 0.02 0.01 0.04 0.02 0.01 0.03 0.03 0.01 0.07
SRBCT 0.16 – – 0.19 – – 0.27 – – 0.17 – –

A 0.16 0.18 0.20 0.16 0.21 0.15 0.18 0.23 0.24 0.15 0.18 0.19
σ 0.10 0.14 0.13 0.08 0.17 0.08 0.11 0.18 0.14 0.10 0.14 0.10

same results, being these also the same as those attained with max_depth set to None
(see column entitled 42 in Table 5.5). These results show that, the trees generated by
the configurations described in Table 5.6 are equivalent. That’s why, a max_depth
beyond 5 didn’t yield improvements. Thus, in general, setting it to 5 is the best way
to decrease complexity in the learning algorithm and computational cost. However, as
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stated before, the best choice for each dataset may vary. For instance, the CNS dataset
shows a good improvement when used with normalized features and max_depth set
to 2. In addition, for the Lymphoma dataset we managed to keep a 0 error rate (result
observed for all max_depth values explored in this phase).

Table 5.6: Test error rate (Err), FNR, and FPR of LOOCV for the DT classifier (crite-
rion=entropy and random_state=42), with normalized features. Different values for
the max_depth parameter are evaluated. Best results are presented in bold face.

2 5 7 10

Dataset Err FNR FPR Err FNR FPR Err FNR FPR Err FNR FPR

Breast 0.40 0.35 0.45 0.33 0.30 0.35 0.33 0.30 0.35 0.33 0.30 0.35
CNS 0.18 0.48 0.03 0.25 0.33 0.21 0.25 0.33 0.21 0.25 0.33 0.21
Colon 0.18 0.36 0.08 0.19 0.23 0.18 0.19 0.23 0.18 0.19 0.23 0.18
Leukemia 0.26 – – 0.26 – – 0.26 – – 0.26 – –
Leukemia_3c 0.15 – – 0.17 – – 0.17 – – 0.17 – –
Leukemia_4c 0.11 – – 0.15 – – 0.15 – – 0.15 – –
Lung 0.13 0.01 0.06 0.07 0.01 0.12 0.07 0.01 0.12 0.07 0.01 0.12
Lymphoma 0.00 – – 0.00 – – 0.00 – – 0.00 – –
MLL 0.08 – – 0.08 – – 0.08 – – 0.08 – –
Ovarian 0.03 0.01 0.07 0.03 0.01 0.07 0.03 0.01 0.07 0.03 0.01 0.07
SRBCT 0.27 – – 0.17 – – 0.17 – – 0.17 – –

A 0.16 0.24 0.14 0.15 0.18 0.19 0.15 0.18 0.19 0.15 0.18 0.19
σ 0.11 0.19 0.16 0.10 0.14 0.10 0.10 0.14 0.10 0.10 0.14 0.10

Table 5.7 identifies the best DT parameter configuration found for each dataset during
the data classification phase.

Table 5.7: Summary of the best results and respective configurations, for each dataset,
obtained during the data classification phase with the DT classifier.

Configurations

Dataset Processing criterion max_depth random_state Err FNR FPR

Breast O, N entropy None 13 0.31 0.35 0.27
CNS N entropy 2 42 0.18 0.48 0.03
Colon O, N entropy None 5 0.13 0.23 0.08
Leukemia O, N ginia, entropyb None 5a, 13b 0.19 – –
Leukemia_3c O, N entropy None 5 0.14 – –
Leukemia_4c O, N entropy None 29 0.10 – –
Lung O, N entropy None 5 0.06 0.01 0.18
Lymphoma Oc, N ginid, entropy Nonec,d, 2, 5, 7, 10 42 0.00 – –
MLL O, N gini, entropy None 13 0.07 – –
Ovarian O, N gini, entropy None 29 0.02 0.01 0.03
SRBCT O, N entropy None 5 0.16 – –

A – – – – 0.12 0.22 0.12
σ – – – – 0.08 0.19 0.09
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For the next pipeline phases (FD in Section 5.2 and FS in Section 5.3), we decided to
normalize all feature values for all datasets. Since normalized features lead to an im-
provement on the results for all but two datasets (CNS and Colon for the SVM classifier,
as we can see in Table 5.3), for the sake of consistency in the pipeline, we proceeded as
such. In addition, for the sake of simplicity, the configurations considered for the SVM
and DT classifiers in the next phases of the pipeline, are those reported with the best
overall results in this data classification phase. As follows:

• SVM, with kernel set to linear and C to 1;

• DT, with criterion set to entropy, max_depth to 5, and random_state to 42.

5.2 Feature Discretization Assessment

We now address the use of FD on the pipeline. We assess the performance of the EFB
and MDLP discretization techniques, for all experiments in this phase.

Table 5.8 reports the results of the SVM classifier on data discretized by EFB, with dif-
ferent number of discretization bins (n_bins). Analyzing these results for all datasets,
we conclude that EFB discretization yields a small improvement as the number of bins
increases (lower standard deviation in all datasets). However, once we find an optimal
value, this improvement tends to stop and the performance decreases. In this case,
we consider setting n_bins to 6 the best choice, since it yielded the best results for all
but two datasets (CNS and Leukemia_3c) and it’s also the value which we obtained
the best overall result. In spite of that, we can also observe that, for some datasets
(namely Leukemia, Lymphoma, and SRBCT) the best outcome for each one was ob-
tained regardless the number of bins. We also managed to keep a 0 error rate for the
Lymphoma, Ovarian, and SRBCT datasets in this phase with the SVM classifier.

Table 5.9 shows a similar experiment as in Table 5.8, but now considering the DT classi-
fier. As we can observe, the DT classifier results do not seem to benefit from the use of
discretization as a data representation technique. However, for some datasets (namely
CNS and Leukemia), we have an improvement on the results as comparable to Table
5.6.

Figure 5.1 shows the relation between the average error rate of all datasets and the
number of discretization bins, for the SVM and DT classifiers. We can observe the
increasing and decreasing effect regarding the improvements on the classifiers perfor-
mance. For the SVM classifier, the optimal n_bins is 6 (lower error and lower standard
deviation). On the DT classifier, the optimal value is n_bins = 5.
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Table 5.8: Test error rate (Err), FNR, and FPR of LOOCV for the SVM classifier (C=1
and kernel=linear) with EFB discretization. Different values for the n_bins parameter
were evaluated. Best results are presented in bold face.

2 3 4 5 6 7

Dataset Err FNR FPR Err FNR FPR Err FNR FPR Err FNR FPR Err FNR FPR Err FNR FPR

Breast 0.32 0.30 0.33 0.33 0.33 0.33 0.32 0.33 0.31 0.32 0.33 0.31 0.30 0.30 0.29 0.31 0.33 0.29
CNS 0.35 0.71 0.15 0.30 0.62 0.13 0.38 0.71 0.21 0.32 0.62 0.15 0.32 0.62 0.15 0.37 0.67 0.21
Colon 0.18 0.27 0.12 0.18 0.27 0.12 0.16 0.27 0.10 0.15 0.23 0.10 0.15 0.23 0.10 0.16 0.27 0.10
Leukemia 0.01 – – 0.01 – – 0.01 – – 0.01 – – 0.01 – – 0.01 – –
Leukemia_3c 0.03 – – 0.03 – – 0.03 – – 0.03 – – 0.04 – – 0.04 – –
Leukemia_4c 0.08 – – 0.07 – – 0.07 – – 0.07 – – 0.07 – – 0.07 – –
Lung 0.05 0.01 0.18 0.05 0.01 0.18 0.05 0.01 0.18 0.04 0.01 0.18 0.04 0.01 0.18 0.04 0.01 0.18
Lymphoma 0.00 – – 0.00 – – 0.00 – – 0.00 – – 0.00 – – 0.00 – –
MLL 0.04 – – 0.03 – – 0.03 – – 0.03 – – 0.03 – – 0.03 – –
Ovarian 0.004 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
SRBCT 0.00 – – 0.00 – – 0.00 – – 0.00 – – 0.00 – – 0.00 – –

A 0.10 0.26 0.16 0.09 0.25 0.15 0.10 0.26 0.16 0.09 0.24 0.15 0.09 0.23 0.14 0.09 0.26 0.16
σ 0.12 0.26 0.10 0.12 0.23 0.11 0.13 0.26 0.10 0.12 0.23 0.10 0.11 0.23 0.10 0.12 0.25 0.10

Table 5.9: Test error rate (Err), FNR, and FPR of LOOCV for the DT classifier (crite-
rion=entropy, max_depth=5, and random_state=42) with EFB discretization. Different
values for the n_bins parameter were evaluated. Best results are presented in bold face.

