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René Therrien: Writing - review & editing, Supervision
Olaf A. Cirpka: Conceptualization, Methodology, Writing – review & editing, Supervision,
Funding acquisition. Idea of the mixed coordinate system

V

https://doi.org/10.1007/s10596-020-09969-y
https://doi.org/10.1016/j.advwatres.2021.103944
https://doi.org/10.1016/j.advwatres.2021.103944




Abstract
Aquifers are predominantly conceptualized as porous media. In real-world applications, the ma-
terial properties and boundary conditions are heterogeneous requiring numerical models for an
accurate description of flow and transport processes. Such numerical models yield discretized
hydraulic heads and velocities on nodes or within elements. Particle tracking is a computation-
ally advantageous and fast scheme to determine trajectories and travel times. Accurate particle
tracking relies on conforming velocity fields that ensure local mass conservation in elements,
and a continuous normal velocity component on element boundaries. While cell-centered finite-
volume and mixed finite-element methods result in conforming velocity fields by definition, this
is not the case for continuous Galerkin methods, such as the standard finite element method
(FEM), and some finite-difference discretizations. Nonetheless standard FEM and also finite
difference methods (FDM), formulated in finite-element terms, are often used for subsurface
flow modeling because they yield a continuous approximations of hydraulic heads, and easily
handle unstructured grids and material anisotropy.

Acknowledging these advantages and the wide-spread use of finite-element-type simulations, the
aim of this thesis is to present a novel framework for computing conforming velocity fields and
accurate particle trajectories for finite-element type primal solutions of variably saturated flow
in porous media. In this thesis, two different postprocessing methods to compute conforming
velocity fields based on non-conforming primal solutions and semi-analytical particle tracking
techniques for triangles, tetrahedra, and triangular prisms are presented.

The first postprocessing method is a projection mapping a non-conforming, element-wise given
velocity field onto a conforming velocity field in lowest-order Raviart-Thomas-Nédélec (RT N 0)
space, which meets the requirements of accurate particle tracking. The projection is based on
minimizing the difference in the hydraulic gradients at the element centroids between a finite-
element-type primal solution and the hydraulic gradients consistent with the RT N 0 velocity
field imposing element-wise mass conservation for variably saturated flow in porous media. The
results of the RT N 0-projection are close to those of a cell-centered finite volume method (FVM)
defined for comparison and the finite-element-type primal solution. Consistency and convergence
of the RT N 0-projection are empirically shown for saturated flow based on a test case including
hydraulic anisotropy. However, the RT N 0-projection requires solving a large indefinite system
of linear equations, which strongly reduces the choice of appropriate solvers, and occasionally
shows numerical artifacts like velocities of wrong magnitude and unphysical direction in sub-
regions of the domain in special cases.

The second postprocessing technique reconstructs a cell-centered finite-volume solution from a
finite-element-type primal solution of variably saturated flow in porous media to obtain con-
forming, mass-conservative fluxes in RT N 0-space. The method is exemplified for triangular
prisms because this is one of the most common elements used for catchment-scale subsurface
discretization. The finite-volume flux reconstruction only solves a linear elliptic problem whose
size is on the order of the number of elements, which is computationally much faster than
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solving the RT N 0-projection or the initial Richards equation describing non-linear transient
and variably saturated flow. Compared to other postprocessing schemes, the finite-volume flux
reconstruction is numerically stable, fast to compute, and does not induce severe numerical arti-
facts when applied to heterogeneous domains with strongly varying velocities. Its advantage lies
in the application to non-linear flow laws and transient problems, because it is assumed that the
non-linearities are already solved by the primal solution and the transient term can be treated
as a change in storage. It is shown that the results of the finite-volume flux reconstruction are
close to the finite-element-type primal solution for variably saturated three-dimensional flow
with heterogeneous material properties and boundary conditions.

Semi-analytical particle tracking is based on element-wise analytical solutions for particle trajec-
tories and associated travel times given a numerically approximated velocity field. This facilitates
the direct computation of the spatial coordinates where the particle exits an element from its
entry point and the attributes of the element-wise velocity field. In this thesis, element-wise
analytical solutions are given for triangles, tetrahedra, and triangular prisms using the linear
average velocity field derived from the fluid fluxes in RT N 0-space.

The contribution of this thesis is to provide a computational framework for approximating
conforming, mass-conservative velocity fields and, based on this, semi-analytical particle tracking
routines applicable to finite-element-type models of variably saturated flow in porous media on
unstructured grids.
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Kurzfassung
Grundwasserleiter werden zumeist als poröse Medien konzeptualisiert. In der Realität sind
deren Materialkonstanten und Randbedingungen variabel. Dies verlangt numerische Modelle,
um Strömungs- und Transportprozesse zuverlässig zu simulieren. Diese numerischen Modelle
ergeben diskrete hydraulische Potentiale und Geschwindigkeiten auf Knoten oder in Elementen.
Particle Tracking hat sich als genaue und effektive Methode etabliert, um Bahnlinien und Ver-
weilzeiten zu bestimmen. Ein stabiles Particle Tracking erfordert konforme Geschwindgkeits-
felder, die in den Elementen lokal masseerhaltend sind und eine kontinuierliche Normalkompo-
nente des Geschwindigkeitsvektors auf Elementgrenzen aufweisen. Während zell-zentrierte finite
Volumen und gemischte Finite-Elemente-Verfahren per Definition konforme Geschwindigkeits-
felder ergeben, ist dies für kontinuierliche Galerkin-Methoden, wie der Standard-Finite-Elemente-
Methode (FEM), und einige Finite-Differenzen-Diskretisierungen, nicht der Fall. Standard
FEM und verwandte Methoden, wie Finite-Differenzen-Methoden formuliert in Finite-Elemente-
Begriffen, werden dennoch häufig für die Strömungsmodellierung im Untergrund verwendet, da
sie eine kontinuierliche Approximation der Potentiale ergeben sowie auf einfache und natürliche
Weise unstrukturierte Gitter und Materialanisotropie behandeln können.

Unter Anerkennung dieser Vorteile und der weiten Verbreitung von Simulationen aus der Familie
der finiten Elemente ist es das Ziel dieser Doktorarbeit, neuartige Methoden vorzustellen, welche
die Berechnung konformer Geschwindigkeitsfelder und exakter Partikeltrajektorien für Modelle
aus der Familie der finiten Elemente zur Berechnung variabel gesättigter Strömungen in porösen
Medien ermöglichen. In dieser Doktorarbeit werden zwei verschiedene Postprocessing-Methoden
zur Berechnung konformer Geschwindigkeitsfelder basierend auf nicht-konformen Primärlösun-
gen sowie semi-analytische Particle-Tracking-Methoden für Dreiecke, Tetraeder und Dreickspris-
men vorgestellt.

Die erste Postprocessing-Methode beruht auf einer Projektion, welche ein nicht-konformes, el-
ementweise gegebenes Geschwindgkeitsfeld auf ein konformes Geschwindigkeitsfeld im Raviart-
Thomas-Nédélec-Raum geringster Ordnung (RT N 0) abbildet, das die Voraussetzungen für
ein exaktes Particle Tracking erfüllt. Die Projektion basiert auf einer Minimierung der Dif-
ferenz zwischen den hydraulischen Gradienten einer Standard-Galerkin-Finite-Elemente-Lösung
und den Gradienten gemäß einer Lösung im RT N 0-Raum geringster Ordnung in den Ele-
mentschwerpunkten unter der Nebenbedingung lokaler elementweiser Massenerhaltung für vari-
abel gesättigte Strömungen in porösen Medien. Die Ergebnisse der RT N 0-Projektion für
gesättigte Strömungen sind ähnlich derer einer zell-zentrierten Finite-Volumen-Methode (FVM).
Konsistenz und Konvergenz der RT N 0-Projektion werden für gesättigte Strömungen anhand
eines Testfalls unter Berücksichtigung hydraulischer Anisotropie empirisch gezeigt. Jedoch er-
fordert das Postprocessing die Lösung großer nicht-definiter Gleichungssysteme, was die Auswahl
geeigneter Löser stark einschränkt. Außerdem führt das Verfahren in Spezialfällen zu nu-
merischen Artefakten wie Geschwindgkeiten, die in Untermodellgebieten im Betrag falsch und
in der Richtung unphysikalisch sind.
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Die zweite Postprocessing-Methode rekonstruiert eine zell-zentrierte Finite-Volumen-Lösung auf
Basis einer Primärlösung aus der Familie der finiten Elemente, um konforme, massenerhaltende
Flüsse im RT N 0-Raum zu erhalten, und wird auf variabel gesättigte Strömungen in porösen
Medien angewandt. Die Methode wird beispielhaft für Dreicksprismen beschrieben, da diese für
die Diskretisierung des Untergrunds auf der Einzugsgebietsskala häufig verwendet werden. Die
Finite-Volumen-Flussrekonstruktion löst lediglich ein elliptisches Problem von der Ordnung der
Anzahl der Elemente, was sehr viel schneller zu berechnen ist als die RT N 0-Projektion oder die
zu Grunde liegende Richards Gleichung für nicht-stationäre, variabel-gesättigte Strömungen.
Verglichen mit anderen Postprocessing-Verfahren ist die Finite-Volumen-Flussrekonstruktion
numerisch stabil, schnell zu berechnen und induziert keine wesentlichen numerischen Artefakte,
wenn sie auf heterogene Gebiete mit stark variierenden Geschwindigkeiten angewandt wird.
Ihr Vorteil liegt in der Anwendung auf nicht-lineare Strömungsgleichungen und nicht-stationäre
Probleme, da angenommen wird, dass die Nichtlinearitäten bereits in der Primärlösung gelöst
wurden und der nicht-stationäre Term als Quell-/Senkenterm behandelt werden kann. Anhand
von Beispielen wird gezeigt, dass die Ergebnisse der Finite-Volumen-Flussrekonstruktion nahe
der Primärlösungen aus der Familie der finiten Elemente unter Berücksichtigung heterogener
Materialeigenschaften und Randbedingungen sind.

Das semi-analytische Particle Tracking basiert auf elementweisen analytischen Lösungen für die
Partikeltrajektorien und assoziierten Verweilzeiten auf der Grundlage eines numerisch approx-
imierten Geschwindigkeitsfeldes. Dies ermöglicht es, aus dem Eintrittspunkt eines Teilchens
und dem numerisch approximierten Geschwindigkeitsfeld innerhalb eines Elementes direkt die
Austrittskoordinaten des Teilchens zu berechnen. In dieser Doktorarbeit werden elementweise
analytische Lösungen für Dreiecke, Tetraeder und Dreiecksprismen auf Basis der Abstands-
geschwindigkeiten gegeben, welche von den Flüssen im RT N 0-Raum abgeleitet werden.

Diese Doktorarbeit stellt ein rechnergestütztes Methodengerüst zur Verfügung, um konforme und
elementweise massenerhaltende Geschwindigkeitsfelder auf der Grundlage von Strömungslösun-
gen aus der Familie der finiten Elemente zu approximieren. Hierauf basierend werden semi-
analytische Particle-Tracking-Algorithmen entwickelt, die auf variabel gesättigte Strömungen in
porösen Medien angewandt werden können.
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Notation
In general, throughout this thesis scalars and scalar-valued functions are denoted by standard
letters, vectors and vector-valued functions are typeset in boldface lower-case letters, and ma-
trices are denoted by boldface upper-case letters. However, every variable is introduced in the
text, and seldom exceptions from the general rule are meant for better understanding and are
clearly identifiable as such.

Operators

∂f/∂x partial derivative of a function f with respect to x
∂(·) boundary of a set
∇(·) gradient

∇ · (·) divergence
df/dx total derivative of a function f with respect to x
∥ · ∥2 Euclidean norm
⟨·,·⟩ standard inner product
[·]F jump of a function on face F
| · | measure or cardinality of a set

Physical dimensions

M Mass
L Length
T Time

Physical variables

c concentration [ML−3]
D dispersion tensor [L2T−1]
f volumetric source/sink term per unit volume [T−1]
h hydraulic head [L]
k direction-independent scalar hydraulic conductivity

[LT−1]
K hydraulic conductivity tensor [LT−1]
kr relative permeability [−]
N van Genuchten N [−]
ne effective porosity [−]
q specific discharge or Darcy velocity [LT−1]
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S0 specific-storage coefficient in groundwater flow [L−1]
Se effective saturation [−]
Ss specific storage coefficient for variably saturated flow

[L−1]
v linear average velocity [LT−1]
z elevation head [L]

α van Genuchten alpha [L−1]
ψ pressure head [L]
ρw mass density of water [ML−3]
θ volumetric water content [−]
θr residual volumetric water content [−]
θs saturated volumetric water content [−]

Discretization of space and time

Ω model domain
Γ boundary of the model domain
d spatial dimensionality
x spatial coordinates in a global, physical coordinate system
X spatial coordinates in a local or mixed coordinate system
t time within the time interval [0, T ] with T > 0
T topological triangulation or subdivision in triangular

prisms of Ω
E an element within T
F a face within T being part of the boundary of an element
E set of elements
F set of faces
N set of nodes
(·)I index of the inner domain
(·)D index of Dirichlet boundaries
(·)N index of Neumann boundies
(·)R index of Robin boundaries
n unit normal vector pointing outwards
νF unit normal vector on face F following a sign convention
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List of Acronyms
CC-FVM Cell-Centered Finite Volume Method

CG Continuous Galerkin

DG Discontinuous Galerkin

FD Finite Differences

FDM Finite Difference Method

FE Finite Elements

FEM Finite Element Method

FV Finite Volumes

FVM Finite Volume Method

HGS HydroGeoSphere

L2 Lebesgue-space of square-integrable functions

MFEM Mixed Finite Element Method

VC-FVM Vertex-Centered Finite Volume Method
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1 Introduction
Variably saturated subsurface flow is commonly simulated by substituting the extended law
of Darcy into the continuity equation for water and assuming that the soil gas flows freely in
the porous medium, leading to the Richards equation (Richardson, 1922; Richards, 1931; Celia
et al., 1990). Accounting for soil hydraulic functions, the full Richards equation is a transient,
non-linear partial differential equation. Under saturated conditions the Richards equation can
be reduced to the linear groundwater flow equation, which is an elliptic (steady-state problem)
or parabolic (transient problem) second-order differential equation of the hydraulic head (Bear
and Cheng, 2010; Ngo et al., 2015; Matringe et al., 2006). Conservative solute transport is
traditionally described by the advection-dispersion-equation (ADE) employing the velocity-field
originating from the solution of the flow problem (Bear and Cheng, 2010; Kinzelbach, 1992). The
ADE may numerically be solved by Eulerian methods, such as finite volume methods (FVM),
continuous Galerkin (CG) methods, such as the standard Galerkin finite element method (P1

Galerkin FEM) (Bear and Cheng, 2010; Kinzelbach, 1992), or discontinuous Galerkin (DG)
methods (Odsæter et al., 2017; Ngo et al., 2015), which are all computationally expensive and
prone to numerical diffusion (Cirpka et al., 1999; Ngo et al., 2015). In advection-dominated
transport, Lagrangian methods based on particle-tracking random walk are an attractive al-
ternative and have repeatedly been used to compute travel times in engineering practice, and
to analyze the impact of the spatial hydraulic-conductivity distribution on solute spreading
(Kinzelbach and Ackerer, 1986; Tompson and Gelhar, 1990; Bellin et al., 1992, among others).
Particle tracking has also been used to construct streamlines, on which efficient one-dimensional
Eulerian transport schemes using a travel-time discretization can be applied (Crane and Blunt,
1999; Ginn, 2001; Atchley et al., 2013; Loschko et al., 2016, 2018).

The subsurface flow equation is commonly solved numerically for realistic modeling scenarios
including heterogeneous boundary conditions and material properties. Most common numeri-
cal techniques include finite differences (FD), cell-centered finite volume methods (CC-FVM),
vertex-centered finite volume methods (VC-FVM), continuous Galerkin methods (CG), like the
standard P1 Galerkin finite element method (FEM), discontinuous Galerkin methods (DG), and
mixed finite element methods (MFEM). Numerous adaptions, hybrids, combinations, and refor-
mulations, like finite difference and finite volume methods formulated in finite-element terms,
exist.

Standard continuous finite element and related methods are popular for subsurface flow simula-
tions because they easily allow for unstructured grids and yield physically realistic, continuous
hydraulic head fields. While cell-centered finite-volume formulations on an unstructured primal
grid are possible (see e.g., Friis et al., 2009; Edwards and Zheng, 2010; Selzer and Cirpka, 2020),
vertex-centered finite volumes (e.g., Huber and Helmig, 2000), or other finite-volume formu-
lations on a dual grid (Edwards, 2002) are more common. Also, full material tensors can be
incorporated in finite volumes, as an example, Edwards (2002) derived such techniques for a
dual grid to unstructured triangles. Later Friis et al. (2009) and Edwards and Zheng (2010)
extended this approach to the primal grid using a dual grid and transformations of coordinates
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similar to those known from finite elements on subspaces, leading to more flexible schemes but
also to a considerable computational overhead.

While continuous Galerkin methods, like the standard FEM and related techniques yield a con-
tinuous primary unknown, i.e., a physically realistic hydraulic-head field, this is not the case for
finite-volume-type techniques, mixed finite element methods, and discontinuous Galerkin meth-
ods, which, in general, lead to a jump of the primary unknown on element boundaries (Odsæter
et al., 2017; Selzer and Cirpka, 2020; Bastian and Rivière, 2003; Larson and Niklasson, 2004; Sun
and Wheeler, 2006; Hoteit et al., 2002). However, in contrast to finite-volume-type techniques,
standard FEM and related methods yield non-conforming velocity fields with the normal flux
component being discontinuous across element boundaries yielding a physically unrealistic jump
of the velocity on element boundaries (Odsæter et al., 2017; Selzer and Cirpka, 2020; Bastian
and Rivière, 2003; Larson and Niklasson, 2004; Sun and Wheeler, 2006; Hoteit et al., 2002; Putti
and Sartoretto, 2009), and mass is not locally conserved within the elements. While continuous
Galerkin finite element methods approximate the unknown hydraulic-head field as a continuous
function, they do not yield a conforming velocity field (Putti and Sartoretto, 2009; Ngo et al.,
2015). If a particle is tracked on the basis of an element-wise approximated velocity field origi-
nating from P1 Galerkin FEM, the non-conforming property of the velocity field leads to severe
numerical artifacts, possibly including particle stagnation because the approximated normal ve-
locity component points into opposite directions at the two sides of an element interface (Putti
and Sartoretto, 2009).

Figure 1: Exemplification of a non-conforming velocity field. A hypothetical particle exiting the left
triangle (blue velocity vectors) will not be able to enter the right triangle (red velocity vectors)
because both normal component of the depicted velocity field point in opposite direction. A
solution for continuing a trajectory does not exist in this case, and the particle will stagnate on
the interface between the triangles.

Figure 1 depicts an example of a non-conforming velocity field prohibiting to track a particle
further than to the interface between the two triangles. A solution for continuing a trajectory
does not exist, because the normal components of the two element-wise velocity fields point
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outwards of each element, and therefore in opposite directions. Hence, the consistent application
of particle-tracking methods to non-conforming velocity fields that may originate from standard
FEM flow fields remains a problem. Several authors have emphasized that the P1 Galerkin
FEM is locally mass-conservative, if appropriate grids and control volumes, which differ from
the elements, or nodal fluxes are considered (Durlofsky, 1994; Hughes et al., 2000; Putti and
Sartoretto, 2009). Especially, locally mass-conservative sub-control-volumes can be assigned to
the element-wise approximation of the Darcy velocity field obtained by P1 Galerkin FEM for
some sub-control-volumes on triangular elements carrying heterogeneous material coefficients
(Putti and Sartoretto, 2009). According to the latter authors, such regions can be obtained by
Voronoi tessellation or by patches around the nodes bounded by direct connections between the
midpoints of edges of triangular elements sharing the respective node. They call these control
volumes ”internal A-cells”. A delineation of control-volumes in analogy to vertex-centered finite
volumes for triangular grids was proposed by Durlofsky (1994). In three dimensions, however,
comparable control-volumes are not definable with similar ease, if hydraulic conductivity varies
in space (Putti and Cordes, 1998; Putti and Sartoretto, 2009). Also, a conforming velocity
interpolation within polygonal control volumes with a large number of faces, that may result
from the reconstruction of Durlofsky (1994) or from vertex-centered finite volumes, can be non-
trivial. That is, while local mass conservation in the elements is a necessary condition for
reliable particle tracking, it may not be sufficient. In any case, considering the elements of
a P1 Galerkin FEM grid itself, fluid mass is not conserved, and the normal component of the
velocity is discontinuous, experiencing a jump on element-interfaces, while the primary unknown
is continuous (Putti and Sartoretto, 2009; Scudeler et al., 2016).

Overall, one may conclude that standard FEM is the method of choice, if the primary interest
lies in the hydraulic heads, while cell-centered finite-volume-type techniques are favorable, if the
primary interest lies in the velocities.

1.1 Postprocessing of Non-Conforming Velocity Fields

Particle tracking represents an accurate and consistent method for solving solute transport only
if it is based on a conforming velocity field, which implies that the normal component of the
flux is continuous on element boundaries and mass is conserved in the elements. Such velocity
fields may originate from a cell-centered finite volume method (Loschko et al., 2016; Pollock,
1988), a mixed finite element method (Juanes and Matringe, 2009; Matringe et al., 2006; Putti
and Sartoretto, 2009), or from an H(div)-projection of a non-conforming velocity field (Bastian
and Rivière, 2003; Cordes and Kinzelbach, 1992; Kees et al., 2008; Larson and Niklasson, 2004;
Odsæter et al., 2017; Selzer and Cirpka, 2020; Sun and Wheeler, 2006; Vidotto et al., 2018).
Note that for standard discontinuous Galerkin methods, an H(div)-projection can easily be
defined locally avoiding the necessity of solving another global system of equations (Bastian and
Rivière, 2003; Vidotto et al., 2018) although the normal component of the flux is not continuous
on element boundaries. This is so because in the standard discontinuous Galerkin method the
average normal fluxes on the element faces are locally conservative facilitating an element-wise
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algorithm (Bastian and Rivière, 2003). However, the discontinuous Galerkin method can be
considered a special case in this regard.

Several postprocessing techniques have been developed to obtain conforming velocity fields
from standard FEM solutions. These techniques have allowed to simulate solute transport by
Godunov type finite volume methods (Scudeler et al., 2016), discontinuous Galerkin methods
(Odsæter et al., 2017), or particle tracking (Cordes and Kinzelbach, 1992; Selzer and Cirpka,
2020; Selzer et al., 2021). Simulations were either conducted on the primal grid (Kees et al.,
2008; Larson and Niklasson, 2004; Odsæter et al., 2017; Selzer et al., 2021; Selzer and Cirpka,
2020; Sun and Wheeler, 2006) or on a dual grid (Cordes and Kinzelbach, 1992). While yielding
conforming velocity fields, many existing postprocessing methods either face particular restric-
tions or induce numerical artifacts when applied to velocity fields that exhibit strong spatial
variations, which is the case for highly heterogeneous porous media among others (Selzer and
Cirpka, 2020; Schiavazzi, 2013; Odsæter et al., 2017).

Cordes and Kinzelbach (1992) introduced a scheme to reconstruct a conforming velocity field
on linear triangular and bilinear quadrilateral Galerkin finite elements. It is based on the mass-
conservation property of the internal A-cells (Cordes and Kinzelbach, 1992; Putti and Sartoretto,
2009). Considering the total fluxes on the boundaries of the internal A-cell, a system of equations
can be set up for the total fluxes on all its inner boundaries (Cordes and Kinzelbach, 1992). This
system has N equations with N variables, in which N is the number of inner edges of the internal
A-cell. However, the circular structure causes the system of equations to be underdetermined.
For regularization, Cordes and Kinzelbach (1992) set the constraint that the rotation of the
hydraulic gradient within the elements must be zero. A direct extension of the method of
Cordes and Kinzelbach (Cordes and Kinzelbach, 1992) to three dimensions is impossible, as
there are 1.5 times more unknowns than equations related to internal nodes for tetrahedra,
resulting in a highly underdetermined system of equations (Cordes and Kinzelbach, 1992; Putti
and Sartoretto, 2009; Selzer and Cirpka, 2020).

Larson and Niklasson (2004) presented an approach to construct conforming velocity fields by
postprocessing of P1 Galerkin FEM solutions that was originally defined for the case of a constant
isotropic hydraulic conductivity. Sun and Wheeler (2006) introduced a similar, element-wise
approach of flux correction to obtain local mass conservation and continuous normal components
of fluxes on element boundaries for non-conforming velocity approximations, originating from
continuous Galerkin finite elements (Povich et al., 2013; Scudeler et al., 2016). The approach of
Larson and Niklasson (2004) and Sun and Wheeler (2006) is based on a discontinuous enrichment
of the velocity field by applying a piecewise constant correction term which is added to the
non-conservative, element-wise velocity approximation of the FEM on the element interfaces
(Odsæter et al., 2017). The postprocessing techniques of Larson and Niklasson (2004) and
Sun and Wheeler (2006) are defined as a local and a global method. The local method is
particularly appealing because no global system of equations has to be solved (Larson and
Niklasson, 2004; Scudeler et al., 2016). An adapted formulation applied to the Richards equation
for variably saturated flow is given by Kees et al. (2008) and further employed and investigated
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by Scudeler et al. (2016). However, the method of Larson and Niklasson (2004) and Sun and
Wheeler (2006) was only derived and numerically tested for the Poisson equation (Larson and
Niklasson, 2004) implying a steady-state, saturated flow and homogeneous material coefficients
throughout the domain. An application to heterogeneous porous media and non-linear flow laws
like the Richards equations may lead to pronounced numerical artifacts (Schiavazzi, 2013; Selzer
and Cirpka, 2020) like spurious rotation, or regions of anomalously high velocities in low-flow
regions. Artificial rotation has also occasionally been observed for some formulations of mixed
finite element methods (Hoteit et al., 2002).

An advantage of the local variant of the flux correction proposed by Larson and Niklasson (2004)
and Sun and Wheeler (2006) is, that it is parallelizable (Larson and Niklasson, 2004; Scudeler
et al., 2016). However, numerical experiments conducted by Schiavazzi (2013) indicate that
numerical errors are non-negligible for this scheme, if hydraulic conductivity strongly varies in
space even in the isotropic case. Schiavazzi (2013) shows that the absolute values of element-
wise constant Darcy-velocities can be orders of magnitude different in the postprocessed solution
compared to the initial estimate of a velocity-space based on a P1 Galerkin FEM. Considering
the particle tracks presented by Schiavazzi (2013) it appears, that also some artificial rotation
is numerically introduced in the postprocessed solution. This might also be the reason why
neither most of the particle tracks evaluated by Schiavazzi (2013) cross significantly zones of low
permeability nor concentrations evaluated by Scudeler et al. (2016) enter zones of lower perme-
ability to a significant extent, although Schiavazzi (2013) reports that the absolute magnitude of
the element-wise postprocessed velocities can be orders of magnitude higher in low conductivity
zones than those estimated on the basis of a P1 Galerkin FEM.

