

INSTITUTO SUPERIOR DE ENGENHARIA DE LISBOA

Área Departamental de Engenharia Electrónica e Telecomunicações e de

Computadores

Design methodologies to implement computer games

(Super Milkman)

NUNO MARQUES CARDOSO

(Licenciado)

Trabalho Final de Mestrado para obtenção do grau de Mestre

em Engenharia Informática e de Computadores

Orientador: Doutor Pedro Miguel Florindo Miguens Matutino

 Júri:

Presidente: Doutor Nuno Miguel Soares Datia

Vogais: Doutor Hugo Tito Cordeiro

 Doutor Pedro Miguel Florindo Miguens Matutino

Setembro, 2019

INSTITUTO SUPERIOR DE ENGENHARIA DE LISBOA

Área Departamental de Engenharia Electrónica e Telecomunicações e de

Computadores

Design methodologies to implement computer games

(Super Milkman)

NUNO MARQUES CARDOSO

(Licenciado)

Trabalho Final de Mestrado para obtenção do grau de Mestre

em Engenharia Informática e de Computadores

Orientador: Doutor Pedro Miguel Florindo Miguens Matutino

 Júri:

Presidente: Doutor Nuno Miguel Soares Datia

Vogais: Doutor Hugo Tito Cordeiro

 Doutor Pedro Miguel Florindo Miguens Matutino

Setembro, 2019

Acknowledgements

I would like to thank:

My parents and brother for being present and supportive.

Carolina for understanding me and being there when I needed.

My friends for allowing me to decompress during this period.

Pedro Matutino and Diogo Cardoso for guiding me in the right direction and clearing all

my doubts.

A special thanks to Diogo Sérgio Esteves Cardoso, even though not mentioned in the

cover, he was also a supervisor for this work, alongside with Pedro Matutino, and I

learned a lot from him.

 vii

Abstract

Video games nowadays are the first form of entertainment, exceeding films and music.

The process of creating a video game involves many areas of expertise. Starting from the

definition of the architecture, there are also the physics and graphical engines, the art

assets like 3D models or 2D sprites. Furthermore, some of these art assets are also

animated.

The visual effects, the audio, the user interface, the mechanics, the camera and sometimes

the artificial intelligence, are connected creating the gameplay system. Each one of these

different areas requires different methodologies to be implemented. Herein, it is depicted

a prototype of a video game, namely Super Milkman, where are described the different

methodologies for each area, and discussed the option chosen. The prototype developed

is playable, can be used as a guide for beginner developers of video games, and also can

be extended through the addition of new game levels.

Keywords
Video game, 2D video game, Unity, game engine, computer game.

 ix

Resumo

Jogos de vídeo actualmente são a principal forma de entretenimento, superando filmes e

música. O processo de criação de jogos de vídeo envolve muitas áreas de especialização.

Começando pela definição da arquitectura, existem os motores de física e gráfico, os

recursos artísticos, como modelos 3D e imagens 2D. Além disso, alguns destes recursos

artísticos são animados.

Os efeitos visuais, o áudio, a interface de utilizador, as mecânicas, a câmara, e às vezes,

inteligência artificial, juntos criam o sistema de jogabilidade. Cada uma destas diferentes

áreas requer diferentes metodologias para ser implementada. É apresentado um protótipo

de um jogo de vídeo, chamado Super Milkman, onde são descritas as diferentes

metodologias para cada área e são discutidas as opções escolhidas. O protótipo

desenvolvido é jogável, podendo servir de guia para programadores iniciantes na área

dos jogos de vídeo e podendo também ser estendido através da adição de novos níveis de

jogo.

Palavras-chave
Jogos de video, Jogos de video 2D, Unity, motor de jogo, jogo de computador.

 xi

Contents

Abstract vii

Resumo ix

List of Figures xiii

List of Tables xv

Listings xvii

List of Acronyms xix

1. Introduction 1

1.1. Objectives .. 4

1.2. Super Milkman, the video game .. 4

1.3. Outline ... 4

2. State of the art 5

2.1. Approaches .. 10

2.2. Development stages ... 11

3. Video game development 13

3.1. Concept stage .. 13

3.2. Pre-production stage .. 14

3.3. Production ... 15

3.3.1. Arts and graphics ... 17

3.3.2. Level layout ... 21

3.3.3. User interface (UI) ... 24

3.3.4. Audio .. 26

3.3.5. Programming .. 27

3.3.6. Super Milkman engine organization... 41

3.4. Post-production ... 43

4. Conclusions 45

4.1. Followed methodologies ... 45

4.2. Future work ... 49

Bibliography 51

A. One page design document i

B. Design document ii

 xiii

List of Figures

1.1: Growth of forms of entertainment, extracted from [2]. .. 1

1.2: Traditional project architecture. .. 2

1.3: Application architectures. .. 3

1.4: Video game architecture. ... 3

2.1: Video game dissection... 5

2.2: Pac-Man game, extracted from [7]. ... 6

2.3: Super Mario Bros. 1985 [8], parts of level 01-01 extracted from [9]. 7

2.4: Flipbook, kineograph by John Barnes Linnett, extracted from [10]. 7

2.5: Frames from the short film “Steamboat Willie” by Walt Disney and Ub Iwerks in

1928. ... 8

2.6: Skeletal animation (3D, extracted from [12], and 2D). ... 8

2.7: Animation using bones. ... 8

2.8: Explosion particle effect example [14]. .. 9

2.9: Example of a third party shaders package in the game Minecraft [15]. 9

2.10: Super Mario World [8] with a side-scroller camera. ... 9

2.11: The Legend of Zelda [16] with a top-down camera. ... 10

3.1: Game characters concept art. ... 13

3.2: Playable character animator graph. ... 19

3.3: Enemy animator graph. ... 20

3.4: Playable character sprite. ... 20

3.5: Keyframe using bones. .. 21

3.6: Rectangular asset as terrain, extracted from [42]. ... 21

3.7: Sprite shaped as terrain, extracted from [43]. ... 22

3.8: Tiles as terrain, extracted from [44]. ... 22

3.9: Terrain tiles.. 22

3.10: Rule tile. .. 23

3.11: Different tilemaps that compose the level, in perspective. 23

3.12: Screen transition graph. ... 25

3.13: Heads-Up Display (HUD). .. 26

3.14: Super Milkman diagram. ... 31

3.15: Actor controller class diagram, first iteration. ... 32

3.16: Actor colliders and boundaries. ... 33

LIST OF FIGURES

 xiv

3.17: Actor controller class diagram, second iteration. ... 33

3.18: Weapon abstract class and its children. .. 34

3.19: Final iteration of the ActorController class. ... 35

3.20: Ability class diagram. ... 36

3.21: HurtOnContact class diagram. .. 36

3.22: Enemy ground checker. .. 37

3.23: Enemy field of view. ... 38

3.24: End level token script in the Unity inspector. ... 38

3.25: Teleport door 001 A in the Unity inspector. ... 39

3.26: Slide door script in the Unity inspector. ... 40

4.1: Project branches feeding and merging to complete the project. 47

 xv

List of Tables

3.1: Project plan. ... 14

3.2: Project tasks. .. 16

3.3: Graphics iterations. .. 18

3.4: Animation list for each actor. .. 19

3.5: Prototype level iterations. .. 24

3.6: Screens and their purpose. ... 25

3.7: Screens progress. ... 26

3.8: Super Milkman basic audio list. .. 27

3.9: Component priority table in development. .. 31

3.10: Actor and its inherent children iterations. ... 32

4.1: Project plan example. .. 45

4.2: Detailed tasks and their respective development branch... 46

 xvii

Listings

3.1: Level and World scriptable objects. .. 30

3.2: Code that checks if a boundary overlaps a colliders. .. 33

3.3: Code folder structure. .. 41

3.4: Unity project folder structure. ... 42

3.5: Level scene organization. .. 43

4.1: Project organization examples... 49

 xix

List of Acronyms

API Application Programming Interface

DLC Downloadable Content

GDD Game Design Document

GPU Graphics Processing Unit

HUD Heads-Up Display

N/A Not Applicable

NPC Non-Playable Character

SFX Sound Effects

UI User Interface

VFX Visual Effects

 1

1. Introduction

The video game industry has been the number one form of entertainment for almost two

decades, surpassing both film and music industries, and has been growing every year.

There’s a huge audience to be reached when developing video games [1], the growth in

this industry is higher than other entertainment industries combined and it continues

growing, as depicted by the profit growth in Figure 1.1.

Figure 1.1: Profit growth of forms of entertainment, extracted from [2].

The development of traditional applications and video games follow different

approaches, the workflow is not the same and crosses different areas of expertise.

Traditional applications may have, or not, a graphic designer to embellish the user

interface. These applications also have software designers that create the solution for the

system that will be implemented, for that they use different techniques and design

patterns to create a robust software architecture, that can be easily worked and

maintained. Common software architectures use a base structure, as depicted in Figure

1.2, and their implementations only differ in small parts, as depicted in Figure 1.3.

Although different application types have similar architectures, video games differ in that

aspect, the system architecture is approached in a different manner, as is presented in

Figure 1.4. Video games are composed of components that can have several blocks of

logic, in traditional applications the layers usually have a single responsibility.

Components, in video games, can have multiple blocks until they reach the presentation

layer. An example is a game that has roads and traffic lights, the traffic light components

need a system to coordinate them, just like in real life. This small system can be

1. INTRODUCTION

 2

considered a small application. If autonomous cars are added to the game, then the car

component requires blocks to drive in the road and respect the traffic lights, to not collide

with other cars and to not run over pedestrians. The car component will have at least four

logical blocks that can be considered as four independent small applications.

Figure 1.2: Traditional project architecture.

1. INTRODUCTION

 3

(a) Web Application (b) Service

(a) Mobile / Desktop Application

Figure 1.3: Application architectures.

Figure 1.4: Video game architecture.

Video games, being a multimedia experience, cross many areas of expertise like

animation, graphics, sound/audio, level design, programming, and others. The designers

that conceptualize and materialize ideas are an essential part of the development process.

For example, a game designer envisions the whole gameplay experience and storyline,

on the other hand, a graphical designer conceptualizes the visual aspect of characters,

backgrounds and User Interface (UI), etc.

Video games are a form of entertainment and are designed to engage the player on the

storyline and gameplay. This work details the different methodologies that were used in

different areas of expertise to create a 2D platformer video game. The result of that was

the development of a video game, namely as Super Milkman.

1. INTRODUCTION 1.3. OUTLINE

 4

1.1. Objectives

The goal of this project is to create a methodology for each disciplinary branch that

composes a video game. Since every branch covers a different area of expertise, these

methodologies differ from branch to branch. To accomplish this goal, the production and

development of a video game were studied and the followed methodologies were detailed

in this work.

In order to develop the video game for this project some objectives were established: i)

conceptualize an original and well-established game idea; ii) write the game storyline;

iii) create the Game Design Document (GDD); iv) develop gameplay, with responsive

character controls; v) create visual and audio effects appealing to the player; and vi)

organize the project and code structure to facilitate adding new components to the game.

1.2. Super Milkman, the video game

Super Milkman is a 2D platformer video game that was developed in this project.

The player needs to surpass challenges and collect items that will grant him access to the

next level. The levels are divided into zones, having each zone a distinct theme, enemies

and mechanics. The storyline progresses with the player clearing every level. To clear a

level, the player needs to collect token items and a key that will unlock the door that leads

to the next level. The items are spread around the level, some are hidden and others are

protected by enemies.

1.3. Outline

The remaining document is organized in three additional chapters. Chapter 2, describes

the state of the art, giving an overview of what makes a video game. Chapter 3 is divided

into four sections that represent the development stages: concept, pre-production,

production and post-production, and details how to start the development of a video

game, the implementation of each component and the end of the development. Finally,

Chapter 4 summarizes the main conclusions, the followed methodology and points to

possible future work.

