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Zusammenfassung

In dieser Arbeit werden die hybriden Störungstheorien REMP und OO-REMP zur Be-
rechnung der elektronischen Korrelationsenergie von Atomen und Molekülen eingeführt
und validiert. Es handelt sich dabei um quantenchemische Methoden im Formalismus der
Rayleigh-Schrödinger-Störungstheorie, für die hier die Energie 2. Ordnung untersucht wird.
Basierend auf den Partitionierungen der Møller-Plesset- (MP) und der Anregungsgrader-
haltenden Störungstheorie (Retaining the excitation Degree=RE) wird ein ungestörter
Hamiltonoperator mit zugehörigem Störoperator definiert, der sich aus einer gewichteten
Summe der vorgenannten Methoden zusammensetzt, wodurch die REMP-Methode defi-
niert ist. Die neuartige Partitionierung nutzt komplementäre Fehler der zugrunde liegenden
Methoden zur internen Fehlerkompensation. In dieser Arbeit werden Energien bis zur 2.
Ordnung der Störungstheorie untersucht. Es wird gezeigt, dass die REMP-Partitionierung
des elektronischen Hamiltonoperators zu systematisch besseren Ergebnissen führt als
jede der Einzelmethoden allein, wobei die Parametrisierung der Mischung universell
und praktisch systemunabhängig ist. Dies wird am Beispiel unterschiedlicher Typen von
Reaktionsenergien und Gleichgewichtsstrukturen, Schwingungswellenzahlen und elektri-
schen Dipolmomenten kleiner Moleküle demonstriert. Es wird außerdem ein variationelles
Energiefunktional definiert, das auf der Hybridpartitionierung basiert. Dabei wird die
Form der besetzen Molekülorbitale variiert und so optimiert, dass die Gesamtenergie
minimal wird. Die Minimierung dieses Funktionals bezüglich aller variationellen Para-
meter liefert Ergebnisse, die die der kanonischen Methode systematisch übertreffen. Die
vollständig variationelle Methode zeichnet sich zudem durch hervorragende rechnerische
Effizienz bei der Vorhersage molekularer Eigeschaften aus. Es wird gezeigt, dass insbeson-
dere die vollständig variationelle, orbitaloptimierte Variante (OO-REMP) den Kriterien
allgemein anwendbarer Quantenchemiemethoden genügt und hochgenaue Ergebnisse
produziert. Die Validierungen legen nahe, dass OO-REMP für single-reference-Systeme
für die meisten Thermochmie-Testsätze chemische Genauigkeit erreicht (Root mean
square-Fehler ⩽1 kcal mol−1). Die neu entwickelten Methoden wurden in ein quelloffenes
Quantenchemieprogramm implementiert und stehen nun jedermann zur Verfügung.



Abstract

In this work, the hybrid perturbation theories REMP and OO-REMP for the calculation of
electronic correlation energies of atoms and molecules are introduced and validated. These
are quantum chemical methods in the framework of Rayleigh-Schrödinger perturbation
theory, whose second order energy is investigated here. Based on the partitionings of
the Møller-Plesset (MP) and the Retaining the Excitation Degree (RE) perturbation
theory, an unperturbed Hamiltonian with a corresponding perturbation operator is
defined, which is a weighted sum of the previous methods, thereby defining the REMP
method. The novel partitioning has the property to exploit complementary errors of
the parent methods for internal error compensation. In this work, energies up to 2nd

order in perturbation theory are investigated. It is shown that the REMP partitioning
of the electronic Hamiltonian leads to systematically better results than each of the
original methods, with the important aspect that the parameterization of the mixture is
universal and practically independent of the system considered. This is demonstrated with
the example various types of reaction energies and equilibrium structures, vibrational
wavenumbers, and electric dipole moments of small molecules. Furthermore, a variational
energy functional based on the hybrid partitioning is defined. Here, the shape of the
occupied molecular orbitals is varied and optimized such, that the total energy becomes
minimal. The minimization of this functional with respect to all variational parameters
provides results which systematically surpass those of the canonical method. The fully
variational method is furthermore characterized by outstanding computational efficiency
regarding the prediction of molecular properties. It is shown that especially the fully
variational, orbital-optimized variant suffices the criteria of a generally applicable quantum
chemical method and does produce highly accurate results. The validations imply that for
single-reference systems OO-REMP reaches chemical accuracy (root mean square error
⩽1 kcal mol−1) for most of the thermodynamic test sets. The newly developed methods
were implemented in an open-source quantum chemistry program package and are now
available to everyone.
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1 Introduction

For all but the most simple model systems, the equations which govern the movement of
quantum particles – the Dirac equation or the Schrödinger equation – represent many
particle problems which cannot be solved exactly analytically in a useful way.[1–4] Still
chemists and physicists are interested in approximate solutions of these equations as they
allow in principle to compute and predict the behaviour of all matter that surrounds us.
While solving these equations, one therefore inevitably has to introduce approximations
with varying accuracy. Specifically, theoretical chemistry and routine computational
chemistry rely on a hierarchy of approximations, which are valid in most cases and whose
errors can be estimated and controlled.
When dealing with molecules, the first step is to disentangle the translational and rota-
tional degrees of freedom in the laboratory frame from the internal coordinates.[5–8] The
total wavefunction can then be expanded in the Born-Huang ansatz[8] which involves the
complete manifold of electronic states. Discarding the coupling matrix elements between
different electronic states – which is justified if they are energetically well separated –
leads to the adiabatic approximation and thus to the notion that the nuclei move on a
single potential energy surface, but this surface still depends on the nuclear masses.[6,7] If
also the diagonal corrections – that depend on the nuclear masses – are discarded, one
ends up with the famous Born-Oppenheimer approximation,[5,7,9–11] where the nuclei
move on an electronic potential energy surface that is independent of the nuclear masses.
At this stage, the electronic and nuclear motion is completely decoupled. Typically, the
nuclei are also not treated as quantum objects anymore but as classical point charges
that are fixed in space. Most often, the nuclear spin – if present – is also discarded. The
Born-Oppenheimer approximation is one of the cornerstones of theoretical chemistry
as it is the most radical way to separate the total wavefunction into disjoint parts for
electrons and nuclei, giving rise to the concept of potential energy surfaces and molecular
structures.
When starting from a fully relativistic treatment – the Dirac equation[12,13] – the ap-
proximation that is usually invoked first is that a full four-component treatment is not
necessary. By transforming away the ”positronic“ degrees of freedom, which essentially
corresponds to discarding the small component,[14–16] one arrives at two-component
formalisms which often give excellent results at greatly reduced cost and complexity
compared to a four-component treatment. The most drastic approximation concerning
relativistic interactions consists in totally discarding relativity by taking the limit of
c → ∞ upon which one arrives at the Schrödinger equation with a one-component
wavefunction. There are then various ways of reintroducing relativity[7,14,15,17] e.g. at a
perturbative level.[18–20]

The third approximation usually applied is that the vast majority of quantum chemi-
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cal calculations is performed in a finite set of atom-centered atomic-orbital like basis
functions.[7,17,21,22] This finite basis set itself represents a systematic approximation which
makes quantum-chemical calculations feasible in the first place. At this point, the ap-
proximations introduced are already so severe that absolute energies calculated from
a single basis set deviate significantly from the true total energy, and applicability is
only enabled by error compensation. The exact numerical solution to the Schrödinger
equation in a finite basis set can be obtained by the Full Configuration Interaction (FCI)
method.[21,23–25] FCI however has the drawback that its computational cost still scales
exponentially with the system size and is thus only applicable to small molecules and
small basis sets.1 It is therefore necessary to invoke further approximations which allow
for an approximate solution of the electronic Schrödinger equation. At this point, one com-
monly distinguishes between first-principles methods like density functional theory[31–33]

(DFT) and wavefunction-based ab initio methods. Wavefunction-based methods are more
rigorous and are typically systematically improvable, sometimes leading to FCI in the
ultimate case. In the remaining part of this work DFT will only be used for comparing
results.

In many cases, yet another approximation is invoked, namely that a single Slater determi-
nant formed from occupied orbitals (the ”reference determinant“) provides a qualitatively
correct zeroth order description of the system under investigation.[7,17,21] The molecular
orbitals of this wavefunction are optimized by minimizing its energy expectation value,
leading to a Hartree-Fock wavefunction.[34,35] Such a wavefunction obeys the Pauli exclu-
sion principle but essentially neglects the correlatated motion of the electrons. Instead,
it averages out the positions of the other electrons from the point of view of a certain
electron. Such a mean-field wavefunction is systematically too high in energy compared
to the FCI wavefunction. The energy difference between the energy of a single Slater
determinant and the FCI energy is called the correlation energy. For accurate prediction
of energies and properties, it is absolutey mandatory to recover as much correlation
energy and the most important corrections to the wavefunction as possible.

In the realm of the wavefunction methods, the three most commonly encountered ap-
proaches to treat the correlation problem are truncated Configuration Interaction (CI),
Coupled Cluster Theory (CC) and Perturbation Theory (PT).[17] While the former two
make use of the complete (Born-Oppenheimer, nonrelativistic) Hamiltonian and ulti-
mately converge to FCI, convergence is not guaranteed for perturbation theory when
applied to the electronic correlation problem.

(Rayleigh-Schrödinger) perturbation theory inherently requires further assumptions for
partitioning the Hamiltonian into “genuine” and “perturbative” constituents, their attri-
bution being arbitrary and dependent on the design of the method. In other words, one
has to decide which constituents are so important that one wants to treat them exactly in
the zeroth order solution, and which constituents are less important so that they can be

1It should be mentioned that there has been considerable effort to construct efficient approximation to
FCI like Quantum Monte Carlo FCI[26–28] or the ICE-CI approach.[29,30]



3

considered to merely be a perturbation compared to the unperturbed part. An important
consideration when setting up a partitioning is that the unperturbed problem, i.e. the
Schrödinger equation defined by the Hamiltonian of the unperturbed system Ĥ(0) has to
be solved exactly. The choice of Ĥ(0) is therefore strongly limited due to these technical
considerations.

The two perturbation theories that constitute the basis for the set of methods investigated
in this work are the Møller-Plesset perturbation theory[36] (MP-PT, the most established
and simple practical member of this kind of methods) and the Retaining the Excitation
Degree perturbation theory[37] (RE-PT, the most complete useful perturbation theory
for the correlation problem). MP and RE differ in the way the two-electron repulsion is
partitioned between Ĥ(0) and the perturbation Ĥ(1): MP only retains a bare minimum
of the two-electron interaction in Ĥ(0), while RE preserves as much as possible (See
Sections 2.4 and 2.5 for their respective definitions). The methods investigated here
lie in a continuous, smooth range between 100 % MP and 100 % RE, and the results
therefore shed some light on the question “how important are different parts of the
Hamiltonian for a given target accuracy?” Specifically, a hybrid unperturbed Hamiltonian
consisting of a constrained linear combination of the RE and MP counterparts is proposed,
which is called the REMP Hamiltonian. Such a hybrid partitioning necessarily implies
the approximation inherent to perturbation theory, namely that certain parts of the
Hamiltonian are not treated exactly. It furthermore requires the introduction of an
additional empirical mixing parameter which smoothly switches between RE and MP by
specifying their respective amount in the unperturbed Hamiltonian and the perturbation.
Although these assumptions and approximations might seem drastic at first glance, they
are not uncommon in the framework of perturbation theory. The Hamiltonian may be
partitioned in any reasonable way, and the proposed method will still be a fully-fledged
wavefunction method, in contrast to other empirical scaling schemes, which often sacrifice
the existence of a proper wavefunction itself or the possibility to obtain higher-order
corrections. Additionally, the hybrid partitioning inherits all favourable basic properties
of the pure methods, namely that it is rigorously size consistent, size extensive and
unitary invariant with respect to rotations within the frozen, correlated occupied and
virtual orbitals. As will be shown below, the mixing will come at virtually no additional
computational cost compared to the more expensive component (RE) alone. The effect of
the mixing parameter at a first-order wavefunction level is twofold: first of all, it balances
the treatment of the double excitations of the two perturbation theories. Secondly, it
mimics the effects of higher than double excitations on the wavefunction. These excitations
would enter the wavefunction at higher orders in perturbation theory and will then directly
or indirectly couple to the double excitations. An ideal choice of the mixing parameter will
try to approximate the effect of higher-order corrections at the first-order wavefunction
level.

The quality of the first-order wavefunction and second order energy can further be improved
by iteratively optimizing the orbitals of the reference wavefunction. The unperturbed
wavefunction is typically obtained by a mean-field approach (Roothaan-Hall-Hartree-Fock
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in the single reference case, MCSCF in a multiconfigurational approach), and is thus
often flawed. Better reference wavefunctions and better overall results can be obtained
by relaxing the reference under the influence of correlation. This approach termed orbital
optimization has been established for a variety of methods.[38–46] The inclusion of orbital
optimization often turns nonvariational methods into variational ones, thereby greatly
simplifying the calculation of properties. It will be demonstrated in this work that the
combination of orbital optimization with a hybrid perturbative scheme which mimics
higher orders of perturbation theory and higher excitations leads to a method with
exceptional predictive power.

In the following, the accuracy of the newly proposed methods are carefully investigated
and compared to results of methods with similar or higher computational cost or to
experimental data. As quantum chemical methods primarily give access to energies,
thermochemical properties were benchmarked with particular care (Sections 3.2 and 3.4).
On the other hand, as there is also demand for methods which provide high accuracy
for molecular properties at reasonable computational cost, the newly developed methods
were validated with respect to molecular equilibrium structures (Section 3.5), harmonic
vibrational frequencies (Section 3.6), and static electric dipole moments (Section 3.7).

The method proposed in this work differs from previously proposed approaches in a
number of aspects. In contrast to SCS-MP2[47] or other ad hoc methods, REMP is a
fully-fledged perturbation theory and not just an energy recipe. This means that it is
in principle possible to calculate energy and wavefunction corrections up to arbitrary
orders.[48] Compared to other parameterized methods, REMP also features a smaller
number of empirical parameters, namely just one, which can unambiguously explained. At
least in the case of the orbital-optimized variant, there is also no ambiguity regarding the
size of the parameter, instead, there is just a small interval of the parameter space which
performs well for various benchmark cases. This is again in contrast to SCS-MP2 where
different parameters for different applications were proposed. Comparing pairs of canonical
and orbital-optimized methods, one invariably finds that OO-REMP outperforms REMP,
contrary to e.g. (OO-)MP2[43] or (OO-)CCD/CCSD,[49] where the iterative optimization of
the occupied orbitals often leads to only mediocre improvements. Section 3.8 summarizes
the results of the validations presented in this work and References [50–53] and extracts
general estimates for the accuracy reached for the investigated properties. These are put
in context with those of other Quantum Chemical methods. Section 6.3 contains complete
reprints of the accepted publications related to this work.
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Throughout this work, the commonly used indexing convention for spin orbitals are
used, i.e. i, j, k, l indicate occupied spin orbitals, a, b, c, d indicate virtual spin orbitals
and p, q, r, s indicate general spin orbitals (occupied and virtual). The nuclear repulsion
V̂NN is ignored throughout this section. The energies are only electronic energies and the
nuclear repulsion Enuc =

∑
I>J

ZIZJ
rIJ

is added at the end to obtain total energies.

The starting point for the construction of the partitioning is the Hamiltonian in second
quantization[54,55]

Ĥ =
∑
pq

hpqâ†
pâq + 1

2
∑
pqrs

⟨pq|rs⟩â†
pâ†

qâsâr, (2.1)

where hpq is a matrix element of the one-electron operator (electron kinetic energy and
nucleus-electron attraction) in the MO basis, ⟨pq|rs⟩ is a two-electron repulsion integral
in Dirac notation, and â†

p & âp are electron creation and annihilation operators for spin
orbital p. There is in principle an infinite number of ways how the Hamiltonian in Eq. (2.1)
may be partitioned into an unperturbed Hamiltonian and a perturbation, but only few
of them lead to actually useful methods.

