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Resumo 

Enquadramento e objetivos: Pacientes críticos de COVID-19 são regularmente 

admitidos nos cuidados intensivos com diversas complicações, necessitando de tratamentos 

mais invasivos. Para além disso, os pacientes estão expostos a uma ameaça iminente de 

infeções durante a sua estadia hospitalar. Estas infeções podem levar ao agravamento do 

estado de saúde do paciente, e tendo em conta o estado atual do paciente COVID-19 critico, 

pode ser fatal caso não seja devidamente identificada a presença de infeção e iniciado o 

tratamento mais adequado. Nesta tese, o foco foi dividido em dois objetivos:  determinar uma 

metodologia capaz de identificar mais rapidamente um estado ativo de bacteremia no paciente 

COVID-19 critico; e identificar a tipologia de Gram da bactéria que originou a bacteremia.  

Métodos: Recorrendo-se ao método do espectrometria de FTIR, e testes Principal 

Component Analysis (PCA), Hierarchical Cluster Analysis (HCA) e Linear Discriminant 

analysis (PCA-LDA), para realizar analise discriminante de uma amostra com objetivo de 

testar o método mais eficaz na discriminação entre pacientes com bacteremia (n=48) e 

pacientes sem bacteremia (n=54), e entre amostras com bactéria Gram-positiva (n=28) e 

bactéria Gram-negativa (n=20). 

Resultados: Através dos testes PCA e HCA não foi possível obter uma discriminação 

fidedigna nem entre amostras com e sem bacteremia, nem entre bactérias Gram-positivas e 

Gram-Negativas. A vasta variabilidade associada a amostras biológicas pode justificar este 

resultado. PCA-LDA, possibilitou resultados de 75% de eficácia na discriminação entre 

amostras de bacteremia e sem bacteremia, e uma eficácia de 85% na discriminação entre 

amostras com bactérias Gram-positivas e bactérias Gram-negativas. 

Conclusão: Os resultados apontam para a possibilidade da utilização da análise de 

espetro de espetrometria FTIR como um método apelador para o diagnóstico de bacteremia 

e classificação do tipo de bactéria, de uma forma simples e rápida, permitindo uma gestão 

mais eficiente deste tipo de pacientes críticos. 

Palavras-chave: Biomarcadores, infeção, bacteremia, COVID-19, FTIR, 

espetroscopia 
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Abstract 

Background and Goals: Critical COVID-19 patients are regularly admitted with 

diverse complications leading to Intensive care unit (ICU) admission. Besides these patients 

are constantly exposed to the threat of infection during their hospital stay. These infections 

may lead to the worsening of the patient’s health and considering the already debilitated state 

of the critical COVID-19 patient, may be fatal if the infection agent isn’t correctly identified and 

treated within the most appropriate timing upon diagnosis. In this thesis, the focus of the study 

was divided into two main sections: to determine a method capable of faster identification of 

bacteremia in the critical COVID-19 patient; and to identify Gram bacteria causing the 

bacteremia. 

Methodology: Utilizing the FTIR spectroscopy method, and spectra principal 

component analysis (PCA), hierarchical cluster analyses (HCA) and linear discrimination 

analyses (PCA-LDA) applied to serum samples of bacteremia patients (n=48), non-bacteremia 

patients (n=54), and samples with Gram-positive (n=28) from Gram-negative (n=20) bacteria. 

Diverse spectra pre-processing methods were evaluated.  

Results and discussion: Spectra PCA and HCA, did not shown samples patterns 

enabling to separate between bacteremia and non-bacteremia samples, nor between Gram-

positives and Gram-negative bacteria. The high variability associated with these patients may 

justify the obtained result. Spectra PCA-LDA enabled discrimination accuracy results of 75% 

between bacteremia and non-bacteremia samples, and of 85% for discrimination between 

Gram-positive and Gram-negative bacterial samples.  

Final remarks: The results point to the potential of FTIR spectroscopy as a very 

appealing method to conduct the diagnosis of bacteremia and the classification of the type of 

bacteria, in a simple and rapid mode, enabling a more efficient management of this type of 

critical patients.  

Key words: Biomarkers, infection, bacteremia, COVIID-19, FTIR 

spectroscopy 
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1 Thesis objectives and Work Structure 

Since the first discovery and development of what would be the biggest infectious 

outbreak of the 21st Century, COVID-19 continues to damage health systems across the world, 

leading to the worsening of health conditions. COVID-19 has been proven to display a harsher 

prognostic in the elderly and people with other comorbidities, such has hypertension, diabetes, 

cancer, or respiratory related illnesses [1]. The individuals that display a higher necessity for a 

more rigorous and constant treatment, are inserted into intensive care units. The patients that 

are directed into the intensive care unit tend to have a longer hospital stay, a significant 

increase in the incidence of respiratory failure and acute respiratory distress syndrome 

(ARDS), thus ending in a higher mortality rate [2].  

One of the risk factors of stays in the ICU is related to nosocomial infections. Hospital-

Acquired Infections (HAI) are extremely common, even more so in countries with higher 

poverty rates [3]. If an individual with a weaker immune system gets infected such as most ICU 

patients, it could be enough to increase the likelihood of death. Bacteria are the culprit for the 

majority of HAI. They’re the main responsible for pneumonia cases, the most common HAI in 

hospital settings, and the single largest infectious cause of death in children worldwide (22% 

in children aged 1 to 5) [4]. The deadliest form of infection comes from central line-associated 

bloodstream infections, (CLABSI), with a death incidence rate ranging from 12% to 25%. It 

consists of infection in the blood, as a consequence of using catheters to transfer liquids and 

medicine to  the central line [5]. 

Therefore, identification of bacteria responsible for co-infection in severe COVID-19 

cases in the ICU is crucial and needs to be immediately treated with the correct antibiotic 

therapy, to increase the chances of survival.  

Being that COVID-19 patients in the ICU are at a higher risk to develop bacteremia due 

to being associated with prolonged hospital stays, a weakened immune system, and higher 

risk for bacterial contamination, this thesis aims to: 

• Achieve a faster, yet reliable, methodology for identification of bacteria causing 

bacteremia in critical COVID-19 patients in the ICU, by use of Fourier-transform 

infrared spectroscopy (FTIR); 

• Identify the Gram strain of bacteria responsible for bacteremia, to correctly start 

antibiotic therapies; 
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• Be able to consequently reduce the need for exacerbated use of antibiotics prior 

to bacteria identification, avoiding the worsening of the patient’s condition and 

helping in the regression of antibiotic-resistant bacteria. 

The thesis is organized into 5 chapters: 

• Chapter 1: Objectives 

• Chapter 2: Literature Review 

• Chapter 3: Methodology 

• Chapter 4: Results and Discussion 

• Chapter 5 Conclusions and Future developments 

To initiate the thesis, an initial extensive literature review was conducted to acquire full 

information of the SARS-CoV-2 virus, how it functions and how it reacts and interacts with the 

human organism to establish infection, such as what consequences it brings as it worsens, in 

ICU COVID-19 patients. Followed by an analysis on how bacteremia can enter and attack the 

weakened health of a critic patient admitted to ICU, and the way it can be identified through 

FTIR spectroscopy analysis, for a fast identification of the bacteria and its gram strain to identify 

the correct antibiotic therapy to follow for proper treatment.  

The thesis also went deep into what is the FTIR spectroscopy workflow and how it 

operates, what it detects and how it has been previously used for similar studies, revealing its 

diagnostic capabilities. In the end, we’ll be able to establish how exactly FTIR spectroscopy 

can be a powerful weapon in the diagnosis of bacteremia in COVID-19 patients in the ICU.  

The methodology section goes over the various procedures performed in the 

development of the thesis, to study every possible variable that was relevant, such as 

demographic, clinical, and statistical related variables. In the end, it enabled the definition of 

the study sample used. The results obtained with this study sample, were presented, and 

discussed in union, to reach conclusions on how the effects of FTIR spectroscopy related 

diagnosis of bacteremia on ICU COVID-19 patients can be impactful and effective.  

Utilizing the statistical analysis software Unscrambler™, it was possible to analyze 

significant differences between COVID-19 with bacteremia patients and the control group 

composed of COVID-19 clear of bacteremia. Furthermore, a trial on identification of gram strain 

was also performed, to observe if FTIR spectroscopy was a capable work method in defining 

the best antibiotic therapy for the specific bacteria detected in the patients, versus the standard 

laboratory method, that include culture growth and gram staining. 
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2 Literature review 

2.1 Origin and evolution of the SARS-CoV-2 pandemic 

In late 2019, a massive outbreak of pneumonia cases was seemingly occurring in 

Wuhan, China. This led to an uprising state of alertness, since it appeared to be related to a 

possible virus spreading in the city’s population. The origin of the virus was being associated 

with the Wuhan Huanan Seafood Wholesale Market, since a vast majority of initial cases, were 

its active workers. It was feared that the immense availability of aquatic food products and 

farmed wild animals under the environment of a crowded market, would possibly originate a 

human-animal interface, capable of passing a virus to human hosts. The virus was given the 

name of SARS-CoV-2.  

