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Abstract—In the maintenance and reliability field, there are
frequent analyses with data being censored. In reliability re-
search, many articles do simulation, but few explain how they
do it. the loss of information resulting from the unavailable
exact failure times will impact negatively the efficiency of
reliability analysis. This paper presents four different algorithms
to generate random data with a different number of censored
values. The four algorithms are compared, and tree parameters
are used to select the best one. The Weibull distribution is used
to generate the random numbers because it is one of the most
used in reliability studies. The results of the algorithm chosen
are very relevant; with a sample of n = 50 and a number of
cycles of simulations m = 1000, the standard deviation is higher
when the shape factor of Weibull distribution is β = 0.5 and
slowly decreases until the shape factor equals 5. The percentage
error (PE), one of the indicators selected, is much higher when
the percentage of censored data is c = 5%, then goes down when
the shape factor increases. There is a different behaviour when
censored data is C = 20% and the percentage error (PE) is
higher when shape factor is β = 1.5.

This article presents an algorithm that it considers the best
for simulating right-censored type-I data. The algorithm has
excellent accuracy, random data i.i.d and excellent computational
performance.

Index Terms—Data censored, Reliability, Algorithm simula-
tion, Weibull distribution

I. INTRODUCTION

In the survival analysis and reliability field, there are several
situations in which equipment, components, and units are lost
or taken from the study while they are still working. The data
censored may occur in control situations, as in life-testing
and preassigned time or in actual operations, and to make
a predictive analysis of failures on time, with systems with
huge numbers of sensors and monitoring lots of parameters;
in this case, using reliability models containing censored data
is fundamental.

Genschel and Meeker (2010) refer that, in practice, life
test data are almost always time-censored or type I because
the study defines the time at which the test will end [1].
Balakrishnan et al. (2000) have more details about when the
progressive censoring schemes take place [2]. Several methods
and techniques have been proposed for analyzing different
types of reliability data over the past decades. Most of them
refer to complete data. However, the evaluation of highly
censored reliability data has not been widely studied. Nelson

(1985) presented an excellent work on this topic [3]. In the
beginning, few of the studies used simulation tools, but over
time the use of simulation in the reliability field increased,
most of them to estimation parameters.

Olteanu and Freeman (2010) conducted a simulation study
that compared the performance of maximum likelihood (ML)
and median-rank regression (MRR) methods in estimating
Weibull parameters for highly censored reliability data [4].
In addition to the well-known large-sample optimal properties
associated with ML estimators, experience, including many
simulation studies, has shown that ML estimators are generally
hard to beat consistently even in small samples [1], [5].
Recently, the estimation of parameters from different lifetime
distributions based on progressive type-II censored samples
are studied by several authors, including [6], [7], [8], [9].

This article is concerned with the analysis of the simulation
of censored reliability data. It is true that the loss of infor-
mation resulting from the unavailable exact failure times will
impact negatively the efficiency of reliability analysis. Many
articles use the percentage of data censored (% C) to compare
and analyse the model and study simulations, like in [10],
[11], and [12]. The use and application of data censored in
the field of reliability can be seen in [13], [14]. The type of
distribution used in this study is typically used in the reliability
field. The significant contributions brought forth by this paper
are: (i) understand and develop a systematic method to build
an accurate simulation model in the presence of data censored,
(ii) give more accuracy and precision to the simulation process
in the reliability field, and (iii) in addition, our proposed
algorithm can find an accurate solution within a a relatively
short time of the simulation.

II. THE RIGHT DATA CENSORED

The data is considered complete when the exact time of
each system failure is known. In many cases, the data contain
uncertainties, i.e., the exact moment when the failure occurred
is not known. The data containing such uncertainty as to be
when the event occurred are regarded as incomplete or partial.
Incomplete data can be classified as censored or truncated [15].

Censoring, from the theoretical point of view, may not be
the most efficient way to conduct an experience, but due to



time, cost or practical things, it’s so frequent that researchers
had to find ways to deal with it.

Characterizing the censoring mechanisms is essential to
analyze the data and the phenomena in the study. Such a
report can be based on several elements, the status of the
entity observed, the span of the study, the dynamic of the
system in the study, and the times of start and finish of the
observations. Censoring mechanisms can also be characterized
based on when and how the time to finish the study is defined.
One of the most common types of censored data that may arise
in real cases is type-I right censored data.