2 3 4 5 6 7

Dataset Err FNR FPR Err FNR FPR Err FNR FPR Err FNR FPR Err FNR FPR Err FNR FPR

Breast 0.30 0.35 0.25 0.30 0.35 0.25 0.46 0.50 0.43 0.32 0.37 0.27 0.47 0.59 0.37 0.48 0.61 0.37
CNS 0.42 0.67 0.28 0.65 0.81 0.56 0.43 0.57 0.36 0.18 0.33 0.10 0.37 0.57 0.26 0.50 0.71 0.38
Colon 0.26 0.32 0.22 0.34 0.55 0.22 0.29 0.55 0.15 0.16 0.18 0.15 0.34 0.45 0.28 0.24 0.41 0.15
Leukemia 0.01 – – 0.11 – – 0.12 – – 0.19 – – 0.08 – – 0.14 – –
Leukemia_3c 0.19 – – 0.22 – – 0.12 – – 0.14 – – 0.10 – – 0.19 – –
Leukemia_4c 0.21 – – 0.28 – – 0.10 – – 0.26 – – 0.21 – – 0.17 – –
Lung 0.27 0.07 0.47 0.17 0.01 0.12 0.16 0.02 0.12 0.15 0.03 0.41 0.18 0.05 0.35 0.15 0.03 0.29
Lymphoma 0.06 – – 0.06 – – 0.11 – – 0.09 – – 0.09 – – 0.11 – –
MLL 0.19 – – 0.17 – – 0.25 – – 0.15 – – 0.08 – – 0.18 – –
Ovarian 0.06 0.07 0.03 0.02 0.01 0.03 0.04 0.04 0.03 0.03 0.01 0.05 0.02 0.01 0.04 0.03 0.01 0.07
SRBCT 0.18 – – 0.25 – – 0.22 – – 0.16 – – 0.23 – – 0.17 – –

A 0.20 0.30 0.25 0.23 0.35 0.24 0.21 0.34 0.22 0.17 0.18 0.20 0.20 0.33 0.26 0.21 0.35 0.25
σ 0.11 0.22 0.14 0.16 0.31 0.18 0.13 0.25 0.15 0.07 0.15 0.13 0.14 0.25 0.12 0.14 0.29 0.12

(a) (b)

Figure 5.1: Analysis of the error rate (Err) and number of discretization bins (n_bins)
for the SVM and DT classifiers.
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Table 5.10 shows a summary of the results of the best configurations of EFB discretiza-
tion and SVM/DT classifiers. For each dataset, we select the best configuration found
in our experiments. The * symbol denotes an improvement over the baseline classifica-
tion results of Table 5.3 and 5.7. As we can see, for the Breast and CNS datasets, the best
results were achieved with a single combination: (Classifier= SVM and n_bins=6) for
the former and (Classifier=DT and n_bins=5) for the latter. For the remaining datasets
we were able to achieve the same best results with more than one combination of
these configurations. For instance, for the Colon dataset, the configurations (Classi-
fier=SVM and n_bins=5) and (Classifier=SVM and n_bins=6) yielded the same best
results. For the Leukemia dataset, the best results were achieved with both the SVM
and DT classifiers and different numbers of bins: (SVM, 2), (SVM, 3), (SVM, 4), (SVM,
5), (SVM, 6), (SVM, 7), and (DT, 2). For the remaining datasets, we observe a similar
phenomenon. The best result was achieved with the SVM classifier, and with a wide
variety on n_bins.

Table 5.10: Summary of the best results and respective configurations for each dataset,
obtained during the data representation phase with the EFB discretizer.

Configurations

Dataset Classifier n_bins Err FNR FPR

Breast SVM 6 0.30* 0.30 0.29
CNS DT 5 0.18* 0.33 0.10
Colon SVM 5, 6 0.15* 0.23 0.10
Leukemia SVM, DTa 2a, 3, 4, 5, 6, 7 0.01 – –
Leukemia_3c SVM 2, 3, 4, 5 0.03* – –
Leukemia_4c SVM 3, 4, 5, 6, 7 0.07 – –
Lung SVM 5, 6, 7 0.04* 0.01 0.18
Lymphoma SVM 2, 3, 4, 5, 6, 7 0.00 – –
MLL SVM 3, 4, 5, 6, 7 0.03 – –
Ovarian SVM 3, 4, 5, 6, 7 0.00 0.00 0.00
SRBCT SVM 2, 3, 4, 5, 6, 7 0.00 – –

A – – 0.07 0.17 0.13
σ – – 0.09 0.14 0.10

Table 5.11 reports the results of the SVM and DT classifiers on data discretized by the
MDLP technique. The * symbol denotes an improvement over the baseline classifica-
tion results of Table 5.3 and 5.7, while ** denotes an improvement over the EFB results
of Table 5.10. We can observe that, like for the EFB discretization, MDLP also generates
better results for the SVM classifier, whereas the DT still does not seem to benefit from
the use of discretization. We can also perceive that, regarding the baseline results, the
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DT yields a slight improvement for the Leukemia_3c dataset (Err decreased by 0.01). In
addition, we also obtained an improvement over the EFB discretization for the Colon
dataset, on the FNR metric. Although the FPR was increased by 0.05, the decreasing of
0.09 on the FNR metric is a reasonable progress.

Table 5.11: Test error rate (Err), FNR, and FPR of LOOCV for the SVM (C=1 and ker-
nel=linear) and DT (criterion=entropy, max_depth=5, and random_state=42) classifiers
with MDLP. Best results are presented in bold face.

SVM DT

Dataset Err FNR FPR Err FNR FPR

Breast 0.37 0.41 0.33 0.38 0.41 0.35
CNS 0.45 0.76 0.28 0.30 0.43 0.23
Colon 0.18 0.32 0.10 0.15** 0.14 0.15
Leukemia 0.01 – – 0.17 – –
Leukemia_3c 0.03* – – 0.12 – –
Leukemia_4c 0.07 – – 0.12 – –
Lung 0.05 0.01 0.24 0.06 0.01 0.12
Lymphoma 0.00 – – 0.09 – –
MLL 0.03 – – 0.08 – –
Ovarian 0.01 0.00 0.02 0.02 0.01 0.03
SRBCT 0.01 – – 0.17 – –

A 0.11 0.30 0.19 0.15 0.20 0.18
σ 0.15 0.28 0.12 0.10 0.19 0.11

5.3 Feature Selection Assessment

We now address the use of FS on the pipeline (without discretization). We consider the
LS, Spectral (SPEC), FiR, and RRFS techniques.