2.1 Rayleigh-Schrödinger Perturbation Theory (RSPT)

Application of Rayleigh-Schrödinger perturbation theory (RSPT) requires a partitioning
of the Hamiltonian Ĥ whose eigenfunctions are to be found into a an unperturbed part
Ĥ(0) (the unperturbed or 0th order Hamiltonian) and a perturbation Ĥ(1) 1

Ĥ = Ĥ(0) + λĤ(1), (2.2)

where the parameter λ is a measure for the strength of the perturbation.

The (time-independent) Schrödinger equation for the unperturbed Hamiltonian has to
be solved exactly

Ĥ(0)∣∣Ψ(0)
i

〉
= E

(0)
i

∣∣Ψ(0)
i

〉
, (2.3)

1under certain circumstances, e.g. if there is more than one perturbation, or if there is a perturbation that
is not linear in λ, another perturbation, Ĥ(2) is necessary.[7] In the context of electronic correlation,
only the case λ = 1 is considered and a separation of the perturbation thus irrelevant.



6 2 Theory

i.e. for Ĥ(0) the eigenfunction of interest |Ψ(0)
i ⟩ and the corresponding eigenvalues E

(0)
i

have to be determined.

The solutions for the total Schrödinger equation and the associated energies are expanded
in terms of of a power series in the perturbation strength parameter λ[48,56–58]

|Ψi⟩ =
∞∑

n=0
λn
∣∣Ψ(n)

i

〉
(2.4)

Ei =
∞∑

n=0
λnE

(n)
i (2.5)

(Ĥ(0) + λĤ(1))|Ψi⟩ = Ei|Ψi⟩ (2.6)

(Ĥ(0) + λĤ(1))
∞∑

n=0
λn
∣∣Ψ(n)

i

〉
=

∞∑
n=0

λnE
(n)
i

∞∑
n=0

λn
∣∣Ψ(n)

i

〉
(2.7)

expansion and sorting in different powers of λ and division by them yields

λ0 : Ĥ(0)∣∣Ψ(0)
i

〉
= E(0)∣∣Ψ(0)

i

〉
(2.8)

λ1 : Ĥ(0)∣∣Ψ(1)
i

〉
+ Ĥ(1)∣∣Ψ(0)

i

〉
= E(1)∣∣Ψ(0)

i

〉
+ E(0)∣∣Ψ(1)

i

〉
(2.9)

λ2 : Ĥ(0)∣∣Ψ(2)
i

〉
+ Ĥ(1)∣∣Ψ(1)

i

〉
= E(2)∣∣Ψ(0)

i

〉
+ E(1)∣∣Ψ(1)

i

〉
+ E(0)∣∣Ψ(2)

i

〉
(2.10)

...

λn : Ĥ(0)∣∣Ψ(n)
i

〉
+ Ĥ(1)∣∣Ψ(n−1)

i

〉
=

n∑
m=0

E(m)∣∣Ψ(n−m)
i

〉
(2.11)

These equations can further be reordered to bring all terms in the same order of the
wavefunction to the same side

(Ĥ(0) − E(0))
∣∣Ψ(0)

i

〉
= 0 (2.12)

(Ĥ(0) − E(0))
∣∣Ψ(1)

i

〉
= −(Ĥ(1) − E(1))

∣∣Ψ(0)
i

〉
(2.13)

(Ĥ(0) − E(0))
∣∣Ψ(2)

i

〉
= −(Ĥ(1) − E(1))

∣∣Ψ(1)
i

〉
+ E(2)∣∣Ψ(0)

i

〉
(2.14)

Furthermore, a normalized unperturbed wavefunction and intermediate normalization
⟨Ψ|Ψ(0)⟩ = 1 are generally imposed. This gives a complete set of equations for the
determination of arbitrary orders of energy and wavefunction corrections. Left-projection
of Eq. (2.12) with

〈
Ψ(0)

i

∣∣ recovers the equation for the zeroth order energy and wavefunction.
Left-projection of Eq. (2.13) with

〈
Ψ(0)

i

∣∣ yields an equation for the determination of the
first order energy correction E(1) while left-projection with

〈
Ψ(1)

i

∣∣ yields the equation for
the (iterative) determination of the first order wavefunction correction

∣∣Ψ(1)
i

〉
.
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The total wavefunction takes the form

|Ψi⟩ =
∣∣Ψ(0)

i

〉
+

∞∑
n=1

λn
∣∣Ψ(n)

i

〉
, (2.15)

i.e. it is typically not normalized, instead, as
∣∣Ψ(0)

i

〉
is normalized, such a wavefunction is

called to possess intermediate normalization.

Until now, no assumptions for the form of the wavefunction corrections were made. It
is common practice to expand the wavefunction corrections in terms of the excited-
state solutions of Ĥ(0). This is especially useful in the case of single-reference electronic
structure methods. The unperturbed wavefunction is typically chosen as a single Slater
determinant and the wavefunction corrections are expanded in linear combinations of
singly, doubly etc. excited Slater determinants or CSFs thereof relative to the reference
Slater determinant.

2.2 Configuration State Functions and Their Importance

Configuration State Functions (CSFs) are n-electron wavefunctions that are eigenfunctions
of both the Ŝ2 and the Ŝz operator.[59] This is in contrast to plain Slater determinants,
which are typically eigenfunctions of the Ŝz operator but not necessarily of Ŝ2, as soon
as unpaired electrons are present. Specifically, the components of MS < S and MS > −S
can only be represented by linear combinations of Slater determinants, and the same
holds for all open shell singlet states.

In the context of a perturbation theoretical treatment of the electronic correlation problem,
the first order interacting space (FOIS) typically consists of double excitations relative to
the reference wavefunction. The most simple case is that the reference is a single closed
shell determinant. The FOIS then consists of doubly excited states, and there are at most
four unpaired electrons. In general, four unpaired electrons in eight spin orbitals give
rise to in total

(8
4
)

= 70 determinants or CSFs. There are 6 closed shell determinants
(no unpaired electrons), yielding 6 singlet states, 48 determinants with two open shells,
yielding 12 singlets and 12 triplets, and 16 determinants with four open shells, yielding 1
quintet, 3 triplets and 2 singlets.
As the excited states describing correlation have to preserve the space and spin symmetry
of the reference, of all these states of different multiplicity, only the singlet states are
relevant here.

When the Serber CSFs[59–62] are employed, the singlet-excited states with up to four open
shells are classified into two distinct groups
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Singlet-coupled double excitations (SDE):

Φab
ij,S = 1

2
√

(1 + δij)(1 + δab)

(
Φāb

īj + Φab̄
ij̄ − Φāb

ij̄ − Φab̄
īj

)
(2.16)

i
j
a
b

i
j
a
b

i
j
a
b

i
j
a
b

Triplet-coupled double excitations (TDE):

Φab
ij,T = 1√

12

(
2Φāb̄

īj̄ + 2Φab
ij + Φāb

īj + Φāb
ij̄ + Φab̄

īj + Φab̄
ij̄

)
. (2.17)

i
j
a
b

i
j
a
b

i
j
a
b

i
j
a
b

i
j
a
b

i
j
a
b

The names Singlet-coupled double excitations (SDE) and Triplet-coupled double exci-
tations (TDE) arise from the spin-coupling pattern of the involved determinants. The
SDEs only contain determinants where the electrons in the orbitals i and j are coupled
to an s = 0, ms = 0 state, and the signs in the linear combination also couple them
to an overall singlet (with fixed a/b spin). In contrast, the TDEs additionally contain
such determinants where the electrons in the occupied and virtual orbitals separately
are coupled to a triplet state (ms = 1/ − 1, the first two determinants). The remaining
determinants are also coupled similarly to an ms = 0 triplet state, while the total linear
combination makes this CSF a singlet configuration. The constituting determinants are
also depicted below Eqs. (2.16) and (2.17). Although consisting of the same determinants,
it has to be noted that the SDE and TDE belonging to a certain i, j, a, b tuple are
mutually orthogonal by construction. The cases where i = j and/or a = b are SDEs, so
that there are in total more SDEs than TDEs.

In the context of correlated calculations, it is often important to distinguish between these
kinds of double excitations. It has been shown that they obey different electron-electron
Kato cusp conditions:[63,64] The SDE has a cusp in the wavefunction at any point in
space where the interelectronic distance r12 becomes zero, and hence has a discontinuous
first derivative (Coulomb hole, Eq. (2.18)), while the TDE vanishes if r12 = 0 but has
a cusp in the first derivative and hence a discontinuous second derivative (Fermi hole,
Eq. (2.19))[63,65–71]

lim
r12→0

1
ΦS

(
∂ ΦS

∂ r12

)
= 1

2 (2.18)(
∂2 ΦT

∂ r2
12

)
r12=0

= 1
2

(
∂ ΦT

∂ r12

)
r12=0

. (2.19)
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Double excitations are of particular importance in the context of correlated calculations.
First of all, in the case of a restricted closed shell or unrestricted single reference de-
terminant, these are the only excitations that directly enter in the calculation of the
correlation energy. Knowledge of the exact doubles therefore suffices to calculate the
exact (FCI) correlation energy. Second, the doubles are typically the first excitation class
that enters in a perturbative treatment, and they are by far the most important class
of excitations. Third, even if there are single excitations that contribute to Ecorr, the
doubles still provide an overwhelming portion of the total correlation energy.

It has been shown that the correlation energy contributions of SDEs and TDEs show a dis-
tinctly different convergence behaviour with respect to the largest angular momentum of
the basis set. In detail, it was shown, that the SDEs roughly converge with (L+1)−3 while
the TDEs converge with (L + 1)−5 and thus faster with increasing basis set size.[68,72–74]

It was furthermore shown that the amount of correlation energy that is recovered for the
two CSF types is heavily dependent on the method used.[37,50,65,70,75,76] Coupled Cluster
methods converge rather smoothly to the FCI limit and the fractions of SDE and TDE
correlation energy recovered relative to FCI are similar.[50,70,76] Truncated CI methods
generally converge slower to the FCI limit,[77,78] but there is no pronounced imbalance
regarding the two kinds of double excitations.
In strong contrast, common perturbation theoretical methods like Møller-Plesset per-
turbation theory[36] or variants thereof like SCS-MP2,[47] Epstein-Nesbet perturbation
theory[79,80] or the Retaining the Excitation Degree perturbation theory[37] exhibit signif-
icant and systematic errors if the correlation energy is decomposed into the contributions
of the SDEs and TDEs separately.[50,65,70,76,81] Typically, the contributions by one CSF
class are overestimated while those of the other are underestimated, leading to error
compensation. This can in turn be attributed to the respective energy denominators.[70]

As such, this is not a completely new finding. The energy denominator or the EN-PT, e.g.,
was specifically designed to remedy the shortcomings of the MP energy denominator.[82]

However, if EN is analyzed in a CSF basis, the results are significantly worse than those
from MP.[70]

A similar conclusion can be drawn for SCS-MP2[47] when it is reformulated in such a
way that the actual wavefunction is accessible.[65,81] SCS-MP2 itself is also based on an
analysis of correlation energy contributions, but of plain “singlet” (opposite-spin pairs,
all determinants contributing to Eq. (2.16)) and “triplet” (same-spin pairs, the first two
determinants of Eq. (2.17)) excited Slater determinants. Their correlation energy contri-
butions are then rescaled by empirically determined scaling factors. Fink later obtained
a relation between the empirical SCS parameters and proper CSF scaling parameters,[65]

defining the S2-MP method and allowing to rationalize the size of the original parameters.
It was further shown that carelessly choosing the SCS-MP2 scaling parameters may even
lead to spin contamination of the correlated wavefunction for closed shell references. For
the method proposed in this work, such artifacts are excluded by construction.
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2.3 Normal Order

In the following section, the concept of normal order is heavily used. A string of creation-
and annihilation operators is said to be in normal order if its expectation value with
some reference state vanishes exactly. Normal order can be defined either with respect
to the physical vacuum (| ⟩) or with respect to the reference Slater determinant, also
called Fermi vacuum[55,56]2. Normal ordering is usually indicated by curly brackets {. . .}
around a string of creation and annihilation operators or with an index N if applied to
composed operators. In this text, normal order is used synonymous with normal order
with respect to the Fermi vacuum. It is furthermore possible to define an excitation
degree with respect to the choice of vacuum state for operators, diagrams or vertices.
This excitation degree gives the change of the occupation number with respect to some
pre-defined orbital space, typically the occupied and virtual orbitals and is marked by
R. For the Fockian F̂ – an effective one-electron operator – the excitation degree can
take the values −1/0/ + 1, and for the two-electron operator Ŵ it can take the values
−2/ − 1/0/ + 1/ + 2. By virtue of the definition of the vacuum, the normal ordered
Hamiltonian may be defined as difference of the full electronic Hamiltonian Ĥ and the
electronic energy of the reference state, here denoted as EHF (as mentioned without the
VNN contribution)

ĤN = Ĥ − EHF (2.20)
= F̂N + ŴN. (2.21)

This definition can be compared to the partitioning necessary for applying Rayleigh-
Schrödinger perturbation theory

Ĥ = Ĥ(0) + Ĥ(0) (2.22)
= F̂N + ŴN + EHF. (2.23)

The reference energy EHF, i.e. the energy of the single reference Slater determinant is
obtained via

EHF =
∑

i

hii + 1
2
∑
ij

⟨ij||ij⟩ (2.24)

=
∑

i

fii − 1
2
∑
ij

⟨ij||ij⟩. (2.25)

2This is the terminology used by Bartlett and Shavitt; to add some confusion, Kutzelnigg and
Mukherjee[83] use the terms genuine vacuum if | ⟩ and physical vacuum if a Slater determinant
Φ are used as reference point, respectively.
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It is furthermore possible to decompose the Fockian into various parts, namely diag-
onal blocks which contain the occupied-occupied and virtual-virtual blocks and the
corresponding off-diagonal blocks

F̂ =
∑
pq

fpqâ†
pâq (2.26)

=
∑
pq

fpq{â†
pâq} +

∑
i

fiiâ
†
i âi (2.27)

= F̂N +
∑

i

fii, (2.28)

per Eq. (3.159) of Ref. [56].

(2.29)

The curly brackets introduced in Eq. (2.27) indicate that the normal-ordered product of
the string of creation and annihilation operators is to be used, as noted in Section 2.3..
In an even more general form also suitable for non-canonical orbitals and for such which
do not fulfill the Brillouin theorem, the normal-ordered Hamiltonian takes the form[56]

ĤN =
∑

p

fpp{p̂†p̂} +
∑
i ̸=j

fij {̂i†ĵ} +
∑
a̸=b

fab{â†b̂}

+
∑
a̸=i

fai{â†î} +
∑
i ̸=a

fia{̂i†â} + 1
4
∑
pqrs

⟨pq||rs⟩{p̂†q̂†ŝr̂}. (2.30)

Eq. (2.30) introduces a shorter notation for creation and annihilation operators (â = âa,
î† = â†

i etc.). The diagrams that make up the normal-ordered Hamiltonian are shown in
Figure 2.1 together with the assigned excitation rank.[56,84]

2.4 The Retaining the Excitation Degree PT

The Retaining the Excitation Degree (RE) partitioning was developed in 2006 by Reinhold
F. Fink.[37]

The unperturbed Hamiltonian contains all diagrams with an excitation degree/excitation
rank of zero, while all other diagrams are moved to the perturbation

Ĥ(0) = F̂ d
N + ŴN

R=0
+
〈
0
∣∣F̂ d∣∣0〉+

〈
0
∣∣ Ŵ
R=0

∣∣0〉︸ ︷︷ ︸
=E(0)=Eref

(2.31)

Ĥ(1) = F̂ o + ŴN
R ̸=0

+
〈
0
∣∣ Ŵ
R ̸=0

∣∣0〉︸ ︷︷ ︸
=E(1)=0

. (2.32)
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x

x x

x

Figure 2.1: Antisymmetrized Goldstone diagram fragments that constitute ĤN. Given are also the
translation into formulae and the excitation rank/excitation degree associated with the
diagrams.