In type-I right censored data, all units of a system are
observed up to the date of completion of the study. For this
censorship scheme, the time each unit is under observation is
fixed, while the number of units that fail (uncensored observa-
tions) is random. In this type of censoring, the stopping time
(tc) is defined or pre-established, and the number of failures
observed during the analysis period is random. Putting an end
to the experiment and stopping monitoring all the entities
at some pre-specified time tc, independent of the event of
interest. The Weibull distribution is the most popular statistical
distribution used in reliability engineering [16]. It can be used
to fit many life distributions, and it has a significant advantage
in the reliability field by changing the parameters to adjust
perfectly to the reliability data.
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Fig. 1. Fixed type I right censored

The type I censoring occurs when the experiments are run
only for a fixed duration tc; the lifetimes are known for those
individuals whose lifetimes are ti ≤ tc, as it’s possible to see
in fig. 1.

The difference between type I and type II is that in type
I censoring, the number of observed lifetimes is a random
variable, and in type II the number of observed events is fixed.

III. THE ALGORITHMS TO GENERATE RANDOM DATA
CENSORED (RIGHT TYPE I)

Burton et al.(2006) proposed to generate a random non-
informative right censoring with a specific proportion of
censored observations in a similar manner to the uncensored
survival times by assuming an exponential distribution for
the censoring times but can be Weibull or uniform [17].
For [17] it’s by iteration that the parameters of censoring
distribution will be achieved [17]. Halabi and Singh (2004)
in another way, provide formulas for determining parameters
for standard survival and censoring distribution [18]. The
censoring mechanism can also be extended to incorporate
dependent, informative censoring.

A fundamental part of any simulation is the algorithm used
to generate the random numbers. The function of R software
to generate random number generation is the ”Mersenne-
Twister”, from Matsumoto and Nishimura (1998). A twisted
GFSR with period 219937−1 and equidistribution in 623
consecutive dimensions (over the whole period). The ”seed” is
a 624-dimensional set of 32-bit integers plus a current position
in that set.

In the algorithms, it’s essential to define how the results will
be stored after each simulation, to avoid the risk to repeat the
simulations. The estimate of interest will be tc - time censoring
for each sample. The number of samples - n will be 50 and
1000. The routine is made m times (in this case 1000) and
it’s important to calculate the mean, as a measure of the true
estimate of interest:

mu =

∑m
i=1 tci
m

(1)

The results of simulations can measure the uncertainty in the
estimate of the parameter tc which represents the percentage
of %C data censored. The empirical standard deviation (SE)
σ is calculated as the standard deviation of the estimates of
interest from all simulations (in this case m = 1000).

σ =

√∑m
i=1(tci − µ)2

m
(2)

The average of the estimated within the study simulation,
σ could be used. Increasing the number of simulations will
reduce the SE - σ of the simulation process, i.e. σ(tc)/

√
m, but

this will be computationally expensive and therefore variance
reduction techniques could be used.

After the simulation has been performed, it’s necessary to
define the criteria for evaluating the results obtained from the
different scenarios or statistical approach, in this study more
precisely is the change of parameters of each distribution being
studied.

The comparison of the results with the true values of
the simulation provides a measure of the performance and
associated precision of the model and the algorithm in the
study. Some examples of performance measures that are often
used include assessment of bias, accuracy, time of simulation,
etc...



The estimates of simulations are the main reason and hence
the average of estimates overall simulation is used to calculate
accuracy measures. When analyzing different scenarios or
models, there is a trade-off between the amount of bias and
the dispersion or variability. Some authors argue that having
less bias is more crucial than producing a valid estimate of
sampling variance. However, models, scenarios, or methods
that result in a biased estimated with little variability may be
considered not so accuracy or conversely if exist an unbiased
estimate with large variability.

To evaluate the performance of statistical methods and
algorithms with different distribution parameters we use MSE
and the PE - percentage error associated with the estimated of
each tc time censoring. The PE associated with the estimate tc
with a true value of TC is computed by the following relation:

PETv = ξ =

∣∣tc − Tc(exact)∣∣
Tc(exact)

x100 (3)

A. The first algorithm

The first algorithm initialized with the percentage of data
censored (%C), the parameters of distribution (β, α) and the
number of simulation cycles (m); the number of samples -
n is not defined. The time censoring tc is selected taking
into account the parameters from the Weibull distribution and
the required value defined by the experience. The algorithm
uses the cycle/loop using the do-while function until get the
target, and only follows to the next step after the number of
censored data is the same value required;

Step 1 Define initial parameters (%C, β, α,m )
Step 2 Select Tc and verify if is scaled
Step 3 Generate the vector Y that represent ti random times
from distribution model
Step 4 Compare ncens

ntotal
≤ C

Step 5 Repeat n times from step 3 to 4
Step 6 Repeat the procedure m times - number of simulations
Step 7 Collect and analyse results

The flow chart that resumes this first proposal model can
be seen in fig. 2.