Table 5.12 shows the experimental results of these methods for the SVM classifier. Ta-
ble 5.13 reports the corresponding results of Table 5.12, but now considering the DT
classifier. The * symbol denotes an improvement over the baseline classification re-
sults of Table 5.3 and Table 5.7. We can observe that, for the SVM classifier, using the
RRFS(MM) and FiR methods we obtained an improvement on the Breast dataset (FNR
reduced from 0.30 to 0.28). FiR also yielded an improvement on the Lung dataset (Err
reduced from 0.05 to 0.04). In addition, RRFS(FiR) decreases the 0.04 error rate value
to 0.03 for Leukemia_3c. We can also observe that, for six datasets (namely Leukemia,
Leukemia_4c, Lymphoma, MLL, Ovarian, and SRBCT) we managed to keep the same
values as seen in the baseline results (Table 5.3). In these cases, even though there’s

52



5. EXPERIMENTAL RESULTS 5.3. Feature Selection Assessment

no improvement on the results, we consider applying FS to be beneficial, because we
managed to reduce the number of features and still keep a good result. Regarding the
DT classifier, we can observe that only one improvement was achieved, which was
attained with the RRFS(FiR) method on the Breast dataset. In addition, only on the
Leukemia_3c dataset we keep the same result as seen in the baseline (Table 5.7). We
conclude that applying these FS techniques with the SVM classifier yielded better re-
sults than with DT.

Table 5.12: Test error rate (Err), FNR, and FPR of LOOCV for the SVM classifier (C=1
and kernel=linear) with LS, SPEC, FiR, and RRFS (with MM and FiR relevance and
ms=0.7). Best results are presented in bold face.

Unsupervised Supervised

LS SPEC RRFS (MM) FiR RRFS (FiR)

Dataset Err FNR FPR Err FNR FPR Err FNR FPR Err FNR FPR Err FNR FPR

Breast 0.33 0.35 0.31 0.32 0.30 0.33 0.31* 0.28 0.33 0.31* 0.28 0.33 0.31 0.28 0.33
CNS 0.35 0.52 0.26 0.33 0.62 0.18 0.27* 0.48 0.15 0.30 0.57 0.15 0.33 0.67 0.15
Colon 0.16 0.27 0.10 0.19 0.32 0.12 0.21 0.36 0.12 0.19 0.32 0.12 0.18 0.27 0.12
Leukemia 0.01 – – 0.01 – – 0.01 – – 0.01 – – 0.01 – –
Leukemia_3c 0.04 – – 0.06 – – 0.04 – – 0.04 – – 0.03* – –
Leukemia_4c 0.08 – – 0.10 – – 0.07 – – 0.07 – – 0.07 – –
Lung 0.05 0.01 0.12 0.05 0.01 0.12 0.05 0.01 0.12 0.04* 0.01 0.12 0.05 0.01 0.18
Lymphoma 0.00 – – 0.00 – – 0.03 – – 0.00 – – 0.02 – –
MLL 0.04 – – 0.06 – – 0.03 – – 0.03 – – 0.04 – –
Ovarian 0.00 0.00 0.00 0.00 0.00 0.00 0.004 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.00
SRBCT 0.02 – – 0.00 – – 0.00 – – 0.00 – – 0.00 – –

A 0.10 0.23 0.16 0.10 0.25 0.15 0.09 0.23 0.15 0.09 0.24 0.14 0.09 0.25 0.16
σ 0.12 0.20 0.11 0.12 0.23 0.11 0.11 0.19 0.10 0.11 0.21 0.11 0.12 0.24 0.11

Table 5.13: Test error rate (Err), FNR, and FPR of LOOCV for the DT classifier (cri-
terion=entropy, max_depth=5, and random_state=42) with LS, SPEC, FiR, and RRFS
(with MM and FiR relevance and ms=0.7). Best results are presented in bold face.

Unsupervised Supervised

LS SPEC RRFS (MM) FiR RRFS (FiR)

Dataset Err FNR FPR Err FNR FPR Err FNR FPR Err FNR FPR Err FNR FPR

Breast 0.43 0.50 0.37 0.29 0.30 0.27 0.41 0.50 0.33 0.37 0.33 0.41 0.26* 0.33 0.20
CNS 0.38 0.67 0.23 0.22 0.38 0.13 0.28 0.43 0.21 0.32 0.38 0.28 0.32 0.38 0.28
Colon 0.32 0.50 0.22 0.34 0.55 0.22 0.19 0.32 0.12 0.26 0.27 0.25 0.21 0.27 0.18
Leukemia 0.14 – – 0.21 – – 0.21 – – 0.25 – – 0.15 – –
Leukemia_3c 0.07* – – 0.14 – – 0.14 – – 0.17 – – 0.15 – –
Leukemia_4c 0.12 – – 0.25 – – 0.14 – – 0.11 – – 0.22 – –
Lung 0.15 0.03 0.41 0.16 0.01 0.18 0.09 0.01 0.12 0.09 0.01 0.18 0.08 0.01 0.18
Lymphoma 0.23 – – 0.18 – – 0.08 – – 0.08 – – 0.12 – –
MLL 0.26 – – 0.26 – – 0.14 – – 0.07 – – 0.15 – –
Ovarian 0.04 0.02 0.08 0.04 0.04 0.05 0.02 0.02 0.02 0.03 0.02 0.04 0.02 0.01 0.04
SRBCT 0.23 – – 0.20 – – 0.17 – – 0.23 – – 0.17 – –

A 0.22 0.34 0.26 0.21 0.26 0.17 0.17 0.26 0.16 0.18 0.20 0.23 0.17 0.20 0.18
σ 0.12 0.27 0.12 0.08 0.21 0.08 0.10 0.20 0.10 0.11 0.16 0.12 0.08 0.16 0.08
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Table 5.14 shows the reduction of dimensionality in terms of the percentage of the
selected features (m1), in which we have considerable reductions on the dimensionality.

Table 5.14: Percentage of selected features (m1) for LS, SPEC, FiR, and RRFS (with MM
and FiR relevance and ms=0.7). Best results are presented in bold face.

Unsupervised Supervised

Dataset LS SPEC RRFS (MM) FiR RRFS (FiR)

Breast 0.17 0.23 0.14 0.62 0.15
CNS 0.12 0.34 0.17 0.48 0.17
Colon 0.55 0.42 0.19 0.43 0.18
Leukemia 0.13 0.47 0.18 0.43 0.18
Leukemia_3c 0.13 0.47 0.18 0.53 0.18
Leukemia_4c 0.13 0.47 0.18 0.59 0.17
Lung 0.13 0.38 0.15 0.67 0.14
Lymphoma 0.22 0.40 0.02 0.52 0.02
MLL 0.13 0.31 0.23 0.54 0.24
Ovarian 0.12 0.54 0.04 0.36 0.04
SRBCT 0.36 0.49 0.68 0.60 0.68