Several other cases were later reported to have not been in association with the market, 

leading on to doubt of the certainty that the market was the correct epicenter of the disease. It 

was later determined that upon isolating and sequencing the virus, It belonged to the 

Coronaviridae family, displaying similarities to the 2002-2004 coronavirus responsible for the 

SARS pandemic, as well as a 96% homology with a sequence of a coronavirus strain 

(RaTG13) identified in a horseshoe bat sample, thus being the closest known sequence to the 

recent SARS-CoV-2 [6]. 

On the 11th of February 2020, the International Committee on Taxonomy of Viruses 

declared the name for the newfound virus would be “Severe Acute Respiratory Syndrome 

Coronavirus 2” (SARS-CoV-2), with the WHO announcing the disease to follow the name of 

COVID-19 [7]. As the disease started to spread at an alarming rate in other major countries, 

the WHO characterized COVID-19 as a pandemic [8].  

Various safety procedures were initiated to contain new infections and hospital 

admissions. The lack of a studied form of effective treatment, made several affected nations 

create strategies involving nationwide lockdowns, quarantine, regular testing, and total 

shutdown of international borders, to reduce international travel of the virus [9]. As time passed, 

there would be noticeable improvement on new outbreaks, with Australia, for example, 

reducing cases by 91,7% upon shutdown [10]. But although diagnosed infections were 

decreasing, the prevention methods led to multiple countries suffering with an increasing 

unemployment growth, the fall of millions of businesses and the increase in worldwide poverty, 

hunger and malnutrition [11].  
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With the advancement of the virus infectivity, and human-to-human spread, several 

mutations in the virus led to development of various strains of this infectious virus. These 

variations can lead to higher disease severity, spread capability, and how It reacts to 

treatments such as vaccines. These can be separated into variants of interest (VOI) and 

variants of concern (VOC).  

What distinguishes a VOI from a VOC, is its severity and probable effect on the global 

population. VOC consists of a line-up of variants labeled by the WHO as Alpha (B.1.1.7), Beta 

(B.1.351), Gamma (P.1) and Delta (B.1.617.2). These were individually studied and monitored, 

to ensure proper prevention measures worldwide. The variant Alpha was the first on to be 

identified on the 18th of December. 

A VOI represents any variant that displays mutations suspected or known to cause how 

the virus performs in its infection capability or is widely spread. These are possible VOCs, if 

for example, the variant is confirmed to infect more easily, leads to more severe health 

complications, and endangers the use of known treatments as they become ineffective. 

Currently VOCs include the current Omicron variant which was documented for the first time 

in multiple countries in November of 2021. Studies showed that, whilst the Omicron variant 

displayed a high infectability rate and an increased immune evasion, its lower severity lead to 

a accentuated decrease of hospitalizations and deaths [12,13]. 

Multiple major pharmaceutical companies began investing in creating the most effective 

vaccine to increase general immunity, alleviating the exacerbated pressure on hospital 

admissions. Data regarding the viral genome and new findings of potential therapies began to 

arise as more of the virus investigated, by case studying and genome sequencing. The 

formulation of a vaccine is, on average, extremely time-consuming, going through multiple 

phases to ensure proper research and clinical trials, for a safe final product to be distributed to 

the masses, as can be shown on Figure 2.1.1. 

  

Academic 
Research

Pre-clinical Phase 1 trials Phase 2 Phase 3
Building 
factories

Manufacturing Approval Distribuition

Figure 2.1.1 Phases of vaccine formulation and distribution 
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However, as more and more pressure for vaccine creation was being put on these 

major pharmaceutical companies, such as Pfizer, Moderna and Janssen, trial phases were 

performed at a larger scale than what would normally occur, performing them simultaneously  

to get final finished product on schedule [14]. In 2021, vaccines start to be administered to the 

general population, lowering infection and death rates significantly [15,16].  

Since the initial spread in Wuhan, China, SARS-CoV-2 reached all-round the globe, 

gaining infection and death rates of unimaginable rates. As of August 2022, worldwide cases 

have hit approximately 587 million and 6,4 million deaths, in total. Europe remains as the main 

region of virus spread (42%) whilst the Americas reached the highest number of cumulative 

deaths at (44%) as represented in Figure 2.1.2 [17].  

 

2.2 Virology of SARS-CoV-2 and Life Cycle 

The single-stranded RNA virus, SARS-CoV-2, has similarities to the previously studied 

MERS-CoV and SARS-CoV viruses, which were responsible for the 2003 Severe Acute 

Respiratory Syndrome (SARS-CoV) pandemic and the 2012 Middle East Respiratory 

Syndrome (MERS) pandemic [18]. It’s composed of four main structural proteins: envelope 

glycoprotein (E), spike (S), nucleocapsid (N), and membrane protein (M) [19] which can be 

observed in Figure 2.2.1. 

  

Figure 2.1.2 Weakly COVID-19 report of global cases and deaths as of August 14, 2022 (adapted from [17]) 
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 Its envelope spike protein can recognize the entry receptor found in humans, 

angiotensin-converting enzyme II (ACE2), and once connected, plasma membrane fusion 

occurs. Plasma membrane fusion consists of the host’s transmembrane serine protease 2 

protein (TMPRSS2) performing the cleavage of the viral’s spike protein, enabling the 

connection between the virus and the host’s cell. Once fully connected, the virus enters the 

host’s, cell infecting it [20].  

Once inside, the virus can rapidly replicate itself, spreading within the human organism. 

ACE2 receptors are extremely common in a variety of human organs, being found in the 

enterocytes of the digestive system, myocardial cells, bladder urothelial cells, and others, thus 

leading to symptomatology related to these organs in COVID-19 patients, and multiple organ 

failure in critical patients [21,22]. 

2.3 COVID infection in the critical patient 

COVID-19 is associated with mild to moderate symptoms in most of the population. 

Infections tend to lead to persistent coughing, fever, muscle aches and other similar symptoms 

to the common cold [23]. Even so, a smaller percentage of individuals are at risk of severe 

infection, often requiring hospital admission, suffering from long-term COVID-19 or even death 

[24]. As age advances, the incidence of various comorbidities increases significantly. 

Individuals with multiple comorbidities tend to present weaker immune systems and a higher 

predisposition for more severe complications [25,26].  

  

Figure 2.2.1 SARS-CoV-2's structure and main components (Adapted from [19]) 
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Critical patients are associated with a hyperinflammatory state that leads to ARDS. 

Once ARDS sets in, several more complications are likely to onset, such as cardiac failure and 

multiple organ dysfunction syndrome [27]. Causes for ICU admission can include hypoxemic 

respiratory failure, ARDS, cardiac dysfunction, hepatic and/or renal dysfunction, among others 

[28]. Common comorbidities like diabetes, cardiovascular disease, lung and liver disease, 

chronic kidney disease, and obesity can severely worsen survival chances [25]. 

The innate immune system’s role is to restrict viral replication within infected cells, as 

well as signaling the cells capable of defending the system, and setting up the adaptive 

immune system, allowing for a more efficient defense against reinfection [29]. 

Previous studies mention the importance in Type I interferon in the innate immune  

response against the SARS-CoV-19 virus [30,31]. The expression of this interferon, results in 

the efficient defense against viral replication. More severe forms of infection tend to show 

dysregulation of Interferon production, decreasing severely as patients become critical. 

 Lower levels of Type I Interferon lead to higher viral loads in peripheral blood, as well 

as an onset of severe pathological responses and inflammation leading to the complications 

previously mentioned such as ARDS, and organ failure [29]. The SARS-CoV-2 virus has 

shown to be able to efficiently develop strategies to antagonize IFN responses. If the virus is 

able to evade immune system defenses, it may lead to delayed IFN-I signaling, giving enough 

time for the virus to replicate, which combined with a hyperinflammatory response will cause 

damage to the lungs leading to ARDS. [29,30,32]. 

Critical cases tend to require some form of ventilation, as well as others invasive 

technique like central venous catheters (CVC) to sustain a steady recovery. Some treatments 

during the COVID-19 have patients undergo mechanical invasive ventilation, as well as in 

some cases, extra-corporeal membrane oxygenation (ECMO), which as of now, has 

insufficient studies correlating its use to better outcomes for severely ill COVID-19 patients. 

Due to the lack of a positive correlation between ECMO treatment and improvement of COVID-

19 it isn’t advised for effective treatment. Its use has also been confirmed to be a major risk for 

ICU-acquired bacteremia [33].  
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2.4 Bacteremia in the critical patient 

Bacteremia is described as the presence of bacteria in the bloodstream [34]. It’s 

recognized to be a heavy predecessor for morbidity and death worldwide [35]. Even with 

improvement of antimicrobial treatments and means of diagnosis, infection in the bloodstream 

is still extremely difficult to treat due to the urgency associated with correct treatment.  

Involving the identification of the specific bacteria, and its characteristics, such as 

antibiotic sensitivity, is required for determination of correct antibiotic therapy for effective 

elimination of the pathogen. The complete process, which includes sampling, culture growth 

and gram-stain testing is extremely time consuming and may require days for completion. In a 

past study, blood culture has  a sensitivity of 0.25 and an Area under curve (AUC) of 0.63 [36]. 