Recently Odsæter et al. (2017) presented an adapted scheme to those of Larson and Niklas-
son (2004) and Sun and Wheeler (2006), in which the residual between an element-wise given
non-conforming velocity approximation and a conforming velocity solution is minimized with re-
spect to a weighted L2-norm imposing local mass-conservation. Odsæter et al. (2017) introduce
weighting factors equal to the inverse harmonic mean hydraulic conductivity on the element
faces such that the normal component of the gradient rather than the Darcy-velocity is con-
sidered on element-boundaries. This leads to very good results also in heterogeneous domains,
this choice of weighting factors apparently avoids the problems of the flux corrections applied
and evaluated by Schiavazzi (2013) and Scudeler et al. (2016). However, such a scheme is not
parallelizable in an easy manner anymore leading to a global system of equations.

1.2 Particle Tracking in Numerical Models

Particle-tracking methods require velocity fields generated by a preceding solution of the flow
equation. Especially for advection-dominated transport, these methods represent an attractive
alternative to solving the advection-dispersion equation by Eulerian methods because they do not
suffer from the drawbacks of numerical dispersion or spurious negative concentrations (Cirpka
et al., 1999, 2015; Crane and Blunt, 1999). Neglecting transverse dispersion, particle tracking
replaces an explicit three-dimensional description of solute transport by a one-dimensional rep-
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resentation employing travel time (Atchley et al., 2013; Crane and Blunt, 1999; Ginn, 2001;
Loschko et al., 2016; Shapiro and Cvetkovic, 1988). It yields an easy to compute approximation
of flow paths and travel times.

Pollock (1988) presented a particle-tracking method for cell-centered finite volumes on quadrilat-
erals and cuboids, which has been extended to deformed quadrilaterals and deformed hexahedra,
eventually being split into tetrahedra, for non-divergent flow by Cordes and Kinzelbach (1992).
Pollock’s method (Pollock, 1988) is well established in groundwater hydrology, it has been clas-
sified as semi-analytical because it uses an analytical solution for particle trajectories based on
a numerical approximation of the velocity field. It computes the exit-point of a particle on
an element boundary or within the element from its entry-point by evaluating the fluxes over
the volume boundaries, assuming that the normal component of the velocity vector on each
volume-face is constant and each velocity component varies linearly in its own direction within
the cell (Matringe et al., 2006; Pollock, 1988). This assumption about the velocity field cor-
responds to the lowest-order admissible velocity approximation (Matringe et al., 2006; Juanes
and Matringe, 2009). Such a velocity field is in the lowest-order Raviart-Thomas-Nédélec-space
(RT N 0), which is also used for the velocity approximation of lowest-order mixed (hybrid) finite
element methods (Raviart and Thomas, 1977; Nédélec, 1980, 1986; Matringe et al., 2006; Putti
and Sartoretto, 2009; Bahriawati and Carstensen, 2005). Higher-order schemes are possible, but
only seldom used in the simulation of groundwater flow and solute transport (Brezzi et al., 1985,
1987; Matringe et al., 2006; Juanes and Matringe, 2009; Vidotto et al., 2018). It is important to
note that semi-analytical particle tracking is seldom applied outside of the field of groundwater
hydrology. Numerical particle-tracking schemes using an integration procedure like the well es-
tablished fourth-order Runge-Kutta method for solving initial value problems are more common
(see e.g., Matringe et al., 2006; Juanes and Matringe, 2009). This has several reasons. First,
in higher order velocity spaces, which are essentially all admissible velocity spaces other than
the lowest-order Raviart-Thomas-Nédélec-space, the spatial dimensions cannot be decoupled,
therefore, a simple closed-form solution for the trajectory within an element is not derivable.
Furthermore, even in the lowest-order Raviart-Thomas-Nédélec-space, the spatial dimensions
cannot be decoupled for deformed non-simplical elements, like deformed triangular prisms, pro-
hibiting again a simple closed-form solution for the particle trajectory in physical, i.e. global,
and local coordinates. However, approximations can be undertaken which at least give an easy
measure of the average numerical error for an approximate analytical solution on a deformed
non-simplicial element, if the solution for the non-deformed non-simplicial element is applied
in an appropriate coordinate system to the deformed element. The alternative would be to
employ a numerical integration procedure for approximating the trajectory within the deformed
non-simplicial element, which also comes with an approximation error. However, semi-analytical
particle tracking is very quick and stable, as the exit location of a particle can be computed
in one step from the entry point and the element-wise velocity field, avoiding multiple steps
required by a numerical approximation procedure, and avoiding possible overshooting of a par-
ticle over an element boundary, which is a common artifact in numerical integration. Especially
for catchment-scale simulations and for embedding particle tracking in a Monte-Carlo type of

6



approach, semi-analytical particle tracking is desirable, as it drastically reduces the computa-
tion time, and avoids spurious numerical artifacts. Moreover, at least for a velocity field in
lowest-order Raviart-Thomas-Nédélec-space on simplices and non-simplicial elements a closed
analytical solution for the particle trajectories is possible for the non-deformed element. In this
case, the trajectories are exact, with no numerical approximation error other than the one inher-
ent in the velocity field, which is superior to any numerical integration procedure for computing
trajectories.

1.3 Contribution of this Thesis

This work describes numerical methods and algorithms which are either already well known
and established, or, to the best of my knowledge, new developments or extensions of existing
methods. For clarification, the three major novel contributions of this thesis are highlighted
in the following. Smaller novel contributions include a new analytical solution for groundwater
flow on a rectangle with inflow and outflow windows of varying size including anisotropy as a
ratio derived by Olaf A. Cirpka (see section 3.1.3) and an optimal strategy for splitting grids of
structured cubes into conforming grids of tetrahedra such that the effects of grid orientation are
minimized in lowest-order velocity approximations, like lowest-order FVM (or MFEM) discrec-
tizations, developed by the author of this thesis (see section 3.1.4). The author of this thesis
has also developed different approaches to find particles in grids of simplices, and triangular
prisms based on the concept of barycentric coordinates (see section 2.6.5). However, barycentric
coordinates are a well-known canonical approach for expressing coordinates in a simplex, among
others often employed in computer graphics applications.

All other theory, numerical methods and algorithms described in this thesis are already well
established, or sometimes just put differently. Formally, this thesis is a monography. However,
the largest part of its content has already been published (Selzer and Cirpka, 2020; Selzer et al.,
2021).1 The main novel contributions are wrapped up in the following.

The RT N 0-projection

The first major novel contribution is a postprocessing scheme, which is a novel formulation of
an RT N 0-projection employing concepts similar to those described by Odsæter et al. (2017).
Our RT N 0-projection maps a non-conforming, element-wise approximated Darcy velocity field
of a standard Galerkin finite-element solution of the groundwater flow equation, or, in an ex-
tension, a finite-element-type primal solution of Richards’ equation, representing both non-
mass-conservative flow in the elements, onto a conforming velocity field in lowest-order Raviart-
Thomas-Nédélec space. The target velocity space ensures continuity of the normal velocity
component on element-boundaries, zero-divergence of the element-wise velocity field for non-
divergent flow, and element-wise mass conservation. Implemented as a postprocessing code, the

1 Because the author of this thesis is not the sole author of the publications: Selzer, P. and Cirpka, O. A. (2020):
Postprocessing of standard finite element velocity fields for accurate particle tracking applied to groundwater
flow. Computational Geosciences 24(4):1605–1624 & Selzer et al. (2021): Finite-volume flux reconstruction
and semi-analytical particle tracking on triangular prisms for finite-element-type models of variably-saturated
flow. Advances in Water Resources 154:103944 the generic ”we” is used instead of ”I” in the following.

7



RT N 0-projector is formulated such that it can be coupled to any FEM code, but it comes at the
costs that a new global system of equations has to be solved, which is a saddle-point problem of
a size comparable to that of mixed finite elements. The key of the approach is that we minimize
differences in the hydraulic gradient at the element centroids between the finite-element-type
primal solution of hydraulic heads and the target RT N 0 velocity field, subject to the constraint
that the RT N 0 velocity field is element-wise mass-conservative. We consider the residuals of
the hydraulic gradient in the cell-center rather than that of the Darcy velocity because the
hydraulic gradient varies much less than the Darcy velocity if the hydraulic conductivity field
is heterogeneous, or flow is unsaturated implying heterogeneous relative permeabilities in space
and time.

Moreover, such a minimization procedure should guarantee that the postprocessed velocity field
has the same order of convergence as the original velocity approximation. In this regard, our
postprocessing scheme is equivalent to the projection presented by Odsæter et al. (2017), who
give a thorough analysis of the convergence behavior applicable also to our scheme. We found
that a projection for the groundwater flow equation, in which residuals of the Darcy veloc-
ity were minimized, comparable to flux corrections formerly applied by Schiavazzi (2013) and
Scudeler et al. (2016), introduced severe numerical artifacts because meeting the Darcy veloci-
ties in low-conductivity regions was less important in the optimization procedure than meeting
those in high-conductivity regions, resulting in velocities of too high magnitude, and erroneous
rotation and even reversal of the flow direction in zones of low hydraulic conductivity. Our
RT N 0-projection is reasonably applicable to any finite element method yielding non-conforming
element-wise velocity fields. It can, in principle, be applied to various element types also in higher
dimensions. The basic theory is given for simplices in two and three spatial dimensions, i.e.,
triangles and tetrahedra, for the groundwater flow equation, which facilitates a fully consistent
formulation. However, the extension to finite-element-type primal solution of Richards’ equation
is outlined, too.

The drawback of these approaches is that an additional global system of equations has to be
solved, which is a saddle-point problem of larger order than the initial FEM discretization,
implying an increased computational effort and restrictions in the choice of the solver for the
solution of the system of linear equations (Selzer and Cirpka, 2020). While the numerical
results of Odsæter et al. (2017) and Selzer and Cirpka (2020) are very accurate, Selzer and
Cirpka (2020) showed that such a postprocessing scheme may still induce numerical artifacts
like artificial rotation, if velocities vary by several orders of magnitude in regions of similar
hydraulic conductivity. Also, best results of the RT N 0-projection will be achieved for saturated
single-phase-flow in porous media on simplices. The RT N 0-projection is described by Selzer
and Cirpka (2020).

The FVM flux reconstruction

The second major novel contribution of this work is an alternative finite-volume based recon-
struction of fluxes on the primal grid that does not directly project a finite-element-type velocity
field onto a conforming velocity field. Our approach is based on a lowest-order cell-centered finite
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volume method, requiring to solve a global system of linear equations that is strictly positive
definite and whose size is on the order of the number of elements. Because lowest-order finite
volumes used here are numerically very stable, the flux reconstruction does not introduce severe
numerical artifacts, such as artificial rotation or anomalously high velocities in regions of low
hydraulic conductivity.

Solving a global system of equations within a velocity-postprocessing scheme is computation-
ally more beneficial when the flow equation is either transient or non-linear, such as Richards’
equation. In that case, postprocessing requires solving only a single system of linear equations
for each time at which the velocity is to be evaluated. This system of equations resembles that
of a discretized linear steady-state flow equation, in which changes in storage may appear as
a source/sink term, and the non-linear dependence of relative permeability on pressure head
has already been accounted for in the preceding flow simulation. Postprocessing with a global
system of equations remains computationally much faster than rerunning a full, transient model
solving the non-linear Richards equation by a method that yields a conforming velocity field to
begin with. The FVM flux reconstruction is described by Selzer et al. (2021).

Analytical solutions for divergent particle trajectories in RT N 0-space on simplices

The third major contribution is a set of analytical solutions for semi-analytical particle tracking
for simplices, and superposition of simplices, exemplified for triangular prisms, which make use of
a conforming and element-wise mass conservative velocity field in RT N 0-space. The framework
of our particle-tracking scheme is analogous to Pollock’s method (Pollock, 1988) and described
by Selzer and Cirpka (2020) for simplices. It is defined in global, i.e., physical coordinates
for triangles and tetrahedra, and in a mixed coordinate system for triangular prisms (Selzer
et al., 2021). Also, the definition in local coordinates is sketched. Note that only the analytical
solutions for divergent flow on simplices are genuinely novel contributions. The solutions for non-
divergent flow are based on established techniques computing vectorized line-line and line-plane
intersection. These solutions are well established in geometry and related fields like computer
graphics, and only put here in the new context of particle tracking in subsurface hydrology.

1.4 Outline of this Thesis

The remaining chapters of this thesis are structured as follows:

Chapter 2 (Theory and Methodology) describes the governing equations, introduces the rele-
vant set notation, gives a brief overview over the relevant function spaces, and provides a detailed
description of the numerical methods and analytical solutions used and developed. This in-
cludes numerical methods for obtaining primary solutions, the two flux postprocessing schemes,
namely the RT N 0-projection and the FVM flux reconstruction, as well as the element-wise
analytical solutions for the particle trajectories in divergent and non-divergent flow on simplices
and triangular prisms, as an example of a superposition of simplices, in global, mixed, and local
coordinates. Finally, the overall particle-tracking algorithm, which is an adaptation of the one
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by Pollock (1988) is described as well as some implementation details.

Chapter 3 (Numerical Results) depicts numerical results for the RT N 0-projection using dif-
ferent bench-mark cases for steady-state saturated flow on simplices. Empirical consistency and
convergence is shown for an example case including hydraulic anisotropy. Moreover, the capa-
bilities and drawbacks in application of the RT N 0-projection are shown and discussed based
on the consistency results and an application to variably saturated flow on triangular prisms.
Subsequently, numerical results of the FVM flux reconstruction are shown and discussed for
a bench-mark case as well as for a model of a sub-catchment in south-western Germany. To
demonstrate the potential of the FVM flux reconstruction for catchment-scale subsurface flow-
and-transport modeling, we apply it to a finite-element-type model on an unstructured grid
consisting of triangular prisms that discretize the sub-catchment.

Both flux postprocessing schemes are accompanied with an analysis of according particle trajec-
tories based on the developed semi-analytical scheme. Throughout this thesis, HydroGeoSphere
(Aquanty, Inc., 2015; Therrien and Sudicky, 1996) is used to solve the variably saturated (or
saturated) flow equation and to generate the primal solutions of the hydraulic head and relative
permeability fields required for the RT N 0-projection and for the FVM flux reconstruction. For
groundwater flow we employ a standard Galerkin FEM, whereas we use the finite difference
method in finite-element terms of HydroGeoSphere for computing variably saturated flow.

Chapter 4 (Conclusions and Outlook) discusses the major findings of this thesis, and high-
lights strengths as well as weaknesses of the different approaches. Here also some general findings
are discussed having consequences not only for the methods described in this thesis but also for
other numerical methods and postprocessing methods of non-conservative fluxes. An outlook is
given including possible extensions and other approaches.
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2 Theory and Methodology
2.1 Model Equations

Subsurface flow is governed by the interaction of pressure gradients, gravitational and capillary
forces, and friction at pore walls. Porous media and natural porous formations are heterogeneous
regarding the topological arrangements of potentially fluid-bearing pores, such that the real
structure of porous-media flow cannot be resolved. Because of this, balance equations for a
control volume are commonly formulated employing spatially averaged quantities and effective
parameters. For sufficiently low Reynolds numbers the Darcy equation, which postulates a
linear dependence of the flow velocity on the total-potential gradient, is valid. Combined with
the continuity equation, it yields the common groundwater flow equation, the Richards equation,
the multiphase-flow equations, and related transport equations in porous media. Throughout
this thesis, we focus on the groundwater flow equation, the Richards equation, and the transport
equation expressed in a Lagrangian formulation via particle tracking being all canonical model
equations (Bear and Cheng, 2010; Kolditz, 2002).

2.1.1 Groundwater Flow Equation

We consider a bounded model domain Ω ⊂ Rd with dimensionality d and the spatial coordinates
x ∈ Ω, as well as the time interval [0, T ] with T > 0. Then, without further specifications of
boundary and initial conditions, the groundwater flow equation reads as:

S0
∂h

∂t
− ∇ · (K∇h) = f, (x, t) ∈ Ω × [0, T ], (1)

where K [LT−1] is the symmetric, positive-definite hydraulic-conductivity tensor, h [L] is the
hydraulic head, f [LdL−dT−1] is a volumetric source/sink term per unit volume, t [T] is the
temporal coordinate, and S0 [L−1] is the specific storage coefficient including the compressibility
of the pore space and the water itself due to water pressure:

S0 = ∂ne

∂h
+ ne

ρw

∂ρw

∂h
, (2)

where ne ∈ ]0, 1[ [−] is the effective porosity, and ρw [ML−3] is the mass density of water.

For the RT N 0-projection, we only consider subsurface flow with dimensionality d ∈ {2, 3}.
This is because in one dimension the finite-element velocity field is already conforming, and
if the grid is equally spaced, a finite-element formulation even reduces to a standard finite-
difference approximation and to a finite-volume discretization employing an arithmetic mean
of hydraulic conductivity for approximating the fluxes on the element boundaries (Celia et al.,
1990). For an irregularly spaced grid equivalent finite-difference and finite-volume formulations
can be found, too. The possibility of an equivalent finite-volume/finite-difference formulation
also implies the possibility of dividing the one-dimensional finite-element formulation uniquely
in mass-conservative sub-control volumes making an RT N 0-projection unnecessary. Spatial

11



dimensions higher than d = 3 are also not considered because of the macro-physical spatial
structure of our world and the assumptions of Newtonian mechanics.

For the RT N 0-projection we only consider examples of variably saturated flow at steady state.
However, temporal changes can be considered as an additional divergence term, and lumped
into the source/sink term in a postprocessing scheme. If the groundwater flow equation is
considered at steady state, the temporal derivative is set to zero, and the storage term drops out.
Furthermore, we consider the domain boundary, ∂Ω = Γ, which is subdivided into a Dirichlet
boundary, ΓD, and a Neumann boundary, ΓN , such that ∂Ω = ΓD ∪ ΓN , and ΓD ∩ ΓN = ∅.

Then, the elliptic steady-state groundwater flow equation is:

−∇ · (K∇h) = f, in Ω, (3)

subject to the following boundary conditions throughout the following analysis:

h = ĥD, on ΓD,

n · (−K∇h) = n · qN , on ΓN ,
(4)

where qN is a specified volumetric flux density, and n is the unit normal vector pointing outwards
of Ω. If the material properties are locally isotropic, the hydraulic conductivity tensor reduces
to K = kI, where k [LT−1] is the direction-independent scalar hydraulic conductivity, and I is
the identity matrix of order d. Furthermore, the specific discharge, or Darcy velocity, q [LT−1],
is defined by Darcy’s law:

q = −K∇h, (5)

and related to the average linear velocity, v [LT−1], via q = nev.

2.1.2 Richards’ Equation

The Richards equation can be formulated in three variants, either using the pressure head, the
water content, or both as primary unknowns (Celia et al., 1990). In the mixed version the tran-
sient term is the temporal change of the water content, while the divergence term is formulated
employing the pressure head. Throughout this thesis a modified variant of the mixed version
is used employing the hydraulic head and the volumetric water content as primary unknowns.
This facilitates continuous saturated-unsaturated simulations and a mass-conservative first-order
time discretization (Richardson, 1922; Richards, 1931; Celia et al., 1990; Forsyth, 1991; Therrien
and Sudicky, 1996). Richards’ equation is approximated in a spatial domain Ω ⊂ R3 with x ∈ Ω
being the spatial coordinates and the domain boundary ∂Ω = Γ, and within the time interval
[0, T ] with T > 0, where t is again the temporal coordinate:

∂θ(ψ)
∂t

+ ∇ · q = f, (x, t) ∈ Ω × [0, T ], (6)

where ψ is the pressure head [L], θ(ψ) is the volumetric water content [−], t is again time [T],
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f represents again a volumetric source/sink term expressed as a volume of fluid exchanged per
unit time and unit bulk volume [T−1], and q is the specific discharge [LT−1], or Darcy velocity,
defined by the extended form of Darcy’s law:

q = −kr(ψ)K∇(ψ + z) with h = ψ + z, (7)

where kr(ψ) is the relative permeability [−], K remains the hydraulic-conductivity tensor [LT−1],
z is the elevation head [L], and h is the hydraulic head [L]. We use the parametrizations of
Mualem (1976) and van Genuchten (1980) for the soil-retention curve and the dependence of
relative permeability on effective saturation, and pressure head, respectively:

Se(ψ) =


(
1 + (|αψ|)N

) 1−N
N , if ψ < 0,

1, if ψ ≥ 0,
(8)

θ(ψ) = θr + Se(ψ) (θs − θr) , (9)

kr(ψ) =
√
Se(ψ)

(
1 −

(
1 − Se(ψ)

N
N−1

)N−1
N

)2

, (10)

where α [L−1] and N [−] are empirical coefficients, Se denotes the effective saturation [−],
whereas θr and θs are the volumetric residual and saturated water contents [−], respectively.
For transient flow, the following approximation can be used for the term representing the change
in storage in Equation 6:

∂θ(ψ)
∂t

≈ θ(ψ)
θs

Ss
∂ψ

∂t
+ ∂θ(ψ)

∂t
, (11)

where Ss is the specific storage coefficient under variably saturated conditions [L−1].

The initial and boundary conditions are:

ψ(x, t = 0) = ψ0, in Ω,

ψ(x, t) = ψD, on ΓD,

n · q(x, t) = qN , on ΓN ,

c0 · ψ(x, t) + c1 · n · q(x, t) = c2, on ΓR,

(12)

where ψ0 is the initial pressure head in the domain, ψD is a fixed pressure head, n is the outer
unit normal vector, qN is a specified normal flux, and c0, c1, c2 ∈ R are coefficients. Moreover,
ΓD and ΓN are defined as above as Dirichlet and Neumann boundary conditions, respectively,
and ΓR is the part of the boundary with a Robin boundary condition. A Robin boundary
condition is often also referred to as a third-type boundary condition. It can be written as a
linear combination of the primary unknown and its derivative. Note that ∂Ω = Γ = ΓD∪ΓN ∪ΓR,
and that ΓD, ΓN , and ΓR are pairwise disjoint.
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2.1.3 Transport Equation and Particle Tracking

We consider the bounded model domain Ω ⊂ Rd with dimensionality d, and the time interval
[0, T ] with T > 0. The traditional advection-dispersion equation in an Eulerian formulation for
a conservative, non-reactive solute can be written as:

∂c

∂t
+ v∇c− ∇ · (D∇c) = 0, (x, t) ∈ Ω × [0, T ], (13)

where c [ML−3] is concentration, v = q/θ [LT−1] is the linear average velocity, also called
seepage velocity, θ = θ(ψ) is the volumetric water content, and D [L2T−1] is the dispersion
tensor. For purely advective flow, Equation 13 reduces to the following equation, which is equal
to the total differential:

dc

dt
= ∂c

∂t
+ v∇c. (14)

Hence, if we exchange concentration c by a particle p having the characteristics vp = dxp/dt,
where xp is the trajectory of p being the characteristic line, Equation 14 becomes dc/dt = 0,
which is equal to solving the advection equation (Equation 14) for this particle in a Lagrangian
perspective. Given a large number of particles, concentration can be replaced by particle den-
sity facilitating to solve Equation 14 in a Lagrangian way, and therefore, replacing an explicit
Eulerian discretization in up to three spatial dimensions by a one-dimensional discretization
employing travel time. It the transported quantity is water or any other fluid, one may also
associate a volume of fluid to every particle.

As a result, for a given velocity field v(x, t), particle trajectories xp(t) and associated travel
times τ are computed by:

xp(t) = xp,t0 +
∫ t

t0
vp(τ)dτ, (15)

τ =
∫
S

1
∥v(s)∥2

ds, (16)

where xp,t0 is the vector of starting coordinates, S is the (curvilinear) trajectory, while s denotes
all coordinates defining S, and vp denotes the linear average velocity in the coordinates s, which
determines the particle trajectory S. The Lagrangian perspective of the trajectory, xp(t), can
be linked to the Eulerian perspective by: v(τ) = v(S(τ)).

2.2 Spatial Discretization of the Domain and Set Notation

Let T be either a topological triangulation of Ω into triangles (d = 2), or tetrahedra (d = 3), or
a subdivision of Ω in triangular prisms. Furthermore, we restrict ourselves to conforming grids,
which implies that all boundaries of neighboring elements perfectly fit onto each other. The
elements are denoted Ei ∈ T , with i = 1, 2, ..., N where N is the total number of elements. The
elements are equipped with the index i when necessary. For denoting two neighboring elements a
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second index j may be introduced, where i ̸= j holds. Furthermore, we use the indices I, D, N ,
R to denote the inner domain, the Dirichlet boundary, the Neumann boundary, and the Robin
boundary, respectively. Let N be the set of nodes, then NEi is the set of nodes of element Ei,
and NI , ND, NN , and NR are the sets of nodes in the inner domain, at the Dirichlet, Neumann,
and Robin boundary, respectively. Moreover, EI is the set of inner elements, ED is the set of
elements sharing a Dirichlet boundary, EN is the set of elements sharing a Neumann boundary,
and ER is the set of elements sharing a Robin boundary. The set of elemental edges (d = 2),
or elemental faces (d = 3) is denoted F with Fm ∈ F , for m = 1, 2, ...,M , with M being the
total number of edges or faces. For the sake of simplicity, we will only use the term “face” in
the following, meaning either edges (d = 2), or faces (d = 3). The elements are equipped with
the index m when necessary. Furthermore, let FI be the set of all interior faces, FD is the set
of faces on the Dirichlet boundary, ΓD, and FN is the set of faces on the Neumann boundary,
ΓN , whereas FR is the set of faces being part of a Robin boundary, ΓR. These face sets are
pairwise disjoint. FB = FD ∪ FN ∪ FR is the set of all faces on the boundary ∂Ω of the domain.
The Neumann boundary is split in a no-flow boundary, ΓN,0, an inflow-boundary, ΓN,+, and an
outflow-boundary, ΓN,−, comprising associated face sets such that all boundary segments are
pairwise disjoint, and ΓN = ΓN,0 ∪ ΓN,+ ∪ ΓN,− holds. Furthermore, let FE be the set of faces
of the element E, such that F ∈ FEi is an individual face of the element Ei. Furthermore, NE

denotes the set of nodes belonging to an element, whereas NF denotes the set of nodes belonging
to an individual face. We further define nE as the unit vector normal to the boundary of element
E, which is pointing outwards. Additionally, we specify nE,F as the unit normal vector pointing
outwards of element E on a face F , whereas νF is a unit normal vector on face F following a
sign convention. We use | · | to denote the measure of a set, in particular |E| denotes the area
(d = 2) or the volume (d = 3) of an element, and |F | denotes the length (d = 2), or the area
(d = 3) of a face. The Euclidean norm of a vector is denoted by ∥ · ∥2, while ⟨·,·⟩ is the standard
inner product. Furthermore, [·]F denotes the jump of a function on a face.