 5

2. State of the art

Usually, the development of a video game requires the following lineup: i) game

designer, that creates the storyline, level design and idealized the whole idea of the final

game; ii) graphics designer, that creates all the 3D models or 2D sprites [3], graphics and

animations; iii) writer, to create all the dialogues and manuals; iv) sound designer and

composer, that create the music and sound effects; and v) programmer, that scripts the

whole game. In projects with a smaller budget and less manpower one person may have

to take several of these lineups, in contrast, larger budget projects have larger dedicated

teams for each. In [4] a section is used to detail each lineup individually.

Being a multi-disciplinary project, the structure of a humbler video game is more

complex than a simpler application. As usually, in software development the system is

composed of several pieces. Herein, it is considered the following main structure of a

video game: i) storyline; ii) rules; iii) characters; iv) game engine; v) game loop; vi) game

mechanics; and vii) level design. The diagram in Figure 2.1 depicts the main components

that constitute a video game.

Figure 2.1: Video game structure.

The storyline is the most important topic in the development process since everything

will be created around it, such as level design and game mechanics. This narrative is a

sequence of events that the player will experience, as every narrative, the storyline has a

beginning, a middle and an ending.

The player experiences the storyline by playing the game, the game executes inside an

infinite loop namely the game loop. This loop always performs the same steps, three of

those main steps are herein considered: i) process player and/or network input; ii) update

game state; and iii) generate output, like graphical updates, play audio, show dialogue

messages, and many others. The loop executes several times per second while the game

is running. Nowadays, game engines usually have two main loops that execute

independently, one for the graphics and other for the physics [5].

2. STATE OF THE ART

 6

The game is not defined by the loop, but by rules. Rules can be categorized into two

types, rules that the player follows and rules that the game follows. For the first type,

player’s rules, are achieved by validating the player actions before executing them, if the

action is not defined within the rules, then the action is discarded. An example of this

type of rules can be observed when playing the game Pac-Man [6], depicted in Figure

2.2, the player can only move in one of four directions at a time, or less if a wall is near.

The second type, game rules, establish conditions that are checked inside the game loop.

These conditions are the identity of the game and define what can and can’t be done.

Using Pac-Man, again as an example, the level is only completed when all the dots have

disappeared, having this condition validated means that another level can be loaded and

then the game can start again.

Figure 2.2: Pac-Man game, extracted from [7].

A concretization of rules are the game mechanics, force restrictions upon the player and

the game, they consolidate the game and are an essential component of the game design.

Using the Pac-Man example, the main mechanic in Pac-Man is turning the monsters into

weaklings by eating the big dots in the level, doing that the player can defeat the monsters

gaining points.

The levels can be created after the rules and mechanics are defined. For a greater

gameplay experience, some thought must be taken when designing the levels, an example

of level design can be found in the tutorial level 01-01 of Super Mario Bros (1985) [8].

In this level, the player learns the basic mechanics of the game by himself, without a user

manual or in-game indications. Figure 2.3 (a) depicts the first part of the level, with

components like a question mark blocks and an enemy. The question mark blocks reward

the player, however, the enemies cause the player to take damage. In the same scene,

there are pipes indicating that the player can go down, but some don’t work. The pipes

functionality, besides level decoration, is warping the player to another area in the level,

Figure 2.3 (b) depicts a working pipe that warps the player to an underground area,

depicted in Figure 2.3 (c). Having pipes that work and others that are decoration,

indicates to the player that the level isn’t as linear as it appears. These simple examples

allow the player to learn the important mechanics and elements of the level without

external help.

2. STATE OF THE ART

 7

(a) (b) (c)

Figure 2.3: Super Mario Bros. 1985 [8], parts of level 01-01 extracted from [9].

Characters are the ones that perform actions and interact with the game. There are two

types of characters, the non-playable and the playable. The Non-Playable Characters

(NPC) have a defined set of actions, like moving and interact with the player. Usually,

in platformer video games, the enemy characters are considered NPCs, since their

interaction with the player is attacking or just damaging it, and they have a specific

movement pattern.

The graphical component is what the player sees and interacts with, is where the game

materializes itself. Other components make use of the graphical component such as user

interface, cameras, animations, particle effects, cutscenes, terrain and others.

The player interacts with the game by the user interface, allowing navigation, it also

displays information to the player, such as errors, objectives, dialogue/text, game state,

events and the pause screen.

Animations make the object appear alive and fluid. Animations can be applied to all

elements that can be seen by the player, like user interface buttons, character models or

sprites, backgrounds and world objects. Frame by frame animation and skeletal

animation are the two commonly used techniques to animate in video games.

The frame by frame technique has been used for a long time, can be seen in real life with

flipbooks, as depicted in Figure 2.4, where each page is a different image (frame) and

when the pages are flipped they create an animation in our brain. This technique takes a

lot of human power and time to create because every frame must be drawn individually.

The first animated films used this technique, as depicted in Figure 2.5.

Figure 2.4: Flipbook, kineograph by John Barnes Linnett, extracted from [10].

2. STATE OF THE ART

 8

Figure 2.5: Frames from the short film “Steamboat Willie” by Walt Disney and Ub

Iwerks in 1928.

The skeletal technique uses a series of bones as structure and can be performed using 3D

models or 2D images, as depicted in Figure 2.6. The animation process works by moving

the bones to a determined position in space and mark it as a new keyframe. Playing all

the keyframes in sequence creates the animation, an example is depicted in Figure 2.7.

As simple as the process can appear, the difficult part is creating a smooth and real-world

accurate animation, like animating a humanoid character. An animator using this

technique must be knowledgeable about what he’s animating, else the animation won’t

appear fluid and will feel unnatural, an in-depth explanation is detailed in [11].

Figure 2.6: Skeletal animation (3D, extracted from [12], and 2D).

Figure 2.7: Animation using bones.

2. STATE OF THE ART

 9

The Visual Effects (VFX) transmit action to a scene. These effects are often used in

power-ups, character effects, explosions, fire, fluids, destruction, etc. Some types of

visual effects are particles and shaders. Particles don’t have a well-defined shape and can

represent moving liquids, clouds, flames, and smoke. To create a particle effect, many

2D images are generated and animated, as can be observed in Figure 2.8. Shaders are

scripts that contain calculations and algorithms, that calculates the colour of each

rendered pixel, an example is depicted in Figure 2.9, these scripts run directly in the

graphics processing unit (GPU) and are integrated into the rendering pipeline. A more

detailed explanation can be found in the blog article [13].

Figure 2.8: Explosion particle effect example [14].

Figure 2.9: Example of a third party shaders package in the game Minecraft [15].

The camera is the window into the game world. Camera position and perspective depends

on the game and its genre, for example, the side-scroller game depicted in Figure 2.10

places the player by the side, other genres can use a top-down view as depicted in Figure

2.11. The camera position can be static, following the playable character in the middle

of the screen or dynamic, changing with the player movement and level layout.

Figure 2.10: Super Mario World [8] with a side-scroller camera.

2. STATE OF THE ART 2.1. APPROACHES

 10

Figure 2.11: The Legend of Zelda [16] with a top-down camera.

Cutscenes are usually used to break the gameplay, and the player doesn’t have control

over his character. Having cutscenes transmits to the player important details of the

storyline by focusing the camera on the details of the scene. Usually, at the beginning of

a game, there’s an introductory cutscene that sets the initial storyline, as well as give

information of what is going on in the game, in form of animation or video. Another use

of cutscenes is for dialogues where the characters interact with each other, this can be

compared to a play or a movie scene. Cutscenes are very useful when the player triggers

some event, for example, when the player goes to a bridge and in the storyline that the

bridge falls, having a cutscene here makes sense, the player movement is disabled, the

camera can have a cinematic movement being focused on the bridge and some story

dialogue can be displayed to inform the player about the event taking place.

A video game wouldn’t be a multimedia experience without audio. The audio sets the

atmosphere of the scene, by having background music and characters sound effects the

action presented to the player is highlighted.

The act of playing a video game requires some sort of input device, the most common

are: touchscreen, gamepad, console controller, mouse and keyboard. These input devices

are platform dependent.

All the previous components need a foundation, that foundation is the game engine. The

engine provides core functionalities for creating video games, like rendering 3D and/or

2D graphics, physics simulation, collision, sound, animation, scripting, and others. In [5]

is described all the different components in a game engine and their complexity.

2.1. Approaches

There are no standard approaches that work for every game development, usually, every

team has their own ad hoc development process.

Project management in game development is very similar to traditional software

engineering project but with several multi-disciplinary branches that join their work at

some point in time. The most used development approaches for games are agile and

waterfall.

The waterfall approach [17] is very linear; each step must be concluded before the next

one starts. The development is divided into phases: requirements, design, code and test,

verification, finished product, and maintenance.

2. STATE OF THE ART 2.2. DEVELOPMENT STAGES

 11

The agile approach [18] is based on four phases that are repeated and iterated until the

video game is fully complete. These four phases are the following: discover, design,

develop and test. The main idea is to do small features in small periods of time, each

iteration can be seen as a short project itself.

A commonly [19] used document is the Game Design Document (GDD), describing the

whole game and what it aims to be in the future. All the ideas that are planned to be in

the game are detailed in the document. The document also serves as a guide while the

game is being developed and must be updated frequently to reflect the actual state of the

game and what it aims to be. After reading this document the reader should be able to

understand the whole game, how to play it and its main objective.

An optional document is the Technical Design Document (TDD), that is a more technical

document than the GDD and it is targeted to programmers. In this document are presented

a detailed list of all the features and game mechanics, as well as the reasons for some

choices software-wise, like application logic and artificial intelligence.

2.2. Development stages

The development of a game is usually divided into five stages: i) concept; ii) pre-

production; iii) production; iv) vertical slices; and v) post-production.

The first stage is where the concept of the game is developed. A market analysis is made

to assess if the concept is viable or not. Design goals are created and the game price is

fixed so the next stages can be managed accordingly, and teams created.

After the concept is defined, the pre-production starts and the initial documents are

created, the main objective is to create the Game Design Document, GDD. Usually, to

create this document, several iterations over the concept and initial design document are

required. Before production starts, this document must detail very clearly all the ideas

and options. Typically, some ideas are prototyped to analyse if they are worthwhile to be

implemented in the production stage.

In the production stage, all the lineups are involved. In this stage, the user interface is

defined, alongside the creation of the sprites/3D models, the sound effects, and music.

Finally, the programmers start to code all these components. Meanwhile, the game

designers continue to change the overall idea of the game with new features, or details,

or they just redo an idea from scratch.

Vertical slices although not considered as typical stages, are still an important milestone

in the development process. Vertical slices represent the progress made across all the

components of a project, in this case, the video game. The main goal of these slices is to

demonstrate the progress made so far. The main ones are alpha, beta and gold master.

Alpha, a very rough playable game with still a lot of bugs and not polished. Not all the

features are yet implemented, only the major features are implemented. Beta, still rough

but almost release ready, still some bugs to polish. All the features are implemented.

Gold Master, ready to be distributed, all major bugs that prevent the normal flow of the

gameplay are fixed and the game is ready to be played.

In the post-production stage, the last one, user bug reports are reviewed and fixed, in

some cases, some unreleased content is completed and added to a new version, as

downloadable content (DLC) and published.

 13

3. Video game development

The development of the video game Super Milkman was divided into four different

stages, as previously detailed in Chapter 2.2: i) concept; ii) pre-production; iii)

production; and iv) post-production.

The development starts with the concept stage where everything is sketched, thought and

planned. After the game has been roughly thought, the pre-production follows. This is

the stage where decisions that influence the future development will be taken, the game

starts to take shape. Following is the main stage, production, that implements all the ideas

from the previous stages and concretizes the video game. After the game is completed,

the next stage is the post-production where some features are added and bugs are fixed.

The following sections will detail the development process of Super Milman.