The key feature of the RE partitioning is that it includes the maximum number of terms in
the unperturbed Hamiltonian as possible while still resulting in working equations where
different excitation degrees are decoupled at the level of the unperturbed Hamiltonian.
Adding more terms to Ĥ(0) would lead to a perturbation theory resembling a CI-type
problem where various or in the extreme case all excitation degrees would then be coupled
already at the zeroth-order level. This in turn would imply that the wavefunction would
have to be truncated at an arbitrary excitation degree. Depending on the wavefunction
ansatz, the resulting method resembles a truncated CI ansatz with a potential loss of
size consistency (like e.g. CISD), size extensivity or unitary invariance (e.g. CEPA/1).[85]

In other words, RE shares the property with MP that every order in perturbation theory



2.4 The Retaining the Excitation Degree PT 13

naturally adds two excitation degrees to the wavefunction. But in contrast to MP, the
perturbers of the newly added excitation rank are fully coupled while MP leaves them
uncoupled and introduces couplings only at the next order of wavefunction. RE is the
only partitioning which has this property.

Ĥ
(0)
RE has furthermore the property that any Slater determinant is an eigenfunction with

the eigenvalue being its expectation value with respect to the total electronic Hamiltonian

Ĥ
(0)
RE|ϕ⟩ = E|ϕ⟩ with E = ⟨ϕ|Ĥ|ϕ⟩. (2.33)

In other words, the unperturbed Schrödinger equation is solved exactly by any Slater
determinant. Most importantly, a Slater determinant resulting from a Hartree-Fock
calculation is already an exact solution of the unperturbed Schrödinger equation, it is
therefore not necessary to determine the zeroth order solution separately.

Adding any more terms from Ĥ to Ĥ(0) would lead to a partitioning where the maximum
excitation rank would have to be truncated artificially and whose zeroth order wavefunction
equation would not be solved by a single Slater determinant. In other words, if there are
terms in Ĥ(0) which couple different excitation ranks, then the action of Ĥ(0) on a single
reference determinant will create excited determinants. The unperturbed Schrödinger
equation will then assume the shape of a (truncated) CI problem, so that the maximum
excitation rank in the wavefunction expansion would have to be truncated or one ends up
with FCI but with an incomplete Hamiltonian. It will then also be impossible to determine
the contributions by different excitation ranks of a certain wavefunction correction order
separately. Truncated CI methods have the decisive drawback that they are typically
neither size consistent not size extensive. In contrast, perturbation theories that do not
include terms in Ĥ(0) which couple different excitation ranks have the advantage that the
highest excitation rank in the wavefunction is determined by the correction order. If one
is interested only in the energy and not in the complete wavefunction, it is often possible
to omit the calculation of the corrections with the highest excitation rank.3 In a sense,
RE is thus the most complete practical form of perturbation theory for the electronic
correlation problem.

The RE Hamiltonian is also closely related to Dyalls active space Hamiltonian[82] as used
e.g. in NEVPT.[86–91]

At the first order wavefunction/ second order energy, RE is actually only one possibility
to derive a method which is known by many names: CEPA/0, OPT-PT, or MBPT(∞).
In the following, the derivations are sketched:

3Prominent examples would be the methods commonly called MP3 and MP4. The MP2 wavefunction
belonging to the MP3 energy contains triple and quadruple excitations, but as the triples and
quadruples are not coupled to the doubles necessary for calculating the correlation energy, their
determination is omitted. An equal argument holds for the fourth order energy correction. Here the
aforementioned triples and quadruples of the MP2 wavefunction are necessary as they influence the
third order doubles, but the quintuples and hextuples of the third order wavefunction correction are
discarded. The very same argument would also apply to RE.
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CEPA/0=LCCD=L-CP-MET CEPA/0 is obtained from the full CCSD equations by
neglecting certain disconnected excitations in the cluster operator that are at least
quadratic in the singles excitation operator as well as terms that are quadratic in
the doubles excitation operator.[46,92–97] CEPA/0(D) is then furthermore obtained
by neglecting the singles entirely.

OPT-PT OPT-PT[98,99] is a generalized form of the Epstein-Nesbet (EN) perturbation
theory[79,80] which employs level shifts to minimize the energy and give rise to
vanishing third-order energy corrections. It was shown that the requirement of a
vanishing third order energy leads to a second order energy which equals that of
LCCD, i.e. CEPA/0(D) if a Hartree-Fock wavefunction is used as unperturbed
wavefunction.

MBPT(∞) MBPT(∞)[100–103] arises from the summation of the correlation energy
contributions of only the double excitations in the MP partitioning up to infinite
order. This method only provides a correlation energy but not an associated
wavefunction.

XCC(3) The third-order expectation value Coupled Cluster method[104] (XCC(3)) is
derived from an expression of the correlation energy as an energy expectation value
of a Coupled Cluster wavefunction. Different orders of energies and wavefunctions are
derived starting from the normal-ordered Hamiltonian Eq. (2.21) with a partitioning
that resembles the MP partitioning of Eqs. (2.42) and (2.43). The second order
energy XCC(2) exactly corresponds to the MP2 energy, while the third order energy
XCC(3) equals the RE2 energy. XCC differs from conventional perturbation theories
insofar as the wavefunctions and energies are not solved order by order, instead,
there is only one (projective) working equation per excitation degree.

But while all of these derivations are based on some arbitrary truncations or approxi-
mations, RE2 is a stringent perturbation theory leading to these working equations. Of
course, the partitioning itself is arbitrary to some degree, but this is a necessity for any
RSPT approach to the electron correlation problem.

The first-order wavefunction is expanded in terms of singly and doubly excited determi-
nants relative to the reference determinant (the complete first-order interacting space of
the reference determinant)

∣∣Ψ(1)〉 =
(
T̂

(1)
1 + T̂

(1)
2
)
|ϕ0⟩ =

∑
ia

ti
a

∣∣ϕa
i

〉
+ 1

4
∑
ijab

tij
ab

∣∣ϕab
ab

〉
. (2.34)

For obtaining the first-order wavefunction correction, Eqs. (2.31) and (2.32) are inserted
into the first-order perturbation equation and projected from left with ⟨ϕa

i | and ⟨ϕab
ij |,

respectively. Higher excitations do not contribute to the first-order perturbation equation
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if the reference is chosen as a single Slater determinant. For the single excitations, one
obtains〈
ϕa

i

∣∣( F̂N
R=0

+ ŴN
R=0

+ ⟨0|F̂ |0⟩
R=0

+ ⟨0|Ŵ |0⟩ − E(0))∣∣(T̂ (1)
1 + T̂

(1)
2 )ϕ0

〉
= −

〈
ϕa

i

∣∣( F̂N
R ̸=0

+ ŴN
R ̸=0

− E(1))∣∣ϕ(0)〉, (2.35)

where

E(0) = ⟨0|F̂ |0⟩
R=0

+ ⟨0|Ŵ |0⟩
R=0

= EHF,

E(1) = ⟨0|F̂ |0⟩
R ̸=0

+ ⟨0|Ŵ |0⟩
R ̸=0

= 0,

so that Eq. (2.35) becomes

〈
ϕa

i

∣∣{ F̂N
R=0

T̂
(1)
1 }c

∣∣ϕ0
〉

+
〈
ϕa

i

∣∣{ŴN
R=0

T̂
(1)
1 }c

∣∣ϕ0
〉

+
〈
ϕa

i

∣∣{ F̂N
R=0

T̂
(1)
2 }c

∣∣ϕ0
〉

︸ ︷︷ ︸
=0

+
〈
ϕa

i

∣∣{ŴN
R=0

T̂
(1)
2 }c

∣∣ϕ0
〉

︸ ︷︷ ︸
=0

= −
〈
ϕa

i

∣∣ F̂N
R ̸=0

∣∣ϕ(0)〉−
〈
ϕa

i

∣∣ŴN
R ̸=0

∣∣ϕ(0)〉. (2.36)

In contrast to to the Møller-Plesset first-order wavefunction, there is now also a two-
electron integral diagram which couples the single excitations among each other. In total,
the residuum for the first-order RE singles read thus

σi(1)
a = fia +

∑
b

fabt
i
b −

∑
k

tk
afki +

∑
kc

tk
c

(
Kik

ac − J ik
ac

) != 0. (2.37)

Eq. (2.37) is trivially solved by t
i(1)
a = 0 ∀i, a if the Brillouin theorem is fulfilled, i.e. if all

fia are zero.

Left-projection with ⟨ϕab
ij | yields

〈
ϕab

ij

∣∣( F̂N
R=0

+ ŴN
R=0

+ ⟨0|F̂ |0⟩
R=0

+ ⟨0|Ŵ |0⟩ − E(0))∣∣(T̂ (1)
1 + T̂

(1)
2 )ϕ0

〉
= −

〈
ϕab

ij

∣∣( F̂N
R ̸=0

+ ŴN
R ̸=0

− E(1))∣∣ϕ(0)〉 (2.38)

〈
ϕab

ij

∣∣{ F̂N
R=0

T̂
(1)
1 }c

∣∣ϕ0
〉

︸ ︷︷ ︸
=0

+
〈
ϕab

ij

∣∣{ŴN
R=0

T̂
(1)
1 }c

∣∣ϕ0
〉

︸ ︷︷ ︸
=0

+
〈
ϕab

ij

∣∣{ F̂N
R=0

T̂
(1)
2 }c

∣∣ϕ0
〉

+
〈
ϕab

ij

∣∣{ŴN
R=0

T̂
(1)
2 }c

∣∣ϕ0
〉

= −
〈
ϕab

ij

∣∣ F̂N
R ̸=0

∣∣ϕ(0)〉
︸ ︷︷ ︸

=0

−
〈
ϕab

ij

∣∣ŴN
R ̸=0

∣∣ϕ(0)〉. (2.39)
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x x

Figure 2.2: Diagrams which contribute to the doubles part of the first-order RE wavefunction correc-
tion.

The first two terms on the left-hand side vanish as operators with rank zero cannot couple
singles to doubles without leaving open lines. The first term on the right-hand side also
vanishes as the Fockian diagrams have at most rank ±1 and thus cannot couple doubles
to the reference.

The third term of the left-hand side yields two diagrams while the fourth term consists
of three diagrams. The second term of the right-hand side consists of just one diagram.
The three diagrams in the lower row of Figure 2.2 are also known as hole-hole-ladder,
particle-particle ladder and ring diagram in coupled cluster theory. Evaluation of all
diagrams of Figure 2.2 and insertion in Eq. (2.39) yields

σij
ab,RE =⟨ij||ab⟩ +

∑
c

(
tij
acfbc − tij

bcfac
)

+
∑

k

(
tjk
abfik − tik

abfjk

)
+ 1

2
∑
kl

tkl
ab⟨kl||ij⟩ + 1

2
∑
cd

tij
cd⟨ab||cd⟩ + PijPab

∑
kc

tik
ac⟨kb||cj⟩, (2.40)

and using tij
ab = −tij

ba = −tji
ab one obtains

σij
ab,RE =Kij

ab − Kij
ba +

∑
c

(
tij
acfbc − tij

bcfac
)

+
∑

k

(
tjk
abfik − tik

abfjk

)
+
∑
kl

Kij
klt

kl
ab +

∑
cd

Kab
cd tij

cd

+
∑
kc

(
tik
ac

(
Kkj

cb − Jkj
cb

)
− tjk

ac

(
Kki

cb − Jki
cb

)
− tik

bc

(
Kkj

ca − Jkj
ca

)
+ tjk

bc

(
Kki

ca − Jki
ca

))
.

(2.41)
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The computational cost of the RE1 singles residuum scales as O(o2v2) while the most
expensive part of the doubles residuum (the external exchange operator4) scales as O(o2v4).
The cost of all other parts (integral transformation (O(on4)), amplitude update/DIIS
(O(o2v2)) or parts of the doubles residuum scaling with O(o3v3) or O(o4v2)) is negligible
compared to the cost of the EEO with sufficiently complete basis sets.

The equation for calculating the energy is identical to the one used in the Møller-Plesset
case (Eq. (2.57)) and is elaborated below.

2.5 The Møller-Plesset PT

The Møller-Plesset (MP) perturbation theory[36] employs the occupied-occupied and
virtual-virtual blocks of the Fock operator (i.e. the mean-field Hamiltonian) as unperturbed
Hamiltonian Ĥ(0) and the rest (the so-called “fluctuating potential”) as perturbation:

Of the diagrams in Figure 2.1, only the Fock operator diagrams with excitation rank zero,
i.e. the diagrams in the middle of the topmost row enter Ĥ(0). In a matrix representation
of the Fockian, these correspond to the occupied-occupied and virtual-virtual blocks. A
normal-order formulation furthermore excludes the diagonal from Ĥ(0) and introduces it
by EHF. The perturbation is given by all other diagrams. In the canonical RHF and UHF
case, the reference determinant only interacts with double excitations, so that the only
contribution in Ĥ(1) for the first-order wavefunction is given by the diagram with R = +2.
All other diagrams enter only at a later stage where the double and higher excitations
are coupled among themselves and with excitations of another rank. Single excitations
also do not contribute to the first-order wavefunction in the RHF/UHF case by virtue of
the Brillouin theorem. In the ROHF case, on the other hand, single excitations are part
of the first-order wavefunction.

The total electronic Hamiltonian of Eq. (2.1) can be partitioned in the following way

Ĥ(0) = F̂ d
N + ⟨0|F̂ d|0⟩︸ ︷︷ ︸

E(0)

(2.42)

Ĥ(1) = V̂ = F̂ o + ŴN + ⟨0|Ŵ |0⟩︸ ︷︷ ︸
E(1)

. (2.43)

The unperturbed Hamiltonian contains only the diagonal blocks of the Fockian, i.e. those
contributions with R = 0. The diagrams with R = ±1 enter in the perturbation.

Generally, the first-order correction to the wavefunction is computed from(
Ĥ(0) − E(0))∣∣Ψ(1)〉 = −

(
Ĥ(1) − E(1))∣∣Ψ(0)〉. (2.44)

4The external exchange operator (EEO) is the contribution K[Cij ]ab =
∑

cd
Kab

cd tij
cd to the doubles

residuum.
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x
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Figure 2.3: Diagrams contributing to the single excitations of the first-order Møller-Plesset wavefunc-
tion correction.

The reference wavefunction furthermore consists of a single restricted (RHF), restricted
open shell (ROHF) or unrestricted (UHF) Slater determinant and the first order correction
to the wavefunction contains double excitations at most

|Ψ(0)⟩ = |ϕ0⟩ (2.45)

|Ψ(1)⟩ = (T̂ (1)
1 + T̂

(1)
2 )|ϕ0⟩ =

∑
i,a

ti
a|ϕa

i ⟩ + 1
4
∑
ijab

tij
ab|ϕ

ab
ij ⟩. (2.46)

Projection from left with ⟨ϕa
i | provides the equations for determining the singles contri-

butions to the first-order wavefunction〈
ϕa

i

∣∣(Ĥ(0) − E(0))∣∣Ψ(1)〉 = −
〈
ϕa

i

∣∣(Ĥ(1) − E(1))∣∣ϕ(0)〉 (2.47)〈
ϕa

i

∣∣( F̂N
R=0

+ ⟨0|F̂ |0⟩
R=0

− E(0))∣∣(T̂ (1)
1 + T̂

(1)
2 )ϕ0

〉
= −

〈
ϕa

i

∣∣( F̂N
R ̸=0

+ ŴN + ⟨0|Ŵ |0⟩ − E(1))∣∣ϕ(0)〉.
(2.48)

Using ⟨0|F̂ |0⟩ = E(0) and ⟨0|Ŵ |0⟩ = E(1), this can be rearranged to

〈
ϕa

i

∣∣{ F̂N
R=0

T̂
(1)
1 }c

∣∣ϕ0
〉

+
〈
ϕa

i

∣∣{ F̂N
R=0

T̂
(1)
2 }c

∣∣ϕ0
〉

︸ ︷︷ ︸
=0 (excitation rank)

= −
〈
ϕa

i

∣∣ F̂N
R ̸=0

∣∣ϕ(0)〉
︸ ︷︷ ︸

fia

−
〈
ϕa

i

∣∣ŴN |ϕ(0)〉︸ ︷︷ ︸
=0

. (2.49)

The second term on the left-hand side vanishes as there is no diagram with excitation
rank zero which could couple a doubly excited to a singly excited determinant. The
second term on the right-hand side of Eq. (2.49) vanishes exactly as the two-electron
part of the normal-ordered Hamiltonian does not contain diagrams which could couple
the reference to single excitations (there are no “bubble diagrams” in the normal-ordered
Hamiltonian). The subscript c furthermore indicates that only fully connected diagrams
are included, which is necessary for ensuring size-consistency.