The model can be used in a situation when don’t know
exactly the number of censor data required or the time of
censoring it’s not controlled or easy to control. The solution
has a great time-consuming and resources in computation
point of view.

B. The second algorithm

The second algorithm, defined in the beginning all
parameters except the censoring time tc. In this case, the
censoring time is a result of the cycle and the random
generation and their calculation depend on the %C censoring
data. In this algorithm, the value of %C is exact but can
happen, sometimes, not having enough random censor data or
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Generate censor data ti

IF ti > Tc THEN
ncens = ncens + 1

nT = nT + 1
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IF m = M

Collect results
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y
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Fig. 2. Flow chart of model/algorithm 1

the inverse... It’s a simulation model that can be used in some
applications where the censoring times are not important and
the time of computation must be optimized. In this case the
number n of sample is define but the tc is not controlled.

Step 1 Define initial parameters (%C, β, α,m, n)
Step 2 Generate the vector Y that represent ti random n times
from distribution model
Step 3 Find tc that represent nTc

nT
< C

Step 4 Repeat the procedure m times - number of simulations
Step 5 Collect and analyse results

The flow chart that resumes this second model can be seen
in fig. 3.
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Fig. 3. Flow chart of model/algorithm 2

The model can be used in a situation when don’t know
exactly the time of censoring, but know the number of samples.



This model can be used when the number of samples and
percentage of data censored is important. It’s a model that has
the great disadvantage of not controlling the time censoring.
Normally this can be fit better when simulating the right type
II data censored.

C. The third algorithm

The third algorithm begins to define all the parameters
required for simulation, the percentage of data censored
(%C), the parameters of distribution (β, α), the number
of simulation cycles (m) and the number of samples - n.
After that, the model generates a random vector Y of ti with
the dimension of the samples n of the Weibull distribution
and generates another random vector X from a binomial
distribution with (0,1) and the number of zero’s is equal of
the percentage of data censored - % C. The model presents
a very practical solution, but with some loss of accuracy and
it’s easier to have some bias in the output of the model. It
needs to define all parameters and in the initial step take out
all the values ti that exceed tc. The algorithm filter the values
ti that exceed tc, and for that reason it requires one more or
two steps, and can take the algorithm no so fast.

Step 1 Define initial parameters (%C, β, α,m, n, tc)
Step 2 Generate the random vector Y with n ti and repeat
until all ti < tc
Step 3 Generate the random Binomial (0,1) vector X with
number correspond of percentage of % C of zero’s
Step 4 Multiply the two vectors (O’s represents the ti
censored)
Step 5 Repeat the procedure m times - number of simulations
Step 6 Collect and analyse results

The flow chart that resumes the third proposal model can
be seen in fig. 4.

This model uses the random vectorization data to be faster
and less time-consuming for resource computation. It’s a
model that has one step in the first generating random time
censoring, which could be necessary to repeat several times.

D. The four algorithm

The four models optimize the simulation and technically
give very good results. Begin to initialize all parameters, but
exist one step before running the model: - the calculation of the
time of censoring tc for each percentage of data censored, and
that varies and is different from each statistical distribution.

The probability of a value - random number generate -
falling between a region (x,+∞) is:

P (x1 > X) =

∫ ∞
x1

f(x)dx (4)

Which can see as the same as the definition of the function
R(t) - reliability

R(x) =

∫ ∞
x1

f(x)dx (5)
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Initialize
simulation, Define
%C, β, α,M, n, tc

Generate the ti
random vector Y

Binomial (0,1)
random vector X

Multiply the
two vectors

IF m = M

Collect and
analyse results

y

n

Fig. 4. Flow chart of model/algorithm 3

All values random generates that fall in that region (x,+∞)
are the censored data; It’s easy to achieve this relation between
the reliability and the C% percentage of data censored with
the expression:

R(tc) =

∫ ∞
tc

f(t)dt = C (6)

The density function is given by

f(x, η, β) =
β

η−β
tβ−1e−(

t
η )
β

with t ∈ R+ (7)

And the corresponding reliability function is

R(t) = e−(
t
η )
β

(8)

The shape parameter β is non-dimensional and reflects the
type of failure mode, such as infant mortality (β < 1), random
or exponential (β = 1), or wear-out (β > 1). To have %C
of data censored, it’s the same to equal the expression of
reliability:

R(tc) =

∫ ∞
tc

f(x)dx = e−(
t
η )
β

= C (9)

and resolve the equation in order of tc, results:

tc = η ∗ (− log(C))
1
β (10)

that gives the time censoring with the %C percentage of
data censored required.