3.1. Concept stage

This is the no consequence stage; everything can be changed at any time. This allows for

a brainstorm of ideas in order to choose the best ones for the production stage. At the end

of this stage some aspects of the game must be defined: i) budget; ii) target audience; iii)

game genre; iv) game storyline; v) gameplay ideas.

A helpful way to aggregate all these aspects is writing the GDD, as referred at the state

of the art, this document will accompany the project until the end. At this stage, the GDD

must have the general idea of the game, in just one page.

The concept stage in the development of Super Milkman started with the writing of the

one-page GDD (depicted in Appendix A) describing the storyline, the gameplay roughly

explained and all the other aspects mentioned above. A project plan was also made, and

the goals have been prioritized. Table 3.1 depicts the plan and the estimated duration of

each task. Also, some conceptual art was drawn, specifically the playable character, an

enemy and some world objects, as depicted in Figure 3.1.

(a) Playable character; (b) NPC, enemy.

Figure 3.1: Game characters concept art.

3. VIDEO GAME DEVELOPMENT 3.2. PRE-PRODUCTION STAGE

 14

Task Priority Duration

Game storyline and gameplay idea High Two weeks

Write the GDD High Two weeks

Conceptual art Low Two weeks

Learn and study the game engine High Six weeks

Placeholder artwork High One week

Level terrain Medium One week

Characters High Six weeks

Main mechanics High Four weeks

World objects Med Three weeks

User interface Medium One week

Final artwork Low Two weeks

Sound and music Low Two weeks

Table 3.1: Project plan.

3.2. Pre-production stage

The previous stage started the GDD, the pre-production stage requires a more elaborated

and complete version before the production stage begins. The GDD is a living document

and must be updated frequently or else will become obsolete and outdated as the

development progresses. All questions related to the game must be able to be answered

just by reading the GDD.

The GDD of Super Milkman (depicted in Appendix B) is divided into the following

sections: i) storyline, where all the story is explained and the characters are elaborated;

ii) playable character, its movement and mechanics; iii) gameplay, details the objectives

of the game, how the levels are designed and how to navigate inside the game; iv) game

world zones and their enemies; v) feel of the game, how the camera works and where the

music and sound effects must be placed; vi) core mechanics explained; and lastly, vii)

enemies and their attacks. All this information added to the GDD will be extremely

important in the production stage, as every detail about the game is located in one

document and can be easily accessed.

Also, in this stage, the game engine needs to be defined, this choice will condition the

rest of the development workflow. There are two alternatives, an existing engine or

creating an engine from scratch. If the choice is an existing game engine, a lot of work is

already done. In this case, the developers can be more focus on the game story and

gameplay, since there’s no waiting between idea and execution. The development can be

gameplay focused. On the other hand, creating a game engine from scratch is more

challenging and opens the possibility to create custom features. Until the game engine is

created the scripting component of the game is on hold, meaning that the development

time must be extended. If the development time is short, gameplay centred, with a tight

budget, and the objective is to create a game as fast as possible, then using an existent

one is the better choice. There’s no right choice when choosing between these two

3. VIDEO GAME DEVELOPMENT 3.3. PRODUCTION

 15

alternatives, both have their pros and cons. If the goal is to create something new and the

development time is vast, then it could make sense to create a new engine from scratch.

Another factor to consider is the knowledge that is required to create a new engine versus

an existing one. To create a new engine the developers need to have extensive knowledge

in mathematics, physics, graphics, implementing software architectures and support all

the different video game target platforms.

Herein, the purpose is to implement a video game and not to create an engine, so an

existent engine will be used. The two most used engines nowadays [20] are Unreal

Engine [21] and Unity [22].

Unity allows deploying the game to over 25 platforms, including Windows, macOS,

Linux, Nintendo 3DS, Nintendo Switch, Xbox One, PlayStation 4, iOS, Android and

many more [23]. This engine can be used to develop 3D or 2D games. The minimum

specifications to run the editor and some games created in it is very budget-friendly,

lower-end computers can run it [24]. Advantages: i) it’s free to use, perfect for beginners

[25]. Free when the generated annual revenues or raised funds less than $100k; ii) uses a

high-level programming language, quicker to program than with lower-level languages;

iii) allows rapid prototyping. Disadvantages: i) proprietary engine, developers can’t

tweak the engine because is vendor locked.

Unreal Engine 4, like Unity, allows developers to deploy to many platforms, but not as

many. Many large budget video games that have high demanding graphics [26] use this

engine. Advantages: i) a very powerful engine, in the graphics department Unreal

Engines is great with lighting, visual effects and textures, great for creating photorealistic

games; ii) the engine is open-source [27]; iii) has a visual scripting system (Blueprints)

enabling quick prototyping for non-programmers. Disadvantages: i) price, 5% royalties

[28]; ii) uses a low-level programming language.

The choice for this project was the Unity engine since it offers a modern fully-featured

managed programming language, C# [29], making it easier to program and straight to

the objective that is the creation of a video game. Furthermore, other factors for choosing

Unity was its wider active community and better-written engine documentation.

Like the previous stage, pre-production is also an exploratory stage where prototypes are

built and decisions can be made to transition new ideas to the production stage. In Super

Milkman this exploration process was learning the engine API [30] and its editor, and

also to get used to game development workflow and project structure.

3.3. Production

This is the main stage of the development; all the exploratory work was already done in

the previous stages and with all the goals set, the video game can start to be developed.

The approach used in the development is iterative and incremental, every iteration

improves upon the previous one. Each iteration must be doable, have clear goals and the

result should be evaluated. A good example can be explained with an iteration over the

playable character, assuming this component is not complete yet, the sprites, animations,

and sound are still missing, but the behaviour is already programmed, future iterations

can add these missing parts to the character finalizing it.

3. VIDEO GAME DEVELOPMENT 3.3. PRODUCTION

 16

To take advantage of this iterative approach, the production stage of Super Milkman was

divided into five independent branches: i) arts and graphics; ii) level layout; iii) user

interface; iv) audio; v) programming.

Each branch can be developed independently since crucial pieces can be placeholders

until they are replaced when available, this way the development flow continues without

waiting for other branches to complete their part.

Before all branches begin their development, global goals must be set. The GDD can

provide that help, but it doesn’t specify what each branch is assigned to do. Table 3.2

provides guidance to complete each task, achieving completion may take several

iterations in the different branches, culminating at the end with the finished component.

Task Subtasks Branch

Screens navigation

Buttons and backgrounds Arts and graphics

Screens User interface

Navigation Programming

Screen music and SFX Audio

Actors
{Playable character and

enemy}

Sprites and animation Arts and graphics

Animation scripting Programming

Mechanics Programming

Movement Programming

SFX Audio

World objects

Sprites Arts and graphics

Mechanics Programming

SFX Audio

Level

Level controller Programming

Death zone scripting Programming

Death zone placement Level layout

Actor placement Level layout

World object placement Level layout

Camera Level layout

Heads-Up Display (HUD) User interface

HUD scripting Programming

Create tiles Arts and graphics

Design the level Level layout

Table 3.2: Project tasks.

3. VIDEO GAME DEVELOPMENT 3.3. PRODUCTION

 17

3.3.1. Arts and graphics

This branch creates the graphic component of the videogame, which is what the player

sees. For other branches to start their work, they may need some art assets. The first

iteration created the placeholder assets, usually, they are basic shapes or assets from

another game.

The following iterations refine the placeholders and improve upon the basic shapes. This

can be accomplished by drawing digitally the components in an image editor program

like GIMP (free) [31], Inkscape (free) [32] or Adobe Photoshop (paid) [33]. The drawing

must follow the GDD guidelines. Another way is to acquire sprites and images already

made, this can be done by outsourcing or getting them for free on websites like

OpenGameArt [34] or Itch.io [35].

In Super Milkman this branch was divided into four iterations: i) placeholder; ii) paper

drawing; iii) digital drawing; and iv) animation. The first three iterations were for sprites

development and the progress can be observed in Table 3.3, the detail increases at each

iteration.

3. VIDEO GAME DEVELOPMENT 3.3. PRODUCTION

 18

Object Placeholder Paper drawing Digital drawing

Terrain

(digital

outsourced

from [36])

N/A

Playable

character

Enemy

Collectable

token

Teleport door

Final door

Button

Push block

Chest N/A

HUD

Background
(outsourced

from [37])
N/A N/A

Table 3.3: Graphics iterations.

3. VIDEO GAME DEVELOPMENT 3.3. PRODUCTION

 19

The final iteration is animation. Not every component needs to be animated, in this case,

the only components animated were the playable character and the enemy. In order to

keep track of what animations are required, a list as depicted in Table 3.4 can be created.

Having the animations written down prevents the creation of unnecessary animations.

For both actors were created conditional graphs, called animators [38], each edge of the

graph has a condition making only possible to transition to another node when the

condition is met. The animator graphs use all the animations listed in Table 3.4, the

graphs are depicted in Figure 3.2 and Figure 3.3.

Character Animation name

Playable

character

Idle

Walking

Jumping

Crouch

Attacking

Crouch

Falling

Enemy

Idle

Walking

Targeting player

Attacking

Fainted

Table 3.4: Animation list for each actor.

Figure 3.2: Playable character animator graph.

3. VIDEO GAME DEVELOPMENT 3.3. PRODUCTION

 20

Figure 3.3: Enemy animator graph.

In Super Milkman, the animation process was performed using a technique called skeletal

animation, described in Chapter 2. For this technique, the character sprite needs to be

split by its members, as depicted in Figure 3.4 (a), this way the bones can be attached to

them. The bone structure over the sprite is depicted in Figure 3.4 (b). The animation

process starts by moving the bones to a position and creating a keyframe. An animation

is a set of keyframes that are played in sequence, an example keyframe of the attack

animation is depicted in Figure 3.5. An extensive explanation on how to attach the bones

to the sprite and how to create the animations on Unity can be found in [39].

(a) Body detached. (b) Body attached by bones.

Figure 3.4: Playable character sprite.

3. VIDEO GAME DEVELOPMENT 3.3. PRODUCTION

 21

Figure 3.5: Keyframe using bones.

3.3.2. Level layout

This branch designs and creates each level of the game. Level design is a very important

part of the overall gameplay experience and is influenced by game mechanics and

characters in the level. Since level design is not the focus of this work it won’t be herein

fully explored.

The approach to level design in Super Milkman was to present the mechanics

incrementally to the player, introducing them one at each time. This way the player gets

used to it and learns how it works on their own.

In a 2D platformer game, the level layout is usually implemented in one of three methods.

The first is placing the terrain assets in the level and resizing them accordingly to the

level layout, as depicted in Figure 3.6. Another way is to use the same method as before

but adding shape to the sprites, using sprite shapes [40], allowing for a curved terrain

from straight sprites, an example is depicted in Figure 3.7. The last method is to use a

tilemap [41], a tilemap is a rectangular grid where the level designer can place tiles,

regular sprites as depicted in Figure 3.8.

Figure 3.6: Rectangular asset as terrain, extracted from [42].

3. VIDEO GAME DEVELOPMENT 3.3. PRODUCTION

 22

Figure 3.7: Sprite shaped as terrain, extracted from [43].

Figure 3.8: Tiles as terrain, extracted from [44].

Every method presented before is valid, although in Super Milkman the method used was

the tilemap because it allowed faster level creation time and the uniformity across levels.

However, this choice requires several different tiles that need to be placed manually, the

tileset use is herein depicted in Figure 3.9. Placing the different tiles by hand takes a huge

amount of time as the number of levels grows and it is not time-efficient, this problem

can be overcome by creating rule tiles. A rule tile, as depicted in Figure 3.10, is a set of

tiles encapsulated in one tile that can adapt to its surroundings. Having rule tiles is a huge

time saver because the rules only need to be created one time, after that the tile can be

used and the surrounding tiles change dynamically in the level as they are placed.

Figure 3.9: Terrain tiles.

3. VIDEO GAME DEVELOPMENT 3.3. PRODUCTION

 23

Figure 3.10: Rule tile.