The possible contractions of T̂
(1)
1 with F̂N resulting in one open hole and one open particle

line are shown in Figure 2.3.
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The resulting singles residuum takes the form

σi(1)
a = fia +

∑
b

fabt
i(1)
b −

∑
k

fiktk(1)
a

!= 0 (2.50)

in accordance with Reference [105].

In the case of a restricted Hartree-Fock (RHF) or unrestricted Hartree-Fock (UHF)
reference, the Brillouin theorem is fulfilled, i.e. all fia are zero, and thus t

i(1)
a = 0 trivially

solves the first-order singles equation, i.e. there are no single excitations in the first-order
wavefunction. The situation is different for a restricted open-shell Hartree-Fock (ROHF)
reference, or for any other set of orbitals that do not fulfill the Brillouin theorem, like
Kohn-Sham DFT orbitals or iteratively optimized orbitals from an orbital-optimized
correlation method like OO-MP2 or OO-CCD. In the latter case, the single excitations are
nevertheless mostly ignored as their inclusion would compete with the orbital optimization
itself, the reason being that single excitations act as occupied-virtual rotations.[40,43,44,106]

For the doubles, one obtains after projection with ⟨ϕab
ij | from left

〈
ϕab

ij

∣∣( F̂N
R=0

+ ⟨0|F̂ |0⟩
R=0

− E(0))∣∣(T̂ (1)
1 + T̂

(1)
2 )ϕ0

〉
= −

〈
ϕab

ij

∣∣( F̂N
R ̸=0

+ ŴN + ⟨0|Ŵ |0⟩ − E(1))∣∣ϕ(0)〉

(2.51)〈
ϕab

ij

∣∣{ F̂N
R=0

T̂
(1)
1 }c

∣∣ϕ0
〉

︸ ︷︷ ︸
=0 (excitation rank)

+
〈
ϕab

ij

∣∣{ F̂N
R=0

T̂
(1)
2 }c

∣∣ϕ0
〉

= −
〈
ϕab

ij

∣∣ F̂N
R ̸=0

∣∣ϕ(0)〉
︸ ︷︷ ︸

=0 (excitation rank)

−
〈
ϕab

ij

∣∣ŴN |ϕ(0)〉︸ ︷︷ ︸
=⟨ab||ij⟩

.

(2.52)

On the left-hand side, ⟨0|F̂ |0⟩ and E(0) again cancel identically, and due to the restriction
on the excitation degree, the only surviving contraction is the one of the double excitations
with the Fockian, which provides two contributions. On the right-hand side, only the
R = +2 diagram of ŴN survives. The contributing contractions and their interpretation
are shown in Figure 2.4

One thus obtains

σ
ij(1)
ab = Kij

ab − Kij
ba +

∑
c

(
tij(1)
ac fbc − t

ij(1)
bc fac

)
+
∑

k

(
t
jk(1)
ab fik − t

ik(1)
ab fjk

) != 0 (2.53)

for the MP2 doubles residuum, in accordance with Ref. [105] and [45]. Eq. (2.53) is valid
for any set of orthonormal orbitals and simplifies to

tij
ab = Kij

ab − Kij
ba

εa + εb − εi − εj
(2.54)



20 2 Theory

x x

Figure 2.4: Diagrams which contribute to the doubles part of the first-order Møller-Plesset wavefunc-
tion correction.

x

x

Figure 2.5: Diagrams which contribute to the second-order energy correction of MP and RE.

if canonical orbitals are used, i.e if the Fockian is diagonal. This simplified expression is
however not applicable for localized orbitals or optimized orbitals, which also tends to
introduce off-diagonal elements in the Fockian.

The summed zeroth and first order energies are given by

E[0] = E(0) + E(1) =
〈
0
∣∣Ĥ(0)∣∣0〉+

〈
0
∣∣Ĥ(1)∣∣0〉 =

〈
0
∣∣Ĥ∣∣0〉 = Eref, (2.55)

but Eref drops out if normal-ordered operators are used, thus the first actual contribution
is the second-order energy correction

E(2) =
〈
Ψ(0)∣∣Ĥ(1)∣∣Ψ(1)〉. (2.56)

The only diagrams which contribute are those which leave no open lines when contracted
with the singles and doubles of the first-order wavefunction, respectively, as shown in
Figure 2.5. The (projective) second order energy correction thus amounts to

E(2) =
∑
i,a

fiati(1)
a + 1

4
∑
ijab

(
Kij

ab − Kij
ba

)
t
ij(1)
ab . (2.57)

As discussed above, the single excitations do not contribute to the correlation energy in
RHF and UHF cases, but they do in case the Brillouin theorem does not hold.

Regarding the computational cost, the MP1 single excitations scale as oO(v2), the
doubles scale as O(o2v3) for arbitrary orthonormal orbitals and as O(o2v2) for canonical
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PT energy denom
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FCIMP RE

SDE/TDE
TDE

SDE

TDE

SDE

overestimated

overestimated

underestimated

underestimated

Figure 2.6: Schematic representation of the relative alignment of perturbation-theoretical energy
denominators of MP and RE compared to back-calculated energy denominators of wave-
functions of (near-)FCI quality.

RHF/UHF orbitals. The correlation energy scales as O(o2v2). The most expensive part
is the integral transformation step which scales as O(on4). The computational cost of
the Møller-Plesset part is thus negligible compared to that of RE.

2.6 The REMP Hybrid Hamiltonian

REMP[50,76] consists of a constrained mixture of the unperturbed Hamiltonians of RE
(Eq. (2.31)) and MP (Eq. (2.42))

Ĥ
(0)
REMP = (1 − A)Ĥ(0)

RE + AĤ
(0)
MP. (2.58)

The mixing or scaling parameter A is the central parameter of the REMP and OO-REMP
methods. It determines the amount of Møller-Plesset-type perturbation theory in the
total unperturbed Hamiltonian.

The REMP ansatz is inspired by a thorough analysis of the amount of recovered correlation
energy by several perturbative wavefunction methods.[50,70,76] It was found that RE in
second order often recovers more than 100 % of the correlation energy provided by singlet-
coupled double excitations, while it recovers significantly less than 100 % of the correlation
energy of the triplet-coupled double excitations (see also Section 2.2).

MP in second order, on the other hand, recovers only ≈ 85–90 % of the SDE correlation
energy while it recovers more than 100 % of the TDE correlation energy. The assumption
leading to Eq. (2.58) is that a constrained mixture of both theories will lead to an internal
error compensation which gives rise to better energies and wavefunctions. The underlying
reason for this behavior can be found in the perturbation-theoretical energy denominators

∆Eab
ij = −

〈
Φ0
∣∣Ĥ∣∣Φab

ij

〉
cab

ij

(2.59)
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where

Φab
ij . . . doubly excited CSF (SDE or TDE) (2.60)

cab
ij . . . coefficient of this CSF in the wavefunction (2.61)

are vastly different for different perturbation theories. In the Møller-Plesset case, these
energy denominators are just made up from orbital energies and are therefore identical
for both the SDE and the TDE of a certain (i, j, a, b) tuple. In other cases such as RE,
energy denominators are not directly accessible but have to be back-calculated from the
wavefunction according to Eq. (2.59). The same relation is applicable for any wavefunction
method which provides CI coefficients, like truncated CI, FCI or coupled cluster. Figure 2.6
shows a schematic comparison of RE1 and MP1 wavefunction energy denominators to
FCI ones. It is evident that the energy denominators of a certain (i, j, a, b) tuple have to
differ for the respective SDE and TDE and that RE is already close to the true ratio but
overshooting. Hybridizing RE and MP interpolates between their energy denominators
and thus gives rise to better wavefunctions than each of the methods alone would achieve.

The mixing parameter A may now be tuned such that REMP in second order provides
better energies and wavefunctions than any of the parent methods. The restriction to
second order is not necessary but reasonable due to the already high computational cost
of the second-order RE energy. Going to higher orders is possible and has been shown to
be successful for the original RE approach.[37] However, the resulting methods would be
of limited practical use due to the steep computational scaling.

From a comparison of Eqs. (2.31) and (2.42), the action of the mixing may be interpreted
as an attenuation of the fluctuating potential in Ĥ(0). At the first-order wavefunction level,
the mixing parameter furthermore compensates for the effects of missing higher orders in
perturbation theory and especially for the effect of missing singles (in the closed-shell
case) and higher excitations. From the perspective of RE, the missing coupling between
different excitation ranks is mimicked, from the perspective of MP, also the missing
coupling within the latest added excitation rank(s) is mimicked.

The constraint on the unperturbed Hamiltonians ensures that the one-electron part is
present exactly once in Ĥ(0) which is mandatory for obtaining wavefunctions which obey
the Kato cusp conditions.[63,64,76] The perturbation is defined by

Ĥ(1) = Ĥ − Ĥ(0) (2.62)
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Insertion of Eq. (2.62) into Eq. (2.13) and using the definitions of Ĥ
(0)
RE and Ĥ

(0)
MP, one

finds for the residuum of the first-order REMP wavefunction

σ
i(1)
a,REMP =fia +

∑
b

fabt
i
b −

∑
k

tk
afki + (1 − A) ·

∑
kc

tk
c

(
Kik

ac − J ik
ac

) != 0 (2.63)

σ
ij(1)
ab,REMP =Kij

ab − Kij
ba +

∑
c

(
tij
acfbc − tij

bcfac
)

+
∑

k

(
tjk
abfik − tik

abfjk

)
+ (1 − A) ·

(∑
kl

Kij
klt

kl
ab +

∑
cd

Kab
cd tij

cd

+
∑
kc

(
tik
ac

(
Kkj

cb − Jkj
cb

)
− tjk

ac

(
Kki

cb − Jki
cb

)
− tik

bc

(
Kkj

ca − Jkj
ca

)
+ tjk

bc

(
Kki

ca − Jki
ca

)))
.

(2.64)

For closed-shell cases, Eq. (2.64) can further be simplified. The spin can be integrated out
and the efficiency of the resulting equations can be improved by the use of the so-called
generators of the unitary group instead of plain double excitations.[107]

The wavefunction is therefore expanded in terms of nonorthogonal CSFs∣∣Ψ〉 =
∣∣Φ0

〉
+
∑
ia

Ci
a

∣∣Ψi
a

〉
+
∑
i⩾i

∑
cd

Cij
ab

∣∣Ψij
ab

〉
(2.65)

where the singles and doubles CSFs are defined as

Ψa
i = ÊiaΦ0 = Φi

a + Φī
ā (2.66)

Ψab
ij = ÊjbÊiaΦ0 = Φab

ij + Φāb̄
īj̄ + Φab̄

ij̄ + Φāb
īj , i > j (2.67)

Ψab
ii = Φab

ii . (2.68)

Êia = â†
aâi + â†

āâī are spin-free excitation or replacement operators,[55] and Φi
a and Φab

ij

are plain Slater determinants. The CSFs of Eq. (2.66)–(2.68) are partially nonorthogonal〈
Ψab

ij

∣∣Ψab
ij

〉
= 2(2 − δab),

〈
Ψab

ij

∣∣Ψba
ij

〉
= 2(2δab − 1), i > j. (2.69)

For left-projection, “inverse” or contravariant CSFs are used

Ψ̃ab
ij = 1

6
(
Φab

ij + Φāb̄
īj̄ + 2Φāb

īj + 2Φab̄
ij̄ − Φab̄

īj − Φāb
ij̄

)
(i ̸= j) (2.70)

= 1
6(2ÊjbÊia + ÊjaÊib)Φ0 (2.71)

Ψ̃ab
ii = Φab

ii (i = j) (2.72)

Ψ̃a
i = 1

2
(
Φa

i + Φī
ā

)
= 1

2ÊiaΦ0. (2.73)

The contravariant CSFs are constructed according to ⟨Ψ̃I |ΨJ⟩ = δIJ , where I and J are
composite orbital indices.
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In detail, the generation of the contravariant CSFs works as follows

Ψ̃ab
ij = (2ÊjbÊia + ÊjaÊib)Φ0

= 2(b̂+ĵ + ˆ̄b+ˆ̄j)(â+î + ˆ̄a+ˆ̄i)Φ0 + (â+ĵ + ˆ̄a+ˆ̄j)(b̂+î + ˆ̄b+ˆ̄i)Φ0

= 2Φba
ji + 2Φb̄a

j̄i + 2Φbā
jī + 2Φb̄ā

j̄ī + Φab
ji + Φāb

j̄i + Φab̄
jī + Φāb̄

j̄ī

= 2Φab
ij + 2Φab̄

ij̄ + 2Φāb
īj + 2Φāb̄

īj̄ − Φab
ij − Φāb

ij̄ − Φab̄
īj − Φāb̄

īj̄

= Φab
ij + Φab̄

ij̄ + 2Φāb
īj + 2Φāb̄

īj̄ − Φāb
ij̄ − Φab̄

īj .

Collecting all necessary bits, the closed-shell REMP doubles residuum is almost identical
to the CEPA/0 residuum derived by Wennmohs and Neese[96]

σ
ij(1)
ab,REMP =Kij

ab +
{

FV Cij + CijFV
}

ab

−
∑

k

{FjkCik
ab + FikCkj

ab } +
∑
k,l

Kij
klC

kl
ab

+ (1 − A) ·
(

K(Cij)ab

+
∑

k

{(
2Cik − Cik+

)(
Kkj − 1

2Jkj
)

+
(

Kik − 1
2Jik

)(
2Ckj − Ckj+

)}
ab

−
∑

k

{1
2Cik+Jjk+ + 1

2JikCkj+ + JjkCik + CkjJik+
}

ab

)
(2.74)

σ
i(1)
a,REMP =F i

a +
{

FV Cj
}

a
−
∑

j

FijCj
a + (1 − A) ·

∑
j

{(
2Kij − Jij

)
Cj
}

a
(2.75)

with

Kpq
rs =(pr|qs) Kpq operator matrix element

Jpq
rs =(pq|rs) Jpq operator matrix element

K(Cij)ab =
∑
cd

(ac|bd)Cij
cd external exchange operator

F =h +
∑

i

(
2Jii − Kii

)
closed-shell Fock matrix[107]

FV virtual-virtual subblock of the Fock matrix
{. . .}ab matrix element (a, b) of the resulting matrix
{. . .}a vector element (a) of the resulting vector

⟨AB⟩ =
∑
p,q

ApqBqp = tr(AB) Trace of the product AB
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where Cij and Ci are now the doubles and singles amplitudes matrices in the basis of
the nonorthogonal CSFs.

The calculation of the external exchange operator can be accelerated for large molecules
by performing the contraction of amplitudes and integrals in the AO basis and by
forming K+/K− operators as proposed by Pulay et al.[107–109] The first step is a partial
transformation of the amplitudes/CI coefficients to the AO basis

Cij
AO = UCij

MOU+, (2.76)

where U is the subblock of the virtual MOs of the MO coefficient matrix, U(nbas × nvirt).

Compared to the formation of K(C) in the MO basis, one already obtains a reduction in
floating point operation (FLOP) count as the loops are now driven over integral batches
of AO basis integrals which tend to be sparse for large molecules. A further reduction
in FLOP count by a factor of two can be achieved by the formation of symmetric and
antisymmetric exchange operators:[57,108,110]

K(Cij)±
µλ = 1

4
∑
ν≥σ

[(µν|λσ) ± (µσ|λν)](Cij
νσ ± Cij

σν)(2 − δνσ), (2.77)

where K(C) is only formed for λ ≥ µ instead of the full matrix. Together with the
restriction on ν and σ, this results in a 50 % FLOP count saving.