In the case of bacteremia, the prognostic worsens severely as time passes, allowing for 

infection to spread and initiate sepsis. Sepsis is characterized the presence of multiplying 

bacteria in the blood system, leading to a dysregulated host ‘response to infection, causing 

organ dysfunction, which can become permanent and lead to death [37–39].  

Common procedures in hospital settings may present themselves as gateways for 

bacterial infection. Patients with longer hospital stays, and especially ICU, are more 

susceptible to nosocomial infections [40,41]. Nosocomial infections are defined as a hospital 

acquired infection that develops within 48 to 72 hours after admission. ICU are inherently at a 

higher risk of nosocomial infection. Previous studies showed ICU patients represent a higher 

infection rate, with cases reporting up to 51% of all admitted [5]. 

These infections may be classified central line-associated bloodstream infections 

(CLABSIs) as central venous catheter bloodstream infections (CVCBSI), catheter-associated 

urinary tract infections (CAUTI), and ventilator-associated pneumonia (VAP) [42,43] .  

Post-surgery patients and burn victims also tend to be easy targets for infection due to 

recent wounds susceptible for bacteria entry [44]. If infection occurs, time of hospitalization 

stay tends to increase, as treatment expenses get higher and survival rate decreases [45,46]. 

The ICU has become the center of infection, as well as the catalyst for antibiotic 

resistant bacteria growth. Critical patients tend to be receptors for an exacerbated amount of 

broad-spectrum antibiotics, to treat an unspecified infection while correct bacterial identification 

takes place [4,47]. This has severe consequences, as it results in rapid mutations, which can 

increase antibiotic resistance, leading to prolonged hospital stays, costs of treatment and 

higher mortality rates [48].   
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As antibiotic resistant bacteria grow and spread within the community, critical patients 

are extremely at risk of infection and sepsis, complicating treatment and leading to higher 

mortality.  

Antibiotic resistance is a growing worldwide issue, that can prove to be fatal for many 

future patients, as bacteria become accustomed to various antibiotics, becoming stronger, and 

being able to defend themselves from general treatment. Not only that but as most antibiotics 

become weak for newly mutated bacteria, the prices for newer and improved treatment forms 

will skyrocket, reducing availability for a significant number of people. Medical procedures, like 

transplants and surgeries, even of lower risk, will be significantly riskier as infection gets harder 

to prevent and treat [49,50].  

Bacteremia may be caused by Gram-Positive or Gram-Negative bacteria. 

The identification of the bacteria causing infection is extremely important, and so is 

identification of its Gram-Stain. Knowing what type of Gram-Stain the bacteria possess allows 

for efficient selection of antibiotic for treatment, therefore reducing the exacerbated spread of 

multidrug-resistant pathogens [51]. 

The main reason for the discrepancy in antibiotic susceptibility between Gram-positive 

and Gram-Negative bacteria is the different structures of their cell wall Figure 2.4.1 

 

The composition of Gram-Negative’s cell wall includes a lipopolysaccharide layer 

(PLS), while the Gram-Positive doesn’t. This leads to a higher resistance to anti-microbials 

since the cell is more protected. Therefore, Gram-Negative bacteria tend to be associated with 

severe sepsis, and higher infection rates in the ICU [52].  

Figure 2.4.1 Gram-Positive and Gram-Negative cell wall structure 
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Some of the most common forms of Gram-Positive and Gram-Negative bacteria 

associated with bloodstream infections can be found in Table 2.4.1 [53,54]: 

Table 2.4.1 Most common Gram-Positive and Gram-Negative bacteria associated with bacteremia. 

Gram-Positive Gram-Negative 

Staphylococci aureus Escherichia coli 

Enterococcus faecalis Pseudomonas aeruginosa 

Streptococcus agalactiae Klebsiella pneumoniae 

In the events of inflammation and infection, certain metabolites may display behavioral 

changes, like increasing or reducing production concentrations to improve healing. The most 

reported ones are C-reactive protein (CRP, Procalcitonin (PCT), Interleukin-6 (IL-6) and 

Cluster of differentiation 64 (CD64). 

2.5 Infection Biomarkers of interest 

2.5.1 C-Reactive Protein 

C-Reactive Protein is a biomarker heavily associated with inflammatory phenomena, 

rising its baseline concentration of 0,8 mg/L by a thousand times in acute inflammatory 

processes [55–57]. 

Originated as one of the pentraxins family, CRP is produced in the liver in the form of 

native C-reactive, composed by 5 monomers that dissociate irreversibly once inflammation or 

infection initiates. CRP is characterized by having a short half-life of 19 hours. Previous studies 

pinpointed the relevance of CRP as a biomarker for infection. It’s released passively, whilst 

showing increased release in the presence of inflammatory cytokines such as interleukin 6 (IL-

6) [58–62]. Other performed studies tried to determine diagnostic accuracy of CRP, by 

analyzing its specificity and sensitivity to diagnose bacteremia, and found that, for example, in 

the case of study [63]; CRP showed a limited capacity for bacteremia diagnosis, just merely 

reaching a top AUC 0.62 (95% CL, 0.57-0.67) on the first of three days analyzed in n=175 ICU 

patients admission [61,62]. 
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2.5.1 Interleukin-6 (IL-6) 

Interleukin-6 is a potent proinflammatory cytokine which is released by immune cells in 

the event of inflammation or infection [64]. It’s secreted by a large array of cells and regulates 

the acute-phase response. Under certain circumstances, it may act as an anti-inflammatory 

cytokine [65]. It has been determined to have a significant role in the transition from 

neutrophiles to monocyte recruitment in the acute-phase response. It also plays a key role in 

the transition from acute-phase response to chronic inflammation [66].  

Once IL-6 is synthetized, its transported into the liver by the bloodstream, where it’ll 

induce the production of anti-inflammatory molecules like the CRP [57,60,64].  

A meta-analysis was previously conducted involving 6 studies that analyzed the 

potential of IL-6 in diagnosing bacteremia in cirrhotic patients. The results showed an overall 

good sensitivity and specificity of 0.85 (95% CI, 0.64–0.94), 0.91 (95% CI, 0.80–0.96), 

respectively. Nonetheless, the studies included all had distinct cut-off values for IL-6’s serum 

concentrations, leading to inconclusive results, therefore requiring further investigation [67]. 

2.5.2 Procalcitonin 

Procalcitonin (PCT) is a precursor protein of the calcitonin hormone. The codifying gene 

(CALC-1), in standard conditions, is exclusively expressed in parafollicular cells. Parafollicular 

cells, or C cells, are neuroendocrine cells found in the thyroid. As the CALC-1 gene is activated, 

produced PCT is stored in the Golgi complex. In the occurrence of systemic infections, the 

gene is positively regulated, leading to mass PCT production, thus drastically increasing its 

bloodstream concentration. PCT has a superior half-life to CRP, approximately between 22 to 

29 hours.  

Previous studies determined that in case of bacterial infection, concentration reaches 

a production peak between 12 to 14 hours after initiation of the infection [61,68,69]. A meta-

analysis intended to compile and determine the overall AUC, complete with pooled sensitivity 

and specificity of 58 studies on using procalcitonin for bacteremia identification in ICU patients. 

The overall AUC corresponded to 0.88 with a pooled specificity of 68 (95%, 0.57-0.77) and a 

sensitivity of 89 (95%, 0.79-0.94). As in the case of CRP, procalcitonin also shows high 

sensitivity, although showing a low specificity for bacteremia, decreasing its potential as an 

accurate biomarker [70].  
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2.5.3  Cluster of differentiation 64 (CD64) 

The CD64 neutrophile is mostly found on the surface of macrophages, dendritic cells, 

and monocytes. Whilst baseline values are low, in the event of infection its concentration 

rapidly increases and consequently, the immune system is activated. It invokes the massive 

release of polymorphonuclear neutrophils (PMN), such as neutrophiles, eosinophils and 

basophils, that act on the phagocytose and destruction of the pathogen. Previous studies 

aimed to show how effective the CD64 neutrophile is as a biomarker for infection and sepsis 

in critical patients, ranging from post-operative to hematological malignancies [71–73].  

CD64 has been studied for its accuracy in bacteremia diagnosis for years, and even 

has been considered by some studies to be more effective than using CRP or PCT in some 

cases. In a meta-analysis comprising the accuracies of 11 studies, CD64 showed a pooled 

AUC of 0.89 (95% Cl, 0.85-0.94), a sensitivity of 0.89 (95% Cl, 0.83–0.94) and a specificity of 

0.91 (95% Cl, 0.87–0.95), which proves the potential of CD64 as a bacteremia biomarker in 

critical patients [74]. 