Each level is composed by three main tilemaps, as depicted in Figure 3.11: i) background,

for decoration only, can have several layers with different depths; ii) foreground, is the

visual boundaries of the level; iii) terrain boundaries, invisible sprites that contain the

terrain collider.

The terrain collider was purposely isolated from the foreground tilemap in order to

control the tilemap collider shape. Usually, terrain sprites have complex shapes, meaning

the collider wraps around that sprite creating a complex collider (Figure 3.9), using

another tilemap and rectangular sprites creates the possibility to have a more efficient

collider.

① Background ② Foreground ③ Collider (in red to be visible)

Figure 3.11: Different tilemaps that compose the level, in perspective.

The development of this branch was delayed several times since it had to wait for the

other branches to conclude their work. The first iteration was the placement of the terrain

using a tilemap. The tilemap was composed of placeholder sprites, this allowed to design

①

②

③

3. VIDEO GAME DEVELOPMENT 3.3. PRODUCTION

 24

the level structure and place world objects and enemies. The second iteration was the

refinement of the objects and enemies, also added the death triggers when the player falls

into pits. The final iteration was the creation of tile rules, finishing touches like sound

and level decoration, and finally the camera work. Table 3.5 presents the progress on a

prototype level.

Iteration Result

1 - Level designed

with placeholder

art.

2 – Tiles placed

manually and

added some final

artwork.

3 - Final art,

sounds, decoration

and set camera.

Table 3.5: Prototype level iterations.

After these iterations a systematic way of construction levels was defined: i) create the

terrain using the rule tiles; ii) place the common objects of every level: final door, five

tokens, chest with key and enemies; iii) death zones; and iv) place camera boundaries.

3.3.3. User interface (UI)

This branch is responsible for two components, the screen navigation and display in-

game information.

In order to keep track of how many screens there is, a list of all of them and their purpose

can be made, Table 3.6 presents the list of screens for Super Milkman. After the list is

created, a graph showing the screen transitions can be designed, this way the

programming branch has a reference when linking the screens, depicted in Figure 3.12.

3. VIDEO GAME DEVELOPMENT 3.3. PRODUCTION

 25

Screen name Purpose

Main menu Present options (Credits, Play, Options and Exit game).

Credits
Lists all the elements involved in the development and

acknowledges external help.

Options Change overall music volume.

Level selector Displays all the available levels that the player can choose.

Level Gameplay.

Pause
Puts the gameplay in a suspension state and waits for the

player to resume it.

Finish screen Presents information when the player completes the level.

Table 3.6: Screens and their purpose.

Figure 3.12: Screen transition graph.

In Super Milkman the navigation and displaying information had lower priority during

development. The development process was composed of four iterations: i) display level

and player information while playing; ii) create the screen's outline; iii) replace the

placeholders with the real graphics; iv) not in this branch but still part of the process, the

programmers bind the UI elements to the game scripts, reflecting the game state and

creating navigation.

The first component created was the Heads-Up Display (HUD), this component resides

in the level screen and displays the player and level state. The HUD is divided into three

zones as depicted in Figure 3.13. The first zone is the key, when coloured means that the

player has collected it; the second is the health, it is represented by five hearths and when

the health decreases the hearths became grey. The last zone is where the five tokens

appear when they are collected.

3. VIDEO GAME DEVELOPMENT 3.3. PRODUCTION

 26

① Key ② Health ③ Tokens

Figure 3.13: Heads-Up Display (HUD).

The next iteration created all the screens that compose the screen graph, after outlining

the screens and waiting for the graphics, the final iteration of this branch is completed,

the screen iterations are presented in Table 3.7.

After de UI was complete all that was left was linking the screens, that was assigned to

the programming branch.

Screen Placeholder Final

Main Menu

Credits

Level Selector

Table 3.7: Screens progress.

3.3.4. Audio

This branch is responsible for creating the music and SFX. For the audio clips, there are

two ways to approach it: i) create them in software, record them with a microphone or

use instruments; and ii) outsourcing them.

In Super Milkman all the audio clips were outsourced. Commonly the audio files can be

acquired by contracting a sound engineer, by buying them from the engine store or by

②

③

①

3. VIDEO GAME DEVELOPMENT 3.3. PRODUCTION

 27

downloading them for free in websites like Freesound [45], 99Sounds [46] or

OpenGameArt [34].

To ensure interoperability across all the branches a list of the sounds has been defined,

Table 3.8 resume the basic audio for Super Milkman.

Type Audio name Location Description

Music UI ambient UI screens, excluding level Calm music

Music Level ambient Level, excluding Pause screen Nature music

SFX Teleport Doors Fast sound

SFX Open chest Chests Opening chest

SFX Hurt Enemies Quick hurt sound

SFX Hammer attack Player / Weapon (Hammer) Dirt explosion

SFX Jump Player Jump sound

SFX Push Push block Drag rock sound

SFX Token acquisition Tokens Collect sound

SFX Token placement End level door Placement sound

SFX Button click Button Click sound

SFX Sliding Sliding door Elevation sound

SFX Success When the level is complete Success sound

Table 3.8: Super Milkman basic audio list.

3.3.5. Programming

The programming branch is responsible for transforming the rules and mechanics that

were described in the GDD into code that enforces them in the video game.

The following three sections explain the programming process of Super Milkman. The

first section explains the basic key concepts in Unity, the other two dissect the UI

implementation and level implementation.

3.3.5.1. Unity basics

This project was developed using the Unity engine and its editor. In order to understand

the following sections some key concepts in Unity will be explained: i) scenes; ii) the

MonoBehaviour class; iii) layers and tags; iv) colliders; v) rigidbodies; vi) prefabs: vii)

coroutines.

A scene is what the player sees, can be UI and/or the game world. Each scene is

composed of several gameobjects1 that act as a container for components and scripts, all

these gameobjects are positioned in the scene in a cartesian coordinate system. Each

gameobject can contain components such as UI elements, sprites, 3D models, scripts,

animators, etc.

1 https://docs.unity3d.com/Manual/class-GameObject.html

https://docs.unity3d.com/Manual/class-GameObject.html

3. VIDEO GAME DEVELOPMENT 3.3. PRODUCTION

 28

The behaviour of a gameobject is defined by its scripts, these scripts derive from the base

class MonoBehaviour2. This class has all the methods and fields used by the Unity engine

already defined. The life cycle [47] of every instance of MonoBehaviour is managed by

the game engine and its methods should not be called programmatically, the engine takes

care of it. In Unity the physics loop executes the FixedUpdate method of every

MonoBehaviour and the graphical loop executes the Update method each frame, so code

that manipulates physics or graphics should be placed in their respective method.

Every gameobject has a layer attributed to it, this layer can be used as a filtering condition

when evaluating for collision using a LayerMask3. An example usage for layer masks is

for object detection on an actor, a ray can be cast in front of the actor and be parametrized

with the respective layer mask, if the ray hits some object with a layer belonging to the

mask then there’s an object in front.

Tags4 allow gameobject identification. An example usage for tags, is the clear condition

of a level, being the condition to defeat all enemies, given that all enemies have the tag

“Enemy”, is possible to find all gameobjects with that tag and validate if all of them were

defeated.

A collider delimits an object and can be categorized as physical or trigger. A physical

collider registers when it touches another without overlapping their boundaries. A trigger

collider registers when another collider enters its bounds. Whenever the physics engine

registers a touch or a trigger, it sends a message to the respective method. This message

is received by the OnCollision or OnTrigger method suffixed with Enter, Exit or Stay; if

the gameobject has 2D physics then the 2D suffix is added to the method name like

OnCollisionEnter2D that receives a message when a 2D object touches another collider.

The Enter and Exit methods are called in the moment of the contact or trigger, and the

Stay method is called every frame the collider is touching or in trigger bounds.

A rigidbody5 is a component that applies physics to an object. The manipulation of this

type of objects must be performed in the physics loop. Like colliders, rigidbodies can be

either 2D or 3D, since Super Milkman is a 2D game, whenever is referenced Rigidbody

what is meant is Rigidbody2D6. A Rigidbody2D has one of three body types: i) static,

disables every force to be applied to the object, it is supposed to be attached to objects

that never move; ii) kinematic is similar to static but only collides with dynamic body

types and is only moved by applying velocity to it or by explicitly changing its position;

last type iii) dynamic, this reacts to gravity and external physic forces from other dynamic

or kinematic rigidbodies. Each one of these body types has its purpose. The following

details some examples: i) static type can be used for walls or ground, something that

doesn’t move; ii) kinematic type can be used to move the rigidbody through code like a

platform that moves from point A to point B; iii) dynamic type can be used for actor

movement.

2 https://docs.unity3d.com/ScriptReference/MonoBehaviour.html

3 https://docs.unity3d.com/ScriptReference/LayerMask.html

4 https://docs.unity3d.com/Manual/Tags.html

5 https://docs.unity3d.com/ScriptReference/Rigidbody.html

6 https://docs.unity3d.com/Manual/class-Rigidbody2D.html

https://docs.unity3d.com/ScriptReference/MonoBehaviour.html
https://docs.unity3d.com/ScriptReference/LayerMask.html
https://docs.unity3d.com/Manual/Tags.html
https://docs.unity3d.com/ScriptReference/Rigidbody.html
https://docs.unity3d.com/Manual/class-Rigidbody2D.html

3. VIDEO GAME DEVELOPMENT 3.3. PRODUCTION

 29

A prefab7 is a template of a gameobject that is saved as a file with all the components

and their properties. Prefabs can be reused in many scenes and several times in a scene.

A good use example is to reuse the main character since it has several components like

the animator, sprite, movement script and health. Also, creating a prefab character allows

it to be reused on a different level while maintaining all its components and properties

across all levels, even after modified the changes will be reflected in every scene.

Lastly, coroutines8, are functions that can pause their execution. An example usage is the

movement wall from position A to B when a switch is active. In order to move the wall

a loop is needed. Normally the moving loop will execute until completion, so the wall

will be moved to the last position within one frame. The moving loop needs to be paused

so that the new position is updated in the graphical engine. To resolve this problem

coroutines can be used since they can be paused and return control to the engine. And

then continue performing the loop where it left off on the following frame. Now the

moving loop pauses every position change until the last position is reached.

3.3.5.2. User Interface dissection

Scenes represent the screens that the player can interact with. As mentioned before, in

Chapter 3.3.3, the UI branch completed the design and creation of each screen as well as

the navigation graph. What was left was linking each scene, this was accomplished by

using the Unity ScreenManager API9. Each UI button has an OnClick method that was

programmed to call the ScreenManager API in order to load the next scene, the API

requires the index or the scene name. The approach used for storing the scene names was

to store them in a class with constant values, the disadvantage is that when a scene is

renamed the constant value needs to be changed, creating a need to recompile the code

again. Another approach to resolve the naming problem is to use an external file that has

a key-value structure with the key being the scene identifier and the value the name of

the scene. Implementing this last approach would be similar to the previous since both

approaches store the name of the scene with an identifier. In the approach used the

identifier is a class constant and the scene name is its value. In the key-value approach,

the identifier is the key and the value is the identifier, this structure can be stored in an

XML or JSON file. This last approach still makes use of a class to store the class

identifiers that are mapped to the structure keys, but the actual scene names remain in an

external file that is editable without changing any code. The approach used in Super

Milkman was the first one since it is simpler and the number of screens is small.

The level select screen lists all the levels dynamically with pagination, each page is called

world and has its own set of levels. To store the level and world information were used

Scriptable Objects10, since they provide a way to store data in individual files according

to the class fields, as in Listing 3.1. The level select scene has a script that takes an array

of World instances of the ScriptableObject and these worlds have a set of Level instances

themselves. The script loads into the UI every world and places buttons that represent

each level, as well as create the navigation between worlds. The level scriptable object

has a field called sceneName and when the level button is clicked it calls the

ScreenManager API to load that level scene with the specified name.