A 0.20 0.41 0.20 0.52 0.20
σ 0.13 0.09 0.16 0.09 0.16

As we can see, the LS method yielded the best overall m1 (lower standard deviation
than RRFS with FiR as a relevance metric), but not every technique that presented a
smaller m1 should be considered the best one. For instance, on the Ovarian dataset
with the RRFS method, we get a reduction to 4% of the original dimensionality, which
implies that the number of reduced features is about 606, from the original set of 15154
features. However, bearing in mind the SVM classification error results presented in
Table 5.12 for this dataset, we conclude that the RRFS with a FiR relevance metric is a
better choice than the RRFS with a MM relevance: Err=0.004 and m1=0.04 for the former,
and Err=0.00 and m1=0.04 for the latter. Following the same procedure - comparison
between Table 5.14, Table 5.12, and Table 5.13 - we also conclude that the RRFS(FiR)
method (along with SVM) is also the best choice for the Breast, Leukemia_3c, and
Leukemia_4c datasets. In addition, we consider the LS method (along with SVM) the
best choice for the Colon, Leukemia, and Lymphoma datasets. In these cases, regard-
ing the Colon dataset, we can see that the RRFS(FiR) technique presented a better m1

than LS but the classification error is worse. A similar outcome was observed for the
Lymphoma dataset, in which we keep 2% of the original features with the RRFS(MM)
and 22% with the LS technique (80 features remaining for the former and about 885 for
the latter, from the original set of 4026) but the SVM classification error rate is worse
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with RRFS(MM) as compared to the LS method. As for the CNS dataset, we consider
the SPEC technique to be the best choice (along with DT), regardless of the smaller m1

attained with the LS method, because SPEC yielded better results with regards to the
classification error. For the same reason, we consider the SPEC method (along with
SVM) the best choice for the SRBCT dataset. Finally, for the MLL dataset we consider
the RRFS(MM) technique (along with SVM) the most appropriate one, since it yielded
the best classification error and m1.

Figure 5.2 shows the graphical representation of the error rate (for the SVM and DT
classifiers) and the corresponding percentage of the selected features (m1), for the meth-
ods of FS considered in this work. We report the average error rate (from Table 5.12
and Table 5.13) and the average number of selected features (from Table 5.14).

(a) (b)

Figure 5.2: Average error rate (Err) and average percentage of selected features (m1) for
LS, SPEC, FiR, and RRFS (with MM and FiR; ms=0.7).

5.4 The Machine Learning Pipeline

We now address the joint effect of all the pipeline phases, depicted in Figure 4.1.

Table 5.15 presents the best suited configurations for each phase and each dataset.
Bearing in mind the previous analysis, the criteria we considered to select these con-
figurations are as follows:

1. When confronted with the same results while applying the SVM and DT classi-
fiers, we choose SVM over DT, because, according to the literature, the former
typically yields better results when compared to the latter. Otherwise, we opted
for the one that yielded the best result.
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2. When confronted with the same results while applying EFB discretization with
a wide variety on n_bins, we considered the smaller one, thereby increasing the
results interpretability by simplifying the information (range of values) the fea-
ture in question conveys. In addition, when MDLP and EFB produce the same
results, we opted for the EFB technique, because it’s faster and is known to have
produced adequate results in the literature.

3. When confronted with the same results while applying FS techniques, we choose
the one with the smaller m1. Otherwise, we selected unsupervised over super-
vised, since from a computational point of view, it’s less costly.

Table 5.15: Pipeline’s configuration for each dataset. More details about this and other
possible combinations can be found in Appendix B.

Configurations

Dataset Discretization Selection Classification

Breast EFB (n_bins=6) RRFS (FiR, ms=0.7) SVM (C=1, kernel=linear)
CNS EFB (n_bins=5) SPEC DT (criterion=entropy, max_depth=5, random_state=42)
Colon MDLP LS DT (criterion=entropy, max_depth=None, random_state=5)
Leukemia EFB (n_bins=2) LS SVM (C=1, kernel=linear)
Leukemia_3c EFB (n_bins=2) RRFS (FiR, ms=0.7) SVM (C=1, kernel=linear)
Leukemia_4c EFB (n_bins=3) RRFS (FiR, ms=0.7) SVM (C=1, kernel=linear)
Lung EFB (n_bins=5) FiR SVM (C=1, kernel=linear)
Lymphoma EFB (n_bins=2) LS SVM (C=1, kernel=linear)
MLL EFB (n_bins=3) RRFS (MM, ms=0.7) SVM (C=1, kernel=linear)
Ovarian EFB (n_bins=3) RRFS (FiR, ms=0.7) SVM (C=1, kernel=linear)
SRBCT EFB (n_bins=2) SPEC SVM (C=1, kernel=linear)

Table 5.16 shows the results obtained with the pipeline configurations presented in Ta-
ble 5.15. For insight, we reported the comparison between the pipeline built with all
phases enabled and the pipeline without the discretization phase. As we can see across
all datasets in this work, combining FD and FS techniques didn’t yield as good results
as those seen for the pipeline with FD disabled. For this reason, we considered two
other discretization techniques (U-LBG1 and R-LBG) to verify if the previous conclu-
sion holds for different discretization techniques. Table 5.17 reports the results attained
with the U-LBG1 and R-LBG discretization techniques. By comparing Table 5.16 and
Table 5.17, we conclude that there’s no relevant improvement. Therefore, based on
these results, we can observe that the discretization seems to have a notable negative
impact when jointly used with the FS process, increasing the classification error.

Based on the assessment presented above, we conclude that the best combination of
techniques for each dataset are as follows:

• Breast - EFB (n_bins=6) and SVM (C=1 and kernel=linear);
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• CNS - EFB (n_bins=5) and DT (criterion=entropy, max_depth=5, and random_state=42);

• Colon - DT (criterion=entropy, max_depth=None, and random_state=5);

• Leukemia - LS and SVM (C=1 and kernel=linear);

• Leukemia_3c - RRFS(FiR) and SVM (C=1 and kernel=linear);

• Leukemia_4c - RRFS(FiR) and SVM (C=1 and kernel=linear);

• Lung - FiR and SVM (C=1 and kernel=linear);

• Lymphoma - LS and SVM (C=1 and kernel=linear);

• MLL - RRFS(MM) and SVM (C=1 and kernel=linear);

• Ovarian - RRFS(FiR) and SVM (C=1 and kernel=linear);

• SRBCT - SPEC and SVM (C=1 and kernel=linear).

Table 5.16: Test error rate (Err), FNR, and FPR of LOOCV for the pipeline with dis-
cretization (EFB or MDLP) and without discretization. Best results are presented in
bold face.

With Discretization No Discretization

Dataset Err FNR FPR m1 Err FNR FPR m1

Breast 0.33 0.35 0.31 0.58 0.31 0.28 0.33 0.15
CNS 0.25 0.43 0.15 1.00 0.22 0.38 0.13 0.34
Colon 0.35 1.00 0.00 0.83 0.39 0.59 0.28 0.55
Leukemia 0.04 – – 0.09 0.01 – – 0.13
Leukemia_3c 0.03 – – 0.93 0.03 – – 0.18
Leukemia_4c 0.07 – – 0.81 0.07 – – 0.17
Lung 0.04 0.01 0.18 0.74 0.04 0.01 0.12 0.67
Lymphoma 0.18 – – 0.01 0.00 – – 0.22
MLL 0.03 – – 0.78 0.03 – – 0.23
Ovarian 0.00 0.00 0.00 0.33 0.00 0.00 0.00 0.04
SRBCT 0.36 – – 0.02 0.00 – – 0.49

A 0.15 0.36 0.13 0.56 0.10 0.25 0.17 0.29
σ 0.14 0.37 0.12 0.36 0.13 0.23 0.12 0.19

In Figure 5.3, we show a scatter plot of the error rate and the corresponding m1, for all
the datasets, as stated in Table 5.16 and Table 5.17.
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Table 5.17: Test error rate (Err), FNR, and FPR of LOOCV for the pipeline with U-
LBG1(q=4, ∆=0.05) and R-LBG(q=4, ∆=0.1) discretization techniques. Best results are
presented in bold face.