The full exchange operator is then assembled via

K(Cij)µλ = 1
2(K(Cij)+

µλ + K(Cij)−
µλ) (2.78)

K(Cij)λµ = 1
2(K(Cij)+

µλ − K(Cij)−
µλ) (2.79)

The back-transformation to the MO basis is achieved via

K(Cij)MO = U+K(Cij)AOU. (2.80)

The developed program features both possibilities to form the external exchange operator
in the MO or the AO basis.

It is furthermore possible to extend the treatment of the external exchange in the AO basis
to also consider the effect of three-external exchange operators as they appear in CISD or
in the second-order REMP wavefunction.[107] The amplitude matrix is augmented with
the single excitations which are then also transformed to the AO basis. The contraction
with the AO basis integrals will yield the three- and four external exchange operators
in one step. The back-transformation to the MO basis now also has to include the
occupied MOs. The contribution of the singles to the doubles residuum is contained in
the virtual-virtual block while the contribution of the doubles to the singles is contained
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in the occupied-virtual block. Care has to be taken, as the occupied-virtual blocks will
also contain contributions from the singles via two-external exchange operators. These
have to be subtracted in an n5 step before the occupied-virtual blocks can be used to
calculate the doubles contribution to the singles residuum via three-external exchange
operators. As neither the first-order restricted or unrestricted REMP nor the first-order
OO-REMP wavefunction do contain single excitations, this will not be discussed in detail,
here. The first-order restricted open shell REMP wavefunction contains singles but these
do not require three-external exchange operators.

For calculating the correlation energy, the amplitudes are transformed from the nonorthog-
onal CSF to the contravariant basis

C̃ij
ab = 1

1 + δij

(
4Cij

ab − 2Cij
ba

)
(2.81)

C̃ii
ab = Cii

ab (2.82)
C̃i

a = 2Ci
a. (2.83)

The correlation energy is then given as

EC =
∑
i⩾j

∑
a,b

Kij
abC̃

ij
ab +

∑
i,a

FiaC̃i
a (2.84)

The idea to mix different unperturbed Hamiltonians is not completely new and was for
example also examined by Angeli et al. for a mixed MP-EN Hamiltonian for multireference
perturbation theory.[111] Although the intruder state problem of MR-MP is largely
removed, the latter development did not receive much attention as the EN Hamiltonian
is lacking size consistency and size extensivity, which is inherited by the mixed method.

2.7 The Orbital-optimized REMP (OO-REMP) Ansatz

By comparison of the OO-MP2[44,112] and the OCEPA[46] energy functional, the following
variational energy functional for OO-REMP is derived:

ẼREMP =
〈
0
∣∣Ĥ∣∣0〉+

〈
0
∣∣{ŴNT̂2}c

∣∣0〉+
〈
0
∣∣{Λ̂2(ŴN + (f̂N + (1 − A)ŴN)T̂2)c}c

∣∣0〉 (2.85)
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with

ŴN . . . two-electron operator in normal order
f̂N . . . effective one-electron operator (Fockian) in normal order
Λ̂2 . . . double deexcitation operator, response amplitude, where

Λ̂2 = 1
4
∑
ijab

λab
ij î†ĵ†b̂â

A . . . REMP mixing parameter
c . . . contracted, i.e. only fully contracted diagrams are considered

for ensuring size consistency

Furthermore, for parameterizing the orbital change, it is useful to introduce an exponential
unitary orbital rotation operator U = eK̂ which is parameterized by orbital rotation
parameters κpq

[113]

K̂ =
∑
pq

Kpqp̂†q̂ =
∑
p>q

κpq(p̂†q̂ − q̂†p̂), (2.86)

and essentially consists of single orbital replacement operators. By virtue of the Thouless
theorem,[56,114] any Slater determinant in a given Fock space can be obtained by a linear
combination of single orbital replacement operators from any other Slater determinant.

eK̂ is a unitary matrix by enforcing κ to be anti-hermitian,[17] i.e. κ∗
qp = −κpq. As the

orbitals are restricted to stay real in this work and as all orbitals are correlated, there are
no occupied-occupied or virtual-virtual rotations. i.e. all κpq are real, κij and κab are zero
and κ is traceless. In practice, U is expanded in the Maclaurin series of the exponential
function, which is truncated after the quadratic or cubic term and U is enforced to be
unitary by orthogonalization.

Using the orbital rotation operator, is is possible to express orbitals and operators in a
rotated MO basis in terms of unrotated counterparts and rotation parameters[46]

|p̃⟩ = eK̂ |p⟩ (2.87)
ˆ̃p† = eK̂ p̂†e−K̂ (2.88)
ˆ̃p = eK̂ p̂e−K̂ (2.89)

Ĥκ = e−K̂ĤeK̂ (2.90)

Ĥκ
N = e−K̂ĤNeK̂ (2.91)

f̂κ
N = e−K̂ f̂NeK̂ (2.92)

Ŵ κ
N = e−K̂ŴNeK̂ . (2.93)
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With the help of rotated operators, the REMP energy functional can be expressed as
function of the orbital rotation parameters:

Ẽ
(2)
REMP(κ) =

〈
0
∣∣Ĥκ

∣∣0〉+
〈
0
∣∣{Ŵ κ

NT̂2}c

∣∣0〉+
〈
0
∣∣{Λ̂2(Ŵ κ

N + (f̂κ
N + (1 − A)Ŵ κ

N)T̂2)c}c

∣∣0〉
(2.94)

For obtaining a variational energy, the REMP energy functional Eq. (2.85) is made
stationary with respect to both the regular tij

ab amplitudes as well as the λab
ij amplitudes

and the orbital rotation parameters κpq

∂Ẽ
(2)
REMP(κ)
∂tij

ab

= 0 (2.95)

∂Ẽ
(2)
REMP(κ)
∂λab

ij

= 0 (2.96)

∂Ẽ
(2)
REMP(κ)
∂κpq

∣∣∣∣∣
κpq=0

= 0 (2.97)

by finding solutions which simultaneously fulfill Eqs. (2.95), (2.96) and (2.97).

Eq. (2.94) can be considered as a constrained minimization problem where the energy is
minimized under the constraint that the t amplitude equations are still satisfied. The λ
amplitudes serve as Lagrangian multipliers while the rest of the third term corresponds
to the first-order wavefunction residuum.

It is furthermore possible to write the total energy in terms of integrals and density
matrices[46,113]

E =
∑
pq

γpqhpq +
∑
pqrs

Γpqrs⟨pq||rs⟩, (2.98)

which can be straightforwardly deduced from the second quantization Hamiltonian. γpq

and Γpqrs are reduced one- and two-particle density matrices (OPDMs and TPDMs). As
long as real orbitals are used, the following symmetry properties for the density matrices
hold:

γpq = γqp (2.99)
Γrspq = Γsrqp = −Γrsqp = −Γsrpq (2.100)

=Γpqrs = Γqpsr = −Γqprs = −Γpqsr (2.101)
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Figure 2.7: Diagrams representing the correlation contribution to the one-particle density matrix
(OPDM). Left-hand side: γij , right-hand-side: γab.

Density matrices can again be formulated in a normal-ordered fashion which establishes
the connection to a diagrammatic construction. Application of the Wick theorem yields[56]

γpq = (γN)pq︸ ︷︷ ︸
γcorr

+ δipδjq︸ ︷︷ ︸
γref

pq

(2.102)

Γrspq = (ΓN)rspq︸ ︷︷ ︸
Γcorr

rspq

+ δpiδri(γN)sq + δqiδsi(γN)rp − δpiδsi(γN)rq − δqiδri(γN)sp︸ ︷︷ ︸
Γsep

rspq

+ δpiδriδqjδsj − δpiδsiδqjδrj︸ ︷︷ ︸
Γref

rspq

(2.103)

The latter arises from the application of the Wick theorem, namely that a string of
creation and annihilation operators (which the density essentially is) can be represented
by its normal product form and all possible contractions.

From a comparison of Eqs. (2.94) and (2.98), and using the decomposition of the density
matrices into reference, separable and correlation contributions, expressions for the REMP
density matrices can be derived. In fact, the raw density matrices are identical to the
OCEPA density matrices,[46] but when orbital gradients are formed, certain two-particle
densities are multiplied by 1 − A.

A graphical/diagrammatic derivation of the correlation part of the OPDMs and TPDMs
is given in Figure 2.7 and 2.8. The OPDM diagrams have two open lines for contraction
with hpq while the TPDM diagrams have four open lines for contraction with ⟨pq||rs⟩.

The diagrammatic interpretation of the densities can be accomplished by inserting an
auxiliary vertex consisting e.g. of a hatched doublebar and connecting the open lines
with this vertex.[56] The labels of the densities are then

γin|out (2.104)
Γleft in|right in|left out|right out (2.105)
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Figure 2.8: Diagrams representing the correlation contribution to the two-particle density matrix
(TPDM). Upper left: Γijab, upper right: Γiajb, lower left: Γabcd, lower right: Γijkl.

The interpretation of the diagrams in Figure 2.7 yields

γcorr
ij = −1

2
∑
kcd

λcd
kit

kj
cd (2.106)

γcorr
ab = 1

2
∑
klc

λcb
lktlk

ca = 1
2
∑
klc

λbc
klt

kl
ac (2.107)

With no single excitations and no orbital relaxation contributions (z vector / orbital
response equations[115–118]), there are no γia and γai contributions.[46,112]

The diagrams in Figure 2.8 yield the following nonzero TPDMs:

Gijkl = 1
2
∑
cd

λcd
ij tkl

cd (2.108)

Gabcd = 1
2
∑
kl

λcd
kl t

kl
ab (2.109)

Giabj =
∑
kc

λcb
kit

kj
ca = −Giajb (2.110)

Gijab = λij
ab (2.111)

The factor of 1
4 originating from unrestricted summation over two-electron integrals still

needs to be included somehow for use with Eq. (2.98). Bozkaya et al.[46] decided to absorb
the additional factor 1

4 into the definition of the two-particle density matrices. This factor
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does not emerge from the diagrammatic construction of the density matrices. The final
expressions for the OPDMs and TPDMs then become

γpq = γref
pq + γcorr

pq (2.112)

where

γref
pq = δocc

pq (2.113)

γcorr
ij = −1

2

occ∑
m

virt∑
ef

tim
ef λef

jm (2.114)

γcorr
ab = 1

2

occ∑
mn

virt∑
e

tmn
be λae

mn (2.115)

Γpqrs = Γref
pqrs + Γsep

pqrs + Γcorr
pqrs (2.116)

where

Γref
pqrs = 1

4(δocc
pr δocc

qs − δocc
ps δocc

qr ) (2.117)

Γsep
pqrs = 1

4(δocc
pr γqs + δocc

qs γpr − δocc
qr γps − δocc

ps γqr) (2.118)

Γcorr
ijkl = 1

8
∑
cd

λcd
kl t

ij
cd (2.119)

Γcorr
ijab = 1

4 tij
ab (2.120)

Γcorr
iajb = −1

4
∑
kc

λac
jktik

bc (2.121)

Γcorr
abcd = 1

8
∑
kl

λcd
kl t

kl
ab (2.122)

An important aspect of Hermitian methods like MP2 and CEPA(0) is that the t amplitudes
directly solve the λ amplitude equations, i.e. that[46,118]

Λ̂2 = T̂ †
2 (2.123)

and thus[119–121] (see also Eq. (6.4))

λab
ij = tij∗

ab . (2.124)

Therefore, it is not necessary to explicitly solve the lambda equations resulting from
Eq. (2.95), instead, the λ amplitudes may be substituted by the t amplitudes in all density
matrices.
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The orbital gradient wpq is obtained from the asymmetry of the generalized Fock matrix
Fpq

wpq = Fpq − Fqp (2.125)

where

Fpq =
∑

r

hprγrq + 2
∑
rst

⟨rs||tp⟩Γrstq (2.126)

The orbital gradient of the nth iteration will furthermore be labeled wn.

From the orbital gradient wn, a set of orbital rotation parameters κn
pq is obtained as

damped (diagonal hessian) step in the opposite direction of the orbital gradient5

κn
pq = −

wn
pq

2(fn
aa − fn

ii)
, (2.127)

where fn
aa and fn

ii are diagonal elements of the MO basis Fockian of the nth orbital
iteration.

From the orbital rotation parameters κn
pq, the orbital rotation matrix Kn is constructed

as

K = skew(κ) (2.128)

Kpq =


κpq p > q

−κpq p < q

0 p = q

(2.129)

The orbitals of iteration n, Cn, are obtained by subsequently applying the orbital rotations
of all n iterations to the initial orbitals C0

Cn = C0eK1eK2 . . . eKn (2.130)

In practice, the orbital rotations eKn of each iteration are summed up to a total orbital
rotation eK̄n , and the new orbitals are obtained by applying this total orbital rotation to
the initial set of orbitals

κ̄n =
n∑

i=1
κi (2.131)

K̄n = skew(κ̄n) (2.132)

Cn = C0eK̄n . (2.133)
5reminder: the gradient points in the direction of the steepest ascend, thus the step has to follow the

opposite direction.
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The reason is that only then a DIIS extrapolation for the orbital rotation can be applied.
DIIS in theory needs a common basis for the different vectors of the quantity to be
extrapolated. This common basis is given by the initial set of orbitals6.

The matrix exponentials of the orbital rotations are obtained by applying the Taylor
series of the exponential function and terminating the series after the second-order term

U = eK̄n =
∞∑

i=0

(K̄n)i

i! = 1 + K̄n + 1
2(K̄n)2 + . . . (2.134)

The unitary matrix U is subsequently orthonormalized using a modified Gram-Schmidt
procedure[122] to remove any residual nonorthogonality by numerical noise. Without this
step, the MOs would soon lose their orthogonality, resulting in instability and a runaway
of the energy. It was furthermore tested whether it is beneficial to go beyond the quadratic
term in Eq. (2.134), but no noticeable difference in convergence behavior was observed.

It should be stressed again that OO-REMP is a variational method, i.e. that the energy is
minimized with respect to all variational parameters (orbital coefficients and amplitudes).
The mixing parameter itself is not a variational parameter but belongs to the Hamiltonian.
In the current formulation, OO-REMP is still subject to the constraint that the orbitals
and the amplitudes are real.

2.7.1 Perturbative singles

During the orbital-optimization procedure, single excitations are excluded completely.
This choice has been made by other authors, too,[39,42,43,46] e.g. in the case of OCEPA,
OO-MP2 or OCCD, as the single excitations compete with the orbital rotation parameters,
essentially acting as orbital rotations. Formally, the singles equations are not fulfilled by
setting the single excitations to zero as the Fockian will contain non-zero elements in the
virtual-occupied block as soon as occupied-virtual unitary transformations to the orbitals
are applied. In other words, as soon as the orbitals are optimized, the Brillouin theorem
is not fulfilled anymore. After convergence of the orbital iterations, it seems desirable
to estimate the effect of the discarded single excitations. A singles correction to the
correlation energy can be obtained by solving the REMP singles equations Eq. (2.63) with
the converged optimized orbitals and operators calculated therefrom. Such an optional
singles correction has also been implemented and was assessed for several benchmark sets
(see Section 3.2). However, it turned out that such a singles correction is not beneficial
and should not be applied. This aspect has already been discussed by Neese et al. in the
context of OO-MP2[43] where it was found that the result do not benefit from a posteriori
singles. Nevertheless, it was necessary to also show this for REMP and not to just assume
that OO-MP2 results are transferable to OO-REMP.

6In practice, one often observes deviations from this rule. A combined extrapolation for orbitals and
amplitudes necessarily uses a different basis for the amplitudes in each iteration (the current MOs),
but in practice, no severe problems were observed.
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This is in contrast to the Brueckner Coupled cluster method[123–126] (B-CCD or BD)
where the orbitals are optimized such that the coupled cluster singles amplitudes vanish
exactly on convergence.