7 https://docs.unity3d.com/Manual/Prefabs.html

8 https://docs.unity3d.com/Manual/Coroutines.html

9 https://docs.unity3d.com/ScriptReference/SceneManagement.SceneManager.html

10 https://docs.unity3d.com/Manual/class-ScriptableObject.html

https://docs.unity3d.com/Manual/Prefabs.html
https://docs.unity3d.com/Manual/Coroutines.html
https://docs.unity3d.com/ScriptReference/SceneManagement.SceneManager.html
https://docs.unity3d.com/Manual/class-ScriptableObject.html

3. VIDEO GAME DEVELOPMENT 3.3. PRODUCTION

 30

1. [CreateAssetMenu(fileName = "W00L00",
menuName = "Level")]

2. public class Level : ScriptableObject
3. {
4. public string levelName;
5. public string sceneName;
6. }

1. [CreateAssetMenu(fileName = "W00",

menuName = "World")]

2. public class World : ScriptableObject

3. {

4. public string worldName;

5. public int worldNumber;

6. public Level[] levels;

7. }

Listing 3.1: Level and World scriptable objects.

3.3.5.3. Level dissection

In this section, the level will be dissected since it is the main part of this video game.

Each level in Super Milkman has the same structure and components; the only difference

between levels is the level layout, the enemy placement and what and where the world

objects are placed.

The development started with the planning what composes a level, the result is the

diagram depicted in Figure 3.14. The main building blocks that compose the level are: i)

game controller, containing the rules that the level must follow and sets it up so it’s ready

to play; ii) level controller, an optional component and can have custom level logic,

making the level unique; iii) actors, also called characters have movement and perform

actions; iv) world objects, populate the game world and interact with the actors; v) HUD,

displays important information always on the screen; and vi) camera, is windows where

the player sees the game.

After that planning, each component in the level had designated a priority in which it

would be developed. This planning is resumed in Table 3.9, that details the component,

its priority and the reason for having that priority.

3. VIDEO GAME DEVELOPMENT 3.3. PRODUCTION

 31

Figure 3.14: Super Milkman diagram.

Component Priority Explanation

Camera Medium
The default one can be used until further

progress is done.

World objects High

The objects interact with the player and the

mechanics are design and developed around

these interactions.

Game controller Low
Coordinates when the level is complete, only

needed further in development.

Level controller Low
Level coordinator, only needed further in

development.

Terrain High
Contributes to testing mechanics and actors

movement.

Respawn controller Medium

Not essential but helps when testing the

health component in the actor, also translates

the player to a previous position.

Enemy High
Interacts with the player and shares

components with the Player.

Player High

Is the actor that the player controls, this

character interacts with all the level

components.

Table 3.9: Component priority table in development.

3. VIDEO GAME DEVELOPMENT 3.3. PRODUCTION

 32

The development was iterative like the previous branches, firstly was developed the base

actor that had the development iterations as presented in Table 3.10, the actor was later

extended to be a player and an enemy since all these characters shared the same base

components.

Iteration # Actor Player Enemy

1 Movement interface Input movement Linear movement

2 Actor bounds Abilities
Linear movement

without falling

3 Weapons and Health Hurt on contact

Awareness of the player

and when close use

weapon

4 Animation Weapons Pursue player

Table 3.10: Actor and its inherent children iterations.

The first iteration created the skeleton of the actor controller. An actor needs several

fields in order to be able to interact with its surroundings. The main fields are: i) a box

collider, called hitbox, that surrounds the sprite and collides with terrain, world objects

and enemies; ii) a layer mask, used to contain the layers where the actor can move, also

for checking if the actor is touching the ground, ceiling or has something in front of him;

iii) sprite direction, to know if the sprite is facing the correct direction, this is used when

the actor changes movement direction so it can flip the sprite to face the new direction;

and iv) default movement speed is used by the Move method. With these fields and some

methods, the first iteration of the abstract actor controller is complete, the simplified class

diagram is depicted in Figure 3.15.

Figure 3.15: Actor controller class diagram, first iteration.

The second iteration added boundaries to the actor in order to validate if it is touching

the ceiling, the ground or if it has something in front. Since ActorController is an abstract

class, its children inherit all these fields and can access them. There are three boundaries

for ceiling, ground and front. These boundaries help calculating when the actor is

touching its surroundings. The approach used to update the checkers was to have three

rectangular boundaries using Bounds11 struct and placing them overlapping the actor

surroundings trigger collider, as depicted in Figure 3.16.

11 https://docs.unity3d.com/ScriptReference/Bounds.html

https://docs.unity3d.com/ScriptReference/Bounds.html

3. VIDEO GAME DEVELOPMENT 3.3. PRODUCTION

 33

Figure 3.16: Actor colliders and boundaries.

This trigger collider acts as a proximity sensor sending messages to the OnTrigger{Enter,

Exit and Stay}2D methods, the inherent classes of ActorController can implement the

methods OnTriggerEnter2D and OnTriggerExit2D to call the CheckCollision method,

this method updates the three checkers with similar code as in Listing 3.2. A child class

shouldn’t use the remaining method, OnTriggerStay2D, since it would execute the

OverlapBox function several times per seconds without being necessary and adding CPU

processing time. The result of the checkers needs to be saved in a field, using that field

the children of the ActorController can read its state, Figure 3.17 depicts the updated

class diagram.

1. float angle = 0;
2. bool checker = Physics2D.OverlapBox(actorPosition + boxBounds.center,

boxBounds.extents, angle, groundLayerMask);

Listing 3.2: Code that checks if a boundary overlaps a collider.

Figure 3.17: Actor controller class diagram, second iteration.

After the base actor controller is defined, new components could be added, the third

iteration adds health and weapons.

The actor has a health component, that controls its state, alive or dead. This component

has four events that other objects can subscribe: i) OnChangeHealth, when the health

changes, gets higher or lower; ii) OnDeath, when the actor has no more health points; iii)

3. VIDEO GAME DEVELOPMENT 3.3. PRODUCTION

 34

OnDamage, when the actor takes damage and the health points decrease; and iv) OnHeal,

when the health points increase. These events can be used by the actor controller to play

particles effects or to update the UI. Since the decrement of health points happens in the

Update method, usually when collisions happen, that means that the actor can be left

with no health point if the collisions occur very fast. There’s a need to have a cooldown

timer between hits or the actor can die almost instantly, before any decrease in health

points the cooldown timer is checked and after the actor takes damage the cooldown

timer is reset.

In order to have different types of weapons, projectile and handheld, was created an

abstract class that every weapon must extend. This class has a few fields like the

cooldown time between usages and a layer mask that defines what gameobjects in the

specified mask the weapon can damage and has a single method for using the weapon,

the simplified class diagram with its children is depicted in Figure 3.18. The children

classes were developed in the enemy and player iterations.

This iteration added a few fields to the ActorController since it only added the Health

and Weapon components.

Figure 3.18: Weapon abstract class and its children.

The next iteration didn’t require much more additions since the ActorController is the

base class that others must extend. But several abstract methods were added: i)

UpdateMethod, called by the base class in the method Update; ii) AnimateActor, called

by the base class before the Update method exits; iii) FixedUpdateMethod, called by the

base class in the method FixedUpdate. This approach of creating new methods that the

children use instead of the ones provided by the engine allows to encapsulate numerous

validations and removes the responsibility from the child classes.

The Update method in the ActorController firstly verifies if the actor is alive then calls

the UpdateMethod of the child class and lastly the AnimateActor. This way the child class

only implements the logic of their specific actor. The same is done for the FixedUpdate

method, it verifies if the actor is alive and then calls the FixedUpdateMethod method

from the child. There’s still the possibility of overriding the FixedUpdate and Update

methods but then the actor behaviour would be discarded. Since the new methods are

abstract, they must be always implemented.

Having an AnimationActor method simplifies the animation process since it encapsulates

all the animation code in one method. This method is called by the base class, removing

3. VIDEO GAME DEVELOPMENT 3.3. PRODUCTION

 35

this responsibility from the child class, every actor type sets proper values, so their

animator can transition to another animation.

After all these iterations, the ActorController class is complete and ready to be used as a

base for the PlayerController and the EnemyController, its class diagram is depicted in

Figure 3.19

Figure 3.19: Final iteration of the ActorController class.

Starting with the PlayerController, the initial iteration was about the input. The class

responsible for handling the inputs has a reference for the PlayerController, every input

is read in the Update method and physics-related code is executed in the FixedUpdate.

In the Updated method, the movement values are stored. The movement is executed in

the FixedUpdate method by calling the Move method in the PlayerController with the

values read in the Update method. The player input is very modest in this iteration, the

verification is done by testing if the key in the keyboard is being pressed.

The second iteration was the abilities. The abstract Ability class has three main methods,

the BeginUsing, WhileUsing and EndUsing, and an AbilityState: InUse, ReadyToUse,

CantUse. The ability states determinate if the ability can be used or not, or if it is already

being used. The InUse state is when the player is using the ability; the ReadyToUse state

is when the player is not using the ability but can use it; the CantUse state prevents the

user from using it. The three methods, in the Ability class, assure that the state of the

ability changes correctly, the class diagram is depicted in Figure 3.20. Two abilities were

made to ensure that this approach would work, the abilities were push block and dash.

Since the input method still uses keypresses, a dictionary with keycode and ability was

created in the PlayerController, this allows to loop over every ability checking its state

and if the key is pressed. If there aren’t abilities in use or is the same ability but in a

different state, then the begin, while or end method will be called accordingly.

3. VIDEO GAME DEVELOPMENT 3.3. PRODUCTION

 36

Figure 3.20: Ability class diagram.

The third iteration implemented collision damage between actors. The HurtOnContact

script decreases the health of an actor when it collides with a gameobject that has their

layer in its layer mask. In order to have visual impact when the player is hurt on contact

a force is applied in the rigidbody of the player projecting it backwards. The class

diagram of HurtOnContact is depicted in Figure 3.21.

Figure 3.21: HurtOnContact class diagram.

The last iteration on the PlayerController were the weapons, these weapons are not

exclusive for the player since all actors can have a weapon. Some weapon can even

function without an actor, for example, a gun in a wall. Two weapons types were created,

a melee and gun.

A melee class was created to be the base to more weapons of this type. Melee weapons

don’t shoot, they only check if there are targets in front of the actor when used. The only

melee weapon implemented was a hammer. The Hammer class implements the Use

method from the Weapon class and uses the Physics2D.OverlapBox function to validate

if any gameobject found is within the specified layer mask. The output of the OverlapBox

function is needed, differently from the checkers used on the ActorController where the

only purpose was to verify if there was something there, the output is a Collider2D array

with the targets. After obtaining the targets, there’s an iteration over them where the

health points are decreased and the knockback force is applied.

To finalize the weapons, the gun type. The Gun class has a field for the bullet prefab, this

field will be used to create an instance of that prefab. In order to instantiate a child of a

MonoBehaviour there’s a function12 provided by the engine that clones that prefab

gameobject and instantiates it. This instantiation of the bullet is performed in the

implementation of the UseWeapon method and then a force is applied so the bullet moves

in a direction. Unlike the melee weapons, what damages the target is not the weapon but

12 https://docs.unity3d.com/ScriptReference/Object.Instantiate.html

https://docs.unity3d.com/ScriptReference/Object.Instantiate.html

3. VIDEO GAME DEVELOPMENT 3.3. PRODUCTION

 37

the bullet, so the bullet is responsible for decreasing the health points of the target actor.

The approach used for the bullet was to have it disappear after a certain amount of time

or to disappear when in contact with a collider. When there’s a collision between a bullet

and an actor, the OnCollisionEnter2D method of the Bullet class is called and the health

points of the actor are decreased.

The EnemyController is in charge of the enemy behaviour, this behaviour is controlled

by an enemy state. These states can be: i) free movement, where the enemy walks

forward; ii) targeting the player, the enemy moves towards its target, the player; and iii)

attacking the player, the enemy stops and performs an action to decrease the player health

points.