U-LBG1 R-LBG

Dataset Err FNR FPR m1 Err FNR FPR m1

Breast 0.35 0.37 0.33 0.40 0.39 0.48 0.31 0.26
CNS 0.43 0.62 0.33 1.00 0.47 0.62 0.38 1.00
Colon 0.35 0.45 0.30 0.13 0.31 0.41 0.25 0.12
Leukemia 0.15 – – 0.13 0.32 – – 0.12
Leukemia_3c 0.21 – – 0.64 0.35 – – 0.53
Leukemia_4c 0.28 – – 0.65 0.39 – – 0.73
Lung 0.12 0.01 0.47 0.92 0.16 0.00 0.65 0.90
Lymphoma 0.03 – – 0.11 0.14 – – 0.08
MLL 0.12 – – 0.64 0.26 – – 0.55
Ovarian 0.03 0.02 0.05 0.73 0.14 0.08 0.25 0.29
SRBCT 0.66 – – 0.07 0.60 – – 0.08

A 0.25 0.29 0.30 0.49 0.32 0.32 0.37 0.42
σ 0.18 0.24 0.14 0.32 0.14 0.24 0.15 0.32

(a) (b)

(c) (d)

Figure 5.3: Error rate (Err) and percentage of selected features (m1) for the pipeline.
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5.5 Explainability of the Data

For all but three datasets (Breast, CNS, and Colon), the FS techniques applied were
able to select a subset of features that could maintain or improve the classifiers’ results.
We now identify the most relevant features that better explain these datasets.

Figure 5.4 (top) shows the feature indices that are chosen more often on the LOOCV
procedure for the Lymphoma and Ovarian datasets. For a dataset with n instances,
each feature can be chosen up to n times. The importance of a feature to (accurately
classify) a dataset and to explain the classification results is proportional to the number
of times that feature is chosen in this procedure. We show the top 100 features. For both
datasets, we can observe that only one single feature is chosen n times (on the LOOCV
folds), thus it is identified as the most relevant feature (gene) for cancer detection.
Afterwards, we observe a decreasing trend that shows the relative importance of the
features to perform classification. The top features in this can be studied further by
clinical researchers.

(a) (b)

(c) (d)

Figure 5.4: The number of times each feature is chosen/selected on the FS step on the
LOOCV procedure for the Lymphoma (n=66, d=4026) and Ovarian (n=253, d=15154)
datasets. The FS techniques are: LS for the Lymphoma dataset and RRFS(FiR) for the
Ovarian dataset.

59



5. EXPERIMENTAL RESULTS 5.6. Comparison With Other Approaches

In the bottom of Figure 5.4, we show a similar plot, but now we consider all the features
in the dataset, displaying the number of times each feature is chosen. We observe
that only a few features are chosen approximately n times, being the most relevant in
clinical terms.

For the remaining datasets, please refer to Appendix C which provides further insights,
with similar plot results, for the most relevant features.

5.6 Comparison With Other Approaches

We now address the comparison between the experimental results attained in this
work with other approaches.

Table 5.18 reports experimental results from [5] (about the R-LBG technique) and [1]
(regarding the RRFS technique). These evaluations are performed on publicly available
datasets, of which four of them (namely Colon, Leukemia, Lung, and SRBCT) are also
used in this work.

Table 5.18: Test error rate of a 10-fold CV, for the linear SVM classifier.

FD technique FS technique

Name R-LBG(q=3, ∆=0.05) RRFS(MM, ms=0.8) RRFS(FiR, ms=0.8)

Colon – 0.242 0.226
Leukemia – 0.028 0.125
Lung – 0.059 0.064
SRBCT 0.000 0.000 0.000

Comparing these results with ours, we can perceive that they yield roughly the same
error rate. However, for the FS technique with the configurations from our work, we
can see slightly better results.

Regarding the FD technique, we conclude that combining it with a FS technique, as in
our work, is not a good choice. Applying it individually yields better results.

5.7 Discussion

We now summarize the conclusions of the experimental results presented across this
Chapter.
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Based on the combination of techniques that yielded the best results (presented in Sec-
tion 5.4) we observe that applying both FD and FS techniques did not improve the
results in any dataset.

For the Breast and CNS datasets, applying FS did not improve the results, but applying
FD techniques did (the best result was achieved by applying the FD technique only).
In addition, for the Colon dataset in particular, the best results were achieved by ap-
plying the baseline classifier to the original feature set (without FD and FS techniques).
For the remaining datasets, applying FS techniques did improve the results. In some
cases it improved the Err/FPR/FNR metrics, in other cases it was able to produce the
same results. In either case, the reduction of the number of features improved the
explainability of the results and the time to compute them.

From these experimental results we can also observe that DT does not achieve better
results than the SVM classifier (DT only performs better than SVM on the CNS and
Colon datasets). In addition, the EFB discretization also proved to be a better choice
when compared to the MDLP technique. As for the FS techniques explored in this
work, the RRFS technique is in general the best choice, taking into account the classifi-
cation error and m1.

Table 5.19 summarizes the best results obtained in this work for each dataset.

Table 5.19: Summary of the best combination of techniques and their respective re-
sults for each dataset. Techniques: EFB(n_bins), RRFS(relevance metric, ms), SVM(C,
kernel), and DT(criterion, max_depth, random_state).

Configurations Results

Dataset Discretization Selection Classification Err FNR FPR m1

Breast EFB (6) – SVM (1, linear) 0.30 0.30 0.29 –
CNS EFB (5) – DT (entropy, 5, 42) 0.18 0.33 0.10 –
Colon – – DT (entropy, None, 5) 0.13 0.23 0.08 –
Leukemia – LS SVM (1, linear) 0.01 – – 0.13
Leukemia_3c – RRFS (FiR, 0.7) SVM (1, linear) 0.03 – – 0.18
Leukemia_4c – RRFS (FiR, 0.7) SVM (1, linear) 0.07 – – 0.17
Lung – FiR SVM (1, linear) 0.04 0.01 0.12 0.67
Lymphoma – LS SVM (1, linear) 0.00 – – 0.22
MLL – RRFS (MM, 0.7) SVM (1, linear) 0.03 – – 0.23
Ovarian – RRFS (FiR, 0.7) SVM (1, linear) 0.00 0.00 0.00 0.04
SRBCT – SPEC SVM (1, linear) 0.00 – – 0.49
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6
Conclusions

This Chapter describes the key conclusions reached in this thesis. In Section 6.1, we
start with an overview of what was achieved, followed by the directions of future
work in Section 6.2.

6.1 Overview

Cancer detection and classification from high-dimensional DNA microarray data is an
important problem, with many techniques having been successfully applied to these
problems. However, more than just classifying the data, it is also important to identify
the most relevant genes for the classification task, allowing for human interpretability
of the classification results.

In this work, we have proposed an approach using FS and FD techniques, able to iden-
tify small subsets of relevant genes for the subsequent classifier. To evaluate this ap-
proach, we have built a machine learning pipeline consisting of a set of techniques to
be applied in the eleven datasets considered in this work. This pipeline allowed us to
compare and evaluate the performance of each applied technique, and thus, draw our
conclusions.

The proposed approach is based on standard machine learning procedures. Even
though applying both FD and FS techniques did not improve the classification per-
formance, we observed that using these techniques individually yielded good results.
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Especially FS techniques that achieve large degrees of dimensionality reduction on sev-
eral public domain datasets. By using the LOOCV procedure, we also identified the
features (genes) that are often more relevant for the classifier decision, providing ex-
plainability and allowing human analysis. This subset of features is clinically relevant
and thus should be the focus of further investigation by clinical practitioners and or
medical researchers. In addition, as often stated in the literature, we confirmed that
SVM with a linear kernel seems to be an adequate classifier for these datasets. It is also
important to normalize the data before performing all of these machine learning tasks.