2.5.4 Biomarker accuracy 

These biomarkers are known to be associated with aggravated COVID-19 and 

additionally, in the event of acute inflammatory response, all of these tend to increase 

production. Since ICU patients tend to suffer from extreme inflammatory processes during their 

recovery or treatment, it becomes extremely difficult to rely on any of these as full-proof 

bacteremia biomarkers [27,75–77]. Therefore, a study that aims to determine a new biomarker, 

with better specificity and sensitivity towards bacteremia, is extremely important and of 

elevated interest, to improve not only critical patients with severe COVID-19, but also every 

single patient admitted to the ICU, since a quicker and more efficient diagnosis will improve 

upon earlier and accurate diagnosis, which reduces morbidity and mortality [78–80].  

2.6 Fourier-transform Infrared spectroscopy 

This thesis approaches bacteria and gram strain identification by using Fourier-

transform Infrared Spectroscopy (FTIR). FTIR is an infrared (IR) spectroscopy method that 

allows for accurate determination of functional groups, bonding types, and molecular 

conformations within a sample (gas, liquid or solid), by measuring the amount of radiation that 

molecules absorb from a striking IR beam at specific wavelengths, causing molecular vibration. 

Once the sample is analyzed, a “fingerprint” for each of the compounds is identifiable, allowing 

for full biochemical characterization of the sample.   
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FTIR spectroscopy has been increasingly used in studies that need to identify biological 

sample’s functional composition, in order to aid diagnosis of several diseases, such as cancers 

[81,82].  

Infrared radiation is a section of the electromagnetic spectrum, composed of three main 

regions: near-IR (NIR), mid-IR (MIR) and far-IR (FIR) [83].  

In this study, the region of interest is the MIR, due to it being the most appropriate 

region for study of fundamental vibrations and structural composition of the sample’s 

molecules [84]. Previous studies utilized MIR to its full potential and provided insight into how 

its use can be useful in identification of various compounds, ranging from proteins [85], to 

nucleic acids [86]. The FTIR spectroscopy process begins by emitting an IR beam, which 

originates from a black body source, into an interferometer.  

The interferometer is a measurement method that consists of splitting a beam into two 

separate beams, one that strikes a fixed mirror, and another one striking a movable mirror. 

These are then reflected, causing superposition, and creating an interference pattern. If the 

phase difference is equal to zero, the beams will interfere constructively, thus creating a high 

intensity signal. This allows for the acquisition the spectral information of all wavelengths. Once 

the beam is recomposed, it passes through the sample and into the detector [87,88]. A visual 

representation can be observed in Figure 2.6.1. 

 The detector will then create a raw data analysis comparing light intensity and mirror 

position, which then Fourier-transforming processes for a single channel reference spectrum. 

Simultaneously a beam is superimposed to create a reference for instrumentation operation. 

In the end, the IR spectrum from FTIR spectroscopy is acquired by subtracting the reference 

spectrum from the spectrum provided by the sample analysis [87,89].  

Figure 2.6.1 Basic components in FTIR 
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The FTIR spectroscopy spectrum can be divided into two main sections: the Functional 

Group Region (FGR), and the Fingerprint region as shown in Figure 2.6.2 [90,91]. The 

functional group region allows for examination of functional groups within the sample, which 

can be compared to spectrum from pure compounds to correctly identify the different 

compounds in the sample. The Fingerprint region allows for precise analysis, since 

characteristics as small as structural differences and molecule composition, may result in 

significant variation of the distribution of the absorption bands corresponding to this region. 

Therefore, compounds tend to display almost identical fingerprint regions, which are easily 

recognizable [92]. 

The functional group of the FTIR spectroscopy spectrum includes the single bond, 

double bond, and triple bond areas. There are four regions that may be analyzed in the FTIR 

spectroscopy spectra, which are listed in Table 2.6.1. 

Table 2.6.1 Regions of the FTIR spectroscopy Spectra and corresponding wavelengths 

Region Wavelengths 

Single Bond 2500-4000 cm-1 

Double Bond 1500-2000 cm-1 

Triple Bond 2000-2500 cm-1 

Fingerprint 650-1500 cm-1 

Functional Group Region Fingerprint Region 

Figure 2.6.2 FTIR Specter with defined Functional Group and Fingerprint regions (adapted from [75]) 
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Along the years, FTIR spectroscopy has become a staple methodology for a multitude 

of clinical studies, such as infection typing [93–95] and bacterial typing [96–98]. It has proven 

to be effective and an easy, low-cost, and fast methodology, justifying its use in this thesis for 

infection and bacteria related analysis. 

3 Methodology 

3.1 Study population and demographic data 

Patients that entered the targeted sample were originally members of a group of 

hospitalized individuals, that required intensive care in the ICU of Hospital Universitário Lisboa 

Central, between the months of November 2020 and September 2021. These patients were 

admitted for a multitude of reasons, with Acute respiratory failure – COVID 19 being the most 

persistent (90,2%). These were all tested for COVID-19, by reverse-transcriptase-polymerase-

chain-reaction-reaction (RT-PCR) assay. The present study is inserted in the Predictive 

Models of COVID-19 Outcomes for Higher Risk Patients Towards a Precision Medicine 

(PREMO), approved by the previously mentioned board of ethics and under all legal and ethics 

considerations.  

 Data from the raw sample was condensed in a data base in the platform Microsoft 

Excel. This database consists of demographical data like: RT-PCR diagnosis, dates from 

hospital/ICU admission and discharge; comorbidities and reasons for admission, as well as 

other relevant information. All the information was gathered from the hospital electronic 

medical record system. Various other tests that were also performed to each patient, was also 

acquired, in singular Microsoft Excel files. The tests performed included hemograms, urine 

tests, blood gas analysis, as well as daily metabolite measurements. 

 The starting sample was composed of 512 patients. Patients under 18 years of age and 

without enough relevant information for study composition were excluded (n=1). Patients 

without hospital/ICU date of admission; a negative RT-PCR test were also removed from the 

sample (n=198). From the remaining 313 patients, were selected patient’ with serum samples 

in the present laboratory presenting bacteremia, i.e., presenting bacterial infection in the blood, 

for a targeted group (n=48) and a control group, composed of patient samples clear of 

bacteremia (n=54).  
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3.2  Clinical and Demographic Data 

The sample was organized by age, gender, body mass index (BMI), presence, and 

number of comorbidities. Data such as age and patient’s gender were calculated from obtained 

data at admission. The patients were divided into the following age groupings: 30 years or 

younger; 30 through 39 years; 40 through 49 years; 50 through 59 years; 60 through 69 years; 

70 through 79 years and 80 years or older.  

BMI was calculated by dividing the weight in kilograms by the meters squared. Since 

height was measured in centimeters, the result was multiplied by 10000. BMI was the main 

way to measure obesity degrees. The BMI categories are classified as less or equal to 29,9 

Kg/m2 (normal BMI); 30 through 34,9 Kg/m2 (Class I Obesity); 35 through 39,9 Kg/m2 (Class 

II Obesity); and equal to or greater than 40 Kg/m2 (Class III Obesity) [99]. 

Comorbidities among patients were accounted for, and patients were grouped by 

number of comorbidities. The comorbidities groupings were as follows: 0 comorbidities; 1 to 2 

comorbidities; 3 to 4 comorbidities; 5 or more comorbidities.  

Patients who required respiratory support like IMV and ECMO, were identified, as well 

as the duration of the respective treatment.  

3.3 Statistical analysis 

All relevant variables were analyzed regarding its typology and the data type. 

Categorical variables such as comorbidities and gender, were presented by their absolute 

frequencies and percentages, whilst categorical variables were represented with medians and 

interquartile range (25th percentile-75th percentile). This presentation is justified by the fact the 

results regarding these variables, follow an asymmetric distribution and deviates from 

statistical normality. To obtain p values for each of the compared variables, either the χ2 for 

qualitative variables or the T-test for quantitative variables. Each test, if the P values equivalent 

to ≤0.05, it’s assumed that the variables are statistically different. Tests are identifiable in 

Table 4.1.1 and Table 4.1.2. by the symbol code presented in Table 3.3.1. 
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Chi squared were determined in the IBM® SPSS® Statistics version 26 software while 

T-testing occurred in the Microsoft Excel software from Microsoft Corporation. 

Table 3.3.1 Tests and attached symbols for interpretation. 

Test Symbol 

Chi-squared × 

T-Test ▪ 

 

3.4 Spectral data acquisition and spectra data processing  

In this study, the FTIR spectra was obtained by serum analysis. Serum has been widely 

used for metabolomic studies, since it has shown to have higher metabolite concentrations, 

making it easier for detection and quantification [100]. Other studies that utilized the potential 

of serum to pursue biomarker detection can be read by following the bibliography through 

[101,102]. The serum samples used in this study were prepared by Dr. Rubén Araujo, by firstly 

collecting a sample of 3 mL of patient’s blood with EDTA from patients admitted to the 

CHULC’s ICU. From that, then preceded the plasma extraction and, as such, the serum. This 

process took less than 12 hours. The obtained serum was then processed and stored in 

duplicates, at -20 ºC.  