The first iteration was the creation these states and their corresponding movement

controllers that implement a common interface that has a single method,

ExecuteMovement, this way the movement is separated from the actor controller and can

be reused by others if needed. Movement, in this first iteration, was always linear, even

if there’s a wall in front or a pit, the enemy always went forward. The second iteration

solved this problem by checking if there was something in front of the enemy,

HasSomethingInFront property inherent from ActorController, and to use the

OverlapCircle method to detect pits, as depicted in Figure 3.22, if the conditions to

change direction are met then movement direction is inverted.

Figure 3.22: Enemy ground checker.

The third iteration was related to player awareness, to accomplish this the controller scans

every frame for the player, if found then the enemy state is changed. Scanning for the

player is performed by verifying if the player position is within the enemy field of view.

The field of view is a portion of a circle, as depicted in Figure 3.23, and the values of

distance and the cone aperture can be changed in the Unity editor. When the player is

found the state changes from free movement to target player and when the player is very

close then the state changes to attack. This state change is performed in the Update

method every frame, with the following sequence: i) check if enemy can target player,

then scan and check if player is within range, if positive change state; ii) check target is

out of range but within cooldown time; and iii) use weapon, when available, if the player

is in range.

3. VIDEO GAME DEVELOPMENT 3.3. PRODUCTION

 38

Figure 3.23: Enemy field of view.

Is possible to disable this active behaviour towards the player in the enemy controller,

the field canTargetPlayer can disable this behaviour so the player isn’t chased.

In Chapter 3.3.1 was listed the main world objects with their sprites, these objects were:

i) collectable token; ii) teleport door; iii) final door; iv) button; v) push block; and vi)

chest.

Collectable tokens are the part of winning condition to finish the level, so it is necessary

for them to be collected, this happens when the player enters the surroundings of the

token. The approach was to create a trigger collider that verifies if the collision was with

a gameobject tagged with as “Player” and then the token is marked as collected,

isCollected field. There’s also a UnityEvent13 field that is executed after the isCollected

is set. The UnityEvent has a set of callbacks that can be added directly in the Unity editor

and executed in the script by calling the Invoke method, this was used to play a sound

and to disable the sprite and collider without needing to code, as depicted in Figure 3.24.

This approach results in less code and it’s easy to add more callbacks if needed,

feedbacking to the UI or the game controller.

Figure 3.24: End level token script in the Unity inspector.

Teleport doors warp the player from one location to another by altering its coordinates.

As the collectable tokens, teleport doors also use UnityEvent. When the player is within

13 https://docs.unity3d.com/ScriptReference/Events.UnityEvent.html

https://docs.unity3d.com/ScriptReference/Events.UnityEvent.html

3. VIDEO GAME DEVELOPMENT 3.3. PRODUCTION

 39

the door trigger collider and presses a specific key the UnityEvent executes all its

callbacks. There are two callbacks, one for a sound clip and another for the linked door.

In the teleport door script, there’s a method called Teleport that changes the player

position to the door’s coordinates. For example, door A added door B Teleport method

resulting in the player being teleported to the door B, the inverse must be done to door

B, so it links back to door A. In Figure 3.25 is depicted door A in the Unity editor and

one of the callbacks is the door B Teleport method.

Figure 3.25: Teleport door 001 A in the Unity inspector.

Buttons are paired with sliding doors, similar to the previous gameobjects, when the

button is pressed the registered callbacks are executed, there’s a sound clip that plays and

the OpenDoor method of the sliding door is called. After being pressed one time the

button says locked, so it doesn’t execute the callbacks again.

Sliding doors have two positions, the open position and the closed position, when the

OpenDoor method is called the door is moved from one coordinate to another at a

specific speed using a coroutine. There are two UnityEvents, one called onOpening and

another onFullyOpen, the first one plays a sound clip and the other stops it and disables

the collider and enables a new smaller collider when the door is fully opened. The script

in the inspector has some buttons that were added there programmatically that help

setting the door in the initial position and in the final position, as depicted in Figure 3.26,

this custom Editor14 script adds the buttons and is totally optional, doesn’t add any

functional requirements, but helps the game designer when he’s arranging the level.

14 https://docs.unity3d.com/ScriptReference/Editor.html

https://docs.unity3d.com/ScriptReference/Editor.html

3. VIDEO GAME DEVELOPMENT 3.3. PRODUCTION

 40

Figure 3.26: Slide door script in the Unity inspector.

The push block object is a static rigidbody until the player interacts with it, this is done

with a player ability. The ability connects the player rigidbody with the block rigidbody

using a FixedJoint2D15, so when the player moves the block moves as well. The block

can only be moved when it’s grounded and when the ability is active, else the rigidbody

is static. The manipulation of these rigidbody types is done in the FixedUpdate method

since it makes changes to physics-related objects.

The final world object is the chest. Within the chest is a pickupable object, an object that

the player can collect, but in order to show this pickupable object it needs to be open.

The opening process is done by having a trigger collider that only reacts to the player,

after that the onChestOpen UnityEvent plays a sound, similar to the previous objects, and

changes the sprite and collider to a smaller one. After this process, the pickupable object

is shown at the middle of the open chest. This approach of having UnityEvent facilitates

calling whatever callbacks are needed, for example adding particle effects when the chest

is open or pause the scene and show the item for more dramatic effect. The Pickup

abstract class is used for increasing the health points and to collect the key to be able to

finish the level.

Summarizing the world objects, almost all the world objects contain sprites and a

physical or trigger collider. After the player interacts with this collider some actions are

applied to the player and/or callbacks are executed.

At last, the game controller and level controller. These two controllers are responsible

for the rules and conditions of the level and the game. The game controller is responsible

for the generic verifications and rules that every level needs to do, like verifying if the

player has all the tokens and restoring the player back to life when his health points go

below zero; this controller also has the responsibility to end the level when the player is

at the end door with all the tokens and the key, when this happens the level state changes

and the finish level screen appears telling the player that the level is complete. The level

controller is for custom code and interactions within a certain level, for example, if in a

15 https://docs.unity3d.com/ScriptReference/FixedJoint2D.html

https://docs.unity3d.com/ScriptReference/FixedJoint2D.html

3. VIDEO GAME DEVELOPMENT 3.3. PRODUCTION

 41

level there’s a cutscene or a zone where the player needs to wait and some action is

triggered then it can be scripted in this controller.

3.3.6. Super Milkman engine organization

In this chapter, Production, the main details in this work were explained individually and

divided by its branch of speciality. This section explains the project organization, the

combination of all the branches that created Super Milkman.

There were three main different organizations: i) code, the scripts that control the whole

game; ii) project assets, the Unity project with all the assets that compose the game; and

iii) level, the scene where the gameplay takes place.

Code organization, as listed in Listing 3.3, was divided into three main folders: i) engine,

scripts related to gameplay; ii) scenes, container objects used to populate the user

interface; iii) UI, scripts related to the user interface like the screen actions, and HUD.

MilkmanCode
├── Engine
│ ├── Constants
│ │ └── Animator
│ ├── Core
│ │ ├── Actors
│ │ │ ├── Enemy
│ │ │ │ └── Movement
│ │ │ └── Player
│ │ │ ├── Abilities
│ │ │ └── Movement
│ │ ├── Components
│ │ │ ├── CheckPoints
│ │ │ ├── Health
│ │ │ ├── Pickups
│ │ │ └── Weapons
│ │ │ ├── Melee
│ │ │ └── Projectile
│ │ ├── GameController
│ │ ├── LevelController
│ │ └── WorldObjects
│ │ ├── Base
│ │ ├── Chest
│ │ ├── Doors
│ │ └── Platforms
│ └── Helpers
├── Scenes
│ └── LevelOrganization
└── UI
 ├── Constants
 ├── HUD
 ├── LevelSelect
 └── MainMenu

Listing 3.3: Code folder structure.

3. VIDEO GAME DEVELOPMENT 3.3. PRODUCTION

 42

Project organization in the Unity editor is very important since the project folder holds

everything about the game. The approach to organize the folders, inside the editor was

to divide all the same type of files per folders, as listed in Listing 3.4, this way is easier

to work in each different branch. Another approach would be organizing the project by

unique themed folders, like in the case of the player it would have a “Player” folder with

all the other specific folder: the art folder with sprites, animations and animator, sound

folder with audio related to the player, prefab folder with the player and its weapons.

Assets
├── Art
│ ├── Animations
│ │ ├── Actors
│ │ │ ├── Player
│ │ │ └── Enemy
│ │ └── WorldObjects
│ ├── Fonts
│ ├── Sprites
│ └── TileMap
│ ├── Palettes
│ ├── RuleTiles
│ └── Tiles
│ ├── Basic
│ └── Grass
├── Audio
│ ├── FX
│ │ ├── Pickups
│ │ └── WorldObjects
│ ├── Music
│ └── UI
├── MilkmanCode
│ └── ...
├── Prefabs
│ ├── Actors
│ │ ├── Enemy
│ │ └── Player
│ ├── Background
│ ├── UI
│ │ ├── HUD
│ │ └── LevelSelect
│ ├── Weapons
│ └── WorldObjects
├── Scenes
│ ├── Levels
│ │ └── World01
│ ├── PrototypeLevels
│ └── UI
│ └── LevelSelect
└── Vendor

Listing 3.4: Unity project folder structure.

The level scene organization must be coherent across all the different levels, to create a

uniform structure where the level designer can create and arrange the level with ease.

The scene has three main object parents, as listed in Listing 3.5: the “Level Common”,

3. VIDEO GAME DEVELOPMENT 3.4. POST-PRODUCTION

 43

the foundations of the level, the main components that compose a level; “Respawn

Points”, the triggers that are meant to be placed in pits where the player can fall so it can

be placed on ground again; “Enemy spawners”, game objects that are responsible for

managing the enemies in the level and spawning more if some is defeated; “World

Objects”, this parent has several children in order to better organize the scene.

LevelScene
├── [Level Common]
│ ├── Camera
│ ├── Game Controller
│ ├── Level Controller
│ ├── [Tokens]
│ ├── [GUI]
│ │ ├── [Pause Menu]
│ │ ├── [Finish Level]
│ │ └── [HUD]
│ ├── [Level Layout]
│ │ ├── Grid
│ │ └── Death zone limits
│ └── [Player]
│ ├── [Abilities]
│ └── [Weapons]
├── [Respawn Points]
├── [Enemy Spawners]
└── [World Objects]
 ├── || End Door ||
 ├── || Moving Platforms ||
 ├── || Sliding Doors and Switchs ||
 ├── || Teleport Doors ||
 ├── || Moveable Blocks ||
 ├── || Damaging objects ||
 └── || Chests ||

Listing 3.5: Level scene organization.

3.4. Post-production

This stage of development only occurs for completed videogames already released.

Since Super Milkman is not a finished videogame, this stage didn’t happen. As previously

described in Chapter 2.2, this stage serves the purpose of bug fixes, maintenance and

possibly to add new features as DLC.

 45

4. Conclusions

The work depicted in this document describes the process used to create a 2D platformer

video game, Super Milkman. Some of these objectives set at the beginning of the project

weren’t totally met since they were on the artistic side, like visual and audio effects.

Since a video game is a multimedia experience, a difficult process was creativity. Is very

difficult to be creative, to create and design a video game by yourself. Ideally, there are

different teams that are responsible for each branch.

Despite these difficulties, the main parts of the Super Milkman video game were

concluded and a prototype video game was created. The methodologies followed resulted

in the creation of Super Milkman and will be described in the following section, 4.1. This

video game is far from complete, but the general structure was completed and future

work is related in section 4.2.

4.1. Followed methodologies

There isn’t a methodology that works for the development of all video games since there

are many genres and each development team and project is different, but the following

worked for the development of Super Milkman.