6.2 Future Work

Given the accomplishments presented in this thesis, the directions for future work are
as follows:

• We will explore more FD, FS, and classification techniques;

• We will address joint FS and FD techniques, in an attempt to improve the results;

• We will also fine tune the maximum similarity parameter of the RRFS algorithm
to further reduce the size of the subsets, allowing medical experts to focus on
fewer features.
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A
Dataset Description

This Appendix provides a brief description of all DNA microarray datasets used in this
work. In addition, it presents the summarized characteristics of each one.

More information on cancer and their causes can be found in [10, 11].

A.1 Breast

The Breast dataset [30] allows us to improve the quality in diagnosing the recurrence
of breast cancer [49].

This dataset represents a binary classification task that distinguishes between relapsed
patients from non-relapsed patients.

It may help healthcare professionals to make new diagnosis by identifying in their
patients if a particular cancer has manifested itself again (relapse) and those in which
it didn’t (non-relapse). Relapsing may occur since it’s possible for a few of the original
cancer cells to survive the previous treatment [49].

Figure A.1 shows the summarized properties of the Breast dataset.
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Figure A.1: Breast Dataset Properties

A.2 CNS

The CNS dataset [57] allows us to improve quality in diagnosing central nervous sys-
tem tumor, i.e. tumors in the brain or spinal cord [49].

This dataset represents a binary classification task that distinguishes between the pres-
ence or absence of tumors in the central nervous system.

Figure A.2 shows the summarized properties of the CNS dataset.

Figure A.2: CNS Dataset Properties
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A.3 Colon

The Colon dataset [64] was collected in order to improve the quality in diagnosing the
state of colon tissues (the longest part of the large intestine) [49].

This dataset represents a binary classification task that allows us to distinguish be-
tween the presence or absence of tumors in the colon’s tissues.

Figure A.3 shows the summarized properties of the Colon dataset.

Figure A.3: Colon Dataset Properties

A.4 Leukemia

The Leukemia dataset [62] allows us to improve the quality in diagnosing acute leukemia,
a blood cancer [49].

This dataset represents a binary classification task that allows us to distinguish be-
tween acute lymphocytic leukemia and acute myelogenous leukemia.

The difference between acute lymphocytic leukemia and acute myelogenous leukemia
can be found in the type of white blood cell affected. For instance, acute lymphocytic
leukemia can develop from different types of lymphocytes cells, such as B-cells or T-
cells, and acute myelogenous leukemia develops from myeloid cells [49].

Figure A.4 shows the summarized properties of the Leukemia dataset.
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Figure A.4: Leukemia Dataset Properties

A.5 Leukemia_3c

The Leukemia_3c dataset [62] allows us to improve quality in diagnosing blood cells
that have become cancerous.

This dataset represents a multi-class classification task that allows us to distinguish
between three types of cells which became cancerous: myeloid white blood cell, B-cell
and T-cell.

Once they identify the affected cell, healthcare professionals can determine which acute
leukemia cancer a patient has (see “The blood” section, at [10]).

Thus, if the result is a myeloid white blood cell the diagnosis is acute myelogenous
leukemia cancer, in which case the class value is AML. On the other hand, if the result
is one of the white blood cell called lymphocyte (which belong to the immune system),
i.e. B-cell or T-cell, the diagnosis is acute lymphocytic leukemia.

Figure A.5 shows the summarized properties of the Leukemia_3c dataset.
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Figure A.5: Leukemia_3c Dataset Properties

A.6 Leukemia_4c

The Leukemia_4c dataset [62] also allows us to improve quality in diagnosing blood
cells that have become cancerous.

This dataset represents a multi-class classification task that distinguishes between four
types of cells which became cancerous: B-cell, T-cell, bone marrow cell (BM) and pe-
ripheral blood cell (PB).

Since acute leukemia cancer can originate from both blood cells and the cells in the
bone marrow, it may help healthcare professionals to identify the type of cancer and
its location.

Figure A.6 shows the summarized properties of the Leukemia_4c dataset.

Figure A.6: Leukemia_4c Dataset Properties
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A.7 Lung

The Lung dataset [8] allows us to improve quality in diagnosing lung cancer [49].

This dataset represents a multi-class classification task that allows us to distinguish be-
tween four types of lung cancer and normal tissues: adenocarcinoma (label 1), normal
(label 2), small cell lung carcinoma (label 3), squamous cell lung carcinoma (label 4),
and lung carcinoid tumor (label 5).

Figure A.7 shows the summarized properties of the Lung dataset.

Figure A.7: Lung Dataset Properties

A.8 Lymphoma

The Lymphoma dataset [9] allows us to improve quality in diagnosing subtypes of
non-Hodgkin’s lymphoma, a lymphatic system cancer.

This dataset represents a multi-class classification task that distinguishes between three
subtypes of B-cell lymphoma: follicular lymphoma, diffuse large B-cell lymphoma,
small lymphocytic lymphoma1.

Different types and subtypes of non-Hodgkin’s lymphoma can be determined accord-
ing to which blood cell was affected, for instance, B-cell (such as in this work), T-cell,
or natural killer cell [49].

Figure A.8 shows the summarized properties of the Lymphoma dataset.

1Which is the same as B-cell chronic lymphocytic leukemia, reason why the class label is CLL.
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Figure A.8: Lymphoma Dataset Properties

A.9 MLL

The MLL dataset [56] allows us to improve quality in diagnosing different types of
acute leukemia.

This dataset represents a multi-class classification task that allows us to distinguish be-
tween three types of acute leukemia: acute myelogenous leukemia, acute lymphocytic
leukemia, and mixed lineage leukemia.

Patients with mixed lineage leukemia manifest characteristics of both, acute myeloge-
nous leukemia and acute lymphocytic leukemia [49].

Figure A.9 shows the summarized properties of the MLL dataset.

Figure A.9: MLL Dataset Properties
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A.10 Ovarian

The Ovarian dataset [17] allows us to improve quality in diagnosing cancer in the
ovaries (part of a woman’s reproductive system) [49].

This dataset represents a binary classification task that allows us to distinguish be-
tween the presence or absence of ovarian cancer.

Figure A.10 shows the summarized properties of the Ovarian dataset.

Figure A.10: Ovarian Dataset Properties

A.11 SRBCT

The SRBCT dataset [27] allows us to improve quality in diagnosing small round blue
cell tumors [49].

This dataset represents a multi-class classification task that distinguishes between four
types of tumor: Ewing’s sarcoma (label 1), Burkitt’s lymphoma (also know as non-
Hodgkin lymphoma, label 2), neuroblastoma (label 3), and rhabdomyosarcoma (label
5).

Figure A.11 shows the summarized properties of the SRBCT dataset.
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Figure A.11: SRBCT Dataset Properties
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B
Pipeline’s Configurations

This Appendix includes a detailed analysis of the best suited techniques for each dataset
used in the machine learning pipeline.

The following procedure was used to evaluate which techniques are best suited for
each phase of the pipeline. This procedure is comprised of two steps. The first, consists
of identifying the techniques that give the best results for each phase of the pipeline
and for each dataset individually. Given the results of the first step, the second consists
of identifying the best combination of the selected techniques for the whole pipeline.