2.8 Analytical Gradients for OO-REMP

Analytical gradients for OO-REMP were implemented in PSI4 as extension of the OCC
and the DFOCC module. The analytical gradient engine of PSI4 needs the relaxed
one-particle density, the relaxed two-particle density, and the generalized Fock matrix.[46]

With these quantities at hand, the engine calculates the gradient integrals, namely the
derivatives of hpq, ⟨pq||rs⟩ and the derivative of the overlap matrix for the nuclear positions.
The densities and the generalized Fock matrix are transformed to the AO basis and
contracted with the respective integral derivatives to yield the electronic contribution to
the nuclear gradient:

dE

dx
=
∑
µν

γµνhx
µν +

∑
µνλσ

Γµνλσ⟨µν||λσ⟩x −
∑
µν

FµνSx
µν (2.135)

As all quantities except the derivative integrals are available after an OO-REMP calcula-
tion, the calculation of gradients is cheap compared to the initial OO-REMP calculation.
The transformation of γµν and Fµν scales as O(N3), the transformation of Γµνλσ scales
as O(N5) analogous to the ERIs, but can be done in batches. The calculation of the
derivative integrals scales at most as O(N4) and is thus also negligible compared to the
preceding calculation7.

2.9 Comparison to Other Parameterized Wavefunction Methods

There is a number of methods which are conceptually similar to the REMP approach.
Hence it seems instructive to highlight the similarities and differences as well as the
accuracy which can be achieved by these methods.

2.9.1 Variants of CEPA

The coupled electron pair approximation (CEPA, in former days also know as self-
consistent electron pairs (SCEP) approximation) dates back to Kelly[127,128] and Meyer.[94,129–132]

Originally, it was derived as an approximation to Čížeks coupled cluster method[93,133]

(at that time called coupled-pair many-electron theory, CP-MET). CEPA(0), also called
7One might think that the ERI derivatives scale as O(N4 · nnuc), but this is a worst-case estimate. In

the AO basis, the additional prefactor is limited to the three Cartesian directions and the four nuclei
involved in the ERI.
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LCCD or L-CP-MET, can actually be rationalized by linearizing terms in the CCSD
residuum.[96] Principally, all CEPA methods were derived by introducing approximations
to the CCSD approach with more or less hand-waving arguments. Koch and Kutzelnigg[134]

later added CEPA(4) and CEPA(5) to the already existing set of CEPA(0)-CEPA(3).
Pulay and Sæbø later added a variational version of CEPA.[135] ACPF,[136] AQCC[137]

and other coupled-pair functionals belong also to this family of methods. Owing to the
fact that many of them are not unitary invariant, the availability of efficient coupled
cluster codes, and with the advent of density functional theory in the late 80ies, the
CEPA methods fell into oblivion.
It was only in 2008 that Wennmohs and Neese[96] published efficient working equations
and energy shifts for a large number of old and new coupled-pair type methods. Koll-
mar, Heßelmann and Neese[138–140] also worked out variational and unitary invariant
alternatives to the classical CEPA methods.

The “classical” coupled-pair type methods are typically not parameterized with empirical
scaling factors but by introducing rational factors, pair energies or by manipulating
the denominator of an energy functional with e.g. shifts that depend on the number of
correlated electrons.[96]

2.9.2 pCCSD

Parameterized Coupled Cluster with singles and doubles (pCCSD) was devised by Nooijen
and coworkers.[103,141,142] The idea is to apply scaling factors to terms arising from
diagrams that describe disconnected triple and quadruple excitations. The parameters
can be determined such that the method is exact for two-electron cases. With only two
electrons, certain diagrams have to cancel exactly, which is achieved by restricting the
parameter space. The property of being rigorously exact for two-electron systems is
what makes pCCSD different from REMP. As shown in Section 3.1, the latter is only
approximately exact. A further direct comparison between REMP and pCCSD is not
appropriate, as pCCSD is built upon the exponential CC ansatz, while REMP originates
from a CI-type ansatz. The terms that are scaled in pCCSD originate from T̂1T̂2 and
T̂ 2

2 . Such terms are not present in the first order REMP wavefunction, instead, they are
implicitly taken care of by virtue of the mixing parameter A. In higher orders, they would
enter as connected triples and quadruples. It is therefore also not obvious how to directly
relate the parameters of the pCCSD ansatz to the REMP mixing parameter. In terms of
accuracy, it has been shown[50] that canonical REMP performs similar to the variants
pCCSD/1a and pCCSD/1b. No OO-REMP calculations were performed for this set.

2.9.3 PCPF-MI

The parameterized Coupled pair functional PCPF-MI[143] is a generalization of ACPF[136]

and AQCC.[137] It introduces three parameters that modify the energy shifts of the
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coupled-pair functional. The three parameters act separately on the same-spin doubles,
the opposite spin doubles and the singles. The set of parameters was specifically optimized
with regard to noncovalent interactions and indeed provides quite impressive results,
surpassing several CEPA variants, ACPF, AQCC and CCSD. Unfortunately, there were
never any results apart from noncovalent interactions, hence the general applicability
remains questionable.

2.9.4 CCD0

CCD0[144,145] and CCSD0 (Singlet-paired coupled cluster) are approximation to CCD
and CCSD which entirely eliminate the TDEs from the doubles excitations manifold.
They are hence still exact in the two-electron case. It is furthermore claimed that these
methods are much more robust when multireference cases are encountered and that they
are able to describe bond dissociation when full CCSD fails. The loose connections to the
REMP ansatz are that these are also methods that include at most double excitations
and that the different behaviour of the two doubles singlet CSFs are exploited.

2.9.5 Feenberg Scaling

Feenberg scaling[146–148] departs from a partitioning of Ĥ in Ĥ(0) and Ĥ(1), but then
introduces an additional repartitioning parameter µ

Ĥ(0)′ = 1
µ

Ĥ(0) (2.136)

Ĥ(1)′ = Ĥ(1) + µ − 1
µ

Ĥ(0). (2.137)

The repartitioning parameter µ is now determined such that the third order perturbative
energy correction becomes zero. An important variant of Feenberg scaling is OPT-PT
proposed by Szabados and Surján[98,99] where individual Feenberg parameters were
introduced for every excited configuration. Upon optimization of these parameters, this
approach is identical to RE2 or RE3 as well as to CEPA(0)/D.
As the third order energy correction of RE is already zero with an RHF reference,[37,75]

RE can be regarded as optimal in this sense. There is also a connection between spin-
component scaled methods and Feenberg scaling.[65,81] A relation to REMP can be
seen in the necessity of one scaling or mixing parameter which moves parts of the total
Hamiltonian between Ĥ(0) and Ĥ(1).

2.9.6 OMP2.X

The MP2.X and OMP2.X methods[149] are hybrids between MP2(OO-MP2) and MP3(OO-
MP3). It was recognized that MP2 tends to overestimate noncovalent interaction energies
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while MP3 tends to underestimate them.[150] In the spirit of the current work, it was
investigated whether some hybrid will lead to better noncovalent interaction energies
with the result that systematically better results are obtained when only 50 % of the
third order MP energy correction are used (MP2.5)[151] or a basis-dependent MP3 frac-
tion (MP2.X).[152] The same reasoning was used by Bozkaya and Sherrill to design the
OMP2.5 method which works by iteratively optimizing the MP2.5 energy functional.[153]

While MP2.5 often only modestly improves upon MP2, there was always a substantial
improvement found by optimizing the reference determinant. Quite like in the case of RE
and MP, it was also found that OMP2.5 consistently improves upon its parent methods
OMP2 and OMP3, not only for noncovalent interactions but also for structures and
general thermochemistry.[154,155] The obvious connection to REMP and OO-REMP is
the mixing parameter and the large impact of orbital optimization.

2.9.7 κ-OMP2

The already good results of OO-MP2 can be further improved by introducing an additional
regularization of the MP2 energy denominators[156–159]

E(κ)κ-MP2 = −1
4
∑
ijab

|⟨ij|ab⟩|2

∆ab
ij

(1 − e−κ∆ab
ij )2 (2.138)

where ∆ij
ab is the MP energy denominator and κ is an empirical regularization parameter.

The regularization is parameterized and orbital-energy dependent, and mainly has the
effect of increasing too small MP energy denominators. Quite like REMP, it is an approach
to cure the problem of inappropriate energy denominators.
The regularized ansatz was additionally combined with orbital optimization and the
idea underlying MP2.5, in that a variable portion of the MP3 energy is added to the
κ-OOMP2 energy, leading to MP2.8:κ-OOMP2. This leads to impressive results[160] at
the cost of two empirical parameters and a computational scaling of n6 owing to the
MP3 part. Unfortunately, the available literature presents no evidence that the method
is size-consistent and unitary invariant. Owing to the nonvariational nature of the scaled
MP3 contribution, the implementation and calculation of analytic gradients is more
involved than for variational methods like OO-REMP. In addition, recent investigations
have shown that the originally promoted value for the regularization parameter was too
large, especially if transition metals are involved, and that presumably a globally optimal
value does not exist.[161]

2.9.8 Other O(n5) and O(n6) methods

There exists a number of methods with a computational scaling of O(n5) or (n6) which
try to improve upon MP2 or CCSD at no additional cost.
OS-CCSD-SPT(2)[162] adds a second-order correction to OS-CCSD that can be determined
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from the first-order wavefunction of a similarity-transformed Hamiltonian. It was shown
to significantly improve upon CCSD but is clearly still inferior to CCSD(T). It was also
shown that the use of PBE0 orbitals provides better results than HF orbitals, showing
that the method is strongly dependent on a proper reference wavefunction.

Spin-ratio scaled MP2[163] (SRS-MP2) is another methods primarily aimed at the calcu-
lation of noncovalent interactions energies. It works by rescaling the correlation energy
contribution of same-spin and opposite-spin pairs to the interaction energy with separate
factors. The method has the drawbacks that it is only applicable to complexes, that the
scaling coefficients are basis set dependent and that the results deteriorate towards the
CBS limit. There are furthermore different scaling factors required depending on the
character of the dominating interaction.

Correlation energies can furthermore be calculated from the random phase approximation[164–167]

(RPA). There exists a number of ways to derive the RPA correlation energy expression,[168]

but from a technical point of view, it can be regarded as an approximation to Coupled
Cluster Doubles[169] (CCD). As such, it is not exact for two-electron cases. In recent
years, RPA has gained some popularity in replacing MP2 correlation in double hybrid
functionals.[170,171] With no further approximations, the RPA correlation energy scales
as O(n6),[172] but this can be brought down to O(n5) for the integral transformation
and O(n4) for the iterations just like MP2, and further savings are possible by local
approximations.[173]
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The REMP and OO-REMP working equations were implemented in the wavels suite of
programs[174–181] as well as in the open source quantum chemistry program PSI4.[182–184]

Both implementations also contain the necessary code for calculating electric multi-
pole moments. The implementation in PSI4 furthermore is able to calculate analytical
structural gradients for OO-REMP and numerical gradients for both REMP and OO-
REMP. While the implementation in wavels only uses unapproximated, conventional
two-electron integrals, the PSI4 implementation also features the resolution of identity
approximation.[185–189] Two-electron integrals can be reconstructed either from three-
center integrals employing a conventional auxiliary basis[49,120,183,184,190–199] set or from
Cholesky factors obtained from an incomplete Cholesky decomposition[200–203] of the
exact two-electron integral tensor.[121,155,204,205] The implementations in wavels and PSI4
are both parallelized with the OpenMP[206] shared memory parallelization. Optimized
level-2 and level-3 BLAS routines are used for matrix-vector and matrix-matrix opera-
tions whenever possible. Both programs can be linked against any BLAS library that
support the standard set of operations[207,208] and both the Intel® MKL[209] and the
OpenBLAS[210] library were successfully used with both programs.

3.1 Recovered Correlation Energies

In previous assessments of the REMP[50,76] and S2REMP[211] methods, the primary
measure for the quality of the method originated from a direct comparison of the wave-
functions in terms of the CI coefficients to high-quality coupled cluster wavefunctions.
Only as secondary measures, the amount of recovered correlation energy or reaction
energy benchmarks were considered. The employed methodology relies on the MO co-
efficients to be exactly the same in all calculations, which is of course not the case
anymore in orbital-optimized calculations. The direct comparison of wavefunctions of
orbital-optimized and canonical calculations would require a tedious transformation to a
common basis. Orbital-optimized methods alter the reference orbitals beyond unitary
transformations of only the occupied-occupied or virtual-virtual block. The energy of the
reference determinant subsequently also changes, and while the total energy is minimized
variationally, the energy of the reference determinant increases, meaning that part of the
previous Hartree-Fock energy is now recovered as correlation energy.
The comparison of one- and two-particle densities – derived from the respective wave-
functions – in the AO basis is another possibility, but, first, one can then equally well
compare properties calculated from these densities, and, second, due to the still missing
REMP z-vector equations, there is no access to relaxed canonical REMP densities.
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The only quantity which is thus available for canonical REMP, OO-REMP, and near-full
CI wavefunctions is the correlation energy, which is defined as the total energy minus the
energy of the corresponding SCF (RHF or UHF) calculation. A further breakdown into
spin-components or CSF contributions is not easily possible anymore as soon as orbital
optimization is active. It is of course possible to calculate the contributions of such terms,
but it is not reasonable, because as soon as the orbitals are optimized iteratively, a part
of the reference energy is “transferred” to the correlation energy, and it is impossible
to determine how much of each calculated energy is actually correlation and how much
should be subtracted as “stolen” reference energy. Furthermore, a direct comparison to
higher level wavefunction methods would require programs which are able to use orbitals
which do not satisfy the Brillouin theorem. It is unclear to which extent mrcc is capable
of doing so but usually, the validity of the Brillouin theorem is assumed to keep the
code simple and efficient. As there is still no implementation of OO-REMP based on
exact two-electron integrals which can make use of frozen core orbitals, also the reference
near-Full CI calculations have to be performed with all electrons correlated which causes
a very rapid increase of the computational cost with system size.

All REMP and OO-REMP calculations were performed using a development version of
the wavels suite of programs while CCSD, CCSD(T), CCSDT and CCSDTQ calculations
were done using mrcc version 2022-03-18.[77,78,212,213] All calculations were converged to
better than 1·10−10 both in energy and residuum for obtaining results that are free
from numerical noise. Hartree-Fock (SCF) and canonical MP2 energies were compared
between wavels and mrcc and verified to coincide reasonably.

The most simple yet relevant test systems are those with only two electrons. With only
two electrons, Full CI is trivially accessible via CISD of CCSD. It is also highly desirable
that a method relying on (single and) double excitations is at least (nearly) exact for
two-electron systems. For testing this property, a set consisting of H−, H2, H+

3 , and the He
atom was compiled (the Li+ cation and other Helium-like cations were not considered as
they are already too different from the other examples and require special core-polarized
basis sets).

The average recovered correlation energy in comparison to Full CI is drawn in Figure 3.1,
and the mixing ratios leading to results closest to 100 % correlation energy are listed
in Table 3.1. Due to the small number of entries in all sets of this section, no tests for
normal distribution or outliers were performed. In the analysis, no truncated CI methods
were included as they are known to lack size consistency.