Generically is to do the inverse function of pdf function,
calculate the time censoring tC , and put this value in the al-
gorithm of simulation with this value. This procedure reduces



the time-consuming computation and with a large sample is
very precise and comes closest to the percentage of censored
data defined or theoretical.

The algorithm to generate random data censor have the
follow steps:

Step 1 Define initial parameters (%C, β, α,m, n)
Step 2 Calculate tc (with parameters of distribution and
number of data censor %C)
Step 3 Calculate the order of ith number that begins the
censored data of a sample (censoring-order ic).
Step 4 Generate the vector Y that represent ti random times
from distribution model
Step 5 Order the vector Y
Step 6 Find the time for censoring-order - Y (ic)
Step 7 Repeat M times from step 3 to 6 (save to Tcens)
Step 8 From vector Tcens calculate the mean and standard
deviation
Step 9 From step 8 calculate the error ξ = |Tc − µ|

The flow chart that resumes the four models can be seen in
fig. 5.
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Fig. 5. Flow chart of model/algorithm 4

In conclusion, define first the %C of censored data and then
calculate the time censoring tc to produce the random number
generating to which the result has the probability calculated.

IV. THE SIMULATION STUDY

To illustrate and compare the results from the algorithm,
two random sample of size of n=50 and 1000, to take care of
medium and large data sets. The scale parameter was chosen to
be 1 and the shape parameter or standard parameter, depending
on the statistical distribution and vary between 0.5, 1, 1.5, 3
and 5. These were replicated 1000 times - m, the number of
cycles simulations. For each model, it calculates the censorship
time which has a reliability of 5%, 10%, 20%, or 30%. In
a great number of reliability studies, it’s used the same or

similar, range of values from %C - percentages of censorship
data.

One way to compare the performance and quality of algo-
rithms is to compare against some criteria. For the first criteria
the accuracy indicator is used, that tells whether the algorithm
is very close or far from the values that are the original or true
ones. The second criteria was to identify whether the values of
each sample could be considered i.i.D, using for this purpose
the test batteries on the randomization of values. Finally, the
criteria of cycle time, and computational performance. This
evaluation was based on empirical knowledge and work de-
veloped by [19]. The Table 1 summarizes an evaluation made
of each of the models with three parameters of comparison.
The scale used for each of the parameters was from 0 to 5.
In the end, the calculation is made to identify the best model.
In this case, can be seen in table one that model four clearly
stands out and is undoubtedly the best.

TABLE I
ASSESMENT AND COMPARE MODELS

Model. Accuracy i.i.d Time cycle Total
1 2 3 2 12
2 3 3 2 18
3 4 3 3 36
4 4 4 4 64

A. Results from model four with Weibull distribution

The study from Weibull distribution performed an analysis
for the shape factor β with a range from 0.5, 1, 1.5, 2, 3 and
5, which are very illustrative of the shape factor β variation;
the scale factor used is α = 1. The simulation for each shape
factor and the following percentage of censored data is 5%,
10%, 20%, and 30%. The resume of the study is in two tables
that summarize the analysis. The first table is the simulation
made with sample n = 50 and the second is with sample
n = 1000.

TABLE II
SIMULATION RIGHT TYPE I , WEIBULL (β,C%), η = 1, n = 50

5 10 20 30

µ σ ξ µ σ ξ µ σ ξ µ σ ξ

β0.5 7.67 2.87 14.5 5.18 1.96 2.3 2.60 0.88 0.5 1.47 0.51 1.3
β1 2.64 0.51 11.8 2.23 0.42 3.2 1.58 0.28 1.6 1.22 0.22 0.9
β1.5 1.88 0.29 9.5 1.73 0.20 0.6 1.33 0.15 3.1 1.11 0.15 1.8
β2 1.61 0.17 6.9 1.51 0.13 0.8 1.24 0.11 2.4 1.09 0.09 0.8
β3 1.38 0.08 4.0 1.29 0.08 2.6 1.16 0.08 1.0 1.06 0.06 0.5
β5 1.20 0.05 3.3 1.17 0.04 0.9 1.09 0.04 0.7 1.03 0.03 0.6

The results of the Weibull distribution are very interesting.
With a sample of n = 50 and a cycle of simulations m = 1000,
the standard deviation is higher when β = 0.5 and slowly
decreases until β = 5. The percentage error is much higher
when the C=5% and then goes down when the shape factor



increases. There is different behaviour in C=20%; in this case,
the standard deviation and the PE - percentage error is higher
when β = 1.5; this could have an explanation because of the
transition of shape from exponential to standard shape. The
simulation to a sampling number of n = 1000 doesn’t have
the same behaviour, probably could be some phenomena with
the random generation number in these particular distribution
parameters.