3.5 Data processing and analysis  

Pre-processing of FTIR spectrum allows for the removal of physical phenomena or noise 

that may interfere with exploratory analyses. The following pre-processes methods were 

analyzed: 

• atmospheric correction and baseline; 

• atmospheric correction, baseline, and Unit Vector Normalization (UVN); 

• atmospheric correction followed by 2nd Derivative (2nd Degree polynomial with 15 

points); 

• atmospheric correction followed by 2nd Derivative (2nd Degree polynomial with 15 

points) and UVN; 

• 2nd Derivative (2nd Degree polynomial with 15 points) within the ranges of 600-1800 

cm-1 and 2800-3100 cm-1; 

• 2nd Derivative (2nd Degree polynomial with 15 points) and UVN within the ranges 

of 600-1800 cm-1 and 2800-3100 cm-1; 
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The individual objective of each preprocessing can be found in Table 3.5.1. 

Table 3.5.1 Preprocessing with corresponding goal. 

Pre-Processing Goal 

Atmospheric correction Removal of the effects of the atmosphere 

Baseline 
Used to adjust the spectral offset by adjusting the 

data do the minimum point in the data 

Unit Vector Normalization Used to equally scale samples 

2nd Derivative (2nd Degree polynomial with 15 points) Used to smooth out data 

Selection of wavelength ranges (600-1800 cm-1 and 
2800-3100 cm-1) 

Focusing analyses on the ranges of interest 

The impact of each pre-processing method was evaluated on non-supervised principal 

component analysis (PCA) and hierarchical cluster analysis (HCA), which allow for the 

clustering of similar groups, with adequate visual representation.  

PCAs used the non-linear iterative partial least squares (NIPALS) algorithm, whilst the 

algorithm used for “Gram-positive versus Gram-negative” analyses was Singular Value 

Decomposition (SVD) model input, both with a maximum of 7 components. The different 

selection of algorithm was automatically selected by the program used, with Scramble. NIPALS 

enables the analysis when there are missing values, whilst SVD can’t.  All wavenumbers had 

equal weight and were cross validated randomly with 20 segments (5 samples each). Hotelling 

curve was selected at 1%, i.e., 99% variance.  

HCA analyses was performed by selecting a preference of 2 clusters, one 

corresponding to each targeted group, and by combining a selection of clustering methods 

with distance measure correlations. The clustering methods were Hierarchical Single linkage, 

Hierarchical Complete linkage, Hierarchical Average linkage and Hierarchical Median linkage 

and Ward’s method. Further detailing on the functions of each can be found in Table 3.5.2. All 

of these were combined with Spearman’s rank correlation and Euclidian for distance 

measurement, individually, to test multiple variations and obtain the best result possible. 
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Table 3.5.2 List of linkage methods and corresponding grouping criteria. 

Linkage Methods Function 

Single linkage Grouping by closest distance between samples 

Average linkage Grouping by average distance between samples 

Median linkage Grouping by the geometrical distance between samples 

Complete linkage Grouping by the farthest distance between any two samples for its basis 

Ward’s method Aims to maximize the homogeneity of the groups 

The supervised linear discriminant analysis (PCA-LDA) method was performed, varying 

the number of components from 2 to 7. PCA-LDA is used to reduce the number of features of 

a sample, to obtain a more manageable set of data. The result is a linear function that 

represents the difference between two groups. The difference between the groups, or the 

separation, improves as the variance between groups increases and the variance within the 

groups decreases. The test consists of composing a calibration and a validation group within 

the sample. The calibration group was composed of two thirds of the sample, while the 

remaining one third was used to test the classification efficiency.  

All the evaluation process was conducted in The Unscrambler X™ program version 

10.4. and all of the information gathered about the analyses were gathered in its user manual 

[103]. 

4 Results and discussion 

This chapter is divided into two main sections. In the first section, the goal was to 

evaluate the FTIR based discrimination between Bacteremia (n=48) and non-Bacteremia 

patients (n=54) through PCA, HCA and LDA analyses.  

The second section aimed to evaluate the FTIR based discrimination in patients with 

bacteremia, if were Gram-Positive (n=28) or Gram-Negative (n=20) bacteria. 
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4.1 Clinical and demographic characteristics  

Clinical characteristics and demographics of the patients included in this study are 

detailed in Table 4.1.1. The complete sample is composed of 102 patients with COVID-19, all 

admitted to the ICU. The sample’s median age corresponded to 59 years old (P25= 51; P75=69), 

ranging between 19 to 88 years old. More than 70% of the patients have more than 50 years 

old, as expected, as age is a critical factor for COVID-19 severity. Only a residual percentage 

of 3.9% are below 30 years old.  

The sample is composed for the most part by male patients, corresponding to 73.5% of 

the sample, with a total number of 75 patients. Weight and heights were measured to calculate 

corresponding BMI’s. A total of 10 patients had no determinable BMI value due to missing 

height or weight values. Missing patients accounted for 5% (n=5). BMI median corresponded 

to 27,7 (P25= 24,7; P75=31,1) Kg/m2. Most patients had a calculated BMI of lesser or equal to 

29,9 Kg/m2 (70.7%), indicating that 29.3% are at least obese. 

Most patients had at least one comorbidity (85.3%), with Arterial Hypertension (50%), 

Diabetes mellitus (32.4%), obesity (30.4%) and dyslipidemia (37.5%) being the most common 

comorbidities. Other comorbidities were residuals in comparison, with only alcoholism and 

smoking habits standing out at 10.8% and 15.7%, respectively. Admission motives were 

particularly one-sided with a majority being admitted for medical causes (95.1%) associated 

with COVID-19 induced ARDS (90.2%). Invasive mechanical ventilation (IMV) and ECMO 

were applied in 85, and 20 patients respectively. The median of IMV days was 14 days (P25= 

8.3; P75=40.3) and of ECMO of 10 days (P25=5; P75=18). ICU stay had a median of 10 days 

(P25= 2; P75=102). 
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Table 4.1.1 Demographic data from all patients and comparisons between patients with bacteremia and patients 
without bacteremia. T-tests are represented by ▪, and Chi-Squared tests are represented by ×. 

Variables 
N (%) 

Total Missing’s 
n (%) / N 

All Patients 
(n=102) 

Bacteremia Patients 
(n=48) 

Patients without 
Bacteremia 

(n=54) 

P  

Gender  
   

 
Female - 27 (26.5) 11 (22.9) 16 (29.6) 

0.443 × 
Male  - 75 (73.5) 37 (77.1) 38 (70.4) 
Age      

Age (years) - 59.5 (50.8-69.3) 58 (51.3-66) 54 (47-71.3) 0.507 ▪ 
Age groups  

   
 

<30 years - 4 (3.9) 2 (4.2) 2 (3.7) 

0.093 × 

30-39 years - 11 (10.8) 4 (8.3) 7 (13) 
40-49 years - 8 (7.8) 2 (4.2) 6 (11.1) 
50-59 years - 28 (27.5) 18 (37.5) 10 (18.5) 
60-69 years - 26 (25.5) 13 (27.1) 13 (24.1) 
70-79 years - 19 (18.6) 9 (18.8) 10 (31.3) 
≥80 years - 6 (5.9) 0 (0) 6 (19) 
Peso (Kg) 5 (5%)/102 80 (75-90) 80 (75-90) 80 (70-90) 0.184 ▪ 

Altura (Cm) 10 (10%)/102 170 (150-190) 170 (150-190) 170 (150-185) 0.249 ▪ 
BMI      

BMI. Kg/m2   10 (9.8%) /102 27.7 (24.7-31.1) 27.6 (24.7-32) 27.7 (24.6-29.8) 0.401 ▪ 
BMI Categories      

≤29.9 Kg/m2 

10 (9.8%)/102 

65 (70.7) 30 (65.2) 35 (76.1)  
30-34.9 Kg/m2 14 (15.2) 9 (19.6 5 (10.9)  
35-39.9 Kg/m2 6 (6.5) 3 (6.5) 3 (6.5) 0.644 × 

≥40 Kg/m 7 (7.6) 4 (8.7) 3 (6.5)  
Presence of 

Comorbidities 
     

Yes - 87 (85.3) 44 (91.7) 43 (79.6) 
0.086 × 

No - 15 (14.7) 4 (8.3) 11 (20.4) 
Comorbidities      

Arterial 
Hypertension 

- 51 (50) 23 (49.9) 28 (51.9) 

 

Diabetes mellitus - 33 (32.4) 15 (31.3) 18 (33.3) 
Dyslipidemia - 23 (22.5) 18 (37.5) 6 (11.1) 

Obesity - 31 (30.4) 18 (37.5) 14 (25.9) 
Asthma - 5 (4.9) 3 (6.3) 2 (3.7) 
COPD  - 6 (5.9) 41 (85.4) 19 (35.2) 

Alcoholism - 11 (10.8) 7 (14.6) 4 (7.4) 
Extrinsic Allergic 

Alveolitis 
- 1 (1) 0 1 (1.9) 

Andropause - 1 (1) 0 1 (1.9) 
Iron Deficiency 

Anemia 
- 1 (1) 0 1 (1.9) 

Descending 
thoracic aortic 

aneurysm 

- 1 (1) 1 (2.1) 0 

Angina - 1 (1) 0 1 (1.9) 
Smoker - 16 (15.7) 12 (25) 4 (7.4) 
Stroke - 4 (3.9) 1 (2.1) 3 (5.6) 