• Dataset: Breast

– Data classification (baseline)

Processing: normalized

Classifier: SVM (C=1; kernel=linear)

Evaluations: Err=0.31; FNR=0.30; FPR=0.31

– Data representation

Processing: normalized

Discretizer: EFB (n_bins=6)

Classifier: SVM (C=1; kernel=linear)

Evaluations: Err=0.30; FNR=0.30; FPR=0.29
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– Dimensionality reduction

Processing: normalized

Feature Selector: RRFS (relevance measure=FiR; ms=0.7)

Classifier: SVM (C=1; kernel=linear)

Evaluations: Err=0.26; FNR=0.33; FPR=0.20

– Pipeline

Processing: normalized

Discretizer: EFB (n_bins=6)

Feature Selector: RRFS (relevance measure=FiR; ms=0.7)

Classifier: SVM (C=1; kernel=linear)

• Dataset: CNS

– Data classification (baseline)

Processing: normalized

Classifier: DT (criterion=entropy; max_depth=2; random_state=42)

Evaluations: Err=0.18; FNR=0.48; FPR=0.03

– Data representation

Processing: normalized

Discretizer: EFB (n_bins=5)

Classifier: DT (criterion=entropy; max_depth=5; random_state=42)

Evaluations: Err=0.18; FNR=0.33; FPR=0.10

– Dimensionality reduction

Processing: normalized

Feature Selector: SPEC

Classifier: DT (criterion=entropy; max_depth=5; random_state=42)

Evaluations: Err=0.22; FNR=0.38; FPR=0.13

– Pipeline

Processing: normalized

Discretizer: EFB (n_bins=5)

Feature Selector: SPEC

Classifier: DT (criterion=entropy; max_depth=5; random_state=42)

• Dataset: Colon
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– Data classification (baseline)

Processing: original/normalized

Classifier: DT (criterion=entropy; max_depth=None; random_state=5)

Evaluations: Err=0.13; FNR=0.23; FPR=0.08

– Data representation

Processing: normalized

Discretizer: MDLP

Classifier: DT (criterion=entropy; max_depth=5; random_state=42)

Evaluations: Err=0.15; FNR=0.14; FPR=0.15

– Dimensionality reduction

Processing: normalized

Feature Selector: LS

Classifier: SVM (C=1; kernel=linear)

Evaluations: Err=0.16; FNR=0.27; FPR=0.10

– Pipeline

Processing: original/normalized

Discretizer: MDLP

Feature Selector: LS

Classifier: DT (criterion=entropy; max_depth=None; random_state=5)

• Dataset: Leukemia

– Data classification (baseline)

Processing: normalized

Classifier: SVM (C=1; kernel=linear)

Evaluations: Err=0.01

– Data representation

Processing: normalized

Discretizer:

· EFB (n_bins=2a; n_bins=3; n_bins=4; n_bins=5; n_bins=6; n_bins=7)

· MDLP

Classifier:

· SVM (C=1; kernel=linear)
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· DTa (criterion=entropy; max_depth=5; random_state=42)

Evaluations: Err=0.01

– Dimensionality reduction

Processing: normalized

Feature Selector:

· LS

· SPEC

· RRFS (relevance measure=MM; ms=0.7)

· FiR

· RRFS (relevance measure=FiR; ms=0.7)

Classifier: SVM (C=1; kernel=linear)

Evaluations: Err=0.01

– Pipeline 1

Processing: normalized

Discretizer: EFB (n_bins=2)

Feature Selector:

· LS

· SPEC

· RRFS (relevance measure=MM; ms=0.7)

· FiR

· RRFS (relevance measure=FiR; ms=0.7)

Classifier: DT (criterion=entropy; max_depth=5; random_state=42)

– Pipeline 2

Processing: normalized

Discretizer:

· EFB (n_bins=2; n_bins=3; n_bins=4; n_bins=5; n_bins=6; n_bins=7)

· MDLP

Feature Selector:

· LS

· SPEC

· RRFS (relevance measure=MM; ms=0.7)

· FiR

· RRFS (relevance measure=FiR; ms=0.7)
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Classifier: SVM (C=1; kernel=linear)

• Dataset: Leukemia_3c

– Data classification (baseline)

Processing: normalized

Classifier: SVM (C=1; kernel=linear)

Evaluations: Err=0.04

– Data representation

Processing: normalized

Discretizer:

· EFB (n_bins=2; n_bins=3; n_bins=4; n_bins=5)

· MDLP

Classifier: SVM (C=1; kernel=linear)

Evaluations: Err=0.03

– Dimensionality reduction

Processing: normalized

Feature Selector: RRFS (relevance measure=FiR; ms=0.7)

Classifier: SVM (C=1; kernel=linear)

Evaluations: Err=0.03

– Pipeline

Processing: normalized

Discretizer:

· EFB (n_bins=2; n_bins=3; n_bins=4; n_bins=5)

· MDLP

Feature Selector: RRFS (relevance measure=FiR; ms=0.7)

Classifier: SVM (C=1; kernel=linear)

• Dataset: Leukemia_4c

– Data classification (baseline)

Processing: normalized

Classifier: SVM (C=1; kernel=linear)

Evaluations: Err=0.07

– Data representation
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Processing: normalized

Discretizer:

· EFB (n_bins=3; n_bins=4; n_bins=5; n_bins=6; n_bins=7)

· MDLP

Classifier: SVM (C=1; kernel=linear)

Evaluations: Err=0.07

– Dimensionality reduction

Processing: normalized

Feature Selector:

· RRFS (relevance measure=MM; ms=0.7)

· FiR

· RRFS (relevance measure=FiR; ms=0.7)

Classifier: SVM (C=1; kernel=linear)

Evaluations: Err=0.07

– Pipeline

Processing: normalized

Discretizer:

· EFB (n_bins=3; n_bins=4; n_bins=5; n_bins=6; n_bins=7)

· MDLP

Feature Selector:

· RRFS (relevance measure=MM; ms=0.7)

· FiR

· RRFS (relevance measure=FiR; ms=0.7)

Classifier: SVM (C=1; kernel=linear)

• Dataset: Lung

– Data classification (baseline)

Processing: normalized

Classifier: SVM (C=1; kernel=linear)

Evaluations: Err=0.05; FNR=0.01; FPR=0.12

– Data representation

Processing: normalized

Discretizer: EFB (n_bins=5; n_bins=6; n_bins=7)
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Classifier: SVM (C=1; kernel=linear)

Evaluations: Err=0.04; FNR=0.01; FPR=0.18

– Dimensionality reduction

Processing: normalized

Feature Selector: FiR

Classifier: SVM (C=1; kernel=linear)

Evaluations: Err=0.04; FNR=0.01; FPR=0.12

– Pipeline

Processing: normalized

Discretizer: EFB (n_bins=5; n_bins=6; n_bins=7)

Feature Selector: FiR

Classifier: SVM (C=1; kernel=linear)

• Dataset: Lymphoma

– Data classification (baseline)

Processing: originala/normalizedb

Classifier:

· SVM (C=1; kernel=linear; kernel=polyb; kernel=rbf; kernel=sigmoida)

· DT (criterion=ginic; criterion=entropy; max_depth=Nonea,c; max_depth=2;
max_depth=5; max_depth=7; max_depth=10; random_state=42)

Evaluations: Err=0.00

– Data representation

Processing: normalized

Discretizer:

· EFB (n_bins=2; n_bins=3; n_bins=4; n_bins=5; n_bins=6; n_bins=7)

· MDLP

Classifier: SVM (C=1; kernel=linear)

Evaluations: Err=0.00

– Dimensionality reduction

Processing: normalized

Feature Selector:

· LS

· SPEC
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· FiR

Classifier: SVM (C=1; kernel=linear)