One finds that for these simple two-electron systems, RE2 and OO-RE2 mostly overesti-
mate the true correlation energy, while MP2 and OO-MP2 drastically underestimate it.
Figure 3.1 thus clearly recovers one of the working hypotheses of the REMP approach,
namely that RE2 overestimates the contribution by singlet-coupled pairs while MP2
underestimates it (in closed-shell two-electron systems, there is only one singlet pair).
This trend carries over to the orbital-optimized variant. Generally, OO-REMP recovers
slightly more correlation energy than canonical REMP, in line with the variational nature
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Table 3.1: Møller-Plesset fractions A in percent where the amount of recovered correlation energy of
the two-electron systems H−, H2, H+

3 and He approaches 100 %. Taken from Figure 3.1
and visually estimated to 0.5 %.

basis set REMP OO-REMP

cc-pVDZ 2.5 4.0
cc-pVTZ 4.0 5.5
cc-pVQZ 5.0 6.0

aug-cc-pVTZ 6.0 8.0
aug-cc-pVQZ 6.0 8.0

of the method. The graphs in Figure 3.1 are cut at A = 0.30 for the sake of clarity, as
the amount of recovered correlation energy decreases to ≈80 % for A = 1.0 in all cases.
This is no new result for canonical REMP[76,211] while for OO-REMP no such analysis
has been performed so far. Quite interestingly, one finds similar trends with REMP and
OO-REMP. The optimal mixing ratio is slightly basis set dependent, it increases with
increasing basis set size and converges to Aopt ≈ 0.06. OO-REMP consistently requires
larger MP fractions and converges to Aopt ≈ 0.08. This finding is qualitatively in line with
the results of closed-shell thermochemistry benchmarks[51] (Aopt ≈ 0.15 for REMP vs.
Aopt ≈ 0.20 for OO-REMP), although the actual optimal values are distinctly different.
Quite interestingly, one finds that OO-REMP is – apart of the cc-pVDZ basis set – not
more precise than canonical REMP. In contrast, with increasing basis set size the mixing
ratio with the smallest standard deviation moves away from the mixture which recovers
100 % correlation energy. and also moves outside a region of 1 % correlation energy error.
This behavior is especially prominent for the augmented basis sets. It should also be
noted that the H− is rather peculiar in the sense that it is not bound at all at the SCF
level and that at the FCI level it is also only bound with the cc-pVQZ, aug-cc-pVTZ and
aug-cc-pVQZ basis, i.e. with sufficiently diffuse basis sets.
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Figure 3.1: Graphical representation of the recovered correlation energy for four two-electron systems
(H−, H2, H+

3 , He). Error bars indicate one standard deviation, green vertical bars indicate
the mixing ratio at which roughly 100 % of the FCI correlation energy is recovered. The
hatched area spans the region of (100±1) % correlation energy. Perturbative correlation
energies correspond to second order in energy.
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The amount of recovered correlation energy was further tested with a set of small main-
group compounds, consisting of both closed- and open-shell systems. The set features the
two pseudo-two-electron cases Li2 and the Be atom where the behavior for two-electron
cases is recovered.

Table 3.2: Møller-Plesset fractions A in percent where the amount of recovered correlation energy
approaches 100 %. Taken from Figure 3.2 and visually estimated to 0.5 %.

basis set REMP OO-REMP

cc-pVDZ 6.0 7.5
cc-pVTZ 4.0 5.5
cc-pVQZ 2.0 4.5

aug-cc-pVTZ 2.0 4.0
aug-cc-pVQZ 1.0 3.5

From the assessment of many-electron systems, quite different conclusions can be drawn
than from two-electron systems. Figure 3.2 and Table 3.2 in comparison to Figure 3.1 and
Table 3.1 show that the behavior with respect to basis size increase is partially reversed.
With increasing basis set size, the A value which leads to 100 % recovery of Ecorr now
decreases for both REMP and OO-REMP. The behavior that OO-REMP tends to require
larger A values than REMP with fixed basis size is however preserved. Figure 3.2 also
shows the amount of correlation energy recovered by CCSD, CCSD(T) and CCSDT.

Table 3.3 lists the average recovered correlation energy for ten small molecules. With
respect to the basis set size, one finds the same key results as before:[76]

• Increasing the basis set size leads to a sharp increase of the correlation energy
recovered by MP2. This is more pronounced when the cardinal number is increased
but also noticeable when the basis set is augmented with diffuse functions.

• RE2 on the other hand experiences a decrease of the recovered correlation energy,
also both with increase of the basis cardinal number and the augmentation.

• Orbital optimization always leads to an average increase of the recovered correlation
energy compared to the canonical methods, but the gain is always clearly below
1 %. At the same time, the uncertainty of the recovered correlation energy almost
always increases.

• The key finding underlying the REMP concept – namely that RE overestimates the
correlation energy and that MP2 underestimates it – persists also if core correlation
is considered.

• For this set of molecules, the series CCSD→CCSDT→CCSDTQ converges strictly
monotonic from above regarding the correlation energy. As the underlying distribu-
tion is one-sided capped, it might not be completely justified to use the standard
deviation as measure for the uncertainty.
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• CCSD becomes worse with increasing basis set size. The recovered correlation energy
drops from more than 99 % to 98 % when going from cc-pVDZ to aug-cc-pVQZ. At
the same time, the uncertainty increases.

• The REMP mixtures which lead to minimal standard deviation are almost equal
both with and without orbital optimization. In case they are not exactly equal, the
orbital-optimized variant demands slightly larger MP fractions. As with the parent
methods, the orbital-optimized variants recover slightly more correlation energy
than the canonical ones. In contrast to the parent methods, the minimal standard
deviations achieved with OO-REMP are always smaller than those obtained with
REMP.

• CCSD(T) always delivers excellent results, recovering 99.9 % of the CCSDTQ
correlation energy with uncertainties of mostly less than 0.1 %.

• CCSDT is only slightly superior to CCSD(T). For all basis sets, it recovers at least
0.03 % more correlation energy than CCSD(T) with similar errors.

• Although the results are not fully converged, meaningful results can be obtained
from the cc-pVTZ and especially the aug-cc-pVTZ basis set.
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Figure 3.2: Graphical representation of the recovered correlation energy for ten many-electron systems
(OH, OH−, Ne, BeH2, Be, HF, F−, F, LiH, Li2). Error bars indicate one standard deviation,
green vertical bars indicate the mixing ratio at which roughly 100 % of the CCSDTQ
correlation energy is recovered. The hatched area spans the region of (100±1) % correlation
energy. Perturbative correlation energies correspond to second order in energy. The errors
of CCSD, CCSD(T) and CCSDT are indicated as horizontal dark blue, red and yellow
lines.
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Table 3.3: Amount of recovered correlation energy from several methods and basis sets, average over
ten molecules (OH, OH−, Ne, BeH2, Be, HF, F−, F, LiH, Li2). The REMP/OO-REMP
mixture selected is that with the smallest standard deviation. All errors refer to CCSDTQ
with the respective basis set.

method average σ median min max

cc-pVDZ
RE2 102.38 4.48 100.57 99.41 111.30

REMP2(0.10) 98.70 1.12 98.93 96.85 100.58
MP2 82.72 15.06 85.20 58.43 97.89

OO-RE2 102.87 4.76 100.85 99.66 111.80
OO-REMP2(0.11) 98.77 0.92 99.01 97.07 100.04

OO-MP2 82.94 15.03 85.42 58.60 97.90
CCSD 99.30 0.50 99.33 98.58 99.97

CCSD(T) 99.85 0.12 99.82 99.69 100.00
CCSDT 99.90 0.10 99.92 99.75 100.00

cc-pVTZ
RE2 101.01 3.51 99.09 98.42 108.65

REMP2(0.11) 98.27 0.34 98.25 97.87 98.87
MP2 87.45 11.54 92.52 65.89 98.26

OO-RE2 101.48 3.84 99.45 98.78 110.16
OO-REMP2(0.12) 98.46 0.31 98.54 97.91 98.94

OO-MP2 87.85 11.67 93.00 66.17 98.73
CCSD 98.47 0.92 98.36 97.09 99.83

CCSD(T) 99.90 0.07 99.91 99.78 99.97
CCSDT 99.95 0.05 99.97 99.85 100.00

cc-pVQZ
RE2 100.52 2.84 99.00 98.10 106.21

REMP2(0.12) 98.09 0.32 98.12 97.65 98.67
MP2 89.36 9.48 93.40 72.78 98.50

OO-RE2 100.98 3.13 99.34 98.49 107.56
OO-REMP2(0.12) 98.50 0.26 98.50 98.12 98.89

OO-MP2 89.82 9.64 93.89 73.11 99.14
CCSD 98.25 1.00 98.18 96.66 99.75

CCSD(T) 99.90 0.06 99.91 99.81 99.97
CCSDT 99.95 0.05 99.97 99.84 100.00

aug-cc-pVTZ
RE2 100.54 3.82 98.80 96.93 108.50

REMP2(0.12) 97.70 0.56 97.83 96.63 98.40
MP2 87.92 11.33 92.45 66.48 98.79

OO-RE2 101.10 4.06 99.23 97.61 110.03
OO-REMP2(0.13) 98.02 0.39 97.99 97.37 98.71

OO-MP2 88.67 11.81 93.08 66.76 100.66
CCSD 98.07 1.35 98.05 95.76 99.81

CCSD(T) 99.88 0.08 99.90 99.77 99.97
CCSDT 99.94 0.07 99.97 99.77 100.00

aug-cc-pVQZ
RE2 100.28 3.05 98.90 97.15 106.20

REMP2(0.12) 97.91 0.50 98.05 96.92 98.58
MP2 89.71 9.48 93.51 72.99 99.00

OO-RE2 100.79 3.27 99.28 97.76 107.55
OO-REMP2(0.13) 98.22 0.36 98.22 97.60 98.82

OO-MP2 90.40 9.90 94.07 73.30 100.66
CCSD 98.05 1.25 98.08 95.86 99.75

CCSD(T) 99.90 0.06 99.91 99.80 99.98
CCSDT 99.93 0.07 99.96 99.76 100.00
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Figure 3.3: Graphical representation of the recovered correlation energy for 19 many-electron systems
(OH, OH−, Ne, BeH2, Be, HF, F−, F, LiH, Li2, LiF, N2, CO, 1CH2 (1A1) , 3CH2 (3B1), H2O,
BH3, NH3, CH4). Error bars indicate one standard deviation, green vertical bars indicate the
mixing ratio at which roughly 100 % of the CCSDTQ correlation energy is recovered. The
hatched area spans the region of (100±1) % correlation energy. Perturbative correlation
energies correspond to second order in energy.
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The set was successively augmented with nine more larger molecules for which it is
impossible to obtain CCSDTQ/aug-cc-pVQZ results in reasonable time but for which
CCSDTQ/cc-pVTZ and CCSDTQ/aug-cc-pVTZ numbers are available (LiF, N2, CO,
1CH2 (treated as 1A1-symmetric closed-shell singlet), 3CH2 (3B1), H2O, BH3, NH3, CH4).

Table 3.4: Amount of recovered correlation energy from several methods and basis sets, average over
19 molecules (OH, OH−, Ne, BeH2, Be, HF, F−, F, LiH, Li2, LiF, N2, CO, 1CH2, 3CH2,
H2O, BH3, NH3, CH4). The REMP/OO-REMP mixture selected is that with the smallest
standard deviation. All errors refer to CCSDTQ with the respective basis set.

method average σ median min max

cc-pVDZ
RE2 100.86 3.64 99.85 97.34 111.30

REMP2(0.11) 98.02 0.99 98.00 96.39 99.68
MP2 85.99 12.08 90.26 58.43 98.41

OO-RE2 101.39 3.78 100.10 98.49 111.80
OO-REMP2(0.11) 98.49 0.78 98.60 97.07 100.04

OO-MP2 86.51 12.29 90.66 58.60 100.13
CCSD 98.49 1.15 98.58 95.88 99.97

CCSD(T) 99.74 0.16 99.72 99.37 100.00
CCSDT 99.86 0.12 99.87 99.55 100.00

cc-pVTZ
RE2 99.97 2.84 98.99 97.15 108.65

REMP2(0.12) 97.65 0.63 97.73 96.36 98.71
MP2 88.91 9.17 92.27 65.89 98.26

OO-RE2 100.48 3.01 99.43 98.12 110.16
OO-REMP2(0.12) 98.14 0.48 98.18 97.16 98.94

OO-MP2 89.53 9.42 92.81 66.17 99.02
CCSD 97.68 1.24 97.55 95.17 99.83

CCSD(T) 99.81 0.14 99.84 99.42 99.97
CCSDT 99.91 0.09 99.93 99.62 100.00

aug-cc-pVTZ
RE2 99.68 2.96 98.71 96.93 108.50

REMP2(0.13) 97.29 0.57 97.42 96.35 98.39
MP2 89.23 8.97 92.47 66.48 98.79

OO-RE2 100.24 3.10 99.22 97.61 110.03
OO-REMP2(0.13) 97.83 0.42 97.77 96.93 98.71

OO-MP2 90.05 9.42 93.13 66.76 100.66
CCSD 97.41 1.33 97.25 95.11 99.81

CCSD(T) 99.81 0.14 99.81 99.42 99.97
CCSDT 99.90 0.10 99.92 99.61 100.00

Table 3.4 shows that the inclusion of larger and electronically more demanding molecules
changes the outcome slightly. Instead of more than 100 %, RE2 now recovers slightly less
than 100 % correlation energy. The same decrease is found for OO-RE2, but the latter
still recovers more than 100 % correlation energy. MP2 and OO-MP2, on the other hand,
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recover 1.5 % more correlation energy for the larger set compared to the smaller set. The
effect on the optimal REMP mixture is however minimal as the mixing ratio A exhibiting
the smallest error changes by 1 % at most and the amount of correlation energy recovered
by those mixtures changes by 0.6 % at most. The general trend of CCSD to recover less
correlation energy with increasing basis size is also present for the larger set, additionally,
one finds that the general amount of correlation energy is smaller and the uncertainty is
larger in case of the larger set. Also in the case of CCSD(T) and CCSDT, the amount
of recovered correlation energy decreases and the uncertainty increases, although to a
much smaller extent. It should however be mentioned that the decrease of recovered
correlation energy is not related to missing size consistency. All investigated methods are
strictly size-consistent, size-extensive and unitary invariant. Therefore, the differences
between Tables 3.2 and 3.4 are related to the choice of molecules rather than missing
size consistency.
The finding that both RE2 and MP2 recover less than 100 % correlation energy is insofar
interesting as that – assuming a linear interpolation – it now not possible anymore to
arrive at a mixed method which recovers 100 % of the FCI (or CCSDTQ) correlation
energy. OO-RE on the other hand still recovers slightly more than 100 % of the CCSDTQ
correlation energy, making it in principle possible to construct a method which reproduces
the FCI correlation energy. This can also be seen in Figure 3.3 which shows that the
points where 100 % correlation energy are recovered are shifted significantly compared to
Figure 3.2.

In general, the hierarchy of the investigated methods does not change after consid-
ering the larger set of molecules. Including even larger molecules and/or larger basis
sets was not possible with the available computational resources and programs. The
CCSDTQ/aug-cc-pVQZ calculation for the hydroxide ion took already 1873 h CPU time
on a JUSTUS2 compute node (91⁄2 days of wall clock time) to reach a convergence of
1·10−10 in both energy and residuum. Given the results from Table 3.4, one can rank the
investigated methods as follows: MP2<OO-MP2<RE2<OO-RE2<CCSD≈REMP<OO-
REMP<CCSD(T)<CCSDT. OO-REMP is superior to CCSD insofar as it can reach a
much narrower distribution of the recovered correlation energy and at the same time
recovers a larger amount of correlation energy. CCSD(T) seems to be useful as total
correlation energy reference as it recovers 99.8(1) % of the CCSDTQ correlation energy
for the investigated set of molecules. At the same time, CCSD(T) would not be useful
for an analysis which breaks down the correlation energy in terms of configuration state
functions, as the associated wavefunction is not easily accessible.

Tables 3.3 and 3.4 also list the median and the lower and upper extremes as additional
statistical quantity. In all cases, the average and the median agree reasonably well, thus
corroborating the previous statements. The REMP methods with the smallest standard
deviation also do not exhibit serious outliers, indicating that REMP and especially OO-
REMP with appropriate mixing parameters provide a much more balanced and uniform
description of the electronic correlation than any of the parent methods alone. Given that
the statistical population is not overly large, the median is only of limited significance. It
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is however noteworthy that in all cases the median is slightly smaller that the arithmetic
mean. In case of the larger basis sets, the median of all REMP and OO-REMP mixtures is
below 100 %, indicating that no mixture is able to reproduce the FCI correlation energy.