Congenic 
Cardiopathic 

- 1 (1) 0 1 (1.9) 

Ischemic Heart 
Disease 

- 1 (1) 1 (2.1) 0 

Peripheral Arterial 
Disease 

- 3 (2.9) 2 (4.2) 1 (1.9) 

Depression - 4 (3.9) 4 (8.3) 0 
Chronic Liver 

Disease 
- 1 (1) 1 (2.1) 0 

Chronic Kidney 
Disease 

- 4 (3.9) 2 (4.2) 2 (3.7) 

Acute Myocardial 
Infarction 

- 1 (1) 0 1 (1.9) 
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P-values for studied variables were obtained with a significance level of 5% 

To group and compare clinical and demographical data for the second comparison 

group, “Gram-Positive versus Gram-Negative” an additional table was created. There’s a total 

of 48 patients, 28 with Gram-Positive bacteremia and 20 with Gram-Negative bacteria. Patients 

tend to similarly show a higher male percentage, with 78.6% and 75% of patients presenting 

Gram-Positive and Gram-Negative bacteria being males. Age median is similar between target 

groups with age values of 60 and 56 years old (Gram-Positive: P25 = 51; P75 = 68.5; Gram-

Negative: P25 = 52.5 P75 = 61.8), for Gram-Positive and Gram-Negative bacteria groups, 

respectively. Clinical data like weight, height, BMI, all resemble the data acquired for the 

previous targeted groups. 

HIV Positive - 2 (2) 2 (4.2) 0 
History of Organ 
Transplantation 

- 3 (2.9) 1 (2) 1 (1.9) 

Hypothyroidism - 5 (4.9) 1 (2.1) 4 (7.4) 
Neo - 5 (4.9) 2 (4.2) 3 (5.6) 

Obstructive Sleep 
Apnea Syndrome 

- 6 (5.89) 3 (6.3) 3 (5.6) 

Renal 
Insufficiency 

- 4 (3.9) 2 (4.2) 2 (3.7) 

Number of 
Comorbidities 

     

0 comorbidities - 15 (14.7) 4 (8.3) 11 (20.4) 

0.386 × 
1-2 comorbidities - 33 (32.4) 17 (35.4) 16 (29.6) 
3-4 comorbidities - 33 (32.4) 17 (35.4) 16 (29.6) 
≥5 comorbidities - 21 (20.6) 10 (20.8) 11 (20.4) 

Types of Patients 
at Admission 

     

Medical - 97 (95.1) 47 (97.9) 50 (92.6) 

 

Surgical (Urgency) 
and Trauma 

- 3 (2.9) 1 (2.1) 2 (3.7) 

Medical - coronary - 1 (1) 0 1 (1.9) 
Trauma (With 
neurotrauma) 

- 1 (1) 0 1 (1.9) 

Admission 
Motive 

     

Acute Respiratory 
Failure (ARDS) 

- 2 (2) 1 (2.1) 1 (1.9) 

 

COVID-19 induced 
ARDS 

- 92 (90.2) 45 (93.8) 47 (87) 

Septic Shock or 
Sepsis 

- 1 1 (2.1) 0 

Cardiac Arrest - 2 (2) 0 2 (3.7) 
ARDS/ALI - 2 (2) 1 (2.1) 1 (1.9) 

Coma - 1 (1) 0 1 (1.9) 
Monitoring - 2 (2) 0 2 (3.7) 

Respiratory 
Support 

     

IMV - 85 (83.3) 46 (95.8) 39 (72.2) 0.001 × 

ECMO - 20 (19.6) 15 (31.3) 5 (9.3) 0.006 × 

Treatment 
duration (Days) 

     

ICU - 10 (2-102) 18 (9.1-25.2) 6 (3.9-11.1) <0.001 ▪ 
ECMO - 14 (8.3-40.3) 31 (10-46) 9 (3.5-11.5) 0.058 ▪ 

IMV - 10 (5-18) 15 (8-28) 6 (4-11) <0.001 ▪ 
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The variables “IMV”, “ECMO”, as well as “ICU treatment days” and “IMV days” were 

determined to be statistically significant, with a p value inferior to 0.05. This means the 

variables have a strong relation between bacteremia and non-bacteremia patients. 

The complete sample for the second targeted analyses is composed of 48 patients with 

COVID-19 and bacteremia, all admitted to the ICU. The sample’s median age corresponded 

to 58 (P25= 51.3; P75=66), whereas the ages ranged from 26 to 79 years of age. Patients with 

Gram-Positive bacteria had a median age of 60 years (P25= 51; P75=68.5), while patients with 

Gram-Negative bacteria had a median age of 56.5 years (P25= 52.5; P75=61.8). Most patients 

in both groups (>50%) are of at least 50 years old. Only 12.5% of patients are younger than 

40 years old. Weight and heights were measured to calculate corresponding BMI’s. 

A total of 2 patients had no determinable BMI value due to missing height or weight 

values. Missing patients accounted for 4.2% (n=2). BMI median of the Gram-Positive group 

corresponded to 27,7 (P25= 24,6; P75=31,9) Kg/m2 and Gram-negative’s median BMI 

corresponded to 27,5 (P25= 25.2; P75=34) Kg/m2. Most patients had a calculated BMI of lesser 

or equal to 29,9 Kg/m2 (65.2%), indicating that 34.8% are at least obese. 

Most patients had at least one comorbidity (91.7%), with Arterial Hypertension (47.9%), 

Diabetes mellitus (31.3%), obesity (37.5%) and dyslipidemia (37.5%) being the most common 

comorbidities. The most common comorbidities among Gram-Positive bacteria patients were 

HTA and dyslipidemia, both being identified in a percentage of 53.6% of patients. In the Gram-

Negative bacteria patient’s group, a higher percentage had present HTA and obesity, both with 

40% of patients being previously diagnosed. Admission motives were 100% indicated as being 

for medical causes in the Gram-Positive group, whilst the Gram-Negative group was close to 

reaching the same percentage with only 1 patient (5%) being admitted for surgical (urgency) 

and trauma.  

According to the global sample previously described, 92.9% and 95% of patients with 

Gram-positive or Gram-Negative bacteria blood infection, were admitted with COVID-19 with 

ARDS, respectively. All patients from the Gram-Negative group required IMV, whilst two 

patients from the Gram-Positive groups didn’t, therefore being used for 92.9% of patients. 

ECMO wasn’t as prevalent in either group as when comparing Bacteremia versus Non-

Bacteremia, with only 9 patients from the Gram-Positive group and 6 from the Gram-Negative 

group requiring for the specific respiratory support. Finally, the Gram-Negative group had a 

higher median of days spent admitted to the ICU, with a median value of 22 days (P25= 14.1; 

P75=45.4). Data can be found in Table 4.1.2 
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Table 4.1.2 Clinical and demographical data for Gram-Positive versus Gram-Negative bacteria groups. T-tests are 

represented by ▪, and Chi-Squared tests are represented by ×. 

Variables 
N (%) 

Total Missing’s 
n (%) / N 

All Bacteremia 
Patients (n=48) 

Gram-Positive 
(n=28) 

Gram-Negative 
(n=20) 

P value 

Gender  
   

 
Female - 37 (77) 6 (21.4) 5 (15) 

0.772 × 
Male  - 11 (22.9) 22 (78.6) 15 (75) 
Age      

Age. years - 58 (51.3-66) 60 (51-68.5) 56.5 (52.5-61.8) 0.501 ▪ 
Age groups  

   
 

<30 years - 2 (4.2) 2 (7.1) 0 

0.220 × 

30-39 years - 4 (8.3) 1 (3.6) 3 (15) 
40-49 years - 2 (4.2) 2 (7.1) 0  
50-59 years - 18 (37.5) 8 (28.6) 10 (50) 
60-69 years - 13 (27.1) 9 (32.1) 4 (20) 
70-79 years - 9 (18.8) 6 (21.4) 3 (15) 
≥80 years - 0 0 0 
Peso (Kg) 1 (2.1%) / 48 80 (75-90) 80 (75-90) 80 (76.3-90) 0.943 ▪ 

Altura (cm) 2 (4.2%) / 48 170 (150-190) 170 (170-180) 170 (170-180) 0.428 ▪ 
BMI      

BMI. Kg/m2 2 (4.2%) / 48 27.6 (24.7-32) 27.7 (24.6-31.9) 27.5 (25.2-34) 0.958 ▪ 
BMI Categories      

≤29.9 Kg/m2 

2 (4.2%) / 48 

30 (65.2) 17 (63) 13 (64.8) 

0.921 × 
30-34.9 Kg/m2 9 (19.6) 6 (22) 3 (9.23) 
35-39.9 Kg/m2 3 (6.5) 2 (7.4) 1 (5.6) 

≥40 Kg/m 4 (8.7) 2 (7.4) 2 (5.6) 
Presence of 

Comorbidities 
     

Yes - 44 (91.7) 27 (96.4) 17 (85) 
0.158 × 

No - 4 (8.3) 1 (3.6) 3 (15) 
Comorbidities -     

Arterial 
Hypertension 

- 23 (47.9) 15 (53.6) 8 (40)  