Starting with the concept stage, was created a simpler GDD with only one page to express

the main idea of the video game, some conceptual artwork was also drawn to help

visualize some ideas. Lastly in the concept stage, was the prioritization of tasks for the

next stage, as it’s depicted in Table 4.1.

Task Priority Duration

Task 1 {High, Medium, Low} x weeks

Task 2 {High, Medium, Low} y weeks

Table 4.1: Project plan example.

In the pre-production, a more elaborated version of the GDD was written to further

develop the game details. Is very important to keep the GDD up to date, since it contains

all the details about the video game being developed and describes what aims to become

in the future. It also provides an easier way to share information among others and should

serve to guide along the development progress. The GDD doesn’t have a standard

structure since there are many different genres of video games, where some aspects make

sense in one game and not so much in others, [48] gives a good starting point on how to

write a GDD. Before starting the production stage, the game engine was chosen since it

will condition the workflow of the next stage. Unity was the choice since it has a wide

active community and the scripting language is a modern managed programming

language, C#, allowing for quick prototyping and faster development.

4. CONCLUSIONS 4.1. FOLLOWED METHODOLOGIES

 46

Before the production stage started developing its work, tasks to be completed were

established. These tasks were further divided by branch, as depicted in Table 4.2, since

the task usually was multidisciplinary, crossing different areas of expertise. The branches

considered were: i) arts and graphics; ii) level layout; iii) user interface; iv) audio; and v)

programming. The progress in all the branches was iterative and developed in parallel,

meaning that each iteration would add small features, and to join the progress the

branches would merge. Figure 4.1 depicts all the different branches feeding each other

when they need to progress, and finally, all the different branches merge together

finalizing an iteration or complete a task.

Task Subtasks Development branch

Player actor

Sprites and animation Arts and graphics

Animation scripting Programming

Mechanics Programming

Movement Programming

SFX Audio

Table 4.2: Detailed tasks and their respective development branch.

4. CONCLUSIONS 4.1. FOLLOWED METHODOLOGIES

 47

Figure 4.1: Project branches feeding and merging to complete the project.

4. CONCLUSIONS 4.1. FOLLOWED METHODOLOGIES

 48

Some assets in the arts and graphics branch were digitally drawn and others were

obtained for free on websites. The technique used for animating was skeletal animation,

allowing to create animation of a single image. This technique was chosen because it

meant that the character didn’t need to be drawn again for every frame of the animation.

The level layout branch created the levels. To smooth the creation process was used a

tilemap grid to create the level terrain. A rule tile was used to encapsulate a whole tileset

with many different tiles, this tile changes the surrounding tiles to adapt to its rules. After

the rules were created, the creation of each level went faster since the different tiles didn’t

need to be placed individually. Other tilemaps were used to create a visual depth

perspective, the different tilemaps were: foreground, background and an invisible

collider. This invisible collider needed to be created in order to create uniformity across

the level, since the collider in the terrain tilemap would wrap to its irregular shape,

causing strange behaviour with other components in the game. Lastly was created a

systematic way of creating each level, starting with the terrain, adding the common

objects, the death zones and finally the camera boundaries.

The user interface (UI) branch was divided into two, outside the level and inside the level.

Outside the level UI was all the navigation between screens, a diagram was created to

keep track of all the screens transitions. Inside the level two UI elements were needed,

the HUD and the end level screen, these were created so they could be re-used in the

different levels without having to change anything since they communicate with the

game controller.

The audio branch obtained its sounds in free websites since it is an artistic area that

requires specialized skills.

Lastly, the programming branch created a global diagram of the game, depicting every

major building block of the game, helping to plan the next steps. The next steps were to

develop the world objects, the actors and its components, like animation, weapons,

movement scripts, etc. An approach used for some world objects was to allow the game

designer, in the engine editor, to add callbacks that would be executed. This approach

meant that the script attached to the object didn’t have the responsibility to know what it

would be executed, allowing for simpler code and allowing to view the list of all

callbacks registered in the engine editor.

To ensure the project structure maintains coherence, the folder structure to store the

project assets chosen, there are many different ways to organize the project structure, two

examples are listed in Listing 4.1. There isn’t a right way to organize the project, but it

should be consistent across the project to ensure it is easy to find any asset needed. The

choice for this project was the organization presented in Listing 4.1 (a) since it creates

fewer folders and allows for quick navigation to find a file since it is sorted by type.

4. CONCLUSIONS 4.2. FUTURE WORK

 49

ProjectRoot
├── Art
│ ├── Animation
│ │ ├── Enemy
│ │ └── Player
│ └── Sprites
│ ├── Enemy
│ └── Player
├── Audio
│ ├── Player
│ └── Enemy
├── Scripts
│ └── Controller
│ ├── Enemy
│ └── Player
└── ...

ProjectRoot
├── Enemy
│ ├── Art
│ │ ├── Animation
│ │ └── Sprites
│ ├── Audio
│ └── Scripts
├── Player
│ ├── Art
│ │ ├── Animation
│ │ └── Sprites
│ ├── Audio
│ └── Scripts
└── ...

(a) Organization by type. (b) Organization by component.

Listing 4.1: Project organization examples.

The scripting should also be well organized and should follow the good practices and

design patterns of software development. There are also video game-specific

programming patterns [49] making cleaner code and easier to maintain.

4.2. Future work

The work developed in this project didn’t leave the prototype state. It would be

interesting to build upon the foundation that was developed and improve it.

One addition that should be done is to explore branches that weren’t explored since they

were out of scope of software engineering. These branches were left out but they add

visual interest to the game, and these are branches that create an immersive experience

and capture the player attention.

51

Bibliography

[1] T. Wijman, “Newzoo,” 30 April 2018. [Online]. Available:

https://newzoo.com/insights/articles/global-games-market-reaches-137-9-billion-

in-2018-mobile-games-take-half/. [Accessed June 2019].

[2] “The Video Games' Industry is Bigger Than Hollywood,” 10 October 2018.

[Online]. Available: https://lpesports.com/e-sports-news/the-video-games-

industry-is-bigger-than-hollywood . [Accessed September 2019].

[3] “Unity - Manual: Sprites,” [Online]. Available:

https://docs.unity3d.com/Manual/Sprites.html. [Accessed September 2019].

[4] S. Rogers, “Level Up! The Guide to Great Video Game Design,” Wiley, 2014, pp.

17-27.

[5] J. Gregory, Game Engine Architecture, A K Peters/CRC Press, 2009.

[6] B. N. Entertainment, “Pac man,” [Online]. Available:

https://www.bandainamcoent.com/games/pac-man. [Accessed June 2019].

[7] “File:Pac-man.png - Wikipedia,” [Online]. Available:

https://en.wikipedia.org/wiki/File:Pac-man.png. [Accessed August 2019].

[8] Nintendo, “The official home for Mario - Super Mario games,” [Online].

Available: https://mario.nintendo.com/history/. [Accessed August 2019].

[9] “Mario Wiki,” [Online]. Available:

https://www.mariowiki.com/images/e/e4/World_1-1_SMB.png. [Accessed

August 2019].

[10] “File:Linnet kineograph 1886.jpg,” [Online]. Available:

https://commons.wikimedia.org/wiki/File:Linnet_kineograph_1886.jpg.

[Accessed August 2019].

[11] Raluca, “Skeletal Based Animation,” 30 May 2016. [Online]. Available:

https://marionettestudio.com/skeletal-animation/. [Accessed June 2019].

[12] robertl, “Mecanim Humanoids,” [Online]. Available:

https://blogs.unity3d.com/2014/05/26/mecanim-humanoids/ . [Accessed July

2019].

[13] F. Ordóñez, “80 level,” 11 May 2017. [Online]. Available:

https://80.lv/articles/vfx-for-games-explained/. [Accessed June 2019].

[14] “Unity Particle Pack 5.x - Asset Store,” [Online]. Available:

https://assetstore.unity.com/packages/essentials/asset-packs/unity-particle-pack-

5-x-73777.

BIBLIOGRAPHY

52

[15] “Minecraft Shaders | Shaderpacks & GLSL Shaders,” [Online]. Available:

https://shadersmod.net/. [Accessed June 2019].

[16] “The official home of Legend of Zelda - About,” [Online]. Available:

https://www.zelda.com/about/. [Accessed August 2019].

[17] “What Games Are,” [Online]. Available:

https://www.whatgamesare.com/waterfall-development.html. [Accessed June

2019].

[18] W. G. Are, “Agile Development - What Games Are,” [Online]. Available:

https://www.whatgamesare.com/agile-development.html. [Accessed June 2019].

[19] S. Rogers, “Level Up! The Guide to Great Video Game Design,” 2nd Edition ed.,

Wiley, 2014, pp. 67-91.

[20] Game Designing, “The Top 10 Video Game Engines,” [Online]. Available:

https://www.gamedesigning.org/career/video-game-engines/. [Accessed January

2019].

[21] “Unreal Engine,” [Online]. Available: https://www.unrealengine.com/. [Accessed

September 2019].

[22] “Unity,” [Online]. Available: https://unity.com/. [Accessed September 2019].

[23] Unity3D, “Unity - Multiplatform - Publish your game to over 25 platforms,”

[Online]. Available: https://unity3d.com/pt/unity/features/multiplatform.

[Accessed January 2019].

[24] Unity3D, “Unity - System Requirments,” [Online]. Available:

https://unity3d.com/pt/unity/system-requirements. [Accessed January 2019].

[25] Unity3D, “Unity Store,” [Online]. Available: https://store.unity.com/. [Accessed

January 2019].

[26] D. Kayser, “The Gaming Industry Gets Set for an Unreal 2018,” 5 January 2018.

[Online]. Available: https://www.unrealengine.com/en-US/blog/the-gaming-

industry-gets-set-for-an-unreal-2018. [Accessed 20 June 2019].

[27] Unreal Engine 4, “Unreal Engine 4 on GitHub,” [Online]. Available:

https://www.unrealengine.com/en-US/ue4-on-github. [Accessed January 2019].

[28] Unreal Engine 4, “What is Unreal Engine 4,” [Online]. Available:

https://www.unrealengine.com/en-US/what-is-unreal-engine-4. [Accessed

January 2019].

[29] “C# Guide | Microsoft Docs,” Microsoft, [Online]. Available:

https://docs.microsoft.com/en-us/dotnet/csharp/. [Accessed October 2019].

[30] “Unity - Scripting API,” [Online]. Available:

https://docs.unity3d.com/ScriptReference/. [Accessed January 2019].

[31] “GIMP - GNU Image Manipulation Program,” [Online]. Available:

https://www.gimp.org/. [Accessed August 2019].

BIBLIOGRAPHY

53

[32] “Draw Freely - Inkscape,” [Online]. Available: https://inkscape.org/. [Accessed

August 2019].

[33] “Adobe Photoshop,” [Online]. Available:

https://www.adobe.com/products/photoshop.html. [Accessed August 2019].

[34] “OpenGameArt.org,” [Online]. Available: https://opengameart.org/. [Accessed

August 2019].

[35] “Top free game assets - itch.io,” [Online]. Available: https://itch.io/game-

assets/free. [Accessed August 2019].

[36] K. Shadewing. [Online]. Available: https://opengameart.org/content/grasstop-

tiles. [Accessed July 2019].

[37] CraftPix.net. [Online]. Available: https://opengameart.org/content/horizontal-2d-

backgrounds. [Accessed July 2019].

[38] “Unity - Manual: Animator Controller,” Unity Techonologies, [Online].

Available: https://docs.unity3d.com/Manual/class-AnimatorController.html.

[Accessed August 2019].

[39] “Getting Started with Unity’s 2D Animation Package - Unity Blog,” 9 November

2018. [Online]. Available: https://blogs.unity3d.com/2018/11/09/getting-started-

with-unitys-2d-animation-package/. [Accessed August 2019].