2.3 Piecewise Polynomial Spaces

For clarification purposes, we briefly introduce some relevant, fundamental function spaces skip-
ping their subspaces refined by boundary conditions (Bahriawati and Carstensen, 2005; Ngo
et al., 2015; Odsæter et al., 2017). In the following sections, we will only refer to the respective
function spaces, if we believe this is absolutely necessary for proper understanding of computa-
tions. Let P1 be the space of continuous piecewise linear polynomials such that:

P1(T ) = {u ∈ C(Ω) : u|E ∈ Qd
1, ∀E ∈ T }, (17)

where C is the space of continuous functions, and Qd
1 denotes the tensor product of linear

polynomial spaces in each spatial direction (Odsæter et al., 2017). The space P1(T ) is de-
fined such that it contains the approximated solution of the hydraulic head h computed by
the standard Galerkin FEM. Therefore, it follows that [h]F = (h|Ei)|F − (h|Ej )|F = 0 for the
hydraulic head on any face, F = Ei ∩Ej , shared by two neighboring elements Ei and Ej , while
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[q · νF ]F = (q|Ei)|F · νF − (q|Ej )|F · νF can be non-zero in a P1 Galerkin solution. That is,
the hydraulic head is conforming and continuous on elemental boundaries, while the normal
component of the element-wise evaluated specific discharge can be discontinuous, experiencing
a jump on element boundaries, leading to a non-conforming specific discharge field.

In lowest-order Raviart-Thomas-Nédélec-space for simplices (Raviart and Thomas, 1977; Nédélec,
1980, 1986; Bahriawati and Carstensen, 2005; Rognes et al., 2009) a vector-valued function in
Rd, in our case the specific discharge, is considered element-wise such that:

RT N 0 ={u ∈ L2(Ω,Rd) : ∀E ∈ T ∃a ∈ Rd ∃b ∈ R∀x ∈ E, u(x) = a + bx,

and ∀F ∈ FI , [u · νF ]F = 0},
(18)

where L2(Ω,Rd) is the usual Lebesgue-space of square-integrable functions in Rd (e.g. Bahriawati
and Carstensen, 2005; Rognes et al., 2009). Considering the definition of the RT N 0-space in
Equation 18, it is obvious, that not only the normal component of a vector-valued function is
continuous on the faces, but also its divergence is element-wise constant and linear dependent
on b, implying also that the divergence is element-wise zero for non-divergent flow. A triangular
prism is a superposition of a triangle, which is the simplex in two dimensions (d = 2), and a line,
which is the simplex in one dimension (d = 1). By this, the RT N 0-space for a prism is simply
given by superposition of the RT N 0-space 18 with itself, given d = 2 in the horizontal, and
d = 1 in the vertical. For simplicity, we refer in the following to the RT N 0-space no matter, if
a simplex, or a superposition of simplices, like a triangular prism, is meant.

In this thesis, an RT N 0-projection is proposed, by which we intend to project an element-wise
approximated specific-discharge field originating in our application from a P1 Galerkin FEM for
saturated flow, and a finite difference method in finite-element terms for variably saturated flow,
onto a conforming velocity field in RT N 0-space. This can be expressed by the following map:

πRT N0 : L2(Ω,Rd) → RT N 0. (19)

2.4 Numerical Methods for Spatial Discretization

2.4.1 The Standard Galerkin Finite Element Method

The P1 Galerkin finite element method, also named standard Galerkin FEM, is a common nu-
merical method to solve the groundwater flow equation (Equation 1) (Huyakorn and Pinder,
1983; Kinzelbach, 1992; Bear and Cheng, 2010). P1 Galerkin FEM yields a continuous approx-
imation of the hydraulic-head field, and naturally handles unstructured grids and anisotropy.
In the following, we repeat the standard finite element formulation for the groundwater flow
equation (Equation 1) yielding a conforming hydraulic-head field, which is piecewise linear for
simplices, and piecewise bi-linear for superpositions of two simplices, like quadrilaterals or tri-
angular prisms. For superpositions of three simplices, like cubes, the solution is tri-linear and
so on and so forth for arbitrary superpositions of simplices in multiple dimensions leading to
multi-linearity. In the following, we give an element-wise description, an alternative node-wise
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formulation is possible, too, and sketched in the following section 2.4.2 (see also Forsyth, 1991;
Therrien and Sudicky, 1996) for a finite difference method in finite-element terms. In this section,
we only describe a standard finite element formulation for the groundwater flow equation (Equa-
tion 1), and not for the Richards equation (Equation 6). The reason is that a stable numerical
approximation of Richards’ equation relies on full upstream weighting of relative permeabil-
ity. In an element-wise formulation like the one below, a consistent formulation of upstream
weighting is not possible in a straight-forward manner because we do not only consider the
direct nodal connections, but also approximate the primary unknown continuously within the
element to get a conforming solution of the hydraulic head. That is, within the element a fully
consistent, full upstream weighting can not be guaranteed for discretizations in more than one
spatial dimension, which can lead to instabilities, and non-convergence in practice. Moreover,
the native averaging procedure in finite elements would be arithmetic averaging (Helmig and
Huber, 1998), or centered differences, respectively, which, in principle, is second-order accurate,
but it is also known to produce a non-physical oscillatory numerical behavior, if the solution
is not smooth enough (Ippisch, 2001). This prohibits using arithmetic averaging, or a central
difference scheme, respectively, in practice for solving Richards’ equation.

Still, a finite-element discretization of Richards’ equation in analogy to the one given below is
possible. However, for the named reasons we opt to describe the discretization of Richards equa-
tion in finite-element terms in the following section 2.4.2 employing a nodal formulation, which
allows an easy switch between a finite-element formulation, and a finite-difference formulation in
finite-element terms. The latter again allows for a straight-forward, consistent upstream weight-
ing because only the direct nodal connections are considered, and the hydraulic head is linearly
interpolated only on these direct nodal connections, and not within the element itself (Therrien
and Sudicky, 1996; Forsyth, 1991).

Considering the space P1(T ), the linear shape functions χi corresponding to the nodes i can be
defined element-wise such that they sum up to unity at all points in all elements:

∑
i∈NE

χi(x) = 1, ∀x ∈ E ∧ ∀E ∈ T , (20)

where χi are the shape functions according to the space P1(T ) equaling 1 on node i and 0 on
any other node j ̸= i. We replace the hydraulic-head field h(x) , the source/sink term-field f(x),
and the specific storage coefficient, S0(x), by the approximate, piecewise linear functions ĥ, f̂ ,
and Ŝ0, respectively, such that:

h ≈ ĥ =
∑
i∈N

hiχi, f ≈ f̂ =
∑
i∈N

fiχi, S0 ≈ Ŝ0 =
∑
i∈N

S0,iχi, (21)

where hi is the hydraulic-head value, fi is the source/sink term, and S0,i is the specific storage
coefficient all at node i, respectively. Note that also standard finite element formulations ex-
ist, where the source/sink term is not linearly distributed, but just a lumped quantity on the
nodes subject to multiplication with a weighting function only. We apply the concept of weak
derivatives, and choose the weighting functions to equal the shape functions. This yields the
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well-known standard Galerkin FEM discretization, which reads element-wise as:

∫
E

χT
EŜ0χE dx∂ĥ

∂t
+
∫
E

∇χT
EKE∇χE dx ĥ =

∫
E

χT
EχE dx f̂ , ∀E ∈ T , (22)

where χE are the elemental shape functions, KE is the element-wise given hydraulic-conductivity
tensor, ĥ is the vector of nodal hydraulic-head values of element E, Ŝ0 is the vector of nodal
specific-storage coefficients, and f̂ is the vector of nodal source/sink strengths.

The weak form (see Equation 22) implies that derivatives do not need to exist everywhere in the
domain, but only in an integrated sense. The concept of weak derivatives can be applied here,
because every term is an integral term. Based on ĥ, a unique, element-wise constant gradient
can be computed on simplices, leading to an element-wise constant, non-conforming specific-
discharge vector. This unique gradient can be obtained by evaluating the gradient of the shape
functions multiplied with the vector of nodal hydraulic-head values. On non-simplicial elements
the specific discharge vector varies within the element. The element-wise specific-discharge
vector is approximated by:

qF E
E = −KE∇χEĥ, ∀E ∈ T . (23)

2.4.2 Finite Difference Method in Finite-Element Terms

For obtaining finite-element-type primary solutions, throughout this thesis HydroGeoSphere is
used (Therrien and Sudicky, 1996; Aquanty, Inc., 2015). HydroGeoSphere either solves the
groundwater flow equation (Equation 1) or a modified Richards equation in mixed form (Equa-
tion 6) either using a standard Galerkin FEM, or a finite difference method formulated in
finite-element-terms. Subsurface porous media flow can also be simulated as a dual continuum
model, or be coupled with flow in fracture systems, or overland flow. However, we do not con-
sider these different flow regimes, and the associated coupling approaches throughout this thesis,
and solely focus on subsurface variably saturated flow. In the following, we describe the finite-
element-type formulation used in HydroGeoSphere leading to a finite-difference formulation in
finite-element terms. The following derivation roughly follows Forsyth (1991) and Therrien and
Sudicky (1996). Note that the following derivation as well as description of the mathematical
attributes differs significantly from the ones given in the HydroGeoSphere manual (Aquanty,
Inc., 2015) at the current date. This is because an increased accuracy is desired by the author
of this thesis.

Recall the linear shape functions, χi, used in the P1 Galerkin FEM (Equation 20), corresponding
to the nodes i and summing up to unity everywhere in the domain. In analogy to the discretized
quantities in Equation 21, the discretized volumetric water content can be formulated:

θ(ψ) ≈ θ̂(ψ) =
∑
i∈N

θi(ψ)χi, (24)

where θi is the volumetric water content at node i. Note, that the discretized volumetric wa-
ter content is set here for simplicity instead of the enlarged storage on the right-hand side of
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Equation 11, by which the volumetric water content can be replaced for saturated-unsaturated
simulations.

Note that an element-wise representation of a standard Galerkin finite element formulation is
tedious as it remains unclear how a fully consistent weighting procedure of relative permeability
not only between the nodes directly but also interpolated within the element should be expressed
best. This thought directly leads to a nodal finite-element-type formulation. To avoid the
problem of an inconsistent weighting of relative permeability within the elements, one may
furthermore reduce the scheme to the direct nodal connections avoiding the cross terms arising
in a full finite element formulation. Such a scheme is then a finite difference method formulated
in finite-element terms facilitating a stable, and consistent solution of Richards’ equation. Such
a solution is continuous on lines, which are the direct nodal connections, embedded in three-
dimensional or other-dimensional space. The drawback is that the solution within the elements
remains undefined, it can only be computed in a postprocessing step using the shape functions
of a full finite element formulation. Additionally, hydraulic conductivity can only be expressed
as a diagonal tensor, and not as a full tensor, because there are no cross terms anymore in
the numerical discretization. However, the advantage is that a stable solution of Richards’
equation can be computed including consistent upstream weighting. The unavoidable backside
of upstream weighting as a first-order accurate scheme is numerical smoothing of sharp fronts,
and an increased sensitivity to grid orientation compared to schemes which are higher-order
accurate (compare e.g., Ippisch, 2001). Moreover, one may evaluate hydraulic heads and Darcy
velocities also within the element using the full finite element shape functions. However, such an
approach is inconsistent with how the hydraulic heads are computed in the primary solution.

For formulating such a finite difference method in finite-element terms, we go one step back,
and start with the basic weighted residual approach, employing the discretized quantities (see
Equations 21 and 24):

∫
Ω

W∂θ̂(ψ)
∂t

dx −
∫
Ω

W∇ · (krK∇ĥ) dx =
∫
Ω

Wf̂ dx, (25)

where kr = kr(ψ), θ = θ(ψ), and W is the weighting function. Note that Equation 25 is
formulated for the whole computational domain Ω. In the Galerkin technique the weighting
function equals the shape function:

W = χT , (26)

where χ contains the linear (or bilinear, trilinear, etc.) shape functions in the domain Ω. Using
the product rule of differentiation and the divergence theorem, Equation 25 can be reformulated
yielding the weak form of Equation 6 for the elements. However, we still demand for weak
derivatives, but follow another route for the finite difference method in finite-element terms. We
first focus on the divergence term, and the Galerkin-type shape and weighting functions. We
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apply the product rule of differentiation:∫
Ω

χT ∇(krK∇ĥ) dx =
∫
Ω

∇
(
χT (krK∇ĥ)

)
dx −

∫
Ω

(∇χ)T (krK∇ĥ) dx, (27)

applying the divergence theorem to the first term on the right hand-side yields:∫
Ω

χT ∇(krK∇ĥ) dx =
∫

∂Ω

n ·
(
χT (krK∇ĥ)

)
ds −

∫
Ω

(∇χ)T (krK∇ĥ) dx, (28)

where n is the outer unit normal vector on the domain boundary Γ = ∂Ω. We require global
mass conservation, therefore, we can set the boundary integral over Γ = ∂Ω to zero. This
yields:

−
∫
Ω

χT ∇(krK∇ĥ) dx =
∫
Ω

(∇χ)T (krK∇ĥ) dx. (29)

So far, we just followed a standard procedure for deriving the standard Galerkin technique.
Combining the rewritten divergence term with the Equations 25 and 26, and splitting the shape
function from the approximate functions ĥ, θ̂, and f̂ , one can formulate an element-wise expres-
sion employing the nodal quantities θ̂, ĥ, and f̂ like for the groundwater flow equation (Equation
22). This would be the standard Galerkin formulation of the Richards equation in direct analogy
to the standard Galerkin discretization of the groundwater flow equation (Equation 22). How-
ever, we do not want to follow this route for the already named reason that consistent upstream
weighting of relative permeability is not possible for this formulation within the elements.

Now, we neither refer to the shape functions and the weighting functions as tuples of functions
over the domain, χ, W, nor as element-wise functions or matrices, χE , WE , anymore. We
focus again on the nodal function, which is also known as ”hat-function” (compare Figure 2b).
Let i and j be indices ranging over all the nodes, then χi is the linear shape functions for node
i, if the element is a simplex, which would be the ”hat”-function in one or two dimensions. For
multi-linear elements, the shape function would be the corresponding multi-linear function for
node i. I.e. the shape function belonging to node i reaches over all elements sharing i. Then:

χi = 1, at node i,

χi = 0, at all other nodes,∑
j

χj = 1, everywhere in the domain.
(30)

Regarding the node i and its volume of influence, we may reformulate the divergence term
(Equation 2.4.2) for the nodes. By this we replace a formulation over the computational domain
Ω by an integral restricted to the zone of influence of one node, which is the element-star, Ei,
consisting of all elements sharing node i. If we sum over all the resulting integrals, the result is the
same as a formulation over Ω. Moreover, we will restrict ourselves in the following to the direct
nodal connections between the node i and nodes j omitting the cross terms, being the connections
only between nodes j for a node i. So far, relative permeability and hydraulic conductivity were
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just assumed to be some functions in space K = K(x), or in space and time kr = kr(t,x).
Both will now be restricted to the nodal values used for the flux approximation between the
nodes i and j, which we will denote Kij and kr,ij , and which is a reduction of the standard
Galerkin discretization to the direct nodal connections implying an according reduction of the
shape function χ (and by this also of the weighting function) to the direct nodal connections.
By this, a solution is not approximated in the elements, but the solution reduces to continuous
solution on the direct nodal connections, which can be thought of a network of lines embedded
in higher-dimensional space:

∫
Ω

(∇χ)T (krK∇ĥ) dx =
∑
i∈N

∫
Ei

∇χikr,ijKij∇

∑
j

hjχj

 dx, (31)

where j can either range over all nodes of the domain, or only over the nodes being part of
Ei, with identical result. Note also that χi is the shape function in dimension d such that the
according matrix-vector operations are valid. From the attributes of the shape function, we
know that:

χi = 1 −
∑
j ̸=i

χj , (32)

and
∇χi = −∇

∑
j ̸=i

χj . (33)

We may now reformulate the Galerkin discretization of the divergence term focusing on one
node i 31:

∫
Ei

∇χikr,ijKij∇

∑
j

hjχj

 dx =
∫
Ei

∇χikr,ijKij∇

∑
j ̸=i

hjχj

+ ∇χikr,ijKij∇ (hiχi) dx

=
∫
Ei

∇χikr,ijKij∇

∑
j ̸=i

hjχj

− ∇χikr,ijKij∇

∑
j ̸=i

hiχj

 dx

=
∫
Ei

∇χikr,ijKij∇

∑
j ̸=i

χj(hj − hi)

 dx.

(34)

We will denote by ηi the set of nodes being part of the element-star, Ei, excluding node i. Then,
we reformulate the divergence term:

∫
Ei

∇χikr,ijKij∇

∑
j ̸=i

χj(hj − hi)

 dx =
∑
j∈ηi

∫
Ei

∇χikr,ijKij∇χj(hj − hi) dx. (35)

One may now formulate the fully discretized Richards equation using the reduced shape function
consistent with the finite difference method in finite-element terms for the element-star belonging
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to an internal node i:

∑
j∈ηi

∫
Ei

χiχj dx∂θi

∂t
+
∑
j∈ηi

∫
Ei

∇χikr,ijKij∇χj dx(hj − hi) =
∑
j∈ηi

∫
Ei

χiχj dx fi ∀i ∈ NI . (36)

where Kij is in practice obtained by averaging the element-wise hydraulic conductivity values.
Note also, that Kij cannot be a full tensor in a finite difference method in finite-element terms.
Moreover, the principal directions of K should coincide with the direction of the lines connect-
ing the nodes in a finite-difference approximation for most accurate results. For obtaining the
hydraulic conductivity typically one would take a weighted arithmetic mean of the hydraulic
conductivities associated to the elements sharing a node i. For such averaging procedures, Hy-
droGeoSphere typically takes a weighted arithmetic average of hydraulic conductivity weighted
by the volumes of the elements sharing node i, or the parts of the elements associated to node
i delineated by a control volume around node i by making use of the centroid (compare Figure
2).This would be associated to an additional weighting factor 1/|NE |, which is 1/3 for triangles,
and 1/6 for triangular prisms for the elemental volumes, where the denominater equals the num-
ber of nodes per element. However, as this scaling factor is the same for all neighboring elements
in a discretization of the same element-type these factors cancel out in a weighted arithmetic
mean anyways.

The main advantage of formulation 36 is that full upstream weighting of relative permeability
kr,ij can be formulated in a consistent manner:

kr,ij =

kr,i, if hi ≥ hj

kr,j , if hj > hi,
(37)

where kr,i and kr,j are the relative permeabilities associated to the nodes i and j for a specific
element, respectively. Note also that relative permeability may differ for the same node in
different elements, if neighboring elements have different unsaturated material properties.

Note also that for nodes at the boundary of the domain, NB = N \ NI , Equation 36 is either
superimposed with the boundary condition or replaced by the boundary condition depending on
the type and the implementation of the different boundary conditions, and if another hydrosys-
tem is considered as boundary, respectively.

Expression 36 is consistent with the finite-difference discretization in finite-element terms on a
topological line-network. However, also inconsistent formulations exist, some of them leading to
an increased stability of the numerical solution procedure. One of these inconsistent formulations
leading to increased stability is mass lumping, which can also be applied in HydroGeoSphere. In
classical mass lumping the storage matrix discretizing the transient term is simplified such that
all entries of each row are summed up, and the result is put on the diagonal. This not only leads
to a diagonal matrix but also avoids the linear distribution of the change in storage between the
nodes consistent with the standard Galerkin discretization on a line-network. By this, all the
change in storage is attributed to the nodes, which results in a similar storage matrix than in
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finite-volume techniques. In fact, for the change in storage using mass lumping control volumes
similar to those of vertex-centered finite volumes can be attributed. These control volumes are
delineated by the connections between the midpoints of the direct nodal connections and the
centroids of the elements. Mass lumping can be employed by HydroGeoSphere no matter if the
subsurface flow equation is solved by standard Galerkin finite elements or by the described finite
difference method in finite-element terms. An other simplification HydroGeoSphere employs,
is that nodal sources and sinks are not linearly distributed, too, but lumped to the nodes as
an average quantity evaluated in the described variant of vertex-centered-finite-volume-type
control volumes. This is done in analogy to mass lumping of the storage matrix, and again
identical to a vertex-centered finite-volume formulation. This means neither the transient term
nor the sources and sinks are consistent with Galerkin type finite-difference discretization of
the divergence term, in the finite difference formulation in finite-element terms. In fact, the
approach for the transient term and for the source/sink term of HydroGeoSphere is to use a
weighting function which is 1 for the control volume associated to node i, and 0 elsewhere, while
still keeping a standard Galerkin discretization for the divergence term, though only considering
the direct nodal connections.

However, it should be noted that such an inconsistent scheme leads to increased stability of the
solution procedure because only the divergence term is approximated via a Galerkin discretiza-
tion on the direct nodal connections, and full upstream weighting can be achieved for relative
permeability. The explanations above are backed by Therrien and Sudicky (1996) and Aquanty,
Inc. (2015), as well as by personal communication with René Therrien and own findings of the
author of this thesis. Note also, that for solving the temporal derivative HydroGeoSphere uses an
implicite Euler scheme. However, in our current description we focus on the spatial discretization
because of its relevance for developing postprocessing techniques. The modified discretization
of Richards’ equation for node i solved by HydroGeoSphere could then be formulated using a
discontinuous weighting function:

WBi
i =

1, if x ∈ Bi

0, if x /∈ Bi

, (38)

where Bi is the box-like control volume associated to node i, which can be defined using the
centroids of the elements, and the centroids of the internal faces in Ei for delineation. Further-
more, for a simplex the special relationship holds that the area (d = 2) or the volume (d = 3)
of Bi equals to:

|Bi| =
∑

Ej⊂Ei

|Ej |
|NEj |

, (39)

where j is an index ranging over the elements Ej being part of the element-star Ei, and NEj is
the set of nodes being part of Ej .
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Figure 2: Depiction of the element-star Ei, which is the union of all elements sharing node i, and imposed
control-volumes and functions exemplified on triangles; a) Ei and its associated node-centered
control volume Bi for the weighting function WBi

i (Equation 38) applied to the transient term
and the source/sink term in Equation 42 being one within Bi and zero elsewhere; b) Shape
function χi for node i, note that the shape function equals the weighting function for the
divergence term in Equation 42.

Then an inconsistent, but more stable discretization of Richards’ equation including mass-
lumping for the change in storage and a lumped source/sink term reads:

∑
j∈ηi

∫
Ei

WBi
i dx∂θi

∂t
+
∑
j∈ηi

∫
Ei

∇χikr,ijKij∇χj dx(hj − hi) =
∑
j∈ηi

∫
Ei

WBi
i dx fi, ∀i ∈ NI . (40)

where Ei is still the union of the elements which share the node i. Recall also that:∫
Ω

WBi
i dx = |Bi| , (41)

which reduces Equation 42 to:

∂θi

∂t
|Bi| +

∑
j∈ηi

∫
Ei

∇χikr,ijKij∇χj dx(hj − hi) = |Bi|fi, ∀i ∈ NI . (42)

2.4.3 A Cell-Centered Finite Volume Method for Unstructured Grids

In this section, we present a cell-centered finite volume method for unstructured grids, either
being a topological triangulation (i.e., composed out of simplices like triangles or tetrahedra),
or an other subdivision of the model domain into polyhedra like triangular prisms. Note that,
throughout this thesis, we assume conforming grids, where all boundary faces fit perfectly onto
their neighboring faces. Split faces, which may be used within local grid refinement, are not
considered. Throughout this section, we will mainly focus on the cell-centered finite-volume
discretization of the groundwater flow equation, as this expression will be used later on for
comparison purposes. Moreover, it is the base for the finite-volume flux reconstruction.
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In a cell-centered finite volume method (FVM) applied to the groundwater flow equation (Equa-
tion 3), the conservation of fluid mass is enforced via a volume balance, assuming constant water
density, for each element E of a given spatial subdivision, or topological triangulation T :∫

E

S0 dx∂h
∂t

+
∫
E

∇ · q dx =
∫
E

f dx, ∀E ∈ T . (43)

For the Richards equation an analogous formulation can be defined using the enlarged storage
term (Equation 11) as transient term, and the extended form of Darcy’s law (Equation7) yielding
a non-linear equation.

Then, the divergence theorem is employed such that the normal component of the specific
discharge nE · q is assumed constant on each element face, F = ∂Ei ∩ ∂Ej , for two neighboring
Elements Ei and Ej of a topological triangulation T leading to conforming fluxes in RT N 0-
space: ∫

E

S0 dx∂h
∂t

+
∑

F ∈FE

∫
F

nE · qF ds =
∫
E

f dx, ∀E ∈ T , (44)

where qF is the specific discharge on F (see Figure 3). Because the normal flux νF · qF is
assumed to be constant on any F , and the source/sink strength f is assumed to be constant
on E, the integrals over F , and E reduce to a multiplication with |F |, and |E|, respectively,
assuming an RT N 0-space. Then, in general [q ·νF ]F = 0 is assured on any face, while [h]F ̸= 0.
Higher-order approximations of the specific-discharge on F are possible also in FVM (Brezzi
et al., 1985, 1987).

Figure 3: Definitions exemplified for two adjacent triangles. The elements Ei and Ej share a face F
on which a unit normal vector νF following a sign convention is defined. The triangular face
itself is defined by the line between the two nodes xn1 and xn2. The coordinates of the nodes
opposite of F are denoted Pi for the node in Ei and Pj for the node in Ej , respectively.(This
Figure is taken from Selzer and Cirpka (2020).)

A cell-centered FVM discretization of Equation 3 results in a linear system of equations:

S∂ĥ
∂t

+ Aĥ = r, (45)

where S is the specific storage matrix, being a diagonal matrix with the element-wise specific
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storage coefficients times the volumes of the elements on the main diagonal for elements not
being part of a boundary condition, otherwise the according entry in the main diagonal is a
zero. ĥ is the vector of all approximated cell-related hydraulic-head values, A is the mobility
matrix, and r is a vector containing sources and sinks integrated over the cell-volume, as well
as boundary conditions.

In order to construct the mobility matrix A, the normal component of the hydraulic gradient
νF · ∇h at each face needs to be approximated from the head values in the cells. Towards
this end, the standard procedure in FVM is to formally allocate the cell-related hydraulic-head
value to the cell center, compute the sum of distances of both cell centers to the face, and
divide the difference of the cell-related head values by this distance. In our FVM approach, we
consider the centroids of triangles, or tetrahedra, as the cell centers rather than the circumcenters
because the centroid is in general more representative for an element than the circumcenter,
at least if hydraulic conductivity is isotropic. Moreover, the centroid always lies within the
respective element, no matter how deformed it is. The disadvantage of taking the centroid as
characteristic point of an element in a finite volume formulation is that the line connecting
the centroids of two neighboring elements is in general not orthogonal to their shared face,
making an orthogonal projection of the distance vector onto the face necessary when computing
the associated coefficients of the mobility matrix. Cordes and Kinzelbach (1996) presented a
finite volume Method on triangles for isotropic hydraulic conductivity employing circumcenters.
Such an approach is easier to compute than employing centroids, as no orthogonal projection
is required, but the results are less accurate, and a valid application is restricted to triangles
strictly meeting the Delaunay criterion. Otherwise, circumcenters may lie on an element face for
right-angled triangles, which could introduce divisions by zero, if the same face is also opposite
to a right-angle of the neighboring volume. The circumcenters of elements with angles larger
than 90◦ lie outside of the elements, which can result in coefficients of the mobility matrix with
wrong sign.