Diabetes mellitus - 15 (31.3) 8 (28.6) 7 (35)  
Dyslipidemia - 18 (37.5) 15 (53.6) 3 (15)  

Obesity - 18 (37.5) 10 (35.7) 8 (40)  
Asthma - 3 (6.3) 2 (7.1) 1 (5)  
COPD  - 4 (8.3) 3 (10.7) 1 (5)  

Alcoholism - 1 (2.1) 1 (3.6) 0  
Iron Deficiency 

Anemia 
- 1 (2.1) 1 (3.6) 0  

Descending 
thoracic aortic 

aneurysm 

- 1 (2.1) 0 1 (5)  

Smoker - 12 (25) 9 (32.1) 3 (15)  
Stroke - 1 (2.1) 1 (3.6) 0  

Ischemic Heart 
Disease 

- 2 (4.9) 0 2 (10)  

Depression - 4 (8.3) 3 (10.7) 1 (5)  
Chronic Kidney 

Disease 
- 2 (4.2) 1 (3.6) 1 (5)  

HIV Positive - 2 (2) 2 (7.1) 0  
History of Organ 
Transplantation 

- 1 (2.1) 0 1 (5)  

Hypothyroidism - 5 (4.9) 1 (3.6) 4 (20)  
Neo - 2 (4.2) 2 (7.1) 0  

Obstructive Sleep 
Apnea Syndrome 

- 3 (6.3) 2 (7.1) 1 (5)  

Number of 
Comorbidities 

-     

0 comorbidities - 4 (8.3) 1 (3.6) 3 (15) 

0.259 × 
1-2 comorbidities - 17 (35.4) 9 (32.1) 9 (45) 
3-4 comorbidities - 17 (35.4) 11 (39.3) 6 (30) 
≥5 comorbidities - 10 (20.8) 7 (25) 2 (10) 
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P-values for studied variables were obtained with a significance level of 5% 

P-values weren’t calculated if the variable’s frequencies were too small/ null. P values 

weren’t also calculated for the variables “Type of Patient at Admission” and “Admission Motive” 

because it wasn’t clinically relevant. 

Variables with less than 30 samples were assumed to not follow a normal distribution 

In the case of gram-stain discrimination, the only variable to present statistically 

significant (p ≤0.05) was “ECMO”. Meaning there is a strong relation between use of ECMO 

on patients and the presence of Gram-Negative bacteria. 

Identified bacteria and their respective frequencies among the Bacteremia patients can 

be found in Table 4.1.3. 

  

Type of Patients 
at Admission 

-     

Medical - 47 (97.9) 28 (100) 19 (95)  
Surgical (Urgency) 

and Trauma 
- 1 (2.1) 0 1 (5)  

Admission Motive -     
Acute Respiratory 

Failure (ARDS) 
- 1 (2.1) 1 (3.6) 0  

COVID-19 induced 
ARDS 

- 45 (93.8) 26 (92.9) 19 (95)  

Septic Shock or 
Sepsis 

- 1 (2.1) 0 1 (5)  

ARDS/ALI - 1 (2.1) 1 (2.1) 0  
Respiratory 

Support 
     

IMV  46 (95.8) 26 (92.9) 20 (100) 0.222 × 

ECMO  15 (31.3) 6 (21.4) 9 (45) 0.082 × 

Treatment 
duration (Days) 

     

ICU  18 (9.1-25.2) 13.5 (7.7-22.5) 22 (14.1-45.4) 0.155 ▪ 
ECMO  31 (10-46) 25 (12.3-46.5) 31 (6-44.5) 0.879 ▪ 

IMV  16 (8-28) 12 (6-20.5) 22 (9.3-35) 0.184 ▪ 
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Table 4.1.3  Identified Bacteria and frequency among patients with bacteremia included in sample 

Bacteria Frequency 

Methicillin-resistant Staphylococcus aureus 2 

Methicillin-resistant S.epidermidis 2 

Enterobacter aerogenes 2 

Enterobacter clocae 2 

Enterococcus faecalis 2 

Escherichia coli 3 

Klebsiella oxytoca 2 

Klebsiella pneumoniae 8 

Pseudomonas aeruginosa 1 

Methicillin-sensitive Staphylococcus aureus (MSSA) 11 

Methicillin-resistant Staphylococcus epidermidis (MRSE) 2 

Methicillin-sensitive Staphylococcus epidermidis (MSSE)  1 

Serratia marcescens 2 

Staphylococcus haemolyticus 1 

Staphylococcus hominis 3 

Staphylococcus lugdunensis 1 

Streptococcus anginosus 1 

Streptococcus gallolyticus 1 

Streptococcus mitis/Streptococcus oralis 1 

 

4.2  Bacteremia vs non-Bacteremia 

Results for FTIR spectroscopy discrimination for Bacteremia versus non-Bacteremia 

patients in the global sample is presented by PCA, HCA and PCA-LDA analysis for each pre-

processing described before in Data processing and analysis. 

Both PCA and HCA results showed a lack of efficiency for separation between the two 

groups. Visual presentation of the best results obtained for both forms of analyses are 

presented in Figure 4.2.1, Figure 4.2.2, , Figure 4.2.4. The best PCA-LDA are presented in 

Figure 4.2.5 
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Figure 4.2.1 On the left side are spectra with different pre-processing methods, and on the right are the corresponding PCA between 

Infected with Bacteremia (Blue) and Not-Infected with Bacteremia (Red): (A&B) Without pre-processing; (C&D) Atmospheric and Baseline 

correction; (E&F) Atmospheric and Baseline with UVN. 

C 

 

D 

E 

 

F 

 

A B 

 

No Pre-processing 

Baseline + Atmospheric Correction 

Baseline + Atmospheric Correction + UVN 
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Figure 4.2.2 On the left side are spectra with different pre-processing methods, and on the right are the corresponding PCA between 

Infected with Bacteremia (Blue) and Not-Infected with Bacteremia (Red): (G&H) 2nd Derivative with atmospheric; (I&J) 2nd Derivative 

with UVN; (K&L) 2nd Derivative with region of interest 600-1800 cm-1 to 2800-3100 cm-1. 

I J 

K 
L 

 

G H 
2nd Derivative + Atmospheric correction 

 

2nd Derivative + Atmospheric correction + UVN 

2nd Derivative + Atmospheric correction + Region of Interest  
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 Infected Non-Infected 

Cluster 1 20 14 

Cluster 2 28 40 

 

2nd Derivative + Atmospheric Correction  

Figure 4.2.4  (A) Hierarchical clustering analysis with ATM and 2nd derivative using Ward’s method with Squared Euclidean distance, (B) 

the corresponding confusion matrix. 

Figure 4.2.3 On the left side is spectra with different pre-processing method, and on the right are the corresponding PCA between Infected with 

Bacteremia (Blue) and Not-Infected with Bacteremia (Red): (M&N) 2nd Derivative with UVN and Regions of interest from 600-1800 cm-1 to 2800-

3100 cm-1 

M N 
2nd Derivative + Atmospheric correction + UVN + Region of Interest 600-1800 cm-1 + 2800-3100 cm-1 
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Atmospheric correction  

+ 

 Baseline 

 

Accuracy: 75% 

7 Components 

 

 

Figure 4.2.5 Highest accuracies obtained in PCA-LDA with pre-processes. The calibration groups are represented as blue squares 

and circles, and the validation groups are shown as red squares and circles. 

2nd Derivative 

+ 
Atmospheric correction  

+ 

Regions of interest 600-1800 cm-1 

+ 2800-3100 cm-1 

 

Accuracy: 72.1% 
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2nd Derivative 
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UVN 

+ 

Regions of interest 600-1800 cm-1 

+ 2800-3100 cm-1 

 

Accuracy: 73.5% 

2 Components 
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The best LDA analyses presented an accuracy percentage of 75%. Increasing the 

number of components didn’t’ lead to accuracy improvement.  