Evaluations: Err=0.00

– Pipeline 1

Processing: original

Discretizer:

· EFB (n_bins=2; n_bins=3; n_bins=4; n_bins=5; n_bins=6; n_bins=7)

· MDLP

Feature Selector:

· LS

· SPEC

· FiR

Classifier:

· SVM (C=1; kernel=linear; kernel=rbf; kernel=sigmoid)

· DT (criterion=gini; criterion=entropy; max_depth=None; random_state=42)

– Pipeline 2

Processing: normalized

Discretizer:

· EFB (n_bins=2; n_bins=3; n_bins=4; n_bins=5; n_bins=6; n_bins=7)

· MDLP

Feature Selector:

· LS

· SPEC

· FiR

Classifier:

· SVM (C=1; kernel=linear; kernel=poly; kernel=rbf)

· DT (criterion=gini; max_depth=None; random_state=42)

· DT (criterion=entropy; max_depth=None; max_depth=2; max_depth=5;
max_depth=7; max_depth=10; random_state=42)

• Dataset: MLL

– Data classification (baseline)

Processing: normalized
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Classifier: SVM (C=1; kernel=linear)

Evaluations: Err=0.03

– Data representation

Processing: normalized

Discretizer:

· EFB (n_bins=3; n_bins=4; n_bins=5; n_bins=6; n_bins=7)

· MDLP

Classifier: SVM (C=1; kernel=linear)

Evaluations: Err=0.03

– Dimensionality reduction

Processing: normalized

Feature Selector:

· RRFS (relevance measure=MM; ms=0.7)

· FiR

Classifier: SVM (C=1; kernel=linear)

Evaluations: Err=0.03

– Pipeline

Processing: normalized

Discretizer:

· EFB (n_bins=3; n_bins=4; n_bins=5; n_bins=6; n_bins=7)

· MDLP

Feature Selector:

· RRFS (relevance measure=MM; ms=0.7)

· FiR

Classifier: SVM (C=1; kernel=linear)

• Dataset: Ovarian

– Data classification (baseline)

Processing: original/normalized

Classifier: SVM (C=1; kernel=linear)

Evaluations: Err=0.00; FNR=0.00; FPR=0.00

– Data representation

Processing: normalized
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Discretizer: EFB (n_bins=3; n_bins=4; n_bins=5; n_bins=6; n_bins=7)

Classifier: SVM (C=1; kernel=linear)

Evaluations: Err=0.00; FNR=0.00; FPR=0.00

– Dimensionality reduction

Processing: normalized

Feature Selector:

· LS

· SPEC

· FiR

· RRFS (relevance measure=FiR; ms=0.7)

Classifier: SVM (C=1; kernel=linear)

Evaluations: Err=0.00; FNR=0.00; FPR=0.00

– Pipeline

Processing: original/normalized

Discretizer: EFB (n_bins=3; n_bins=4; n_bins=5; n_bins=6; n_bins=7)

Feature Selector:

· LS

· SPEC

· FiR

· RRFS (relevance measure=FiR; ms=0.7)

Classifier: SVM (C=1; kernel=linear)

• Dataset: SRBCT

– Data classification (baseline)

Processing: original/normalizeda

Classifier: SVM (C=1; kernel=lineara; kernel=poly)

Evaluations: Err=0.00

– Data representation

Processing: normalized

Discretizer: EFB (n_bins=2; n_bins=3; n_bins=4; n_bins=5; n_bins=6;
n_bins=7)

Classifier: SVM (C=1; kernel=linear)

Evaluations: Err=0.00
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– Dimensionality reduction

Processing: normalized

Feature Selector:

· SPEC

· RRFS (relevance measure=MM; ms=0.7)

· FiR

· RRFS (relevance measure=FiR; ms=0.7)

Classifier: SVM (C=1; kernel=linear)

Evaluations: Err=0.00

– Pipeline 1

Processing: original

Discretizer: EFB (n_bins=2; n_bins=3; n_bins=4; n_bins=5; n_bins=6;
n_bins=7)

Feature Selector:

· SPEC

· RRFS (relevance measure=MM; ms=0.7)

· FiR

· RRFS (relevance measure=FiR; ms=0.7)

Classifier: SVM (C=1; kernel=linear; kernel=poly)

– Pipeline 2

Processing: normalized

Discretizer: EFB (n_bins=2; n_bins=3; n_bins=4; n_bins=5; n_bins=6;
n_bins=7)

Feature Selector:

· SPEC

· RRFS (relevance measure=MM; ms=0.7)

· FiR

· RRFS (relevance measure=FiR; ms=0.7)

Classifier: SVM (C=1; kernel=linear)
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C
Additional Experimental Results

This Appendix contains additional experimental results that provide further insights
on the most relevant features of the DNA microarray datasets explored in this work.
These experimental results complement the ones reported in Section 5.5.

C.1 Selected Features

Figure C.1: The number of times each feature is chosen/selected using the LS technique
on the FS step on the LOOCV procedure for the Leukemia dataset (n=72, d=7129).
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C. ADDITIONAL EXPERIMENTAL RESULTS

Figure C.2: The number of times each feature is chosen/selected using the RRFS(FiR)
technique on the FS step on the LOOCV procedure for the Leukemia_3c dataset (n=72,
d=7129).

Figure C.3: The number of times each feature is chosen/selected using the RRFS(FiR)
technique on the FS step on the LOOCV procedure for the Leukemia_4c dataset (n=72,
d=7129).
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C. ADDITIONAL EXPERIMENTAL RESULTS

Figure C.4: The number of times each feature is chosen/selected using the FiR tech-
nique on the FS step on the LOOCV procedure for the Lung dataset (n=203, d=12600).

Figure C.5: The number of times each feature is chosen/selected using the RRFS(MM)
technique on the FS step on the LOOCV procedure for the MLL dataset (n=72,
d=12582).
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C. ADDITIONAL EXPERIMENTAL RESULTS

Figure C.6: The number of times each feature is chosen/selected using the SPEC tech-
nique on the FS step on the LOOCV procedure for the SRBCT dataset (n=83, d=2308).

C.2 Top-100 Most Relevant Features

Figure C.7: The number of times each feature is chosen/selected using the LS technique
on the FS step on the LOOCV procedure for the Leukemia dataset (n=72, d=7129).
Showing the top-100 entries only.
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C. ADDITIONAL EXPERIMENTAL RESULTS

Figure C.8: The number of times each feature is chosen/selected using the RRFS(FiR)
technique on the FS step on the LOOCV procedure for the Leukemia_3c dataset (n=72,
d=7129). Showing the top-100 entries only.

Figure C.9: The number of times each feature is chosen/selected using the RRFS(FiR)
technique on the FS step on the LOOCV procedure for the Leukemia_4c dataset (n=72,
d=7129). Showing the top-100 entries only.
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C. ADDITIONAL EXPERIMENTAL RESULTS

Figure C.10: The number of times each feature is chosen/selected using the FiR tech-
nique on the FS step on the LOOCV procedure for the Lung dataset (n=203, d=12600).
Showing the top-100 entries only.

Figure C.11: The number of times each feature is chosen/selected using the RRFS(MM)
technique on the FS step on the LOOCV procedure for the MLL dataset (n=72,
d=12582). Showing the top-100 entries only.
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C. ADDITIONAL EXPERIMENTAL RESULTS

Figure C.12: The number of times each feature is chosen/selected using the SPEC tech-
nique on the FS step on the LOOCV procedure for the SRBCT dataset (n=83, d=2308).
Showing the top-100 entries only.
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