For an accurate representation of Dirichlet boundaries and Neumann boundaries with a fixed,
non-zero flux, we introduce ghost nodes by orthogonally projecting the centroid of an element
next to the boundary, E ∈ ED ∪ EN,±, onto the boundary. That is, we expand the discretization
by introducing surface elements of dimension d − 1. We denote this expanded discretization
by TD,N = T ∪ FD ∪ FN,±, where FD is the set of faces discretizing the Dirichlet boundary
ΓD, and FN,± is the union of the sets of faces discretizing the inflow and the outflow boundary,
respectively.

The mobility coefficients related to a face of two neighboring elements of the expanded dis-
cretization with indices i and j is given by:

mi,j =


s⊥

i,j
|F |

li
ki

+
lj
kj

, F = ∂Ei ∩ ∂Ej , Ei, Ej ∈ T ,

|F |ki

li
, F = ∂Ei ∩ ΓD, Ei ∈ ED,

c, Ei ∈ FN,±,

(46)
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where k is the element-wise isotropic hydraulic conductivity, and c > 0 is a scalar. Note
that the discretization of the fluxes according to Equation 65 is based on a two-point flux
approximation, therefore, the introduction of anisotropy in grids which are not aligned with the
hydraulic conductivity tensor, i.e, k-orthogonal, is not possible without accuracy loss. Finite
volume methods employing full material tensors have been developed for node-centered dual
grids based on a primal grid of triangles or deformed quadrilaterals ( e.g., Edwards (2002)),
and for general grids in two dimensions including cell-centered triangular grids (Friis et al.,
2009). All these methods include transformations of coordinates, which are beyond the scope
of our present consideration. Another possible route of including anisotropy would be following
up on the approach of Su et al. (2020) using orthogonal projections and a multi-point flux
approximation.

For adapting Equation 65 in accordance with Richards’ equation, one would add relative perme-
ability as another multiplicative factor in the first two sub-cases of Equation 65. Here, one would
apply upstream weighting in analogy to Equation 67, between the centroids of two elements i
and j. Note that relative permeability is a property of the cell-center being a non-linear function
of the pressure head at the cell-center in a finite volume formulation.

Furthermore, if ℓ is the distance between two centroids, ℓi is the part of ℓ in the element i, and
ℓj is the part of ℓ in the neighboring element j, and s⊥

i,j is a scaling factor such that only the
orthogonal part of a mobility coefficient normal to an internal face is considered:

s⊥
i,j =

∥ℓ− ⟨f ,ℓ⟩
⟨f ,f⟩ f∥2

∥ℓ∥2
, F = ∂Ei ∩ ∂Ej , Ei, Ej ∈ T , (47)

where ℓ is the distance vector between the centroids of two neighboring elements Ei and Ej ,
and f is the vector lying on F = ∂Ei ∩ ∂Ej . For triangles and other two-dimensional elements,
the evaluation of Equation 47 is straight-forward. For some grids or neighboring elements in
R3, Equation 47 is topological two-dimensional, too. In any case, f can be the tangential part
of ℓ on F , eventually being scaled, such that the remaining part of ℓ is normal to F . However,
reformulating Equation 47 facilitates a more general, and much easier numerical evaluation.
Therefore, we redefine the orthogonal projection 47 to be a factor employing just the normal
component of the direct connection of the cell centers of Ei and Ej on the face F = ∂Ei ∩ ∂Ej .
Then Equation 47 can be rewritten as:

s⊥
i,j = ℓ⊥

ℓ
= ∥νF · ℓ∥2

∥ℓ∥2
, F = ∂Ei ∩ ∂Ej , Ei, Ej ∈ T . (48)

Then, the element Aik of the mobility matrix A ∈ RN×N with two indices i and j ranging over
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the elements in TD,N is given by:

Aik =



∑
j:Ei∩Ej=F

mi,j , i = k, Ei ∈ T ,

1, i = k, Ei ∈ FD,

mi,k, i = k, Ei ∈ FN,±,

−mi,k, i ̸= k, Ei ∩ Ej = F,

0, otherwise,

(49)

and the right-hand side vector r ∈ RN is given by:

ri =


fi|Ei|, if Ei ∈ T ,

−n · qfix,i|Fi|, if Fi ∈ FN,±,

ĥi,D, if Ei ∈ FD,

(50)

where fi is the volumetric source/sink strength per unit volume for an element Ei, ĥi,D is the
assigned Dirichlet boundary condition on the Dirichlet face Ei ∈ FD, and qfix,i is the specific
discharge on a Neumann face with non-zero flux, Ei = Fi ∈ FN,±.

2.5 Postprocessing Methods for Non-Conforming Velocity Fields

In this section two different flux postprocessing techniques are presented. The first is the RT N 0-
projection which can be formulated fully consistently for linear problems like saturated one-phase
flow on simplicial grids. A standard finite-element solution on simplices yields a unique gradient
on the elements, and therefore, an element-wise constant velocity vector. Such a velocity field
can be easier projected onto a conforming one, than a velocity field which varies within the
elements, which would require at best a multipoint projection and transformations of coordinates
for deformed non-simplicial elements to be most accurate. However, an application to deformed
non-simplicial elements is possible and an extension to variably saturated flow is outlined, too.
The RT N 0-projection and its description has been published in Selzer and Cirpka (2020).

The second postprocessing technique is not a projection of a primal velocity field, but a flux
reconstruction based on lowest-order finite volumes, and a two-point flux approximation scheme.
The big advantage of this technique is the high stability of this scheme, and its computational
speed. Moreover, it can easily be applied to non-linear equations like the Richards equation with-
out the possible introduction of severe numerical artifacts. The finite-volume flux reconstruction
and its description has been published in Selzer et al. (2021).

2.5.1 The RT N 0-Projection

The RT N 0-projection aims to project a non-conforming, non-mass-conservative velocity field
onto a mass-conservative and conforming one. This is done by minimizing the element-wise
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residual between the hydraulic gradient of the P1 Galerkin FEM solution for Darcy flow and
a solution corresponding to the velocity approximation in RT N 0-space, in which the normal
component of the velocity is constant on and continuous across every face, and the velocity
components vary linearly within each element.

The RT N 0 basis functions, ψF (x), can be set globally for the topological triangulation T for all
elements sharing face F . Any face is either shared by two neighboring elements, F = ∂Ei ∩∂Ej ,
or is a face of only one element, F ∈ FD ∪ FN . For each face F = ∂Ei ∩ ∂Ej there is one
vertex in both elements Ei and Ej each that is opposite of the face F , or F is a face of only one
element, F ⊂ ∂Ei. Pi denotes the coordinates of the node opposite to F in element Ei, and Pj

those of the node opposite to F in Ej , if there is an element Ej . Then the basis function ψF (x)
is:

ψF (x) =


nEi · νF

|F |
d|Ei| (x − Pi) , x ∈ Ei,

nEj · νF
|F |

d|Ej | (x − Pj) , x ∈ Ej ,

0, elsewhere.

(51)

Then the element-wise RT N 0 velocity field in global coordinates for a simplicial element Ei is
given by:

qRT N0
Ei

(x) =
(
aq

j + bqxj

)
j=1,...,d

=
∑

F ∈FEi

ψF (x)q⊥
F , x ∈ Ei, (52)

where q⊥
F = νF · qF is the orthogonal component of the specific-discharge vector on F , which is

assumed to be constant on the face F , aq
j is an individual scalar for each spatial direction xj ,

bq is a scalar independent of the spatial direction equaling the divergence of the velocity field
integrated over Ei times (d|Ei|)−1, therefore, bq = 0 holds for non-divergent flow. It should be
noted that also in cell-centered FVM fluxes normal to the faces, q⊥

F , are directly computable,
such that the RT N 0 basis functions of Equation 52 can be used to obtain the velocity field
within the cells of an FVM. For a divergent velocity field, the RT N 0 velocity approximation
varies within the element, and the same holds for an FVM velocity field with internal sources
or sinks. For illustration, see Figure 4 showing a divergent and a non-divergent velocity field.
To make specific-values comparable on an element by element basis, we evaluate the velocity
at the element centroid, and denote such an element-wise velocity originating from the FVM
discretization qF V M

Ei
(xc).
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Figure 4: RT N 0 velocity fields. a) divergent flow field, in which flow leaves only at the bottom face. The
resulting velocity varies linearly in every spatial dimension. This velocity field is equivalent to
the velocity base function ψF (x) related to the normal flux density q⊥

F at the bottom face. b)
non-divergent, uniform flow field, resulting from the superposition of three base functions in
the case that the total flux across all faces equals zero. (This Figure is taken from Selzer and
Cirpka (2020).)

If qRT N0
Ei

is evaluated at the centroid xc of an element Ei, an element-wise residual vector
ϵq,Ei between the RT N 0-based velocity qRT N0

Ei
and the element-wise constant P1-Galerkin-FEM

velocity qF E
Ei

can be determined:

ϵq,Ei = qRT N0
Ei

− qF E
Ei
. (53)

However, it is advantageous to consider the residual of the hydraulic gradient at the centroid
instead of the specific discharge within the proposed global optimization procedure. If the
specific discharge was considered directly, residuals in zones of higher hydraulic conductivity,
which are small in relative terms, would have a higher contribution to the objective function of
the optimization procedure than residuals in zones of lower hydraulic conductivity, which are
high in relative terms. We propose to minimize the L2-norm of the hydraulic gradient at the
centroids xc, which is a slight adaption of the approach of Odsæter et al. (2017), who considered
normal components of hydraulic gradients at the faces. Our residual vector at the centroid of
the single element Ei is:

ϵ∇h,Ei
= −K−1

Ei
qRT N0

Ei
(xc) − ∇χEi

ĥ

= −K−1
Ei

∑
F ∈FEi

ψF (xc)q⊥
F − ∇χEi

ĥ, (54)

where ∇χEi
is the gradient of the linear shape functions χEi

in element Ei, and KEi is the
hydraulic-conductivity tensor associated to element Ei. In a finite-element-type primal solu-
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tion of Richards’ equation we replace K−1
Ei

by the inverse of the variably saturated hydraulic-
conductivity tensor, krel,ci

KEi , where krel,ci
is the relative permeability associated to the cen-

troid, ci, of element Ei. However, in a finite-element-type discretization, the relative permeability
is a nodal property and a function of the pressure head. Moreover, several relative permeability
values may be associated to the nodes, depending on which element sharing the node is consid-
ered, if unsaturated material properties differ in the adjacent elements and flow is unsaturated.
For an extension to variably saturated flow, we therefore need to interpolate the relative per-
meability to the element centroids. We do this in our application by linear interpolation of the
nodal relative permeabilities to the centroid for each element, this procedure is equal to taking
the arithmetic mean of the nodal relative permeabilities.

Considering Equation 54, a global system of equations can be set up for the squared element-wise
errors:

⟨ϵT , ϵT ⟩ =ϵT
T ϵT

=(q⊥
Fm

)T
Fm∈FNT N(q⊥

Fm
)Fm∈F

− 2((∇h)F E
Ei

)Ei∈T N(q⊥
Fm

)Fm∈F

+ ((∇h)F E
Ei

)T
Ei∈T ((∇h)F E

Ei
)Ei∈T ,

(55)

where the index i ranges over the elements, and m is an index ranging over the faces, both
according to a global numbering convention. Furthermore, ϵT ∈ RNd is the vector of element-
wise errors in each spatial direction, where Nd is the number of elements times the number
of dimensions, (q⊥

Fm
)Fm∈F ∈ RM is the vector of normal components of the specific discharge

following global indexing of faces, where no-flow boundaries are excluded. In the following,
((∇h)F E

Ei
)Ei∈T ∈ RNd is the vector of element-wise hydraulic gradients with (∇h)F E

Ei
= ∇χEi

ĥ
obtained by a P1 Galerkin FEM solution, and N ∈ RNd×M is the matrix, in which M is the
number of faces minus the number of faces belonging to no-flow boundaries, containing all
RT N 0 basis functions ψF (xc), evaluated at the centroids, scaled by K−1

Ei
, or alternatively by

(krel,ci
KEi)−1 for a finite-element-type primal solution of Richards’ equation, according to a

global numbering scheme of elements and faces:

Nim =

K−1
Ei
ψFm

(xc), if Ei ∈ T , Fm ⊂ ∂Ei, Fm ∈ FI ∪ FD,

0, otherwise,
(56)

where ψFm
(xc) is the RT N 0 basis function of face Fm evaluated at the respective component

of the centroid. Nim has d elements, so that Nimq
⊥
Fm

are the contributions of the normal flux
at face Fm to the hydraulic-gradient vector at the centroid of element Ei. The full matrix
N ∈ RNd×M is assembled from the individual contributions Nim.

The squared errors of Equation 55 are minimized under the constraint that mass is conserved
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element-wise, leading to the following auxiliary condition:

M(q⊥
Fm

)Fm∈F =

∫
Ei

fEidx


Ei∈T

, (57)

where i ranges over all elements and m ranges over all faces following a global numbering scheme,
and fEi is the divergence of the specific discharge in element Ei which equals the source/sink
strength. For transient simulations, the change in storage could be lumped in fEi , too. By this,
we would would treat the change in storage as an additional source/sink term, which is possible
in a postprocessing scheme. M ∈ RN×M is a matrix with the following elements:

Mim =

νFm · nEi |Fm|, if Ei ∈ T , Fm ⊂ ∂Ei, Fm ∈ FI ∪ FD,

0, otherwise.
(58)

Minimizing the squared residuals of Equation 55 subject to the constraint of Equation 57 is done
by the method of Lagrange multipliers, in which the following objective function is minimized:

L((q⊥
Fm

)Fm∈F ,λ) =1
2ϵ

T
T ϵT

+ λ
(
M(q⊥

Fm
)Fm∈F − (|Ei|fEi)Ei∈T

)
,

(59)

where λ ∈ RN is the vector of element-wise Lagrange multipliers. To obtain the minimum of
the objective function, the derivatives with respect to (q⊥

Fm
)Fm∈F and λ must be zero:

∂L

∂(q⊥
Fm

)Fm∈F
= NT N(q⊥

Fm
)Fm∈F

−NT ((∇h)F E
Ei

)Ei∈T + MTλT != 0, (60)
∂L

∂λ
= M(q⊥

Fm
)Fm∈F − (|Ei|fEi)Ei∈T

!= 0, (61)

leading to the following system of equations in block matrix form:[
NT N MT

M 0

] [
(q⊥

Fm
)Fm∈F

λT

]
=
[
NT ((∇h)F E

Ei
)Ei∈T

(|Ei|fEi)Ei∈T

]
. (62)

Equation 62 describes the system of equations of the RT N 0-projection, which is square and has
the order M+N independent of the spatial dimensionality d. For incorporating a fixed, non-zero
flux boundary condition with a normal flux component q⊥

Fm
we may replace the corresponding

entry on the main diagonal of the matrix by a one, set all other entries of the respective row
to zero, and specify the normal component of the flux in the entry m of the right-hand side
vector. Alternatively, we may not consider the according face Fm explicitly, neglect it in the
equation system (Equation 62) to solve, and specify an integrated source/sink contribution to
add, which is equal to the normal flux component q⊥

Fm
integrated over the face Fm for the
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element Ei featuring the fixed flux boundary condition under consideration. In a postprocessing
step, the normal flux component q⊥

Fm
, being a Neumann boundary condition, is then mapped

to the according face Fm to meet the boundary condition and to achieve element-wise mass
conservation.

2.5.2 The Finite-Volume Flux Reconstruction

We assume that a node-centered solution of Equation 6 is already available, typically computed
by a finite element method or by some finite difference scheme. Such a solution is known to be
not mass-conservative in the elements in general (e.g., Cordes and Kinzelbach, 1992; Larson and
Niklasson, 2004; Odsæter et al., 2017; Putti and Sartoretto, 2009). In finite element models,
the normal velocity component exhibits a jump across element faces (e.g., Odsæter et al., 2017),
leading to an inconsistent velocity field, which is not suitable for particle tracking. In standard
finite difference methods, the velocity component normal to a cell boundary is not defined.
While cell-centered finite volume schemes are sometimes denoted finite difference methods by
their developers (e.g., McDonald and Harbaugh, 1988), the original finite difference method does
not perform a mass balance in cells, and mass conservation is not guaranteed.

We use HydroGeoSphere in finite-difference mode to obtain a steady-state variably saturated
flow solution (Aquanty, Inc., 2015; Therrien and Sudicky, 1996). The finite difference method
of HydroGeoSphere is formulated in finite-element terms that neglects the cross terms, so that
only direct connections between nodes that correspond to the primal grid are retained (Ther-
rien and Sudicky, 1996). Thus, the approximation of the hydraulic-head field may be imagined
as a continuous solution on these direct connections resembling a network of lines on element
edges. When visualizing the hydraulic head solution, a bilinear interpolation within the pris-
matic elements is typically assumed, which is not fully consistent with the way heads have been
computed.

Taking the HydroGeoSphere pressure-head solution to obtain nodal values of the relative per-
meability in each element and the storage-related divergence of the flow field, we present a flux
reconstruction that is locally mass-conservative in the elements and conforming on the element
faces. To do so, we recompute the hydraulic head governed by the Richards equation (Equa-
tion 6) with a lowest-order, cell-centered finite volume method using the elements as control
volumes. From the finite-volume solution we can construct the velocity field in lowest-order
Raviart-Thomas-Nédélec (RT N 0) space on triangular prisms, forming the basis for consistent
particle tracking. The following description of the lowest-order finite volume flux reconstruction
heavily relies on the description given by Selzer and Cirpka (2020). This section rephrases some
equations of section 2.4.3 where the basis of a lowest-order finite volume method for unstruc-
tured grids is discussed. This section puts the concepts and equations of section 2.4.3 into the
context of a flux reconstruction, if a primal solution for the hydraulic heads already exists. For
this purpose some equations are repeated here, though sometimes in a slightly different notation
to account for the specifics of a flux reconstruction compared to a numerical scheme designed
for computing a primal solution.
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Finite volume schemes are based on conserving the quantity of interest, in our case the fluid
mass assuming constant fluid density, in each element:∫

E

∇ · q dx =
∫
E

f∗ dx, ∀E ∈ T , (63)

where f∗ = f − ∂θ/∂t includes the expanded change in storage (Equation 11). Applying the
divergence theorem yields:

∑
F ∈FE

∫
F

nE,F · q ds =
∫
E

f∗ dx, ∀E ∈ T . (64)

For setting up the system of linear equations, we expand the discretization by treating Dirichlet
and Neumann faces as ghost elements, implying explicit head values at these faces. A lowest-
order finite difference approximation of the flux on the boundary of the elements together with
a weighted approximation of the material coefficients yields the mobility coefficients, mi,j , on
the faces for neighboring elements:

mi,j =


s⊥

i,jk
i,j
r |F | ℓiKi+ℓjKj

ℓ2 , on F = ∂Ei ∩ ∂Ej ∈ FI ,

|F |ki,j
r Ki

ℓi
, on F = ∂Ei ∩ ΓD ∈ FD, Ej ⊂ ΓD,

c, on F ∈ FN ,

(65)

where i and j are the indices of two neighboring elements, and Ki and Kj are the isotropic,
saturated hydraulic conductivities of the elements i and j, respectively. In the anisotropic case,
these saturated conductivity values would represent the conductivity in the direction of the
normal vector on face F . Furthermore, ℓ = ℓi + ℓj is the distance between the centroids of the
triangular prisms i and j, whereas ℓi and ℓj are the parts within elements i and j, respectively.
s⊥

i,j is an orthogonal correction factor accounting for the fact that the approximated flux is in
general not normal to the face F = ∂Ei ∩ ∂Ej . ki,j

r is the relative permeability on the face F ,
and c > 0.

Including anisotropy as a full tensor would be possible in a cell-centered finite volume flux
reconstruction, but it is beyond our consideration. As an example, Edwards (2002) derived such
techniques for a dual grid to unstructured triangular meshes, Friis et al. (2009) and Edwards and
Zheng (2010) extended this approach to the primal grid using a dual grid and transformations
of coordinates similar to those known from finite elements on subspaces, which yields a more
versatile finite-volume formulation, but also adds to the computational costs. Another possible
route for including anisotropy may be facilitated by incorporating a flux approximation scheme
similar to the one suggested by Su et al. (2020).

As mentioned above, the discretization T is expanded by ghost elements on faces in order to
account for Dirichlet and Neumann boundary conditions not being no-flow boundary conditions.
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In contrast to a standard cell-centered finite volume discretization, we do not use the distance-
weighted harmonic mean to compute the mobility coefficients but a distance-weighted arithmetic
mean. This turned out to be more stable and better mimics the primal hydraulic head solution
obtained by the finite-difference mode of HydroGeoSphere. Celia et al. (1990) also used an
(unweighted) arithmetic mean of hydraulic conductivities to obtain an equivalent approximation
of spatial derivatives between a finite difference method and the standard Galerkin finite element
method on a one-dimensional regular grid.

In order to compute the correction factor s⊥
i,j we repeat Equation 48 and consider the projection

of the distance vector ℓ, connecting the centroids of the elements i and j, onto the direction of
the normal vector on a face F :

s⊥
i,j = ℓ⊥

ℓ
= ∥νF · ℓ∥2

∥ℓ∥2
, F = ∂Ei ∩ ∂Ej , Ei, Ej ∈ T . (66)

For the approximation of the relative permeability on the faces, ki,j
r , we need to consider that

the finite-element-type scheme may yield different values of kr for the same node in the different
elements i and j sharing the node, if material properties differ between elements i and j. For
a flux reconstruction, we need to approximate a single relative permeability per face. We do
this by first linearly interpolating the nodal values belonging to each element to the centroid
of the face, which is the arithmetic mean of the nodal values, and then applying upstream
weighting, that is taking the relative permeability of the element that has the larger hydraulic
head h = z+ψ at its element centroid in the initial finite-element or finite-difference solution:

ki,j
r =


1

|NF |
∑

n∈NF

ki,n
r , F ∈ FEi , if hc,i ≥ hc,j or F ⊂ Γ,

1
|NF |

∑
n∈NF

kj,n
r , F ∈ FEj , if hc,j > hc,i,

(67)

where |NF | is the number of nodes on face F , ki,n
r and kj,n

r are the relative permeabilities at
node n in the elements i and j, respectively, whereas hc,i and hc,j are the hydraulic heads at
the centroids of elements i and j, respectively. Additionally, we set the relative permeability
of a node exhibiting recharge to one, which we found necessary for accurately mimicking some
primary solutions. As these nodes experience a water influx during a recharge event, the water
saturation is close to unity anyway.

With these approximations, we can specify the resulting system of linear equations by assembling
the mass-balance equations for all elements:

Aĥ = r, (68)

where A is the mobility matrix, ĥ is a pseudo hydraulic head, which we call the pseudo-potential,
defined on the centroids of the elements, which leads to mass-conservative and conforming
fluxes, and r is the right-hand side vector including the divergence of the flux f∗ integrated

35



over the element, as well as boundary conditions. After computing the pseudo-potential, we can
reconstruct the mass-conservative, lowest-order fluxes on the faces which are a prerequisite for
particle tracking in RT N 0-space.

In the following, we give the mass-balance equation for an inner element Ei:

for Ei ∈ T :
∑

j:Ei∩Ej=F

mi,j(hi − hj) = f∗,i|Ei|, (69)

where hi is the pseudo-potential at the centroid of element i, whereas hj is either the correspond-
ing pseudo-potential at the centroid of element j or the fixed potential at a Dirichlet boundary
condition hD,m, or the pseudo-potential associated to a Neumann boundary condition hN,m,
which is set such that the desired flux between the Neumann boundary and the i-th element
is obtained. Furthermore, f∗,i is the source or sink strength including the change in storage
associated to the centroid of the element Ei. A Robin boundary condition is applied by setting
a reference potential hR,m, and giving a conductance Cm associated to the face m for computing
the total flux towards the i-th element. For setting a Robin boundary condition Equation 69 is
superimposed with:

Cm(hi − hR,m) = Qm, (70)

where Qm is a total normal flux on face m, which leads to an additional mobility coefficient on
the main diagonal of matrix A in Equation 68 and an entry in the right-hand side vector of the
system 68.

If element i is a face belonging to a Dirichlet or a Neumann boundary, the resulting i-th equation
is:

for Ei = Fm ∈ FD : hi = hD,m, (71)

for Ei = Fm ∈ FN : cm(hN,m − hj) = qN,m · |Fm|, (72)

where hD,m is the hydraulic head associated to a Dirichlet face, hN,m is a hydraulic head at
a Neumann face defined such that the normal component of the specific discharge, entering or
exiting through element Ei, equals qN,m including a sign denoting the direction of the flux, and
cm is a positive scalar.

2.6 Semi-Analytical Particle Tracking in RT N 0-Space

In advective particle tracking, the trajectories of ideal, point-like particles are computed via
integrating the particle velocity over the travel time. A trajectory Xp(t) = (xj,p(t))j=1,...,d in
x ∈ Ω for a particle p is given by:

Xp(t0 + ∆t) = Xp(t0) +
∫ t0+∆t

t0
v(Xp(τ), τ) dτ, (73)
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where t0 is the starting time, ∆t is a discrete time increment, v is a velocity field and τ is the
travel time. Note that for us the velocity, v, is the linear average velocity being v = q/θ, where
θ is the volumetric water content, which reduces to the flow-effective porosity ne in saturated
flow. Both, the volumetric water content as well as the flow-effective porosity are assumed
to be constant in the elements. If volumetric water contents are given on the nodes within a
primal hydraulic head/pressure solution, the element-wise constant volumetric water content is
given by linear interpolation to the element centroid, which equals the arithmetic mean of the
nodal values. The flow-effective porosity is a material property defined constant on the elements
anyways.

In the following, we present element-wise analytical solutions of Equation 73 to compute the
exit location of a particle on an element-face from the start location of that particle within the
element, or from the entry location on another element-face, for non-divergent and divergent
flow on arbitrarily shaped triangles and tetrahedra in global coordinates. Note that, if there is an
internal sink or a stagnation point in the element, and the analytical solution is that the particle
will stop within the element, this analytical solution is recovered, too, by the given analytical
solutions. Here, the trajectory is followed towards the face, where the particle should head
towards but stopped at the center of the sink, or the stagnation point. For triangular prisms,
which is our example of a superposition of two simplices, we first give the according RT N 0-
space on triangular prisms. Based on this, we derive a particle tracking scheme in a mixed
coordinate system, combining particle tracking in global, physical coordinates in the horizontal
with tracking in the vertical in a local coordinate system. With this, we can track a particle
from one element-face to the next throughout the whole domain until a boundary or an internal
sink like an extraction well. The analytical solution for triangles and tetrahedra are described
by Selzer and Cirpka (2020), while the RT N 0-space in mixed coordinates for triangular prisms
and the associated particle tracking scheme is described by Selzer et al. (2021).