[40] A. Hilton-Jones, “Intro to 2D World Building with Sprite Shape,” 20 September

2018. [Online]. Available: https://blogs.unity3d.com/2018/09/20/intro-to-2d-

world-building-with-sprite-shape/. [Accessed August 2019].

[41] “Unity - Manual: Tilemap,” Unity Technologies, [Online]. Available:

https://docs.unity3d.com/Manual/class-Tilemap.html. [Accessed August 2019].

[42] “2D Platformer- Asset Store,” [Online]. Available:

https://assetstore.unity.com/packages/essentials/tutorial-projects/2d-platformer-

11228. [Accessed July 2019].

[43] “Intro to 2D world builidng with Sprite Shape,” [Online]. Available:

https://blogs.unity3d.com/2018/09/20/intro-to-2d-world-building-with-sprite-

shape/. [Accessed July 2019].

[44] “2D tilemap asset workflow from image to level,” [Online]. Available:

https://blogs.unity3d.com/2018/01/25/2d-tilemap-asset-workflow-from-image-

to-level/. [Accessed July 2019].

[45] “Freesound - Freesound,” [Online]. Available: https://freesound.org/. [Accessed

August 2019].

[46] “99Sounds | Free Sound Effects & Sample Libraries,” [Online]. Available:

http://99sounds.org/. [Accessed August 2019].

[47] U. Technologies, “Unity - Manual: Order of Execution for Event Functions,”

[Online]. Available: https://docs.unity3d.com/Manual/ExecutionOrder.html.

[Accessed August 2019].

BIBLIOGRAPHY

54

[48] S. Rogers, “Level Up! The Guide to Great Video Game Design,” Wiley, 2014, pp.

81-107.

[49] R. Nystrom, Game Programming Patterns, 2014.

i

A. One page design document

Game name: Super Milkman

Game genre: 2D platformer / fantasy

Intended game systems: MacOS and Windows

Game summary:

Some day in a land far away, a humble milkman wakes up and finds out that all his cows are

missing. Not only his, but all the cows in the world vanished. A portal appears near his house

that leads to the cow world. This world is ruled by the cow princess and she has her own army

of cows and allies.

This milkman has the mission to defeat the cow world occupants and bring the cows back to

earth, for that he must travel around the cow world and defeat every tribe of cows. Each tribe

has its own location, weapons, abilities and protector; the milkman learns new abilities as he

progresses in this new world.

After beating all the tribes, the only place to go is the castle, where the cow princess lives. The

castle is protected by all the tribes in hope to protect their princess and the milkman needs to

defeat them all to complete his mission.

Selling points :

- Multiple zones to explore, from hell to heaven and everything in the middle;

- Different elemental enemy tribes with unique attacks;

- Puzzles to solve.

Similar products:

- Super Metroid

- Shovel Knight

- Cave Story+

- Hollow Knight

ii

B. Design document

Game genre

2D platformer / fantasy

Intended game systems

Windows

Version

1.0

Written by

Nuno Cardoso

06 November 2018

B. DESIGN DOCUMENT

iii

Version history

Version Date (yyyy.mm.dd) Changes

1.0 2018.11.06 Initial writing

B. DESIGN DOCUMENT

iv

Game Outlines

Game storyline summary

Some day in a land far away, a humble milkman wakes up and finds out that all his cows are

missing. Not only his, but all the cows in the world vanished. A portal appears near his house

that leads to the cow world. This world is ruled by the cow princess and she has her own army

of cows and allies.

This milkman has the mission to defeat the cow world occupants and bring the cows back to

earth, for that he must travel around the cow world and defeat every tribe of cows. Each tribe

has its own location, weapons, abilities and protector; the milkman learns new abilities as he

progresses in this new world.

After beating all the tribes, the only place to go is the castle, where the cow princess lives. The

castle is protected by all the tribes in hope to protect their princess and the milkman needs to

defeat them all to complete his mission.

Game flow

Super Milkman is a 2D platformer game that takes place in another dimension, a world ruled

by cows. This world is divided by tribes, each tribe has its own location and levels. The only

way to progress is to beat every level in each tribe zone.

To be able to beat a level the player needs to collect five special items and a key to unlock the

gate to the next level. These items are spread around the level, some hidden and some protected

by enemies.

When progressing through the levels and zones the player will acquire new weapons and

abilities, this will make possible overcoming new obstacles that were previously impossible to

get through.

With new abilities comes greater challenges so at the end of each zone there’s a boss to ensure

the player is ready for the next zone. This boss will be more challenging than normal enemies

and has different and more powerful attacks. Defeating a boss will grant access to a new zone.

This repeats until the last zone, where the final boss will be the princess cow.

B. DESIGN DOCUMENT

v

Character

History
The playable character lives on earth and he’s a humble milk delivery

man. He is an adult man called Ed and wears blue/white clothes. He has

his own cows that provide him with the milk. Someday all his cows

vanish. So he has to find out what happened to them, he finds a portal to

the cow world and the adventure begins.

In the cow world, the milkman has to find his way through challenges

until he faces the Cow Princess and brings the cows back to earth.

Player movement
The movement is the basics of any platformer game, moving left, right and jumping.

Crouch and slide will make the player explore tighter places and avoid obstacles in the way.

Weapons
The only way the player has to defeat an enemy is by using a weapon or jumping in the head,

other than that any direct contact between the main character and an enemy will result in the

player getting hurt.

All weapons are obtained along the journey. The first weapon is a hammer made from a milk

carton, the other obtainable weapons are bombs, gun and a grappling hook, more in the Game

Mechanics section of this document.

B. DESIGN DOCUMENT

vi

Gameplay

Super Milkman is a 2D platformer game where the player surpasses obstacles and challenges

to collect items that will grant him access to the next level.

The game is broken into zones, each zone has its own set of levels, theme, enemies and distinct

features. The storyline progresses with the player clearing every level in a zone, this will unlock

the next zone until the final zone.

To beat each level the player will have weapons at his disposal to confront and defeat enemies

in his way. These weapons will be obtained along the way in key levels or zones to overcome

tougher enemies. The player will also be able to craft/obtain weapons with some sort of

currency.

When the player opens the game he will be prompt to the main screen with a menu to choose

from “Play”, “Options” and “About”.

“About” is just a letter with some text with credits and other stuff.

“Options” is related to gameplay controls and audio.

“Play” will show the level select screen.

The level select screen is composed of the zones and the map of the selected zone with its all

levels. Under each level in the map there are three spots that represent the tokens collected.

Selecting the level launches it and the game experience starts. The player walks and jumps on

platforms and interacts with enemies, the enemies deal damage by throwing/shooting at the

player or by physical contact. Within the level there are collectable items that are required to

open the gate that grants access to the next level.

B. DESIGN DOCUMENT

vii

Game World

The cow world is ruled is divided into five different zones protected by the princess’s friends.

The world is represented by a sphere and divided into five zones. Each zone expands and has its own

map where the different levels are displayed and the player can go from one to another if the level is

unlocked.

The meadows (Zone 2), is a simple and humble zone where the cows relax and walk around, this zone

is protected by Pegasus (winged white horse). This zone is very calm and is for the player to get used

to the game world, the levels are simple and show the basics mechanics about the game (can be called

also a tutorial zone).

The glaciers (Zone 5), an icy zone where the cows shoot ice bullets, the floor is slippery and there’s

ice-cold water, this zone is protected by Whity (artic fox). This zone is the first real challenge for the

player, this is where the skills acquired in the tutorial zone will be handy.

The clouds (Zone 3), a fluffy zone, the ground is like cotton candy and the cows have wings and fly

above the player. These cows are special, they shoot thunders downwards that stun and hurt the player.

The protector of this zone is Volteep (sheep).

The hell (Zone 4), the floor is lava, the cows have armour, weapons and are angry! This zone is

protected by Kame (armoured turtle). Here the enemies have different behaviour, the cows are

aggressive, they hunt the player and attack him, here the enemies are warriors and tough to beat.

The final zone is the castle (Zone 1), this zone is where the princess resides. As zone this is the kingdom

castle area, all the tribes protect it. As this is the last zone, the difficulty must be higher than before, so

this zone is a mix of all the enemies that appeared before, all the enemies cooperate in order to try to

stop the player from reaching the final boss, the princess.

World zones summary table:

Zone # Theme Name Boss (boss name)

2 Meadow / Fields Meadows Winged Horse (Pegasus)

5 Ice Glaciers Artic fox (Whity)

3 Cloud / Bounce Clouds Sheep (Volteep)

4 Hell / Fire Hell Armoured Turtle (Kame)

1 Castle / Ruins Castle Princess Cow

B. DESIGN DOCUMENT

viii

Game Experience

The feel
All the art is very simple and humble.
The game is visually simple and does not have many elements at once on the screen that will distract

the player.
The game is meant for casual players, with quick levels to beat and a feeling of accomplishment when

the level is over.

Music and sound design
The mood in each zone is defined by its theme, so the music in the levels must complement the zone

theme.
Sound effects are a must to bring life to the characters and actions happening on screen. Jumping and

landing are mandatory. Other like enemies fainting, attacks, ambient sound (like birds, wind, water,

etc.) and enemy and boss speech and attacks are a nice touch and will bring the game together.

Camera
The camera follows the player movement and has a ‘dead zone’ where the player can move within a

certain distance from the centre and the camera doesn’t move.
When the player is near something of interest the camera changes and detaches itself from the centre

and reveals the entire scenario, in this mode the player can move and the camera position doesn’t

change.

Movies / Cutscenes
For now none.
Maybe just static drawings of the cutscene without any animation, if it is really necessary to understand

the game story.

B. DESIGN DOCUMENT

ix

Enemies

There are different types of enemies depending on the zone.

In the meadows zone, the player will encounter a simple enemy, that just walks back and forward and

don’t fall into pits. The only way this enemy inflicts damage is by touching the player or the player

touching the enemy.

Meadows final boss is ‘Pegasus’.

Enemy name Description

Cow Just walks, damage by contact. Does not attack, hurts in contact.

Bunny Walks and jumps the height of one unit. Does not attack, hurts in contact.

In the glaciers zone, the enemies will have new abilities, they will shoot ice forward.

Glaciers final boss is ‘Whity’.

Enemy name Description

Cool Cow Same as Cow but shoots Ice bullets.

Snow Cow Throw giant snowballs in from of him.

In the clouds zone, the enemies will be able to fly and shoot downwards.

Clouds final boss is ‘Volteep’.

Enemy name Description

Electric Cow Flies above the player in a specific route and shoots down periodically.

In the hell zone, the enemies will be tougher and stronger, these enemies will shoot in a circle while

jumping.

Hell final boss is ‘Kame’.

Enemy name Description

Armoured Cow Has armour, more health and attacks while jumping (circle of bullets).

Heavy Cow Throws fire boulders in front of him.

The last zone is the castle, in this zone every enemy from other zones appear. This zone is intended to

be protected by all the cow tribes that have a mission in common that is protecting the princess. No new

enemy is introduced in this zone.

Castle final boss is ‘Princess Cow’.

	Abstract
	Resumo
	Contents
	List of Figures
	List of Tables
	Listings
	List of Acronyms
	1. Introduction
	1.1. Objectives
	1.2. Super Milkman, the video game
	1.3. Outline

	2. State of the art
	2.1. Approaches
	2.2. Development stages

	3. Video game development
	3.1. Concept stage
	3.2. Pre-production stage
	3.3. Production
	3.3.1. Arts and graphics
	3.3.2. Level layout
	3.3.3. User interface (UI)
	3.3.4. Audio
	3.3.5. Programming
	3.3.6. Super Milkman engine organization

	3.4. Post-production

	4. Conclusions
	4.1. Followed methodologies
	4.2. Future work

	Bibliography
	A. One page design document
	B. Design document
	Version history
	Game Outlines
	Game storyline summary
	Game flow

	Character
	History
	Player movement
	Weapons

	Gameplay
	Game World
	Game Experience
	The feel
	Music and sound design
	Camera
	Movies / Cutscenes

	Enemies