TABLE IV
SIMULATION RIGHT TYPE I, WEIBULL (β,C%), η = 1, n = 1000

5 10 20 30

µ σ ξ µ σ ξ µ σ ξ µ σ ξ

β0.5 8.93 0.81 0.5 5.27 0.44 0.7 2.59 0.21 0.2 1.46 0.12 0.4
β1 2.99 0.14 0.2 2.30 0.10 0.2 1.61 0.06 0.1 1.20 0.05 0.2
β1.5 2.08 0.06 0.1 1.74 0.05 0.2 1.37 0.04 0.0 1.13 0.03 0.1
β2 1.73 0.04 0.3 1.52 0.03 0.1 1.27 0.02 0.2 1.10 0.02 0.2
β3 1.44 0.02 0.2 1.32 0.02 0.1 1.17 0.02 0.1 1.06 0.01 0.0
β5 1.24 0.01 0.1 1.18 0.01 0.0 1.10 0.01 0.1 1.04 0.01 0.1

Table IV shows a simulation of a sample of 1000 and in
this case, the standard deviation and PE are smaller than in
the case of the number of samples is 50. To all simulations,
it can be noted that the error is less than 1%, which is very
small, and even the dispersion itself is minimal, as can be seen
by the table IV and table II. As the shape factor increases,
there is a slight decrease in dispersion and error. Finally, can
conclude that for Weibull distribution, this algorithm can be
used. Still, it needs to have cautious and choose a higher
number of sampling to give more accuracy to the simulation
study. In fig. 6 and fig. 7, it can see the dispersion, the bias,
and the mean of simulation graphically and compare with the
true value.

V. CONCLUSIONS AND OUTLOOK

Survival testing and reliability studies are usually focused
on estimating an unknown cumulative distribution function
(CDF). In simulation studies, it’s normal to use computational
power to test particular hypotheses and assess the validity
and accuracy of various statistical methods or procedures
concerning a known truth. These procedures and algorithms
provide an empirical estimation of the sampling distribution
of the parameters of interest.

In fig. 8, which summarizes in a condensed and graphic
form the results of the tables IV and II, it can be seen that
there is not an equal pattern for all shape factors, but rather a
tendency to approach the value as the percentage of censored
data increases. That is, the more censored data there is in the
sample, the less bias and less error, relative to the true value,
the sample has. The behavior of factors β = 0.5 and β = 1.5
are very similar but with different scales. Undoubtedly, the
curve with the worst behavior, that is, the greatest deviations,
is with β = 0.5. And on the opposite side, the curve with the

0 1 2 3 4

0.
0

0.
2

0.
4

0.
6

x

pd
f −

 f(
x)

 

Weibull Theoric
Estimation Normal data
Time censor

Fig. 6. β1.5,C = 10% and n=50

0 1 2 3 4

0.
0

0.
2

0.
4

0.
6

x

pd
f −

 f(
x)

 

Weibull Theoric
Estimation Normal data
Time censor

Fig. 7. β1.5, C = 10% and n=1000

best performance and lowest error is when β is very high, in
this case β = 5.

The study confirms under the physically motivated assump-
tion that the distribution of the generalized deviations does
not depend on changes in specific parameters (e.g. the scale
parameter in the distribution in the study). Based on the
experiences and intuitions, a value of σ in the neighbourhood
and below 1 tends to make the deviation distribution close to
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i.i.d. N(µ, σ2) over a wide range of testing conditions.

This paper pretends to help the development of the best
procedures to generate a sample of data with a particular
characteristic (right censored and type I) and needs to be
random (i.i.d) to be used to simulate in the reliability field.

In conclusion, the work pretends to generate more discus-
sion and attention to the algorithms that simulate data censored
and give some tools and results to make the simulations and
the studies more accurate and optimized.

The next steps for this work would be to continue the
study with the same algorithm for the other statistical dis-
tributions, namely the exponential, Gamma, Log-normal and
Normal distributions. Another important step would be to
verify whether the chosen algorithm was well adapted to other
types of censored data, as would be the case with type II
censored data. Finally, as this work was developed in a specific
software language, in this case the R software, it would also
be interesting to verify the performance of algorithms in other
languages, such as python or C++.
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