2.6.1 Analytical Solutions for Triangles

Particle tracking in non-divergent flows on triangles We first consider non-divergent flow on
triangles, which implies an element-wise constant velocity vector. Given an entry point of a
particle on the starting face Fs, the element-wise constant velocity vector defines a straight line,
starting at the entry point. The point of the first intersection of this line with one of the element
faces not being the starting face is the exit point. It is computed by intersection of hyperplanes,
i.e., lines (d = 2), or planes (d = 3), containing the element faces with the trajectory line. Let
xp = (xp, yp) be the starting point of a particle in the element Ei, or on the face Fs ∈ FEi .
Then, the other points lying on the trajectory, given the velocity vector, (vj,Ei)j=1,...,d = vEi ,
starting from xp, is given by xl = (xl, yl) = xp + rvEi , where r > 0 is a positive scalar. Every
face F of an element Ei can be described by two nodes xn1 = (xn1, yn1) and xn2 = (xn2, yn2).
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Then, a possible exit point, xe,p = (xe,p, ye,p), on the face F is given by line-line intersection:

xe,p =
(

(xn2 − xn1) · (xl · yp − xp · yl) − (xl − xp) · (xn2 · yn1 − xn1 · yn2)
(yn2 − yn1) · (xl − xp) − (yl − yp) · (xn2 − xn1) ,

(yp − yl) · (xn2 · yn1 − xn1 · yn2) − (yn1 − yn2) · (xl · yp − xp · yl)
(yn2 − yn1) · (xl − xp) − (yl − yp) · (xn2 − xn1)

)
∀F ∈ FEi \ {Fs},

(74)

where Fs is the face on which the particle starts, if the particle starts on a face. Let xd be the
distance vector xe,p − xp, then the travel times leading to possible intersection points are simply
given by:

τ =
( ||xd||2

||vEi ||2

)
F ∈FEi

\{Fs}
with sign(xj) = sign(vj,Ei), (75)

The actual exit point xe is the possible exit point with the corresponding smallest positive travel
time:

xe = (xe,p)i with i = min{k : τk = min
1≤j≤n,

τj>0

τj}, (76)

where i is the corresponding index of the possible exit point with the corresponding minimum
travel time τi.

Particle tracking in divergent flows on triangles For divergent flow on triangles in global
coordinates, we again consider the intersection of the particle trajectory within an element with
the element faces. Considering the space defined in Equation 18, and Equations 51, 52, we
know that for every spatial dimension xj with x = (x, y), the velocity varies linearly within the
element:

vEi = (vj)j=1,...,d =
(
ax + bx

ay + by

)
. (77)

Furthermore, we can compute the acceleration of the particle along its trajectory in the j-th
direction by:

dvj

dt

∣∣∣∣
p

= dvj

dxj

dxj

dt

∣∣∣∣
p

, (78)

where t is time, and p denotes the position of the particle. The derivatives of the right-hand
side of Equation 78 are:

dvj

dxj
= b,

dxj

dt

∣∣∣∣
p

= vj . (79)

Combining Equations 78, and 79, and given two distinct particle positions p1 and p2 on a
trajectory within an element separated by a travel time ∆t yields:

ln
(
vj,p2
vj,p1

)
= ln

(
aj + bxj,p2
aj + bxj,p1

)
= b∆t. (80)
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On every face, F ∈ FEi , of an element Ei a vectorized line equation for every point, xl = (xl, yl)
on F , can be defined independent of the orientation of the line including the respective face:

xl = xn1 + stl, (81)

where s is a scaling factor, and tl = (tx,l, ty,l) is a tangential unit normal vector parallel to
the respective face, and starting from one facial node, xn1 = (xn1, yn1), pointing towards the
second facial node, xn2 = (xn2, yn2). Furthermore, we know that for two points p1 and p2 on
a trajectory, the travel time ∆t in Equation 80 is the same no matter which spatial dimension
xj is considered, such that ∆t = ∆tx = ∆ty, and the factor b in Equation 80 is element-wise
constant. Considering these findings and Equation 80, we observe that:

ax + bxe,p

ax + bxp
= ay + bye,p

ay + byp
, (82)

where xe,p = (xe,p, ye,p) is a possible exit point of a particle on a face, and xp = (xp, yp) is
an entry point of that particle. Then a possible exit-point on a face is given by substituting
Equation 81 into Equation 82 yielding the scalar factor s such that Equation 81 points to the
possible exit point xe,p on a face:

s =
(
ay + byn1
ay + byp

− ax + bxn1
ax + bxp

)
·
(

btx,l

ax + bxp
− bty,l

ay + byp

)−1

. (83)

Then, the vector of travel times τ = (∆t)F ∈FEi
\{Fs} for divergent flow on triangles is given by

evaluating the travel times in an arbitrary spatial dimension:

τ =
(

1
b

ln
(
ax + bxe,p

ax + bxp

))
F ∈FEi

\{Fs}
=
(

1
b

ln
(
ay + bye,p

ay + byp

))
F ∈FEi

\{Fs}
. (84)

Finally, the actual exit-point is determined according to Equation 76.

2.6.2 Analytical Solutions for Tetrahedra

Particle tracking for non-divergent flow on tetrahedra On tetrahedra the velocity is again
element-wise constant for non-divergent flow and a possible exit point of a particle on a face is
given by simple line-plane intersection. Again, let xp = (xp, yp, zp) be the starting point of a
particle in an element Ei, or on a face Fs ∈ FEi , and let vn,Ei = (vx,n, vy,n, vz,n) be a vector
of unit length pointing in the same direction as the element-wise velocity vector, vEi , and let
ne = (nx,e, ny,e, nz,e) be a normal vector on a possible exit-face, F ∈ FEi \ {Fs}. Furthermore,
let d = pF − xp = (dx, dy, dz) be a distance vector between the entry point xp and an arbitrary
point, pF = x ∈ F , on the respective face. Given the following scalar factor:

dl = ⟨d,ne⟩
⟨vn,Ei ,ne⟩

, (85)
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then, the possible exit-point on a face is given by:

xe,p = xp + dlvn,Ei . (86)

The vector of travel times is:

τ =
( ||xd||2

||vEi ||2

)
F ∈FEi

\{Fs}
with sign(xj) = sign(vj,Ei), (87)

where xd = xe,p − xp. The actual exit point is again determined with Equation 76.

Particle Tracking for Divergent Flow on Tetrahedra For divergent flow a particle tracking
scheme on tetrahedra can be derived in analogy to those for triangles. On tetrahedra the
element-wise velocity field, with x = (x, y, z), is given by:

vEi = (vj)j=1,...,d =


ax + bx

ay + by

az + bz

 , (88)

and every face is embedded in a plane equation such that:

xl = xn1 + sp1 + tp2, (89)

where xl = (xl, yl, zl) is the vector of coordinates of an arbitrary point on a face F , xn1 =
(xn1, yn1, zn1) is the vector of coordinates of one of the nodes defining F , p1 = (px1, py1, pz1) and
p2 = (px2, py2, pz2) are direction vectors of unit length parallel to F , which have to be linearly
independent. For every point of a trajectory of a particle p, we again know that the travel time is
the same no matter which spatial direction we consider ∆t = ∆tx = ∆ty = ∆tz. Reconsidering
Equation 80, we observe that:

ax + bxe,p

ax + bxp
= ay + bye,p

ay + byp
= az + bze,p

az + bzp
, (90)

where xe,p = (xe,p, ye,p, ze,p) is again a possible exit point of a particle on a face, and xp =
(xp, yp, zp) is an entry point of a particle. Obviously, there are three possibilities to compute s
for d = 3. We opt for s1 such that ∆tx = ∆ty which yields:

s1 =
(
ay + byn1 + btpy2

ay + byp
− ax + bxn1 + btpx2

ax + bxp

)
·
(

bpx1
ax + bxp

− bpy1
ay + byp

)
︸ ︷︷ ︸

=:K

−1

, (91)

furthermore, s2 is set such that ∆tx = ∆tz which is then given by:

s2 =
(
az + bzn1 + btpz2

az + bzp
− ax + bxn1 + btpx2

ax + bxp

)
·
(

bpx1
ax + bxp

− bpz1
az + bzp

)
︸ ︷︷ ︸

=:L

−1

. (92)
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The factor t is computed by s1 = s2 yielding:

t =
(

az + bzn1
(az + bzp)L − ax + bxn1

(ax + bxp)L −
(

ay + byn1
(ay + byp)K − ax + bxn1

(ax + bxp)K

))

·
(

bpy2
(ay + byp)K − bpx2

(ax + bxp)K −
(

bpz2
(az + bzp)L − bpx2

(ax + bxp)L

))−1

.

(93)

Possible exit-points xe,p on planes including the faces F ∈ FEi \{Fs} for an element Ei, are then
uniquely determined by inserting t (Equation 93) and either s1 (Equation 91), or s2 (Equation
92) for s in the plane equation (Equation 89) for a face F . It is obvious that s1 (Equation 91), s2

(Equation 92), and t (Equation 93) have, in any case, to be defined such that gaps in definition
are avoided. That is, it has always to be checked, if the direction vectors, tl for triangles, and
p1, and p2 for tetrahedra are chosen such that divisions by zero are avoided.

The vector of travel times, τ = (∆t)F ∈FEi
\{Fs}, for divergent flow on tetrahedra is again given

by evaluating the travel times in an arbitrary spatial dimension:

τ =
(

1
b

ln
(
ax + bxe,p

ax + bxp

))
F ∈FEi

\{Fs}
=
(

1
b

ln
(
ay + bye,p

ay + byp

))
F ∈FEi

\{Fs}

=
(

1
b

ln
(
az + bze,p

az + bzp

))
F ∈FEi

\{Fs}
.

(94)

Finally, the actual exit-point is determined according to Equation 76.

2.6.3 The RT N 0-Space in Mixed Coordinates on Triangular Prisms

A triangular prism can be represented as a superposition of two simplices: a line and a triangle.
While element-wise analytical particle tracking on simplices is feasible in both global and local
coordinates, we need to employ local coordinates when analyzing the velocity field in deformed
non-simplicial elements. Upon transformation from global to local coordinates, all arbitrarily
deformed triangular prisms become the same reference prism. In subsurface flow modeling,
however, it is common practice to start the discretization with triangulation in the horizontal
coordinates followed by expanding the triangles at the horizontal nodes in the vertical direction.
This allows defining a reference prism in mixed coordinates, in which the horizontal local coor-
dinates equal the corresponding global coordinates, while the vertical coordinates are mapped
to the unit-interval, and therefore, scaled between 0 at the bottom of the prism and 1 at the
top. Thus, our reference prism is not fixed, but it combines the triangular base area in global
coordinates, mapped to local coordinates of the same value, with a unit height. By this, we have
separated the horizontal from the vertical dimension. We can still conduct horizontal particle
tracking in global coordinates on triangles, while tracking the particles in the vertical within the
unit-interval. Then, the three-dimensional trajectory is given by direct superposition.

The RT N 0 velocity space is a lowest-order velocity approximation within the individual ele-
ments yielding a distinct velocity vector in every spatial coordinate (Nédélec, 1980, 1986; Raviart
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and Thomas, 1977). In RT N 0-space, the spatial dimensions are independent of each other yield-
ing, together with a constant normal component of the velocity on the element boundary for
the reference element, a bilinear approximation of the velocity within the triangular prisms.

Before describing the actual velocity space, a few prerequisites on transformations of coordi-
nates are necessary. In the following, we use x to denote the physical coordinates in three
spatial dimensions x = (x, y, z). Furthermore, we use X to denote the coordinates in a local
coordinate system associated to a reference element, such that the three spatial dimensions are
X = (X,Y, Z). For the transformation of coordinates, we need the Jacobian matrix J of partial
derivatives:

Ji,j = ∂xi

∂Xj
, (95)

⇒ J = ∇XN · xpri, (96)

where i ranges over the dimensions in physical, global coordinates, and j ranges over the dimen-
sions in local coordinates, ∇XN is the gradient of the shape functions N defining the reference
prism in local coordinates, and xpri contains the global coordinates of all nodes of the physical
prism. The gradient of the shape functions in global coordinates, ∇xN, can now be determined
by:

∇xN = J−1∇XN. (97)

For the integration over the element volume, the following rule applies:∫
Ex

dx =
∫

EX

det(J)dX, (98)

where Ex is an element in global, and EX is an element in local coordinates, respectively. The
same rule applies to integrations within the element, like the pathline-integration employed
in particle tracking. Furthermore, the transformation of coordinates is linear such that (e.g.,
Rognes et al., 2009):

x = JX + c. (99)

Considering the transformation shown in Equation 99, we also see that the barycentric weights on
a simplex in local coordinates are the same for every point in the element as in global coordinates,
which is a useful attribute one may exploit, for example, for mapping particle locations from
physical to local coordinates. The described transformation from local to global coordinates
is often called Piola transformation; it is a standard procedure in finite element simulations of
scalar state variables like hydraulic heads, approximated at the nodes and interpolated within
the element. For mapping a vector-field onto a space, which either preserves the divergence
or the curl, special rules for transforming normal and tangential traces on the element faces
apply. These rules are explained in great detail by Rognes et al. (2009), on whose descriptions
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and derivations we rely. As particle tracking is based on conforming velocity fields implying
mass-conservation, we opted for the lowest-order velocity space which preserves the divergence,
facilitating the derivation of analytical solutions of trajectories in the elements. Contravariant
Piola transformation applies to the normal traces of the velocity in RT N 0-space. Considering
this, Rognes et al. (2009) showed that the following transformation rule is valid:

|F |ϕ(x) · n︸ ︷︷ ︸
in global coordinates

= |F0|Φ(X) · n0︸ ︷︷ ︸
in local coordinates

, (100)

where |F | is the measure of a face in global coordinates, |F0| is the measure of the same face in
local coordinates, n is the normal vector on F in global coordinates pointing outwards, and n0

is the same normal vector in local coordinates. ϕ(x) is a vector-valued function approximated
in some velocity space on the elements in global coordinates, and Φ(X) is the equivalent vector-
valued function in local coordinates. From Equation 100 one directly sees that transforming the
normal component of a vector field on an element boundary from one coordinate system to the
other reduces to the multiplication with a scaling factor equal to the ratio of the measures of
the faces in the two coordinate systems.

As mentioned above, we consider prisms with a constant triangular base area in the horizontal
directions and linearly varying height. We opt for a reference prism in mixed coordinates, in
which the horizontal coordinates have the same value as in global horizontal coordinates without
the unit, whereas the vertical extension of the prism is scaled to the dimensionless unit interval
Z = [0, 1]. For this choice of local coordinates, the determinant of the Jacobian becomes:

det(J(X,Y )) = hE(x, y), (101)

where hE is the scalar value of the height of the prism at the horizontal coordinates (x, y)
although having dimensions of [L3]. This gives an intuitive measure on the magnitude of variation
of det(J) within the element. Also, particle tracking in the horizontal directions can be conducted
in global coordinates saving transformations of coordinates, mapping of faces, and associated
bookkeeping.

For a triangular prism Ei the specific-discharge vector qEi,mixed = (qx,i, qy,i, qZ,i) in mixed
coordinates can be computed by:

qx,i =
∑

Ftri⊂∂Etri

|Ftri|
2|Etri|

(x− Px,Ftri) · q⊥,i
h,Ftri

= ax,i + bh,ix, (102)

qy,i =
∑

Ftri⊂∂Etri

|Ftri|
2|Etri|

(y − Py,Ftri) · q⊥,i
h,Ftri

= ay,i + bh,iy, (103)

qZ,i =
(Z − 1) · q⊥,i

bottom · |F bottom|
|F bottom

0 | + Z · q⊥,i
top · |F top|

|F top
0 |

hEi(x, y) = aZ,i + bZ,iZ

hEi(x, y) , (104)

where |Ftri| is the length of an edge Ftri of the base triangle of Ei, |Etri| is the area of the
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base triangle, and PFtri = (Px,Ftri , Py,Ftri) are the horizontal coordinates of the node opposite
to the edge Ftri in the horizontal plane of the element Ei; |F bottom| and |F top| are the areas of
the bottom face F bottom and the top face F top of the physical element, whereas |F bottom

0 | and
|F top

0 | are the areas of the bottom face F bottom
0 and the top face F top

0 in local coordinates, both
|F bottom

0 | and |F top
0 | are equal to area of the base triangle, |Etri|, in mixed coordinates; q⊥,i

h,Ftri
,

q⊥,i
bottom, and q⊥,i

top are the specific discharge-values in global coordinates computed by the finite-
volume flux reconstruction normal to the side edge Ftri, the bottom and top face of the element
i, respectively. All normal flux components q⊥,i are also equipped with a sign convention such
that: q⊥,i

F = (νF · q) · (nEi,F · νF ), in which F can be the edge Ftri, the bottom, or the top face
of the element Ei. Such a sign convention is common among adjacent elements. The coefficients
ax,i, ay,i, bh,i describe the linear variation of the horizontal specific-discharge component in an
element i and can be computed by summation. Note that the horizontal specific discharge
components qx,i and qy,i in the Equations 102 and 103 are given in global, physical coordinates
having dimensions of [LT−1] while the vertical specific discharge component qZ in Equation 104 is
given in the local coordinates of the mixed reference prism having dimensions of an inverse time.
If the Equations 102 and 103 were formulated in the local coordinates of the mixed reference
prism the horizontal specific discharge components also would have dimensions of an inverse
time while the values of all variables would remain the same although being dimensionless in
space.

While there is a linear dependence of qZ with Z, the linear variation of the height and, therefore,
of the determinant of the Jacobian, hE(x, y), in the horizontal coordinates leads to a complicated
dependence of qZ on the mixed coordinates (x, y, Z).
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Figure 5: Exemplification of a velocity field in RT N 0-space. a) Non-divergent horizontal velocity field
mapped to the physical element. Note that, although there is a vertical component of the
physical velocity above the bottom face, the field is topologically horizontal and the vertical
component is 0 in mixed coordinates. The normal component of the velocity on the top and
bottom faces is zero in mixed coordinates as well as in the physical element; b) divergent vertical
flow field; c) superposition of a) and b). (This Figure is taken from Selzer et al. (2021).)

The specific-discharge vector qEi,mixed, now given in local coordinates in every dimension, can
be transformed into the specific-discharge vector in global coordinates qEi by:

qEi = J · qEi,mixed. (105)

2.6.4 Analytical Approximation for Triangular Prisms

Recall, that for a given velocity field v(x, t), particle trajectories xp(t) and associated travel
times τ are computed by:

xp(t) = xp,t0 +
∫ t

t0
v(τ)dτ, (106)

τ =
∫
S

1
∥v(s)∥2

ds, (107)

where xp,t0 is the vector of starting coordinates, S is the (curvilinear) trajectory, while s denotes
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all coordinates defining S, and v denotes the linear average velocity, which determines the
particle trajectory S, and which is related to the specific-discharge vector q by:

v = q
θ
. (108)

In the following, we assume that the volumetric water content θ is constant within an element. In
our scheme, this constant water content is the arithmetic mean of the volumetric water contents
at the nodes of the element of interest, which equals a linear interpolation to the centroid.

Given a conforming velocity field in an appropriate velocity space, particle tracking can either be
computed by numerical integration (e.g., Matringe et al., 2006; Srinivasan and Lipnikov, 2013)
or analytically (e.g., Crane and Blunt, 1999; Loschko et al., 2016; Matringe et al., 2006; Pollock,
1988; Prévost et al., 2002; Selzer and Cirpka, 2020). The key idea of the semi-analytical meth-
ods is to evaluate the particle trajectory analytically based on an element-wise given velocity
field, which is numerically approximated. In this approach, the exit point and travel time are
determined from the entry point by closed-form integration of the kinematic equation using the
velocity approximation within the element. The particle is then tracked further in the neigh-
boring element until it has reached an outflow boundary or the total travel time to be simulated
has been reached. The advantages of the semi-analytical approach is that the integration within
the elements is exact.

Equations 102 and 103 indicate that, in our flux approximation on deformed prisms, the horizon-
tal specific-discharge components qx and qy within an element vary linearly in their respective
direction, while they are constant in all other directions. Because we assume that the volumet-
ric water content is constant within the element, the same properties hold for the horizontal
components of the linear average velocity vx and vy.

Equation 104 shows that the local vertical specific discharge qZ on deformed prisms depends not
only on the local vertical coordinate Z, but also on the horizontal coordinates, which complicates
the analytical evaluation of vertical displacements. Rather than performing a numerical inte-
gration, we decided to simplify Equation 104 by the following approximation (for an analogous
simplification compare Prévost et al., 2002):

qZ,i ≈
(Z − 1) · q⊥,i

bottom · |F bottom|
|F bottom

0 | + Z · q⊥,i
top · |F top|

|F top
0 |

hEi(xc,i, yc,i)
= a∗Z,i + b∗Z,iZ, (109)

where xc,i and yc,i are the horizontal coordinates of the element centroid of the element Ei,
xc,i = (xc,i, yc,i). With this, the three spatial specific-discharge components are decoupled.

2.6.5 Algorithmic Details

In our particle tracking code, we track particles, originating form an arbitrary starting location
within the domain, from one element boundary to the next. Given a starting location of a
particle, we first search for the starting element. If particles are tracked, e.g., only from Dirichlet
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boundary conditions, we can also restrict the search to the respective elements sharing a Dirichlet
boundary, or the respective starting elements are known beforehand. This may be the case, if
particles are released at the top of the domain. If the start location is at an element interface or
a distinct node, we pragmatically choose the first possible starting element found in the search.
Details on the search employing barycentric coordinates are given at the end of this section.
If the starting element is determined, all the following elements are determined, by tracking
a particle from face to face. This scheme is in analogy to that of Pollock (1988). According
to some criterion reflecting numerical accuracy, our particle tracking algorithm automatically
switches between a tracking for non-divergent and divergent flow, depending on the properties
of the element-wise flow field. The tracking procedure is continued until a particle leaves the
domain via a Dirichlet boundary, an outflow boundary, or an element containing an extraction
well, or the desired simulation time is reached.

The semi-analytical approach of Pollock (1988) relies on decoupled velocity components within
elements. In our adaptation, it consists of the following steps exemplified for triangular prisms:

1. Extend the faces of the element to infinite planes.

2. For a starting location x0 within the element, or at an inflow face of the element, determine
which faces are potential exit faces for the particle. The velocity component normal to
such a face must be oriented outwards of the element.

3. For a given element i and each potential exit plane m, determine the travel time τi,m it
would take to reach that plane by analytical integration for a dimension d ∈ {x, y, ∗Z} :

τi,m =


θi(xi,m,d − x0,d)

ad,i
, if |bd,i| < εb,

θi

bd,i
ln
(
ad,i + bd,ixi,m,d

ad,i + bd,ix0,d

)
, otherwise,

(110)

where ad,i ∈ {ax,i, ay,i, a∗Z,i} and bd,i ∈ {bh,i, b∗Z,i} are the coefficients describing the linear
dependence of the specific-discharge component in its dimension d in the element Ei, xi,m,d

is the possible exit location on the face Fm in dimension d. Note that, if Ei takes a sink
not projected on ∂Ei, like it would be the case for an extraction well, the exit location
xi,m,d could be also within the element. x0,d ∈ x0 = {x0, y0, ∗Z0} is the coordinate of the
starting location x0 being in element Ei or on ∂Ei, and θi is the volumetric water content
associated to element i obtained by linear interpolation of the nodal water contents to
the centroid of element i. Note that τi,m is the same for a possible exit location for every
dimension d. εb is a small number on the order of 100 times the relative machine precision.

4. The actual travel time τi within the element is now the minimum positive and real travel
time towards all face-carrying planes or the center of an internal sink.

5. With the given travel time τi, the exit point xex = (xex, yex, ∗Zex) in mixed coordinates is
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now given by:

xex =


x0 + ax,i

θi
τi, if |bh,i| < εb,(

x0 + ax,i

bh,i

)
exp

(
bh,i

θi
τi

)
− ax,i

bh,i
, otherwise,

(111)

yex =


y0 + ayi

θi
τi, if |bh,i| < εb,(

y0 + ay,i

bh,i

)
exp

(
bh,i

θi
τi

)
− ay,i

bh,i
, otherwise,

(112)

∗Zex ≈


∗Z0 + a∗Z,i

θi
τi, if |b∗Z,i| < εb,(

∗Z0 + a∗Z,i

b∗Z,i

)
exp

(
b∗Z,i

θi
τi

)
− a∗Z,i

b∗Z,i
, otherwise.

(113)

6. Back-transform the local vertical coordinate ∗Zex to the corresponding physical coordinate
zex.

7. Determine whether the particle has reached an outflow boundary of the domain, or the
center of an internal sink. If not, analyze which neighboring element Ej will be entered,
switch to that element such that Ej becomes Ei, set x0 = xex, and repeat all steps.

Selzer and Cirpka (2020) give analytical expressions on how to perform these calculations most
efficiently for triangles (compare section 2.6.1). These expressions directly apply for the hori-
zontal tracking in the triangular prisms.

Depending on the application, we keep track of the full particle trajectory, keep only travel times
and the type of boundary where the particle exits the domain, or travel times spent in elements
of specific material properties. By reverting the velocity field and the time arrow, we can also
evaluate where particles have come from, how long they have been in the domain, and how much
time they spent in certain zones.

Note that the described algorithm is fastest (at least when written in Matlab), if all computa-
tions are done within one big while-loop, which runs, as long as there is at least one particle,
which has not finished its trajectory. Within the while-loop, there should be not further loop,
for the particle tracking code on triangular prisms, the code was written by the author as such.
All computations necessary for transient catchment-scale particle tracking are done loop-free
employing among others vector-matrix multiplications and multidimensional indexing, which
is all combined with propositions of mathematical logic, such that all special cases (including
extraction wells, and even possible failure of a trajectory among others) are covered, and every
particle moves with its correct velocity depending on its location in space and time. If there
is a time-update because of transient flow, the particle stops exactly at this time, and is then
further tracked with the new velocity.
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Using Barycentric Coordinates to Find the Starting Element of a Particle Trajec-
tory

The outlined scheme below is designed to determine, if a point is in a simplex. If an element
is a polyhedron, like a triangular prism, this element can be divided into simplices of the same
dimension. Then, the equations below can still be used to determine whether the starting
location of a particle is within the respective element.

Every point x̂s within a simplex can be described by a linear combination of the coordinates of
the nodes, x̂i, and a barycentric, nodal weight, βi ≥ 0, respectively, such that:

x̂s =
∑

i∈NE

βix̂i, (114)

with ∑
i∈NE

βi = 1, and βj = 1 −
∑

i ̸=j∈NE

βi, (115)

where j is the index of a node and βj is its associated weight, such that any point in the simplex
can be described by the coordinates of its nodes, and d+ 1 weights. Combining Equations 114
and 115 leads to:

Tβ = x̂s − x̂j , (116)

⇒ β = T−1 (x̂s − x̂j) , (117)

where T is a transformation matrix only depending on the coordinates of the nodes, T−1 can
easily be evaluated analytically. β is the vector of the d independent, barycentric, nodal weights,
and x̂j is the vector of coordinates of node j of the element.

We exploit the concept of barycentric coordinates in the search for the element in which the
starting point of our particle-tracking scheme resides. To do so, we define the particle location
as xp = x̂s and solve Equation 117 for every element. If a particle lies within an element, all
weights β = (βi)i=1,...,d+1 are within the interval 0 ≤ βi ≤ 1 and sum up to unity. We stop the
search at the first instance at which both criteria are met.