 

 

Pre-processes 
Number of 

components 
Accuracy (%) 

Atmospheric + Baseline Correction 

2 58.8 

3 61.8 

4 60.3 

5 63.2 

6 64.7 

7 75.0 

Atmospheric + Baseline correction + UVN 

2 58.8 

3 58.9 

4 63.2 

5 69.1 

6 67.7 

7 69.1 

Atmospheric correction + 2nd Derivative 

2 57.4 

3 69.1 

4 72.1 

5 67.7 

6 69.1 

7 64.7 

2nd Derivative + UVN 

2 67.7 

3 69.1 

4 72.1 

5 67.7 

6 69.1 

7 64.7 

2nd Derivative + Regions of interest 600-1800 cm-1 + 2800-3100 cm-1 

2 73.5 

3 67.7 

4 66.2 

5 67.7 

6 67.7 

7 64.7 

2nd Derivative + UVN + Regions of interest 600-1800 cm-1 + 2800-3100 cm-1 

2 72.1 

3 72.1 

4 70.6 

5 70.6 

6 69.1 

7 69.1 

Table 4.2.1 PCA-LDA results for “Bacteremia patients versus non-Bacteremia for each pre-processing while varying number of components 
from 2 to 7. Highest overall accuracy is presented in green. 
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4.3 Gram-Positive versus Gram-Negative 

Results for FTIR spectroscopy discrimination for Gram-Positive versus Gram-Negative 

patients in the global sample is presented by PCA, HCA and PCA-LDA analysis for each pre-

processing described before in Chapter 3.4. Once again, both PCA and HCA results showed 

a lack of efficiency for separation between the two groups. Visual presentation results obtained 

for both form of analyses is presented in Figure 4.3.1, Figure 4.3.2., Figure 4.3.4, Figure 

4.3.3. The best PCA-LDA accuracies are shown in Figure 4.3.6 

Figure 4.3.1 On the left side are spectra with different pre-processing methods, and on the right are the corresponding PCA between 

patients with Gram-Positive bacteremia (Blue) and patients with Gram-Negative bacteremia (Red): (A&B) Without pre-processing; (C&D) 

Atmospheric and Baseline correction; (E&F) Atmospheric and Baseline with UVN. 

C 
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E F 

A B 

No Pre-processing 

Baseline + Atmospheric Correction 

 

Baseline + Atmospheric Correction + UVN 
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2nd Derivative + Atmospheric correction 

 

2nd Derivative + Atmospheric correction 

Figure 4.3.2 On the left side are spectra with different pre-processing methods, and on the right are the corresponding PCA between 

Infected with Gram-Negative (Blue) and Gram-Positive Bacteremia (Red): (G&H) 2nd Derivative with atmospheric; (I&J) 2nd Derivative 

with UVN; (K&L) 2nd Derivative with region of interest 600-1800 cm-1 to 2800-3100 cm-1. 
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2nd Derivative + Atmospheric correction + UVN 

 

2nd Derivative + Atmospheric correction + Region of Interest 600-1800 cm-1 + 2800-3100 cm-1 
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 Gram-Positive Gram-Negative 

Cluster 1 13 7 

Cluster 2 15 13 

 

Figure 4.3.3 (A) Hierarchical clustering analysis with Ward’s with Squared Euclidean distance of 2nd Derivative with atmospheric correction 

(B), the corresponding confusion matrix. 
 

M 

 

N 

Figure 4.3.4 On the left side is spectra with 2nd Derivative plus atmospheric and UVN pre-processing, and on the right is it’s the 

corresponding PCA between Gram-Negative Bacteremia (Blue) and Gram-Positive Bacteremia (Red): (M&N) 2nd Derivative with UVN and 

Regions of interest from 600-1800 cm-1 to 2800-3100 cm-1  

         

         

         

         

         

        

        

        

        

                                 

2nd Derivative + Atmospheric correction + UVN + Region of Interest 600-1800 cm-1 + 2800-3100 cm-1 
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PCA-LDA analyses, targeted towards Gram-Positive bacteremia patient’s vs Gram-

Negative bacteremia patients showed more promising results, seeing a reached efficiency of 

approximately 85%, reaching a noteworthy discrimination between the tested groups. (Figure 

4.3.5 and Figure 4.3.6) The best accuracy was obtained with 2nd Derivative with atmospheric 

correction, UVN and regions of interest (600-1800 cm-1 + 2800-3100 cm-1) pre-process.  

 

  

2nd Derivative  
+ 

Atmospheric correction  
+  

Regions of interest  
(600-1800 cm-1 + 2800-3100 cm-1) 

Accuracy: 84.4% 

6 Components 

Figure 4.3.5 Highest accuracies obtained in PCA-LDA with pre-processes. The calibration groups are represented as blue squares and 
circles, and the validation groups are shown as red squares and circles. 
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It was observed that an incremented increase in components lead to higher 

discrimination efficiency. These results indicate that, contrary to what was previously observed 

in the Bacteremia versus non-Bacteremia analyses, FTIR spectroscopy discrimination can be 

a useful way to distinguish between bacterial gram-stains. By allowing for a faster 

determination of bacteria gram type, it promotes a more efficient use of antibiotics. Compiled 

PCA-LDA results can be observed in   

.  

 

  

2nd Derivative  
+ 

Atmospheric correction  
+  

UVN 
+ 

Regions of interest  
(600-1800 cm-1 + 2800-3100 cm-1) 

Accuracy: 84.4% 

6 Components 

2nd Derivative  
+ 

Atmospheric correction  
+  

UVN  
+  

Regions of interest  
(600-1800 cm-1 + 2800-3100 cm-1) 

Accuracy: 84.4% 

7 Components 

Figure 4.3.6 Highest accuracies obtained in PCA-LDA with pre-processes. The calibration groups are represented as blue squares 
and circles, and the validation groups are shown as red squares and circles. 
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Table 4.3.1 PCA-LDA results for “Gram-Positive patients versus Gram-Negative-Bacteremia for each pre-

processing while varying number of components from 2 to 7. Highest overall accuracy is presented in green. 

 

In both studies, spectra PCA and HCA s weren’t successful in discriminating groups. 

This result can be justified by the variability of the samples involved. Some patients also had 

positive cultures for urine and phlegm samples at the same time as the bacteremia was active. 

This leads to a multitude of other variables, and forms that certain patients’ organisms may 

react, thus greatly altering the sample’s composition. Once the sample is open to variability, 

metabolites and compounds will inevitably be altered, and samples may be incorrectly 

discriminated by FTIR spectroscopy.  

Pre-processes Number of 

components 

Accuracy (%) 

Atmospheric + Baseline Correction 

2 56.3 

3 56.3 

4 65.6 

5 65.6 

6 59.4 

7 65.6 

Atmospheric + Baseline correction + UVN 

2 62.5 

3 56.3 

4 65.6 

5 68.8 

6 71.9 

7 75.0 

Atmospheric correction + 2nd Derivative 

2 59.4 

3 62.5 

4 65.6 

5 71.9 

6 71.9 

7 71.9 

2nd Derivative + UVN 

2 50.0 

3 59.4 

4 62.5 

5 62.5 

6 71.9 

7 71.9 

2nd Derivative + Regions of interest 600-1800 cm-1 + 2800-3100 cm-1 

2 56.3 

3 68.8 

4 65.6 

5 71.9 

6 84.4 

7 81.3 

2nd Derivative + UVN + Regions of interest 600-1800 cm-1 + 2800-3100 cm-1 

2 65.6 

3 65.6 

4 62.5 

5 81.3 

6 84.4 

7 84.4 
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Both patients’ groups, Bacteremia and non-Bacteremia have this complication, thus 

complicating appropriate separation by PCA and HCA analyses. Another probable cause for 

PCA and HCA’s lack of accuracy may be justified by the presence of multiple comorbidities 

across the global sample. While most patients tend to share comorbidities such as HTA, and 

Diabetes mellitus, other comorbidities among the sample may act as significant factor for 

sample composition due to their pro-inflammatory states (cancers, transplants).  

LDA results on the other hand showed interesting results in both target studies, with 

the best accuracy being achieved in the discrimination of Gram stains. On contrary to PCA 

assays, that try to determine the axis with the highest variance possible, LDA assays aim to 

identify the best axis for best class segregation. This may lead to a better sample discrimination 

than the determined in PCAs. On average, the best LDA results seemed to have been obtained 

with the 2nd Derivative + UVN + Regions of interest 600-1800 cm-1 + 2800-3100 cm-1 pre-

processing.  

While an accuracy of 75% of Bacteremia identification may be a positive result, the 

determined accuracy of 84% for gram-stain separation in the 2nd Derivative with atmospheric 

correction and UVN (regions 600-1800 cm-1 + 2800-3100 cm-1) is a sign that FTIR based 

discrimination may be a viable way to correctly discriminate Gram-stains.  With this knowledge, 

antibiotic therapy may be selected faster upon infection detection, leading to a more effective, 

rapid treatment of active bacteremia.  

  



39 

5 Final Remarks and Future Work 

FTIR spectroscopy has exponentially increased in popularity for a multitude of different 

types of analyses throughout the years. While its interest specifically for discrimination of 

bacteremia or gram-staining has been lesser explored, it still showed promising results. In this 

study, spectra PCA and HCA didn’t provide the discrimination of the data-pattern, most 

probably due to the sample high diversity concerning e.g., comorbidities and co-infection The 

samples from patients with a higher diversity pathophysiological state could most probably be 

counteracted with a higher dimension of the studied population. Despite that, it was observed 

that discrimination accuracy improved with pre-processing techniques, like performing second 

derivative plus atmospheric correction 

On the other hand, supervised methods, such as LDA, allowed sample discrimination 

in both studies. With an accuracy of 75% for bacteremia discrimination and the bacteria gram 

classification with an accuracy of 85%. This achievement is of extreme value, since it shows a 

great opportunity for improvement on the current bacteria strain identification, enabling a more 

precise antibiotic treatment.  

In the future, with improvement of this study in mind, it would be useful to have a larger 

patient’s sample, a deeper information concerning for the patient clinical variables, such as 

comorbidities and therapies.   
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