For finding starting points in triangular prisms, we assume that the prisms are only deformed in
the vertical, while the horizontal base area stays constant for triangular prisms stacked on each
other. In this case, we first search for the starting locations in the horizontal triangular base
areas, followed by a search in the vertical dimension to identify the actual prism, in which the
starting point of a particle is eventually located.

2.7 Measures of Differences between the Discretization Methods

We define difference measures comparing the specific discharge values at all element centroids
of the RT N 0-projection with a reference solution being either analytical or obtained by the
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cell-centered FVM. The first difference measure ϵabs is the ratio between the absolute values:

ϵabs =
||qRT N0

Ei
(xc)||2

||qRef
Ei

(xc)||2
, Ei ∈ T , (118)

where qRT N0
Ei

(xc) is the specific discharge evaluated at the centroid of element Ei, obtained
by the RT N 0-projection of The P1 Galerkin FEM solution, and qRef

Ei
(xc) is the same specific

discharge computed by the reference solution. The second difference measure quantifies the
discrepancy in direction by evaluating the scaled angle between the specific discharge vectors:

ϵdir =
∠
(
qRT N0

Ei
(xc),qRef

Ei
(xc)

)
π

, Ei ∈ T , (119)

where ∠(·, ·) denotes the angle in radians between two vectors. For evaluating the overall
behavior of a model, the element-wise measures ϵabs and ϵdir are assembled to the vectors ϵabs

and ϵdir listing all element-wise values, respectively.

2.8 Implementation Details

The grids for the two-dimensional test cases are generated by the algorithm ’triangle’ (Shewchuk,
2005), accessed via MeshPy using Python 3.4.2 employing the compiler GCC 4.9.1 on Linux De-
bian 8. The tetrahedral grids consist of manually defined cubes, which are subsequently split
into triangular prisms and finally into tetrahedra. This splitting is done manually by a scheme
described by the author of this thesis (see section 3.1.4). The splitting yields conforming grids,
which also minimize grid effects in lowest-order finite-volume type discretizations. The pri-
mal hydraulic-head solutions are, as already mentioned, obtained by using HydroGeoSphere
(Aquanty, Inc., 2015) on Windows 7 for the examples employing standard Galerkin FEM. How-
ever, any P1 Galerkin FEM code, and moreover any FEM code yielding a non-conforming
velocity field, could be used, in principle. The primal solutions for the finite difference method
in finite-element terms is obtained using HydroGeoSphere on Windows 10 (Aquanty, Inc., 2015;
Therrien and Sudicky, 1996), and on Linux Ubuntu for the sub-catchment-scale example (see
section 3.2.2), using the finite-difference mode of HydroGeoSphere, which employs the finite
difference method in finite-element terms described in section 2.4.2. The cell-centered FVM, the
RT N 0-projection, the finite-volume flux reconstruction, and the particle tracking codes are im-
plemented in Matlab 2016b, this framework reads mostly binary, and seldom ascii output/input
files generated by HydroGeoSphere. For transient flow, the nodal volumetric water content can
be reconstructed for every element using the van Genuchten parameterization (see Equation 9),
or directly read in as binary file containing the water saturations of the primal solution on the
nodes for every element. The final framework proposed for catchment-scale models of variably
saturated flow is split into three major parts. The first computes all geometrical properties
and has to be run once per grid. The second is the FVM flux reconstruction that is run once
per time level for which a flux-reconstruction is desired. We solve the final linear system of
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equations (Equation 68) by the stabilized biconjugate gradients method in Matlab using an
incomplete LU factorization as preconditioner, and a starting vector computed from the primal
hydraulic-head solution linearly interpolated to the centroids of the elements. The third part
is the actual particle tracking routine, here the algorithm switches for every element individ-
ually between non-divergent and divergent flow according to a user-defined criterion reflecting
numerical accuracy.
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3 Numerical Results
3.1 Results for the RT N 0-Projection

In the following sections numerical test cases for the RT N 0-projection and associated particle
trajectories are evaluated. With the exception of section 3.1.5 on an application of the RT N 0-
projection to variably saturated flow, and the descriptions on optimal splitting of structured
grids of cubes into conforming grids of tetrahedra in section 3.1.4, the following content and
text has been published in Selzer and Cirpka (2020), sometimes in slightly adapted form.

3.1.1 Non-Divergent Groundwater Flow on Triangles

We first compare the RT N 0-projection to the cell-centered FVM, and the original P1 Galerkin
velocity approximation for non-divergent groundwater flow in a square domain of dimension
100 m × 100 m containing two nearly impervious walls. The discretized domain consists of 2554
elements and 1333 nodes (see Figures 6a-c). The left boundary of the domain is a Dirichlet
boundary with a fixed head value of ĥD,l = 11.0 m. The right boundary of the domain is split.
Over a central section (x = 100, y ∈ [30, 70]) the hydraulic head is fixed to ĥD,r = 10.0 m. All
other boundary sections (top, bottom, remaining parts of the right-hand side boundary) are no-
flow boundaries. Yellow shaded elements in Figures 6a-c have an isotropic hydraulic-conductivity
value of k = 10−4 m/s. The blue-gray shaded elements belong to the nearly impermeable walls
in x ∈ [30, 40], y ∈ [0, 70] and x ∈ [60, 70], y ∈ [30, 100]. They exhibit a reduced hydraulic-
conductivity value of k = 10−10 m/s. The uniform porosity is ne = 0.4. Particles are started
on the left-hand Dirichlet boundary with a spacing reflecting the cumulative flux across the
boundary. For the case of non-divergent groundwater flow, the latter implies that the calculated
particle trajectories are streamlines such that any two neighboring trajectories are streamtubes
with the same discharge.
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Figure 6: Particle trajectories and difference measures of the two conforming velocity fields for non-
divergent groundwater flow in a 2-D domain with two nearly impermeable walls. a) trajectories
based on non-conforming P1 Galerkin FEM velocity approximation; b) trajectories based on
cell-centered FVM; c) trajectories based on the projection of the P1 Galerkin FEM velocity
approximation onto a mass-conservative field in RT N 0-space; d) ratio of absolute velocities at
cell centroids (ϵabs) resulting from the proposed RT N 0-projection of the non-conforming P1
Galerkin FEM velocity field and the cell-centered finite volume method; e) angle between the
two velocities at cell centroids (ϵdir). (Adapted from Selzer and Cirpka (2020).)

Figure 6a shows particle trajectories using the element-wise velocity approximation qF E
E based

on the P1 Galerkin FEM. As discussed, specific-discharge and average linear velocity fields, q(x)
and v(x), respectively, are non-conforming, causing jumps of the normal components on faces.
The erroneous physical interpretation of these jumps are virtual sources and sinks on the faces.
These numerical sources and sinks are preserved in the tracking patterns. In the most extreme
case, the element-wise velocity vectors of neighboring elements both point towards the same
face. In such cases, we could not track the particles any further and thus made the trajectories
end on the respective face.

Figure 6b shows the particle trajectories of the conforming cell-centered FVM solution of the
groundwater flow equation (Equation 3) on triangles, whereas Figure 6c shows the trajectories
resulting from the RT N 0-projection of the P1 Galerkin FEM velocity approximation. The
trajectories of the cell-centered FVM solution are somewhat more angular with small rapid
changes of the direction at cell interfaces. This is due to the strong constraints of the FVM
discretization and has also been observed for mixed finite element solutions in RT N 0-space
(Putti and Sartoretto, 2009; Matringe et al., 2006; Juanes and Matringe, 2009; Hoteit et al.,
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2002). In contrast, our RT N 0-projection leads to smoother trajectories, which we assess as
being more correct in sub-domains of uniform hydraulic conductivity. We believe that the
smoothness of the RT N 0-projection stems from the smoothness of the hydraulic gradients in
the P1 Galerkin FEM solution. While the latter needs to be corrected in order to obtain a
mass-conservative RT N 0-solution of the velocity field, the correction is minimized within the
constraints of a conforming, mass-conservative velocity approximation. Of course, the velocity
fields of both the FVM-solution and our projection are in RT N 0-space, are conforming and
element-wise mass conservative. While the RT N 0-projection of the P1 Galerkin FEM velocity
approximation is smoother, the computational effort to obtain the cell-centered FVM solution
is considerably lower.

Table 1: Measures for the differences between the discretization methods in the 2-D application with two
nearly impervious walls. As ϵabs is a ratio, we give the respective infinity norm as ||(|1−ϵabs|)||∞.
(Taken from Selzer and Cirpka (2020).)

mean(·) median(·) ||(| · |)||∞
ϵabs 1.08 1.06 0.63
ϵdir 2.30 · 10−2 1.70 · 10−2 1.43 · 10−1

We quantify the difference between the two conforming velocity fields depicted in Figures 6b and
6c by the ratio of absolute velocities according to Equation 118 and the angle between the two
velocities according to Equation 119. Figures 6d and 6e show the spatial distribution of these
two difference measures, and Table 1 lists norms over the entire domain. From this, we conclude
that the velocities originating from our RT N 0-projection are very similar to those directly
obtained from cell-centered FVM, with respect to both the absolute values and directions of the
velocities throughout the domain, including the zones within or nearby the nearly impervious
walls of very low hydraulic conductivity. In particular, the RT N 0-projection does not introduce
a noticeable numerical rotation, which might occur in other flux-correction schemes (Schiavazzi,
2013), and occasionally also within the normal framework of mixed finite elements in RT N 0-
space (Hoteit et al., 2002). Note that even though both solutions are in RT N 0-space, one
would expect different results as they are computed differently. As both solutions are numerical
approximations, we cannot say which solution is more accurate. In general, the difference
measures depicted in Table 1 are all very low, and also depend on numerical accuracy of the
computations and the solver used.

3.1.2 Divergent Groundwater Flow on Triangles

In our next benchmark, we consider a 100 m × 100 m domain with uniform isotropic hydraulic
conductivity of k = 10−5 m/s, in which groundwater recharge takes place in a 30 m × 30 m
squared subdomain in the center of the domain, indicated by a blue-gray shaded square in
Figure 7. The recharge flux is qin = 200 mm/a ≈ 6.3376 · 10−9 m/s. The uniform porosity is
ne = 0.4. The domain is discretized by 1252 triangular elements and 667 nodes. The left and
right boundaries of the domain are Dirichlet boundaries with a head difference of 1.0 m, whereas
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no flow is allowed across the upper and lower boundaries.

Figure 7: Particle trajectories and difference measures comparing the velocity fields resulting from the
RT N 0-projection of a non-conforming field with the velocity field computed by cell-centered
FVM for a 2-D domain with a recharge zone. a) trajectories for cell-centered FVM; b) trajec-
tories for the P1 Galerkin FEM velocity approximation projected onto a field in RT N 0-space;
c) ratio of absolute velocities at cell centroids (ϵabs); d) angle between the velocities at cell
centroids (ϵdir). (Adapted from Selzer and Cirpka (2020).)

Table 2: Measures for the differences between the discretization methods in the 2-D application with a
rectangular recharge zone. As ϵabs is a ratio, we give the respective infinity norm as ||(|1 −
ϵabs|)||∞. (Taken from Selzer and Cirpka (2020).)

mean(·) median(·) ||(| · |)||∞
ϵabs 1.05 1.04 0.45
ϵdir 2.60 · 10−2 2.16 · 10−2 1.38 · 10−1

Figures 7a and 7b show the corresponding particle trajectories for the FVM velocity field and the
RT N 0-projection of the P1 Galerkin FEM velocity field, respectively. Both trajectory patterns
appear reasonable. The trajectories diverge in the recharge area depicted by the blue-gray

55



square. The trajectories of the FVM solution is again more angular, while the RT N 0-projected
solution preserves the smoothness of the P1 Galerkin FEM solution.

Like in the non-divergent case, we quantify the difference of the two conforming velocity fields
in the divergent case depicted in Figures 7a and 7b by the ratio of absolute velocities according
to Equation 118 and the angle between the two velocities according to Equation 119. Figures 7c
and 7d show the spatial distributions of these two difference measures, and Table 2 lists norms
over the entire domain. These metrics confirm that the two velocity fields are quite similar. All
measures listed in Table 2 are very low. We also computed the infinity norm of the relative
error in mass conservation, which was on the order of machine precision for double-precision
real variables.

3.1.3 Empirical Consistency and Convergence Tests for Anisotropic Hydraulic Conductivity
on Triangles

For evaluating the performance of the RT N 0-projection in cases with anisotropic hydraulic
conductivity, we consider a unit square Ω = [0, 1]2 in which a fixed non-zero flux is defined as
Neumann boundary condition over the central sections (y ∈ [0.25, 0.75]) of the left and right
boundaries, all other boundary sections are no-flow boundaries. The domain is discretized by
812 elements and 439 nodes, the maximum diameter of the elements, hT , is chosen such that
1/hT = 16. We consider a uniform hydraulic conductivity with the component kxx = 10−4 m/s
in x-direction remaining identical in all cases, whereas the kyy-component in y-direction is varied
such that kyy/kxx = 1, kyy/kxx = 0.1, and kyy/kxx = 0.01. The off-diagonal entries remain zero.
The uniform porosity is ne = 0.4. The normal flux at the inflow and outflow boundaries is
uniformly set to n · qN,+ = −n · qN,− = −10−4 m/s. As in the preceding case, the starting
positions of particles are chosen such that the spacing reflects an equal cumulative flux across
the boundary, so that the particle trajectories represent streamlines. For illustration, see Figure
8, which illustrates the case of kyy/kxx = 0.1.
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Figure 8: Non-divergent test case with hydraulic anisotropy for the case of kyy/kxx = 0.1. a) particle
trajectories of the analytical solution (120); b) particle trajectories of the RT N 0-projection
of the P1 Galerkin FEM velocity field (bold black line at the boundary: no-flow boundary);
c) ratio of absolute velocities at cell centroids (ϵabs); d) angle between the velocities at cell
centroids (ϵdir). (This Figure is taken from Selzer and Cirpka (2020).)

We show consistency by comparing the results of the RT N 0-projection to the corresponding
analytical solution rather than a numerical result based on cell-centered FVM. The analytical
solution for our test case is:

qAna =
((

Q

Ly
− kxx

∞∑
r=1

αr (a⊕,r exp (αrx) − a⊖,r exp (−αrx)) cos
(

2πyr
Ly

))
,

)
((

kyy
2π
Ly

∞∑
r=1

r (a⊕,r exp (αrx) + a⊖,r exp (−αrx)) sin
(

2πyr
Ly

)))
,

(120)

where Q [L2T−1] is the total volumetric flux and Ly [L] denotes the total vertical length of the
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domain, which equals unity in our case. The coefficients are given by:

a⊕,r = 1 − exp (−αrLx)
2 sinh (αrLx)

q̃in,r

kxxαr
, and a⊖,r = 1 − exp (αrLx)

2 sinh (αrLx)
q̃in,r

kxxαr
, (121)

and

q̃in,r = 2
rπ

Q

Lw
sin
(
rπ (Ly − Lw)

Ly

)
, and αr = 2πr

Ly

√
kyy

kxx
, (122)

where Lw [L] is the length of the inflow/outflow boundary and Lx [L] denotes the total horizontal
length of the domain, which equals unity in our case.

Table 3: Measures for the differences between the RT N 0-projection in 2-D and the analytical solution
for three anisotropy ratios kyy/kxx. As ϵabs is a ratio, we give the respective infinity norm as
||(|1 − ϵabs|)||∞. (Taken from Selzer and Cirpka (2020).)

kyy/kxx mean(·) median(·) ||(| · |)||∞

1 ϵabs 1.00 1.00 0.31
ϵdir 1.04 · 10−2 4.16 · 10−3 1.30 · 10−1

0.1 ϵabs 1.00 1.00 0.51
ϵdir 1.50 · 10−2 5.80 · 10−3 1.72 · 10−1

0.01 ϵabs 3.12 1.02 23.73
ϵdir 2.64 · 10−1 1.72 · 10−2 1.00

Figures 8a and 8b show the corresponding particle trajectories based on the analytical solution
and the RT N 0-projection of the P1 Galerkin FEM velocity field, respectively, for the case of an
anisotropy ratio of 0.1. Figures 8c and 8d show the ratio of absolute velocities of the RT N 0-
projection over the analytical solution and the difference in the direction, respectively. The
trajectory pattern gives the visual impression that the result of the RT N 0-projection of the P1

Galerkin FEM velocity field is very close to the analytical solution. The patterns of the two
other anisotropy ratios show comparable similarities, but the trajectories are more centered in
the middle section for kyy/kxx = 0.01 and more evenly distributed in the vertical direction for
kyy/kxx = 1.

Table 3 lists the norms of difference measures, confirming the good agreement of the RT N 0-
projection with the analytical solution for the isotropic case and for the case with the anistropy
ratio of kyy/kxx = 0.1. For an anisotropy ratio of kyy/kxx = 0.01, the RT N 0-projection of the
P1 Galerkin FEM velocity introduces numerical artifacts, which mainly occur in low flow regions
near the no-flow boundaries. Already the case of kyy/kxx = 0.1, shown in Figures 8c and 8d
indicates these tendencies. For kyy/kxx = 0.01, however, the orientation of the velocities near
the top and the bottom is mostly reverted. In these regions the absolute velocity is significantly
smaller than in the central section, particularly in cases of high anisotropy. Because of the
small values, getting the velocity right in these regions has a relative low significance in the
minimization procedure, which induces the described numerical artifacts.
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To analyze the performance of the RT N 0-projection more rigorously, we extend this test by
an empirical convergence analysis comparing our obtained results with those of the base P1

Galerkin FEM solution. We employ the same model as exemplarily shown in Figure 8 using
iteratively refined grids. The base grid discussed above has a maximum diameter of the elements,
hT , such that 1/hT = 16. For the empirical convergence analysis we use this grid amongst other
refinement levels, whereas keeping all adjustments for the grid generation identical on all levels.

Table 4: Convergence behavior of the numerically approximated velocity fields for different anisotropy
ratios kyy/kxx of hydraulic conductivity with kxx = 1 · 10−4 m/s. The empirical order of conver-
gence is given in parentheses. hT is the maximum diameter of the triangles, i.e., the maximum
face length, and N is the number of elements. Furthermore, qRT N0 and qAna are the velocity
fields of the RT N 0-projection and the analytical solution, respectively. (Adapted from Selzer
and Cirpka (2020).)

kyy/kxx 1/hT N 1
N

∑
Ei∈T

||qRT N0
Ei

(xc) − qAna
Ei

(xc)||2 1
N

∑
Ei∈T

||qF E
Ei

(xc) − qAna
Ei

(xc)||2

1

4 48 2.15 · 10−5 (−) 2.14 · 10−5 (−)
8 196 1.07 · 10−5 (1.01) 1.09 · 10−5 (0.97)
16 812 5.36 · 10−6 (1.00) 5.45 · 10−6 (1.00)
32 3354 2.68 · 10−6 (1.02) 2.73 · 10−6 (1.00)

0.1

4 48 2.21 · 10−5 (−) 4.04 · 10−5 (−)
8 196 1.16 · 10−5 (0.93) 1.74 · 10−5 (1.22)
16 812 6.31 · 10−6 (0.88) 8.72 · 10−6 (0.99)
32 3354 3.16 · 10−6 (0.99) 4.38 · 10−6 (0.99)

0.01

4 48 2.23 · 10−5 (−) 5.41 · 10−5 (−)
8 196 1.97 · 10−5 (0.18) 2.77 · 10−5 (0.97)
16 812 1.02 · 10−5 (0.95) 1.61 · 10−5 (0.78)
32 3354 4.48 · 10−6 (1.19) 8.19 · 10−6 (0.97)

According to Table 4 the velocity field approximated by the RT N 0-projection essentially shows
the same order of convergence as the original velocity field based on the P1 Galerkin FEM. It
is also worth noting that, besides of the coarsest grid for an anisotropy ratio of unity, all other
norms indicate that the conforming velocity field of the RT N 0-projection is overall closer to the
analytical solution than the original flux approximation of the P1 Galerkin FEM. Nevertheless,
the numerical artifacts of reverted velocity fields and wrong magnitudes of the velocities induced
by the RT N 0-projection for an anisotropy ratio of kyy/kxx = 0.01 are also preserved in the
reduced empirical convergence order shown in the first refinement step in Table 4.

We conclude the test case by reporting on the computation time needed to solve the equation
systems resulting from the RT N 0-projection for the isotropic case, for which we can also perform
the cell-centered FVM simulations as a comparison. The systems of equations are solved by the
direct solver UMFPACK (Davis, 2004), accessed via the backslash-operator of Matlab.
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Table 5: Comparison of the computational costs for the RT N 0-projection and the cell-centered FVM for
the isotropic case given in CPU-time and wall time in seconds needed to solve the final systems
of equations given as median value over 11 runs each. hT is the maximum diameter of the
triangles, N is the number of elements, and M is the number of element edges. (Adapted from
Selzer and Cirpka (2020).)

1/hT N M CPU-time (wall time): CPU-time (wall time):
RT N 0-projection cell-centered FVM

4 48 68 0.09375 (0.054655) 0.09375 (0.022623)
8 196 286 0.09375 (0.038496) 0.1250 (0.044168)
16 812 1202 0.296875 (0.062972) 0.203125 (0.053037)
32 3354 4999 0.265625 (0.069596) 0.046875 (0.01447)

The CPU-times shown in Table 5 clearly indicate that the final system of equations resulting
from the cell-centered FVM can be solved quicker for larger systems than the system resulting
from the RT N 0-projection. This is so because the system of equations resulting from the
cell-centered FVM discretization is symmetric, positive-definite, and of order N , whereas the
system of equations resulting from the RT N 0-projection is, though symmetric, an indefinite
saddle-point problem of order N +M comparable to an RT N 0 MFEM discretization.

3.1.4 Three-Dimensional Test Case

Our three-dimensional benchmark model is a cube with an edge length of 10.0 m. The back-
ground isotropic hydraulic conductivity is k = 10−4 m/s. Two cuboid inclusions (x ∈ [2, 4], y ∈
[0, 5], z ∈ [2, 4] and x ∈ [6, 8], y ∈ [5, 10], z ∈ [6, 8], respectively) have a strongly reduced
isotropic hydraulic conductivity of k = 10−10 m/s. In Figure 9a, the inclusions are highlighted
as blue blocks. The uniform porosity is ne = 0.4. The domain is discretized into cubes of 1 m
edge length, which are split into six tetrahedra such that effects of grid orientation in the cell-
centered FVM solution are minimized. This leads to 6000 tetrahedral elements and 1331 nodes.
The left boundary of the domain (i.e., the set of faces with x = 0 m) and the right boundary (i.e.,
the set of faces with x = 10 m) are Dirichlet boundaries with uniform hydraulic-head values, in
which the head difference is 1.0 m between the left and right boundaries. No flow is permitted
across all other boundaries of the domain.
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Figure 9: Three-dimensional, non-divergent test case with two nearly impermeable cuboid inclusion. a)
particle tracks based on the proposed RT N 0-projection of the P1 Galerkin FEM velocity ap-
proximation on tetrahedra; b) ratio of the absolute velocity resulting from the RT N 0-projection
and that from the cell-centered FVM solution at the cell centroids (ϵabs); c) angle between the
two velocity approximations at the cell centroids (ϵdir). (Taken from Selzer and Cirpka (2020).)

Figure 9a shows a few particle trajectories starting at the inlet boundary of the domain, which
have been computed using the RT N 0-projection of the specific-discharge field originating from
the P1 Galerkin FEM solution. The particle trajectories circumvent the inclusions in a physi-
cally reasonable manner. In contrast to the two-dimensional test cases, we don’t show particle
trajectories for the FVM solution, because the visual impression does not indicate any obvious
differences to trajectories obtained from the RT N 0-projected velocity field of the standard FEM
solution.

Table 6: Measures for the differences between the discretization methods in the 3-D application with two
nearly impervious cuboid inclusions. As ϵabs is a ratio, we give the respective infinity norm as
||(|1 − ϵabs|)||∞. (Taken from Selzer and Cirpka (2020).)

mean(·) median(·) ||(| · |)||∞
ϵabs 9.89 · 10−1 9.74 · 10−1 8.34
ϵdir 5.83 · 10−2 5.86 · 10−2 1
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Figures 9b and 9c visualize the measures of differences in the velocity field between the FVM
solution and the velocity approximation by our RT N 0-projection. Figure 9b shows the ratio of
absolute velocities, and Figure 9c the normalized angle between the two velocity vectors at the
cell centroids. Table 6 lists the associated norms for the entire domain. The magnitude of the
differences are visualized in Figures 9b and 9c by both the size and color of spheres at the cell
centroids. In the largest part of the domain, these differences are negligible. Only at certain
points next to the inclusions the difference measures exceed average values. The difference in
the direction is mainly caused by a slight shift of points where the particle trajectories separate
to circumvent the inclusions. By coincidence, two cells show a larger difference in the absolute
value of the velocity.

As indicated by the difference metrics listed in Table 6, the results are very similar. Like in the
2-D test cases, the trajectories based on the FVM solution on simplices are more angular than
those based on the RT N 0-projection of the P1 Galerkin FEM solution, because the projection
tries to preserve the smoothness of the standard FEM solution. We would deem the projected
results to be physically more accurate, but the FVM solution is achieved at considerably lower
computational costs.

Optimal splitting of structured grids of cubes into conforming grids of tetrahedra

For the example computations depicted in Figure 9, we split a regular grid of cubes into a
conforming grid of tetrahedra such that the effects of grid orientation in a lowest-order FVM
solution are minimized. In this excursus, we develop our splitting strategy, naming and depicting
also other strategies in order to show that our splitting approach is superior.

There are infinite ways how one can split a three-dimensional polyhedron into tetrahedra be-
cause, once split into tetrahedra, every tetrahedron can be split again in tetrahedra. Possibilities
include cutting the tetrahedron in halfs starting from one vertex introducing an additional face
spanning from the according vertex to the median of the triangular base area opposite to the
vertex. By this, one tetrahedron is split into two. Another common approach is the addition of
an additional internal vertex, e.g., at the centroid of the tetrahedron (see e.g., Dompierre et al.,
1999). By this, one tetrahedron can be split into four tetrahedra. However, in the following we
focus on schemes which do not introduce additional vertices, which reduces the possibilities to
split a cube into tetrahedra to a finite amount. The minimum amount of tetrahedra in which a
cube can be split is five (e.g, Cordes and Kinzelbach, 1992; Dompierre et al., 1999), where one
tetrahedron is in the middle of the cube, being surrounded by four tetrahedra which faces are,
among others, part of the former faces of the cube. However, in this section, we opt to split
the cubes first into two triangular prisms, followed by a division of every triangular prism into
three tetrahedra. Three tetrahedra is the minimum amount in which a triangular prism can be
split. The reason for splitting a cube into six tetrahedra is, that this approach can lead to a
possible configuration how a conforming grid of tetrahedra can be defined such that the effects of
grid orientation introduced especially by a lowest-order FVM or MFEM are minimized (Selzer
and Cirpka, 2020; Putti and Sartoretto, 2009; Hoteit et al., 2002). Moreover, the cubes are
not only embedding tetrahedra but also triangular prisms, this makes computations on different
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geometries possible using the same spatial base discretization.

In our exemplification, we consider a grid of 1000 unit cubes, which equals the base discretization
of the results depicted in Figure 9 spanned such that the resulting domain has the dimensions
10 m × 10 m × 10 m. For our particle tracking examples the same boundary conditions as in the
three-dimensional test case of this section are chosen. The only difference is that now a uniform,
isotropic hydraulic conductivity of k = 10−4 m/s is assumed everywhere such that flow should
be perfectly straight from the inlet to the outlet of the cuboid, which equals in the projection
from the top on the base of the domain flow-paths which should all go from left to right. For the
particle tracking examples, we consider 96 particles which are released on the Dirichlet boundary
on the left, which is the inflow boundary. The starting locations of the particles are regularly
spaced in y and z with x = 0, where x = (x, y, z), which yields a quadrilateral pattern of
starting locations projected on the inflow boundary around the centroid of the inflow boundary
being the center. Therefore, the mean of all starting particle locations equals (0, 5, 5). For the
approximation of the overall drift, we will give the mean coordinates of the particles at their exit
locations. Note that, according to the model setup, in the ideal case the mean of the starting
locations should equal the mean of the exiting locations in y and z while x should equal 10,
leading to the ideal mean of exit coordinates of (10, 5, 5). Note also that in the following only
conforming grids of tetrahedra are discussed.

Figure 10: Naive split of a grid of structured cubes first split into triangular prisms and in a second step
into a grid of conforming tetrahedra following a consistent, non-alterating strategy. View from
the top on 96 particle trajectories in different locations in y and different depths in z.

In Figure 10 a naive split of structured unit cubes into a conforming grid of tetrahedra using
a consistent, non-alterating strategy is depicted seen from the top. Every cube is first split
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into two prisms always by inserting an additional face from the top left to the bottom right in
the current projection. Then, every prism is split into three tetrahedra. Particle trajectories
are dipping not only from high values in y to low values in y, like it can be seen in Figure
10, but they are also dipping form their initial vertical coordinates in z to lower values in z.
The mean of the exit coordinates for the splitting strategy depicted in Figure 10 is rounded to
(10, 2.86, 2.47) which is considerably different from the ideal mean of the exit coordinates, which
is (10, 5, 5). The deviation is about a factor of two, which is a severe difference significantly
influencing the computed trajectories. The deviation can solely be explained by the effects of
grid orientation induced by a suboptimal splitting procedure combined with the lowest-order
FVM approximation described in section 2.4.3 .

In the following we explain different strategies of splitting grids of structured cubes into grids of
conforming tetrahedra, which are better, finally developing our own strategy, where the effects
of grid orientation are averaged out such that the final exit coordinates of all particles equal
their ideal exit coordinates being the analytical solution up to numerical accuracy. First, we
introduce our numbering strategy of nodes, cubes, and triangular prisms.

Figure 11: Numbering strategies for nodes, cubes, and prisms exemplified for the four cubes being in the
bottom left of the domain next to the origin of the coordinate system. In general, numbering
is from left to right and from bottom to top. a) Numbering of nodes; b) numbering of cubes
seen from the top; c) numbering of triangular prisms seen from the top. Note that the whole
domain is split into 4-tuples of cubes, where every cube only belongs to one tuple.

64



In Figure 11a the numbering strategies of nodes is exemplified for the four cubes of the primal
grid next to the origin in the bottom left of the domain next to the origin of the coordinate
system. In our example grid, every horizontal plane has 121 nodes, and there are 11 horizontal
nodal planes. Figure 11b depicts the numbering strategy of cubes from low to high values in x,
in y, and also in z, which is not depicted in the Figure. Figure 11c exemplifies the numbering
strategy of triangular prisms for the four cubes next to the origin of the coordinate system. The
numbering strategy of the four cubes as well as of the triangular prisms is continued accordingly
for all other 4-tuples of cubes and derived triangular prisms as a series with increasing values in
x, y, and z.

For the splitting, we define the example cubes and prisms as node-tuples consisting of all nodes
in ascending order of node IDs. Considering the numbering strategy depicted in Figure 11
the four cubes are defined as node-tuples: cube 1 = (1, 2, 12, 13, 122, 123, 133, 134), cube 2 =
(2, 3, 13, 14, 123, 124, 134, 135), cube 11 = (12, 13, 23, 24, 133, 134, 144, 145), and cube 12 = (13,
14, 24, 25, 134, 135, 145, 146). Following again the ascending order of node IDs, the node-tuples
defining the exemplary triangular prisms are: prism 1 = (1, 2, 12, 122, 123, 133), prism 2 =
(2, 12, 13, 123, 133, 134), prism 3 = (2, 3, 14, 123, 134, 135), prism 4 = (2, 13, 14, 123, 134, 135),
prism 21 = (12, 13, 24, 133, 134, 145), prism 22 = (12, 23, 24, 133, 144, 145), prism 23 = (13, 14,
24, 134, 135, 145), prism 24 = (14, 24, 25, 135, 145, 146). For splitting triangular prisms into tetra-
hedra, the reader is also referred to Dompierre et al. (1999), who do not only describe individual
splitting strategies for single pyramids, triangular prisms, and hexahedra, but also an algorithm
for splitting grids of unstructured triangular prisms in grids of conforming tetrahedra. In our
tuples, defining the triangular prisms, we consider the ordinal numbers, which are the relative
positions of the node IDs in a tuple, which implies that they range from one to six for triangular
prisms. Considering these positions, the six variants how a triangular prism can be split into
tetrahedra are the following listed in Table 7.

Table 7: Strategies of splitting triangular prisms in tetrahedra. The tetrahedra are given as tuples consist-
ing of ordinal numbers referring to the relative position of a node ID in the tuples of triangular
prisms defined as above.

Tetrahedron 1 Tetrahedron 2 Tetrahedron 3
Strategy 1 (1, 2, 3, 6) (1, 2, 5, 6) (1, 4, 5, 6)
Strategy 2 (1, 2, 3, 5) (1, 3, 4, 5) (3, 4, 5, 6)
Strategy 3 (1, 2, 3, 5) (1, 3, 5, 6) (1, 4, 5, 6)
Strategy 4 (1, 2, 3, 4) (2, 3, 4, 6) (2, 4, 5, 6)
Strategy 5 (1, 2, 3, 6) (1, 2, 4, 6) (2, 4, 5, 6)
Strategy 6 (1, 2, 3, 4) (2, 3, 4, 5) (3, 4, 5, 6)

Using the splitting strategies shown in Table 7, we depict four possible strategies of splitting
triangular prisms, derived from cubes, into conforming grids of tetrahedra.
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Figure 12: Splitting strategies of cubes seen from the top as a two-dimensional projection first into tri-
angular prisms denoted by the diagonal lines and second into tetrahedra exemplified for a
4-tuple of cubes. The numbers within the triangular prisms, which are triangles seen from the
top, denote the splitting strategy for the individual prism according to the strategies listed in
Table 7. The headings of the sub-figures name the overall splitting strategy for a 4-tuple of
cubes, and therefore, for the domain, as the splitting is repeated accordingly for all 4-tuples in
the domain. All splitting strategies shown lead to conforming grids of tetrahedra. a) Splitting
strategy 6,6; b) splitting strategy 2,4; c) splitting strategy 5,3; d) splitting strategy 2,4,6,6
merging the strategies 2,4 and 6,6.

In Figure 12a-d four different strategies for splitting cubes into grids of conforming tetrahedra
are depicted and named via the headings for a 4-tuple of cubes. Note that the same splitting
is repeated for all other 4-tuples of cubes such that the whole domain is covered. All four
strategies shown in Figure 12a-d lead to conforming grids of tetrahedra. However, although
they are all better than the splitting procedure employed for Figure 10, they may still induce
grid effects of different magnitude and orientation when employed in a lowest-order FVM or
MFEM discretization.
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Figure 13: Trajectories for 96 particle released in different locations with x = 0 with regular spacing
in y and z for the different splitting strategies of cubes into conforming grids of tetrahedra
according to the strategies depicted in Figure 12a-d in a cuboid seen from the top. a) Particle
trajectories for strategy 6,6; b) particle trajectories for strategy 2,4; c) particle trajectories for
strategy 5,3; d) particle trajectories for strategy 2,4,6,6.

In Figure 13a-d particle trajectories are shown which are associated to the four different splitting
strategies depicted in Figure 12a-d. The numbering and the titles are the same for different sub-
figures indicating which trajectory pattern belongs to which splitting strategy. Figure 13a shows
the results for the first splitting strategy depicted in Figure 12a, where all triangular prisms are
split according to strategy 6,6 (see Table 7 for this strategy and for all other strategies). The
mean of the exit coordinates for strategy 6,6 is (10, 4.49, 4.02) which is closer to the ideal exit
coordinates, which are (10, 5, 5) and which equal the analytical solution, than the results for the
naive split (see Figure 10). Still, the exit coordinates obtained with the splitting strategy 6,6
differ from the analytical solution. The trajectories deviate towards too low values in y and z.
This is an effect solely due to the grid orientation affecting the lowest-order FVM approximation
of groundwater flow, the same holds for grid effects observed in all other splitting strategies.
In Figure 13b the results for the strategy 2,4 (compare Figure 12b) are depicted. Here, the
opposite effect, compared to the results of strategy 6,6 can be observed. The mean of the exit
coordinates for the strategy 2,4 is (10, 5.51, 5.98). Particles deviate towards too high values in
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y and z. Figure 13c displays the results for the strategy 5,3 (compare 12c). Again, grid effects
can be observed. The mean of the exit coordinates for strategy 5,3 is (10, 5.51, 4.02), for this
strategy the trajectories deviate towards too high values in y and too low values in z. Finally,
Figure 13d shows the results for the strategy 2,4,6,6 (compare 12d), which is a merge of the
strategies 2,4 (Figure 13b) and 6,6 (Figure 13a). Note, that these strategies are merged such
that the resulting grid of tetrahedra obtained by strategy 2,4,6,6 is still conforming. Many other
combinations of the individual splitting strategies displayed in the Figures 13a-c do not yield
conforming grids. However, the mean of the exit coordinates of the splitting strategy 2,4,6,6, is
(10, 5, 5). All exit coordinates of the individual particle trajectories equal the analytical solution
up to numerical precision. Therefore, the splitting strategy 2,4,6,6 cannot only be considered
superior but optimal, it is used for the example computations of this chapter depicted in Figure
9. Although the exact particle trajectories in the domain differ from the analytical solution,
the effects of grid orientation are averaged out for the particle trajectories due to the splitting
procedure such that the exit coordinates of the particle trajectories again equal the analytical
solutions.

3.1.5 The RT N 0-Projection for Variably Saturated Flow – An extension on Triangular
Prisms

In this section, we describe the results for the extension of the RT N 0-projection to variably
saturated flow. In the non-linear Richards’ equation flow-determining parameters, like relative
permeability, are themselves a function of the primary unknown, and very heterogeneous in space
and time. For our application of the RT N 0-projection to variably saturated flow, we replace the
former weights that were the inverse of the hydraulic-conductivity tensor, KEi , at the centroids
of the elements (see section 2.5.1 and especially Equation 54), by the inverse of the variably
saturated hydraulic-conductivity tensor, krel,ci

KEi , where krel,ci
is the relative permeability

associated to the centroid, ci, of element Ei. However, in a finite-element-type discretization,
the relative permeability is a nodal property and a function of the pressure head. Moreover,
several relative permeability values may be associated to the nodes, depending on which element
sharing the node is considered, if unsaturated material properties differ in the adjacent elements
and flow is unsaturated. For an extension to variably saturated flow, we therefore need to
interpolate the relative permeability to the element centroids. We do this in the following test
case by linear interpolation of the nodal relative permeabilities to the centroid for each element,
this procedure is equal to taking the arithmetic mean of the nodal relative permeabilities. Note
furthermore, that this test case is not computed on simplices, but on non-deformed triangular
prisms. In order to facilitate a solution on deformed triangular prisms, too, and for complying
with the standard finite-element procedure, the extension of the RT N 0-projection on triangular
prisms for variably saturated flow is defined in local coordinates using a fixed reference prism and
contravariant Piola transformation (compare e.g., Rognes et al. (2009)). Our reference prism is
a non-standard one, it has a unit height, and an equilateral triangle as base with a base area
of 0.5, its coordinates are Xpri,ref = ((0, 0, 0), (1/0.751/4, 0, 0), ((1/0.751/4)/2, 0.751/4, 0), (0, 0, 1),
(1/0.751/4, 0, 1), ((1/0.751/4)/2, 0.751/4, 1)). Using a reference prism with an equilateral base area
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is beneficial for a velocity projection avoiding bookkeeping on which local face of the reference
prism, a face in global coordinates is projected onto. The base area of 0.5 combined with a unit
height simplify the shape functions describing the triangular prism. These definitions are set for
convenience, other definitions are possible, too.

The described procedure uses a non-conforming, approximate primal velocity vector evaluated
at the element centroid for minimizing the difference between a non-conforming velocity field
and a conforming one in RT N 0-space. However, this is only an approximation including several
simplifications and assumptions. First, even for flow without sources or sinks, in opposite to sim-
plicial elements, the velocity field is in general not constant anymore on non-simplicial elements
neither for saturated flow nor for variably saturated flow due to the bi-linear, or multi-linear
hydraulic-head approximation in the element, respectively. The fact, that relative permeability
is defined on the nodes, and can even differ on the same node for adjacent elements complifies
the issue further. Moreover, a standard Galerkin approximation of variably saturated flow in
more than one spatial dimension is known to be prone to instabilities, as a fully consistent
upstream-weighting procedure of relative permeability within the elements, is not feasible in
standard finite elements in more than one spatial dimension (compare sections 2.4.1 and 2.4.2).
Therefore, a finite-element-type primal solution is obtained using HydroGeoSphere in finite-
difference mode, which is a finite difference method defined in finite-element terms, and mass
lumping (compare section 2.4.2). However, in such a finite-difference approximation in finite-
element terms, the solution is only defined on lines between the nodes, and not at the centroids,
where a solution is needed to approximate a conforming velocity field via an RT N 0-projection.
That is, throughout this section, we use the velocity output of HydroGeoSphere, which is a
velocity vector at the centroids approximated using the (full) finite-element shape functions and
the nodal hydraulic-head solution evaluated at the centroid as well as the material properties,
which are hydraulic conductivity and relative permeability, although we employ the described
finite-difference approach in finite-element terms for computing the primal solution.

For our test case, we consider a benchmark model, which is a cubic domain having dimensions
of 10 m × 10 m × 10 m. The domain is discretized by 12,692 nodes and 22,572 elements in
18 elemental layers, the vertical discretization is refined at the top of the domain and around
the assigned height of the Dirichlet boundary conditions. On the left and right sides of the
domain we assign homogeneous Dirichlet boundary conditions with a constant hydraulic head
hfix = 6 m. The front, back, and bottom sides are no-flow boundaries. A recharge zone is
located at the center of the top of the domain. The zone is a square with dimensions of 3 m ×
3 m, and the applied recharge rate is 200 mm/a. We assume a uniform saturated hydraulic
conductivity of 10−5 m/s, saturated and residual water contents of 0.4 and 0.065, respectively,
and van Genuchten parameters α = 7.5 1/m and N = 1.89 being all constant in the domain.
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Figure 14: Benchmark problem with recharge via a square. Particle trajectories starting in the recharge
zone at the top of the domain. The particle tracks are based on the conforming velocity
approximation of the RT N 0-projection for variably saturated flow on triangular prisms.

Figure 14 shows particle trajectories for the model of a rectangular recharge zone. The under-
lying velocity field in RT N 0-space is mass-conservative and conforming. It is obtained by an
extension of the RT N 0-projection to variably saturated flow on triangular prisms in local coor-
dinates. At the centroid of every recharge face at the top of the domain a particle is introduced
and tracked through the domain. The particle tracks show a reasonable pattern: all particles
reach the two possible outlets at the Dirichlet boundaries, and the expected symmetries of the
trajectory patterns are overall achieved, although slight deviations from the expected pathlines
can occasionally be observed.
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Figure 15: Difference measures between the primal finite-element-type velocity solution and an RT N 0-
projection for variably saturated flow on triangular prisms evaluated at the centroids of the
top and the bottom element layers. a) Ratio of absolute velocities ϵabs between the RT N 0-
projected velocity field over the finite-element-type primal velocity approximation at the cen-
troids of the top element layer according to Equation 118; b) normalized angle between the ve-
locities ϵdir between the RT N 0-projected velocity field and a finite-element-type primal veloc-
ity approximation at the centroids of the top element layer according to Equation 119; c) ratio
of absolute velocities ϵabs between the RT N 0-projected velocity field over the finite-element-
type primal velocity approximation at the centroids of the bottom element layer according to
Equation 118; d) normalized angle between the velocities ϵdir between the RT N 0-projected
velocity field and a finite-element-type primal velocity approximation at the centroids of the
bottom element layer according to Equation 119.

Figure 15 shows the difference measures between the velocity field of the RT N 0-projection
and the finite-element-type primal velocity approximation for variably saturated flow at the
centroids of triangular prisms. For the elements at the top depicted in the Figures 15a-b flow is
unsaturated, while flow is saturated for Figures 15c-d. Considering the ratio of absolute velocities
at the centroids depicted in Figure 15a it gets obvious that the magnitude of the RT N 0-projected
velocities within the recharge zone are very similar to the velocities of the primal solution.
Only directly next to the recharge zone slightly larger differences can be observed, while the
magnitudes further outside of the recharge zone are comparable to the primal approximation
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again. However, it can be expected that differences between the primal solution and the RT N 0-
projection may be bigger next to the recharge zone because of larger differences in and different
treatments of relative permeability, which is computed on the nodes in the primal solution
procedure, and interpolated to the centroids of the elements in the RT N 0-projection. Figure
15b depicts the difference in direction at the top of the domain. Here, it is obvious that the
direction of the velocities within the recharge zone is nearly identical for the primal solution and
the RT N 0-projection. Larger differences occur especially directly next to the recharge zone,
but also further outside of the recharge zone. However, it should be noted that also the finite-
element-type primal velocity solution directly next to the recharge zone will be erroneous, and
that, in general, there is only very little flow in the top elements outside of the recharge zone.
Also, next to the no-flow boundaries at the top and the bottom of the domain the differences
increase, where the flow is very little. Figure 15c depicts the ratio of the absolute velocities
for the centroids of the bottom layer, where flow is saturated. Here, it can be seen that some
velocities next to the flow divide at x = 5 m are projected sometimes onto slightly higher absolute
values compared to the primal velocity approximation, sometimes adjacent to elements, where
the absolute values of the velocity are a little bit too low. The further away the centroids of
the prisms are from the flow divide, the more the projected absolute values equal the absolute
values of the primal velocity approximation. In Figure 15d the normalized angles between the
projected velocity vector and the primal approximation of the velocity vector at the centroids
of the bottom triangular prisms are depicted. It can be seen that the differences in direction are
all small for saturated flow in the bottom elements, while differences in the center of the domain
and towards the lateral Dirichlet boundary conditions are minimal.

Figure 16: Difference measures between the primal finite-element-type velocity solution and an RT N 0-
projection for variably saturated flow on triangular prisms evaluated at the centroids of the
element layer directly beneath the saturated-unsaturated interface. a) Ratio of absolute ve-
locities ϵabs between the RT N 0-projected velocity field over the a finite-element-type primal
velocity approximation at the centroids of the element layer directly below the saturated-
unsaturated interface according to Equation 118; b) normalized angle between the velocities
ϵdir between the RT N 0-projected velocity field and a finite-element-type primal velocity ap-
proximation at the centroids of the element layer directly below the saturated-unsaturated
interface according to Equation 119.
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In Figure 16a the difference measure of the ratio of the absolute velocities of the RT N 0-projected
velocity field over the absolute velocities of the primal solution is shown for the element layer
directly below the saturated-unsaturated interface. Interestingly, the difference between both
solutions is maximal in this element layer within the recharge square. Here, the magnitudes of the
velocities of the RT N 0-projection are about ten times larger than the ones of the primal solution,
while the magnitudes outside the recharge square are again comparable for both solutions.
Considering also the difference of the direction being the normalized angle between the RT N 0-
projected velocity and the primal approximation depicted in Figure 16b it gets obvious that the
velocities of the RT N 0-projection within the recharge zone still show a very similar direction
compared to the velocity vectors of the primal solution following the physical direction of flow.
Towards the top and bottom no-flow boundaries next to the flow divide at x = 5 m some velocity
vectors seem to be reverted. However, these elements exhibit nearly no flow, and the velocities
are of very low magnitude within a subregion of homogenous material properties, and, therefore,
of minor importance in the global optimization scheme. Moreover, also the primal solution is of
minor accuracy in this region.

Table 8: Measures for the differences between finite-element-type primal velocity approximation and the
extension of the RT N 0-projection of the velocities for variably saturated flow on triangular
prisms for the benchmark case of recharge via a square. As ϵabs is a ratio, we give the respective
infinity norm as ||(|1 − ϵabs|)||∞.

mean(·) median(·) ||(| · |)||∞
ϵabs 1.31 1.03 12.81
ϵdir 2.64 · 10−1 2.05 · 10−1 9.2 · 10−1

Table 8 gives an overview of the differences between the finite-element-type primal velocity
approximation and the velocities of the extension of the RT N 0-projection for variably saturated
flow on triangular prisms for the benchmark case of recharge via a square. The mean of ϵabs

reflects the outliers also present in the associated infinity norm. Mean and median values of
both difference measures may be still considered acceptable. However, the infinity norms show
that there are also considerable differences in the solutions. Overall the differences between the
solutions depicted in Table 8 are larger than the ones for saturated conditions including the cases
for mild anisotropy (compare Tables 1, 2, 3, and 6). However, it is important to note that the
primal velocity approximation is non-conforming, not mass conservative in the elements, and
not even defined at the centroids by the primal solution procedure for variably saturated flow.
That is, a deviation of the projected velocities from the primal solution is not only expected but
desired.

3.2 Results for the Finite-Volume Flux Reconstruction

In this section, we depict and discuss the results of the FVM flux reconstruction and its associated
particle trajectories. For steady-state saturated flow the FVM flux reconstruction would equal
the cell-centered finite volume method already discussed (see section 2.4.3), if the weighting
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procedures of hydraulic conductivity were equal, too. Because of that, we focus in this section on
the finite-volume flux reconstruction as a postprocessing technique applied to variably saturated
flow.

We evaluate the performance of our FVM flux reconstruction in two ways. First, we compare
the hydraulic heads of the FVM reconstruction to the hydraulic heads of the primal solution
obtained with HydroGeoSphere in the finite-difference mode (Panday et al., 1993; Therrien and
Sudicky, 1996)(compare section 2.4.2). Note that the hydraulic heads of the FVM reconstruction
are not used for any evaluation other than computing mass-conservative fluxes in RT N 0-space
suitable for accurate and consistent particle tracking. In the comparison of heads, we contrast
the FVM hydraulic heads at the centroids of the elements with the HydroGeoSphere hydraulic
heads at the centroids of the elements, evaluated by bilinear interpolation of the respective nodal
values within the triangular prism.

The second demonstration of the performance of the FVM flux reconstruction is by illustrating
consistent particle tracks resulting from this flux reconstruction compared to particle tracks
based on the velocity field directly derived from the primal solution, such trajectories may stag-
nate because the underlying velocity field is non-conforming. We also compare the velocity
estimate of the finite-element-type solution with the conforming, mass-conservative velocity ap-
proximation of the FVM flux reconstruction at the centroids of the elements. As the same
benchmark model as in section 3.1.5 is used, this facilitates a direct comparison of the perfor-
mance of the FVM flux reconstruction with the RT N 0-projection for variably saturated flow.
Furthermore, we apply our framework to a three-dimensional, variably saturated subsurface flow
model connecting two floodplains close to Tübingen, Germany (Allgeier et al., 2020). By this
we demonstrate the applicability of our framework to catchment-scale applications. The content
and text of this section has been published to a large extent in Selzer et al. (2021).

3.2.1 Benchmark Model: Recharge in a Subarea of the Top Boundary

Our first benchmark model is the same as the model already considered in the section 3.1.5.
Again, we consider a cubic domain having dimensions of 10 m × 10 m × 10 m. The domain is
discretized by 12,692 nodes and 22,572 elements in 18 elemental layers, the vertical discretization
is refined at the top of the domain and around the height of the Dirichlet boundary conditions.
On the left and right sides of the domain we assign homogeneous Dirichlet boundary conditions
with a constant hydraulic head hfix = 6 m. The front, back, and bottom sides are no-flow
boundaries. A recharge zone is located at the center of the top of the domain. The zone is a
square with dimensions of 3 m × 3 m, and the applied recharge rate is 200 mm/a. We assume a
uniform saturated hydraulic conductivity of 10−5 m/s, saturated and residual water contents of
0.4 and 0.065, respectively, and van Genuchten parameters α = 7.5 1/m and N = 1.89.
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Figure 17: Benchmark problem with recharge via a square. Hydraulic heads for the primal solution
linearly interpolated to the element centroid, hpri

c , and according to the FVM flux recon-
struction, hF V M . a) Hydraulic heads according to the primal solution at the height of the
top-layer element centroids; b) corresponding hydraulic heads of the FVM reconstruction; c)
ratio hF V M/hpri

c of the former two hydraulic head solutions obtained at the height of the
top-layer element centroids; d) ratio hF V M/hpri

c obtained at the height of the bottom-layer
element centroids. (Taken from Selzer et al. (2021).)

Figure 17 illustrates simulated hydraulic heads according to the primal solution of HydroGeo-
Sphere in finite difference mode (Figure 17a) and the FVM reconstruction (Figure 17b) for
steady-state flow. The two hydraulic head solutions are similar, as quantified by the ratios in
the top (Figure 17c) and bottom (Figure 17d) layers. It can be observed that the top-layer heads
of the FVM reconstruction (Figure 17b) drop slightly faster towards the lateral boundaries of
the domain than the heads of the primal solution (Figure 17a), leading to slightly lower hy-
draulic heads in the top layer for elements that are outside of the recharge zone. In the recharge
zone and its direct vicinity, the head solutions are very close to each other. On the Dirichlet
boundaries, the heads of both solutions are forced to be identical, leading to excellent agreement
in the direct vicinity of those boundaries.

Within the saturated zone, illustrated by the solutions of the bottom layer (Figure 17d), the
hydraulic heads computed by the two methods are identical within computational precision.
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The excellent agreement may be attributed to the simple setup of the model. We would expect
small differences between the primal solution and the FVM reconstruction because the solutions
are based on different numerical methods. For instance, the primal solution is computed on
the nodes of the elements, whereas the FVM reconstruction yields an average solution for each
element.

Figure 18: Benchmark problem with recharge via a square. Particle trajectories starting in the recharge
zone at the top of the domain. a) particle tracks based on the conforming velocity approx-
imation of the FVM flux reconstruction; b) trajectories based on the velocity of the finite-
element-type primal solution, evaluated at the element centroids and assumed to be constant
within the elements (transparent lines: regular particle tracks; opaque lines: two stagnating
particle tracks). (Taken from Selzer et al. (2021).)

Figure 18 shows particle trajectories for the model of a rectangular recharge zone. At the centroid
of every recharge face at the top of the domain a particle is introduced and tracked through the
domain. Figure 18a shows the particle trajectories for the conforming velocity solution based
on the FVM flux reconstruction. The particle tracks show a reasonable pattern: all particles
reach the two possible outlets at the Dirichlet boundaries, and the expected symmetries of
the trajectory patterns are overall achieved. Figure 18b shows the particle trajectories using a
velocity field based on the primal FEM-type solution. For this plot, the velocity is evaluated at
the centroid of each element and assumed constant within the element. While the patterns of
the trajectories obtained by the two methods are overall similar, two particles stagnate in the
FEM-type solution due to the non-conformity of the velocity field, which can lead to normal
velocities at element faces that point outwards of each element. This prevents further tracking
in a consistent manner.
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Figure 19: Difference measures between the primal finite-element-type velocity solution and an FVM flux
reconstruction for variably saturated flow on triangular prisms evaluated at the centroids of
the top and the bottom element layers. a) Ratio of absolute velocities ϵabs between the velocity
field of the FVM flux reconstruction over the finite-element-type primal velocity approximation
at the centroids of the top element layer according to Equation 118; b) normalized angle ϵdir

between the velocity field of the FVM flux reconstruction and a finite-element-type primal
velocity approximation at the centroids of the top element layer according to Equation 119; c)
ratio of absolute velocities ϵabs between the velocity field of the FVM flux reconstruction over
the finite-element-type primal velocity approximation at the centroids of the bottom element
layer according to Equation 118; d) normalized angle between the velocities ϵdir between
the velocity field of the FVM flux reconstruction and a finite-element-type primal velocity
approximation at the centroids of the bottom element layer according to Equation 119.

Figure 19 shows the difference measures between the velocity field derived from the FVM flux
reconstruction and a finite-element-type primal velocity approximation for variably saturated
flow at the centroids of triangular prisms. For the elements at the top depicted in the Figures
19a-b flow is unsaturated, while flow is saturated for Figures 19c-d. Considering the ratio of
absolute velocities at the centroids depicted in Figure 19a it gets obvious that the magnitude of
the velocities of the FVM flux reconstruction within the recharge zone are overall very similar
to the velocities of the primal solution. Only directly next to the border of the recharge zone
larger differences can be observed, while the magnitudes further outside of the recharge zone are
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again comparable to the primal approximation. However, it can be expected that differences
between the primal solution and the velocities of the FVM flux reconstruction may be bigger
next to the recharge zone because of larger differences in and different treatments of relative
permeability, which is computed on the nodes in the primal solution procedure, and interpolated
to the centroids of the elements in the FVM flux reconstruction including upstream weighting.
Figure 19b depicts the difference in direction. Here, it is obvious that the direction of the
velocities within the recharge zone is nearly identical for the primal solution and the velocities
of the FVM flux reconstruction. Larger differences occur especially directly next to the recharge
zone, but also further outside of the recharge zone. However, it should be noted that also the
finite-element-type primal velocity solution directly next to the recharge zone will be erroneous,
and that, in general, there is only very little flow in the top elements outside of the recharge zone.
Also, next to the no-flow boundaries at the top and the bottom of the domain the differences
increase slightly, where the flow is very small in particular. Figure 19c depicts the ratio of the
absolute velocities for the centroids of the bottom layer, where flow is saturated. Here, it can be
seen that some velocities next to the flow divide at x = 5 m show slightly higher absolute values
than the primal solution. The further away the centroids of the prisms are from the flow divide,
the more the reconstructed absolute values equal the absolute values of the primal velocity
approximation. In Figure 19d the normalized angles between the reconstructed velocity vector
and the primal approximation of the velocity vector at the centroids are depicted. It can be seen
that the differences in direction are all small for saturated flow in the bottom elements, while
some smaller differences occur showing a symmetric pattern around the flow divide at x = 5 m.
Overall the pattern depicted in Figure 19 is very similar to those of the RT N 0-projection shown
in Figure 15.
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Figure 20: Difference measures between the primal finite-element-type velocity solution and the velocity
field based on the FVM flux reconstruction for variably saturated flow on triangular prisms
evaluated at the centroids of the element layer directly beneath the saturated-unsaturated
interface. a) Ratio of absolute velocities ϵabs between the velocity field based on the FVM
flux reconstruction over the finite-element-type primal velocity approximation at the centroids
of the element layer directly below the saturated-unsaturated interface according to Equation
118; b) normalized angle between the velocities ϵdir between the velocity field of the FVM flux
reconstruction and a finite-element-type primal velocity approximation at the centroids of the
element layer directly below the saturated-unsaturated interface according to Equation 119.

In Figure 20a the difference measure of the ratio of the magnitudes of the velocities of the
FVM flux reconstruction over the absolute velocities of the primal solution is shown for the
element layer directly below the saturated-unsaturated interface. Interestingly, the difference
between both solutions is maximal again in this element layer within the recharge square like
for the comparison of the RT N 0-projection with the finite-element-type primal solution (see
Figure 16). The magnitudes of the velocities of the FVM flux reconstruction are about ten
times larger, while the magnitudes outside the recharge square are again comparable for both
solutions, which is similar to the comparison of the RT N 0-projection with the finite-element-
type primal solution. Considering also the difference of the direction being the normalized
angle between the velocity fields of the FVM flux reconstruction and the primal approximation
depicted in Figure 20b it gets obvious that the velocities of the FVM flux reconstruction within
the recharge zone still show a very similar direction compared to the velocity vectors of the
primal solution following the physical direction of flow. Outside the recharge square differences
slightly increase. Moreover, there is a circular pattern around the recharge zone with differences
in direction being close to zero. Towards the top and bottom no-flow boundaries next to the flow
divide at x = 5 m some velocity vectors seem to be reverted compared to the primal velocity
approximation. This is again similar to the findings of the RT N 0-projection for the same
benchmark case depicted in Figure 16.
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Table 9: Measures for the difference between the finite-element-type primal velocity approximation and
the extension of the FVM reconstruction for variably saturated flow on triangular prisms for the
benchmark case of recharge via a square. As ϵabs is a ratio, we give the respective infinity norm
as ||(|1 − ϵabs|)||∞.

mean(·) median(·) ||(| · |)||∞
ϵabs 1.17 0.93 11.97
ϵdir 2.60 · 10−1 1.75 · 10−1 9.17 · 10−1

Table 9 gives an overview of the difference measures between the finite-element-type primal
velocity approximation and the velocities based on the FVM flux reconstruction for variably
saturated flow on triangular prisms for the benchmark case of recharge via a square. The mean
of ϵabs reflects the outliers also present in the associated infinity norm. Mean and median values
of both difference measures may be still considered acceptable. However, the infinity norms re-
flect that there are also considerable differences in the solutions. Overall, the differences between
the solutions depicted in Table 9 are similar to those of the RT N 0-projection depicted in Table
8 although slightly smaller. However, it is important to note that the primal velocity approxi-
mation is non-conforming and not mass conservative. That is, a deviation of the postprocessed
velocities from the primal solution is not only expected but again desired.

Overall, it is remarkable how similar the solutions of the RT N 0-projection and the FVM flux
reconstruction are. However, we also attribute this to the very simple setup of the benchmark
case and would expect larger differences for more complicated scenarios.

3.2.2 Case Study: Particle Trajectories in a Floodplain

We now apply our FVM flux reconstruction and particle-tracking scheme to a subsurface flow
model on the scale of a sub-catchment. The model was originally developed for a stochastic
analysis of groundwater divides (Allgeier et al., 2020). In the following, we use a single realization
of the original ensemble to demonstrate the applicability of our scheme.

The model simulates variably saturated flow in the Ammer floodplain and its surroundings close
to Tübingen in South-Western Germany (Martin et al., 2020). The domain is discretized by
74,412 nodes and 138,565 deformed triangular prisms (35 layers of 3959 elements each). Like in
the benchmark case, we use HydroGeoSphere in finite-difference mode to obtain the steady-state
solution of Richards’ Equation 6. Towards this end, we simulate transient flow with constant
forcings until steady state was reached. Based on this solution, we perform our FVM flux
reconstruction and the particle tracking.

The subsurface is subdivided into different hydrostratigraphic units, following the layered struc-
ture of an underlying regional geological model (D‘Affonseca et al., 2020) and studies within the
floodplain (Martin et al., 2020). The bedrock consists of a sequence of mud- and sandstones,
with a weathering layer of higher hydraulic conductivity. Quaternary fillings in the valleys form
alluvial aquifers separated by clay layers. We consider the differences of hydraulic conductivity
between the hydrostratigraphic units to be higher than the internal variability and assigned each
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unit a uniform set of hydraulic parameters. Saturated hydraulic conductivities range between
≈ 5 × 10−10 m/s (vertical conductivity in the top colluvial clay) and ≈ 3 × 10−4 m/s (horizontal
conductivity in the gravel aquifer of the floodplain). Vertical hydraulic conductivities of the units
differ from their horizontal counterparts. For the sake of simplicity we approximate the satu-
rated hydraulic conductivities of the mobility coefficients (Equation 65) by taking the vertical
hydraulic conductivities for the vertical connections, and the horizontal hydraulic conductivities
for the horizontal connections.

We assign Dirichlet boundary conditions at the inlet and outlet faces of the floodplain filling, as
well as at the southern boundary of the domain. At the top of the domain, we assign Neumann
boundary conditions according to the net infiltration rates, which varies between 20 and 60 mm/a
depending on land use. Robin boundary conditions are used to simulate the exchange between
groundwater and the Ammer River, as well as the seepage of groundwater into artificial drainage
channels. All other boundaries are no-flow boundaries. All boundary conditions are assumed to
be constant over time, and we simulate subsurface flow until steady state is reached.

Figure 21 presents contourlines of hydraulic heads according to the primal solution and the
FVM reconstruction at the element centroids at the top and bottom of the domain. The two
hydraulic head fields are very similar. At the top of the domain (Figures 21a and 21b), the
system is mostly unsaturated. In particular, towards the west the depth to the water table is
fairly large. Here the values of hydraulic head differ the most between the primal solution and
the FVM reconstruction. At the bottom of the domain (Figures 21c and 21d), the system is fully
water-saturated. Also here we see some differences in the hydraulic-head distribution. However,
the major objective of the FVM reconstruction is to obtain a conforming velocity field rather
than exactly reproducing the hydraulic head field of the finite-element-type simulation by finite
volumes.

We use the FVM reconstruction to delineate various sub-catchments by particle tracking. To-
wards this end, we place a particle at the centroid of each top face of the domain and track
the particle until it has reached an outflow boundary. In total these are 3959 particle tracks
visualized in Figure 22.
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Figure 21: Application to regional subsurface flow: comparison between hydraulic heads of the primal
solution (a & c) and the FVM reconstruction (b & d). a) & b): hydraulic heads in the top
layer; c) & d): hydraulic heads at the bottom of the domain. Coordinates are given in the
Gauss-Krüger coordinate system; hydraulic heads are given in meters above sea level. (Taken
from Selzer et al. (2021).)
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Figure 22: Trajectories of particles released at the top of the domain. Circles: ending locations. Colors
reflect the type of outflow boundary reached: drainage channels (dusky pink), Ammer River
(light blue), groundwater outflow within the Ammer valley (green), groundwater outflow in
the Neckar valley (orange). (Taken from Selzer et al. (2021).)

Figure 22 shows a two-dimensional horizontal projection of the resulting particle tracks. The
trajectories are colored according to the outlet where they end up. A local groundwater divide
becomes apparent between all orange particle tracks reaching the southern groundwater outlet
in the Neckar valley, and the remaining particles ending up in the Ammer valley. All inserted
particles reach an outflow boundary, that is, no particles get stuck in the domain or exit at
non-physical destinations.

In practice, the Tecplot™ (Tecplot Inc., 2019) visualization and analysis platform is often used
as visualization software for HydroGeoSphere results. Tecplot™ can trace streamlines using
the element-wise given velocity field. Although this visualization software is not designed for
rigorous and consistent particle tracking, a qualitative comparison of the streamlines generated
by Tecplot™ revealed a good general agreement regarding the overall pattern with our particle
tracking approach. However, like in our first benchmark case, in which we used a velocity
field derived from the primal solution at the centroids (Figure 18), some particles released at
the surface do not reach an outlet boundary condition when tracked by Tecplot™. Instead they
stagnate within the domain, or erroneously reach a no-flow boundary, or even an inflow boundary.
Moreover, we deem our trajectories to be more accurate. The major advantage of consistent
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particle tracking based on conforming velocity fields is physical and numerical accuracy of the
flow paths, which avoids non-physical exit locations or stagnation of particles.

Table 10: Wall and CPU times of the different computational steps. All computations are executed on
a Dell Inspiron 7570 personal computer operating under Ubuntu 20.04 LTS (Processor: Intel
i7-8550U (8) @ 4.000GHz, Memory: 16 GB). Numbers are displayed as “average ± standard
deviation”, and derived from a sample of size n = 10. (Taken from Selzer et al. (2021).)

Computation Wall time in s CPU time in s

HydroGeoSphere 543.6 ± 4.6 1085.2 ± 9.1
Geometrical computations 16.8 ± 0.2 31.6 ± 0.3
FVM flux reconstruction 25.6 ± 0.4 32.7 ± 0.4
Particle tracking 10.7 ± 0.1 17.3 ± 0.2

Table 10 summarizes the wall-clock and CPU times needed for achieving the primal solution as
well as the times needed for the finite volume flux reconstruction. Here we differentiate between
the effort to perform geometry-related computations and the actual FVM flux reconstruction.
For an increased representativeness we report the averages and the standard deviations of run
times for ten model runs each. Additionally, we give the time needed to compute the trajectories
of all 3959 individual particles on the CPU.

The results of Table 10 clearly show that computing the primal solution is the time limiting
step in the computations. The postprocessing as well as the particle tracking take only about a
tenth of the time which is needed for computing the primal solution.
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4 Conclusions and Outlook
4.1 Conclusions

Accurate and consistent particle tracking relies on conforming velocity fields, which locally
preserve mass in the elements and yield a continuous normal component of the Darcy velocity
on the element faces (Selzer et al., 2021). As published in Selzer and Cirpka (2020), I have
proposed an RT N 0-projection of fluxes obtained from solving the groundwater flow equation
by P1 Galerkin FEM. The projection yields physically reasonable flow fields preserving the
smoothness of the P1 Galerkin FEM solution for isotropic test cases and mild anisotropy on
triangles and tetrahedra. For comparison, I have presented an analytical solution and a cell-
centered finite-volume formulation on simplices in which I account for Dirichlet and Neumann
boundary conditions by ghost nodes.

The results of the RT N 0-projection are similar to those obtained by an analytical solution and
the cell-centered finite volumes for two-, and three-dimensional isotropic and mildly anisotropic
saturated flow fields. The velocity approximations of the RT N 0-projection and of the FVM are
in the same function space, and the velocity fields are similar in magnitude and the direction
for saturated flow on simplices. By construction, the velocity fields of the RT N 0-projection are
conforming and mass-conservative. In comparison to velocity fields obtained from cell-centered
FVM, the projected fields are smoother and trajectories are less angular so that I assess the
projected velocity fields in general to be physically more accurate than the fields obtained by
the FVM scheme for saturated flow, at least in regions of uniform hydraulic conductivity. How-
ever, the computational costs of a cell-centered FVM scheme are much lower than those of the
RT N 0-projection. For an FVM solution one system of equations on the order of elements has
to be solved, in which the matrix of the basic discretization is positive definite and symmetric.
By contrast, the RT N 0-projection requires first solving a system of equations on the order of
the number of nodes with symmetric, positive-definite matrix to obtain the P1 Galerkin FEM
solution, followed by solving a saddle-point problem in the RT N 0-projection step, in which
the matrix is symmetric, non-definite, and on the order of the number of elements plus the
number of faces without no-flow boundary conditions. Both, the projected and the lowest-order
finite-volume velocity fields are in RT N 0-space. For large-scale applications, the computational
advantage of the FVM scheme may outweigh the smoothness of the RT N 0-projection. Con-
versely, too variable velocity fields may cause erroneous twisting of streamlines in heterogeneous
formations, which can have significant effects on the simulation of transverse mixing (Cirpka
et al., 2015; Bennett et al., 2017).

I claim that the RT N 0-projection, like the flux correction method of Odsæter et al. (2017),
gives better results than the postprocessing methods of Schiavazzi (2013) and Scudeler et al.
(2016), which are applications of the schemes by Larson and Niklasson (2004) and Kees et al.
(2008), in which Darcy velocity differences between the P1 Galerkin solution and the RT N 0-
projection showed much larger relative differences in low-flow regions. The latter can be avoided
by minimizing differences in hydraulic gradients rather than Darcy velocities between the P1
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Galerkin FEM and the RT N 0-solutions. While Odsæter et al. (2017) considered hydraulic
gradients on element faces, I minimize the difference in hydraulic gradients at the element
centroids. This approach yields physically reasonable velocity fields regarding the magnitude
of the velocity vectors and does not introduce erroneous numerical rotation, neither for two-
dimensional nor for three-dimensional saturated flow fields with isotropic or mildly anisotropic
hydraulic conductivity, which seems to occur in other flux correction schemes even in the isotropic
case (Schiavazzi, 2013), and have occasionally been observed in RT N 0-based mixed (hybrid)
FEM schemes (Hoteit et al., 2002).

Consistency and empirical convergence could be shown for isotropic and anisotropic cases com-
paring the RT N 0-projected solution with an analytical solution of groundwater flow on a unit
square, where water enters and exits over windows on the boundary of the square opposite to
each other. However, if stronger anisotropy is considered, the RT N 0-projection may numer-
ically induce rotation and wrong magnitudes of the velocities leading to partial failure of the
scheme in low-flow regions, although empirical convergence, yet with varying order, can be ob-
served. Moreover, an extension and application of the RT N 0-projection to a finite-element-type
primal solution of variably saturated flow on triangular prisms in a local coordinate system was
successfully achieved using contravariant Piola-transformation (Rognes et al., 2009).

Transient flow can be accounted for in a straight-forward manner by treating the change of
storage like a source/sink term in steady-state flow. In order to do this, however, the nodal
loads computed by the primal finite-element-type method must be distributed to the elements
associated with the nodes. However, especially for non-linear flow laws like Richards’ equation
the application of a postprocessing scheme, like the RT N 0-projection for mapping an existent
non-conforming flow solution onto a conforming one, can still be computationally much cheaper
than computing a conforming flow solution from scratch using an RT N 0 MFEM or comparable
methods. As a postprocessor, the RT N 0-projection has to be performed only at time points
at which a velocity field is wanted, and the non-linear dependence of hydraulic conductivity
on the simulated head- and saturation-fields is already solved within the primary solution step,
deeming the projection itself linear.

In addition to the RT N 0-projection, I have also presented a postprocessing scheme for non-
conforming velocity fields by reconstructing the hydraulic head and associated flux distribution
by cell-centered finite volumes of lowest-order as published in Selzer et al. (2021). This flux
reconstruction is stable, can be coupled to a finite-element-type primal solution of variably
saturated flow, and does not induce severe numerical artifacts like reverted flow in sub-regions
of the domain, or too large velocities by orders or magnitude. Moreover, the resulting system
of equations is only on the order of the number of elements and positive definite, which makes
solving the equation system of the FVM flux reconstruction much easier and quicker than the one
of the RT N 0-projection. Also, the FVM flux reconstruction does not require transformations
of coordinates like the RT N 0-projection on non-simplicial elements reducing the computational
overhead significantly. This makes the FVM flux reconstruction more attractive for catchment-
scale applications.
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I showed that the FVM flux reconstruction yields hydraulic-head fields which are close to the
primal solution computed by HydroGeoSphere in finite-difference mode (Therrien and Sudicky,
1996). Moreover, the FVM flux reconstruction yields very similar results compared to those of
the RT N 0-projection when applied to a benchmark case of variably saturated flow on triangular
prisms. In the FVM reconstruction, I make use of the relative permeabilities of the primal
solution, assuming that the latter already accounts for the non-linearity of Richards’ equation.
Also, I consider storage changes of the primal solution as known divergence in an otherwise
steady-state simulation in the FVM reconstruction. This is computationally much faster than
computing a conforming solution from scratch, or the RT N 0-projection. Compared to preceding
flux corrections (e.g., Larson and Niklasson, 2004; Scudeler et al., 2016; Selzer and Cirpka, 2020;
Sun and Wheeler, 2006), the proposed scheme is absolutely stable and does not lead to severe
numerical artifacts like velocities being too high by orders of magnitude in low-velocity regions,
or reverted velocities in such regions (compare Schiavazzi, 2013; Selzer and Cirpka, 2020). These
advantages come at the cost of accurately mimicking the primal model, including all material
properties and boundary conditions, in the FVM reconstruction.

Based on a conforming velocity field in RT N 0-space, I formulated semi-analytical particle track-
ing schemes relying on element-wise, analytical solutions for the particle trajectories in RT N 0-
space on triangles, tetrahedra, and triangular prisms. The particle tracking schemes on triangles
and tetrahedra are formulated in global, physical coordinates, although their application in a
local coordinate system is possible, too. For triangular prisms, I have derived an analytical
solution in a mixed coordinate system, which is exact for non-deformed triangular prisms.

For the particle-tracking scheme in mixed coordinates, the inaccuracy increases the more de-
formed the triangular prism is and the more the bottom and the top faces are tilted towards each
other, as well as the more the height of the element at the centroid differs from the mean height
along the trajectory. However, I think that in catchment-scale hydrological modeling the major
uncertainty is in the approximation of material properties, uncertain boundary conditions, and
in simplifications of the physical representation such as neglecting preferential flow paths. In
contrast, the prisms normally used in catchment-scale subsurface hydrological modeling are of-
ten only moderately deformed. Therefore, I believe that the additionally introduced inaccuracy
is small compared to the other inaccuracies present in most catchment-scale variably saturated
flow models, and the approximation above is justified by the gain in computational efficiency.

I have shown that the FVM flux reconstruction as well as the associated particle-tracking scheme
on potentially deformed triangular prisms can be applied to realistic subsurface flow models on
the catchment scale, including varying element geometries, several geological layers, and hetero-
geneous boundary conditions. The scheme is accurate, gives results close to the primal solution
in the hydraulic head reconstruction, and avoids gaps in definition. The particle trajectories
can be used for the delineation of capture zones or for streamline-based simulations of reac-
tive transport, making use of the finite-element-type primal solution of catchment-scale variably
saturated subsurface flow.
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4.2 Outlook

Based on the outcome of this thesis, and the conclusions drawn, future improvements and fields
of research may include the following.

• The FVM flux reconstruction was investigated in detail and has been successfully applied
to variably saturated flow in porous media on the catchment scale. In future research,
also the RT N 0-projection could be extended such that it would be applicable to the
catchment scale, maybe including a multi-point projection for non-simplicial elements.
While the FVM flux reconstruction is already speed-optimized, also the RT N 0-projection
could be further speed optimized to make an application on the catchment scale more
feasible. However, it remains an open question, if the RT N 0-projection is stable enough
to be successfully applied to catchment-scale applications. In any case the run times for the
RT N 0-projection will be longer, which could only be justified by an increase in accuracy.

• It has been shown that the FVM flux reconstruction is a suitable method for postprocessing
non-conforming primal flux solutions as a base for accurate and consistent particle tracking.
However, also an application of the postprocessed velocity fields for numerical solutions of
the advection-dispersion equation by a cell-centered Eulerian method could be investigated.
It can be expected that a cell-centered numerical solution of the advection-dispersion
equation employing a postprocessed conforming velocity field will perform better, than a
solution employing a non-conforming velocity field; although numerical dispersion will be
a problem in a solution based on the velocities of a lowest-order FVM flux reconstruction.

• So far, the flux postprocessing schemes have only been developed for variably saturated flow
in porous media. However, integrated hydrosystem models typically couple porous media
flow with overland flow, river flow, flow in fractures, or flow in other subdomains. Overland
flow, and river flow are sometimes approximated by the diffusive wave approximation,
which has the shape of a non-linear advection-dispersion equation including a source/sink
term. Otherwise flow may be conceptualized as a full free-flow problem employing the
Navier-Stokes equations, or one may describe creeping flow in subdomains via the Stokes
equation. For full integrated hydrosystem modelling one would need to define an FVM flux
reconstruction or an other postprocessing method like the RT N 0-projection for all flow
regimes occurring and coupled to each other, if the according flow equations were solved
with a primal numerical method leading to non-conforming fluxes violating element-wise
mass conservation.

• If different hydrosystems are considered within a model, a coupling strategy needs to be
defined for a flux postprocessing technique. Also, the particle tracking schemes would need
to be able to handle the transition between different hydrosystems. This is in particular
interesting, if hydrosystems are conceptualized in different dimensions. For instance, one
may conceptualize variably saturated flow in porous media in three spatial dimensions,
while overland flow may be described as a two-dimensional problem embedded in three
dimensions following the terrain topography. Particles which leave a higher-dimensional
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space like the porous medium to enter the overland flow domain are straight-forward to
track. However, the reverse case is difficult as particles within a two-dimensional flow field
can not leave this domain in a deterministic manner as normal to the dimensions considered
there is no velocity component approximated. That is, there is no velocity pointing out of
the overland flow domain for the flow solution within the overland flow domain. Particles
could only leave a lower dimensional domain like the overland flow domain in a stochastic
way based on the exchange fluxes between the domains.

• The FVM flux reconstruction is based on a lowest-order FVM and an adapted two-point
flux approximation scheme including a scaling factor such that only the orthogonal part of
a mobility coefficient normal to an internal face is considered. Anisotropy as a full tensor is
not accounted for in the described scheme, and anisotropy as a diagonal tensor can only be
considered in a fully consistent manner, if the grid is aligned with the principal directions
of a diagonal hydraulic-conductivity tensor. A possible extension would be to account
for anisotropy in the flux approximation. In order to do this, the present two-point flux
approximation scheme could be, for instance, replaced by a multi-point flux approximation
being the base for a better approximation of anisotropy (compare e.g., Su et al. (2020)), or
a scheme similar to the ones of Edwards (2002) and Friis et al. (2009) could be employed
using transformations of coordinates.

• Besides of using lowest-order finite volumes or the RT N 0-projection for approximating a
conforming and mass-conservative velocity field, one may also reconstruct a conforming
velocity field using a discontinuous Galerkin method. Although, the resulting velocity
field of a standard discontinuous Galerkin method is non-conforming for all orders higher
than lowest order, the average flux over the element boundary is mass conservative in a
discontinuous Galerkin method (Bastian and Rivière, 2003). An element-wise projection
of the flux originated by a DG method is possible (Bastian and Rivière, 2003; Vidotto
et al., 2018). The use of a discontinuous Galerkin method for flux reconstruction could
reduce the effects of numerical dispersion present in a lowest-order FVM reconstruction
and it could facilitate an elegant way to account for material anisotropy.

• The concept of the discontinuous Galerkin method could also be employed for a veloc-
ity projection. One could compute the element-wise defect in mass conservation, and
distribute this residual in a discontinuous-Galerkin sense along the element boundaries.
Based on this, an element-wise projection of the approximated normal flux on the element
boundaries onto a conforming velocity field in RT N 0-space, or a higher-order velocity
space is possible (Bastian and Rivière, 2003; Vidotto et al., 2018).
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