As such an analysis is only possible for small molecules and not too large basis sets, the
remaining analysis focuses on the performance for larger systems where other measures for
the quality of the calculation are taken into account. An analysis of the total correlation
energy recovered is furthermore only of limited significance regarding the quality of a
method. As has been e.g. the case with SCS-MP2, a method may deliver a decent total
correlation energy whereas the breakdown into CSF class contributions reveals large
errors and heavily flaws in the associated wavefunction.
A potentially interesting subject for further studies would be to investigate which choice
for A provides the best results if the reference and the correlation energies are extrapolated
to the CBS limit.

3.2 Thermochemistry

The results discussed in this section were already published in References [50–52].

Getting basic thermochemistry right is one of the most indispensable requirements for
any generally applicable quantum chemical method.
REMP and OO-REMP were parameterized and tested on a number of closed and open shell
thermochemistry benchmark sets. The first benchmark set that REMP and OO-REMP
were applied to is a subset of the reactions that were used by Grimme to parameterize
SCS-MP2,[47] hence this set will be referred to as the “SCS-MP2” set. From the original
set, all open-shell reactions and the transition states were removed. The reasons for
choosing this set were that all molecules are of modest size so that it was possible to run
all calculations with the first version of the newly written REMP program, furthermore,
as SCS-MP2 was regarded as competitor to REMP, it was directly possible to compare to
SCS-MP2 results. Additionally, a very similar set was used by Bozkaya and coworkers to
benchmark OCEPA,[214] OMP2, OMP2.5, OMP3,[154] and several spin-component-scaled
derivatives thereof.[215] When the first REMP results were generated, there were only
QCISD(T) reference numbers available, hence it was also necessary to generate proper
CCSD(T) reaction energies. As result of the SCS-MP2 set, it was found that the MAD
of REMP averaged over all reactions becomes minimal with A = 0.12 and amounts to
1.18 kcal mol−1 (RMSD=1.88 kcal mol−1). For comparison, SCS-MP2 scored an MAD of
1.82 kcal mol−1 on its own calibration set and CCSD yielded 1.99 kcal mol−1.

For running OO-REMP calculations, the set further had to be pruned, and on the ba-
sis of this set, it was found that OO-REMP(0.25) achieves an MAD of 0.48 kcal mol−1

(RMSD=0.65 kcal mol−1) while the performance of REMP was hardly changed. REMP(0.13)
yields an MAD of 1.16 kcal mol−1 (RMSD=1.73 kcal mol−1). These results show that OO-
REMP has the potential to deliver results with chemical accuracy, but such a bold
statement has to be verified by further benchmark sets for more diverse chemistry.
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Figure 3.4: Graphical representation of the RMSD for four different benchmark sets and different
REMP flavors (a) the (pruned) SCS-MP2 calibration set (b) the (incomplete) BHPERI
set (c) the RSE43 benchmark set (d) the BH76 benchmark set.

REMP and OO-REMP were subsequently tested on a number of benchmark sets covering
a broad scope of main group reactivity: The RSE43 benchmark set[43,216] is dedicated to
the stability of doublet radicals, namely, it tests the ability of a method to predict the
relative stability of such radical species. On average, the reaction energies are not large,
it is thus easy to obtain a “chemically accurate” result for this set. Canonical REMP was
tested in both the spin-unrestricted and the restricted-open shell variant. It turned out
that the restricted formulation provides significantly better results as some of the UHF
reference determinants suffer from severe spin contamination. It was also shown that
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the error of the UREMP results correlates fairly well with the spin contamination of the
reference. One can thus conclude that for such systems it is desirable to use methods which
try to yield spin-pure wavefunctions. As shown in Figure 3.4, OO-REMP performs well for
this benchmark set and clearly outperforms its canonical counterpart. Part of the success
of OO-REMP for this benchmark set is rooted in the ability of orbital-optimized methods
to provide approximately spin-pure wavefunctions.[43,120,217] Compared to other methods
(especially DFT), OO-REMP performs outstandingly well for the RSE43 benchmark set.

The BHPERI[216,218–221] benchmark set consists of the barrier heights of 26 pericyclic
reactions, and in contrast to the first benchmark set, this set now tests the ability to predict
transition state energies and reaction barrier heights. Transition states are generally
more demanding than minimum structures due to the typically elongated bonds and the
potential open shell character. From the original set, reactions 9 and 10 were excluded
from the full scan due to the large size of the constituting molecules. All remaining
systems were treated at the restricted closed shell level. For the excluded reactions,
selected points in the A range were calculated to show that they follow the general trend1.
So far, no OO-REMP data are available for the BHPERI set.

The BH76 set[216,221–223] consists of two subsets, namely the HTBH38[222] and the
NHTBH38[223] set, describing barrier heights for hydrogen and non-hydrogen atom trans-
fer reactions. Almost all of these reactions are of open shell character, the whole set is thus
only tractable with a program capable of using a restricted open shell or an unrestricted
reference determinant. Calculations for the BH76 set were done with UHF and ROHF
reference as well as using orbital optimization. Similar to the other cases, it was found
that OO-REMP performs better than the canonical counterparts and also better than
OO-REMP including perturbative singles (OO-REMP+(S)).

Figure 3.4 shows a graphical representation of the RMSDs for the four benchmark sets.
The RMSD was chosen as it is a more rigorous statistical measure than the MAD. As
can be seen, OO-REMP yields in all cases an RMSD close to or below 1 kcal mol−1.
The variant which includes perturbative singles [OO-REMP+(S)] performs consistently
worse, although it shows virtually the same trends. Whenever there is data for both
UREMP and RO-REMP, one finds that RO-REMP performs significantly better. Yet,
the results achieved for the BH76 set still render it unreliable. UREMP, finally, leads to
no improvement over pure RE, and on an absolute scale the results obtained for RSE43
and BH76 show that it should not be used. Already from the data presented in Figure 3.4
it is save to conclude that orbital optimization is mandatory for open shell cases and
definitely an improvement for closed shell cases. It is furthermore quite satisfying that the
minima of the OO-REMP curves are always located close to A ≈ 0.20. The unrestricted
REMP variant shows no minima at all, instead, pure RE is always the choice of A which
still performs best. The restricted-closed shell variant behaves rather like the closed shell

1with the computational resources acquired since these calculations were performed, it should now also
be possible to run the remaining calculations.



3.2 Thermochemistry 53

variant, but given that the errors are still large, it can hardly be regarded as a useful
method.

Until now, all thermochemistry benchmark sets used CCSD(T) as reference method.
CCSD(T) is often called the “gold standard” for computational chemistry of single
reference cases and it is the de facto standard for benchmarking density functional
methods, but even CCSD(T) is not free of errors. It is therefore desirable to use at least one
benchmark set with a reference level of theory better than CCSD(T). Such a benchmark
set is the W4-11[224] set of Karton et al. The set primarily consists of atomization
energies, but there are four additional benchmark sets derived from the primary set. In
detail, the derived benchmark sets cover heavy atom transfer reactions, bond dissociation
reactions, isomerizations, and substitution reactions. The reference reaction energies were
calculated at the W4 composite level of theory[225] which aims to reach the relativistic
CCSDTQ5/CBS limit and is claimed to provide sub kJ mol−1 accuracy. Said reference
numbers are also available in an electronic-energy only fashion, discarding all relativistic
and ZPVE corrections, making comparisons between electronic structure methods more
easy.[224] The atomization reactions were furthermore categorized by the amount of
perturbative triples correlation energy as measure for the multireference character of
the involved species. Here, all molecules falling into the fourth category with the largest
multireference character (“Systems dominated by severe nondynamical correlation effects”)
were excluded from the statistical evaluation, leaving 124 atomization reactions, 504
heavy atom transfer reactions, 83 bond dissociation reactions, 18 isomerization reactions
and 13 substitution reactions. This is justified by the fact that after all, REMP and
OO-REMP are single reference methods, and not meant to be able to treat multireference
cases. For many of the excluded molecules, severe convergence issues were observed. The
resulting non-multireference set was proposed by Karton et al.[224] and is designated as
TAE_nonMR124. The collection of the non-multireference atomization energies and the
derived non-multireference reactions is called W4-11_nonMR here.

Figure 3.5 shows a graphical representation of the RMSDs achieved with UREMP,
RO-REMP, and OO-REMP for the W4-11_nonMR set and its derived sets together
with the respective results for CCSD and CCSD(T). As reference reaction energies the
purely electronic part of the W4-11 reference energies was used. Due to the experience
gathered on the other benchmark sets, no OO-REMP+(S) calculations were performed.
As can be seen, the various subsets are more or less challenging, and they differ in their
dependence on the mixing parameter A. But while most of the RMSD curves in Fig. 3.5
exhibit minima, their location is only in the case of OO-REMP consistent across different
subsets. CCSD shows rather poor performance, being sometimes better than the canonical
REMP flavors, sometimes even significantly worse, e.g. for the atomization energies. The
canonical REMP variants UREMP and RO-REMP exhibit minima in most cases, but even
the respective best-performing mixtures are often off by several kcal mol−1. OO-REMP
provides very accurate results at the minima located at A ≈ 0.20. In fact, the RMSD of
OO-REMP is only above 1 kcal mol−1 in case of the atomization energies (1.15 kcal mol−1

@A = 0.23) and the heavy atom transfer reactions (2.15 kcal mol−1 @A = 0.20). In the
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Figure 3.5: Graphical representation of the RMSD for the W4-11_nonMR set and its derived subsets as
function of the mixing parameter A. Average over (a) total atomization energies (n = 124)
(b) heavy atom transfer reactions (n = 504) (c) bond dissociation energies (n = 83) (d)
isomerization energies (n = 18) (e) substitution reactions (n = 13). All energies were
extrapolated to the CBS limit from the aug-cc-pwCVTZ and aug-cc-pwCVQZ basis sets.
See Reference [52] for further results.
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latter case, it is quite comforting that CCSD(T) fails comparably badly with an RMSD of
1.81 kcal mol−1. In the remaining cases, both CCSD(T) and OO-REMP(0.20) manage to
achieve an RMSDs below 1 kcal mol−1. It is additionally noteworthy that neither OO-RE2
nor OO-MP2 provides and RMSD below 1 kcal mol−1 for any of the subsets. In the case
of the atomization energies, e.g. OO-REMP(0.23) improves upon OO-RE2 by a factor
of five, and compared to OO-MP2 the improvement is even much larger and amounts
roughly to a factor of 15(!). It is thus fair to say that REMP hybridization turns two
barely useful parent methods into a very powerful approach.

Other basis set combinations were also tested,[52] but they turned out to be insufficient.
Both alternative basis set combinations tested (def2-[T/Q]ZVPPD and aug-cc-pV[T/Q]Z)
are lacking core correlation functions. Moreover, the Ahlrichs type basis sets are excellent
basis sets for DFT calculations but were not constructed with the aim of systematic
extrapolability.[226] 2 Results obtained without CBS extrapolation, i.e. from a single
basis set, turned out to be a complete disaster in most cases (see Ref. [52] for further
details). Depending on the basis set, the RMSD of the atomization energies amounts to
at least 2 kcal mol−1 (QZ basis sets are still better than TZ basis sets), the optimal A
varies wildly with the basis set, and goes up to 0.6–0.8 in the case of TZ basis sets (with
RMSDs larger than 5 kcal mol−1). In the case of the radical substitution and especially
the isomerization reactions, the results are much more consistent across different basis
sets, as the electronic structure changes not too much when going from the reactants to
the products of the reaction. There is thus much more error compensation possible and
the basis set needs to be less flexible as there are no large changes in the formal oxidation
state. The results for the atomization energies (cf. Figure 1 of Reference [52]) however
show that it would be foolish to simply rely on error compensation in difficult cases.

To conclude, one finds that canonical REMP works for closed-shell main group covalent
thermochemistry and provides an RMSD slightly larger than 1 kcal mol−1 with 0.15 ≤
A ≤ 0.25. The canonical unrestricted generalization hardly provides any improvement and
can mostly be considered useless while the high-spin restricted open-shell generalization in
principle works but provides only modest improvement. In contrast, the orbital-optimized
variant consistently delivers outstanding accuracy for both closed and open shell systems,
with the optimal mixing ratio being located at A ≈ 0.20 regardless of the character
of the benchmark set. The orbital optimized variant has the dawback that it fails for
multireference cases, this could however also be considered as a “feature”, as it is generally
not advisable to treat multireference species like O3, C2 or S4 at a single reference level.
It can however be expected that such species will be accessible as soon as a proper
multiconfigurational reference is used.

2The plain def2-XZVP basis sets – optimized by minimizing the atomic HF energy – are only recom-
mended for HF and DFT; for correlation treatment, the doubly polarized basis sets – optimized by
maximizing the absolute MP2 correlation energy from an additional set of polarization functions –
are recommended.[227] The diffuse def2-XZVPPD basis sets[228] are explicitly advertised as “property
optimized” and are obtained by maximizing the atomic Hartree-Fock polarizability. The def2 basis
sets furthermore have he disadvantage that there are no 5Z and 6Z basis sets necessary for extreme
accuracy
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3.3 Noncovalent Interactions

Disclaimer: A part of the results presented here was generated by Julian Schöckle during
his bachelor thesis[229] under the supervision of the present author.

Noncovalent interactions are an important and wide field of chemical research[230] and
an essential aspect of supramolecular chemistry.[231–234] They are especially relevant
in condensed matter, specifically in biological material[235–238] and other soft matter.
In organisms, they are relevant for the secondary structure of proteins as well as for
keeping cell membranes together. Noncovalent interactions are furthermore responsible
for the structure, stability and function of double-stranded DNA[237–239] and are thus
indispensable for all higher forms of life as we know it. This is reflected by the presence
of Watson-Crick nucleobase pairs in many intermolecular interaction benchmark sets like
S22.

Noncovalent complexes can be classified by the contributing interactions as e.g. being
dominated by electrostatic interactions, dispersion driven or mixed, typically on the
basis of DFT-SAPT calculations.[151,240–245] For a generally applicable quantum chemical
method, it is of paramount importance to be able to describe these kinds of interactions
accurately and unbiased. MP2, e.g., is known to perform very well for electrostatic
interactions while it is unreliable for dispersion-dominated complexes.[151] These findings
are completely recovered by the results for the A24 benchmark set shown in Section 3.3.2.

3.3.1 The RG18 Benchmark Set

The RG18 benchmark set[216] consists of 18 complexes of rare gas atoms (either rare gas
oligomers or complexes with small molecules). The structures were used as available from
the GMTKN55 database together with the CCSD(T)/CBS reference interaction energies
which were given with a precision of 0.01 kcal mol−1.

This set is interesting as it combines “regular” main group molecules and rare gases.
While main group molecules tend to have well-localizable and spatially separated electron
pairs where SDEs are important, rare gases (except helium) do have rather crowded
electron pairs and as a consequence, TDEs become more important.[70,246] Rare gases
thus can be arranged in between main group elements and transition metals.

For obtaining accurate noncovalent interaction energies, an extrapolation to the complete
basis set (CBS) limit and often also a BSSE correction (counterpoise correction) is
mandatory.[247] While both methods work quite differently, they have the same goal,
namely to eliminate shortcomings of a finitely large orbital basis set

The same basis set selection and CBS extrapolation technique as in the case of the
reference numbers were used:[216] All homo- and heterodimers use the aug-cc-pVTZ and
aug-cc-pVQZ bases and are counterpoise-corrected while all higher oligomers of noble
gases use the aug-cc-pwCVTZ and aug-cc-pwCVQZ bases but no counterpoise correction.
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In accordance with the reference calculations, chemical core electrons were frozen for the
dimers and heterocomplexes while all electrons were correlated for the trimers, tetramers
and hexamers. The energies were first extrapolated to the CBS limit, only afterward the
CP correction was applied while calculating interaction energies. In the case of krypton,
the h functions were stripped from the aug-cc-pwCVQZ basis set as wavels is not capable
to compute integrals over basis functions with L > 4. The resulting differences are
expected to be insignificantly small.
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Figure 3.6: Statistical descriptors for the RG18 benchmark set as function of the REMP scaling
parameter A. Absolute errors on the left, relative errors on the right.

Originally, two different schemes for the CBS extrapolation were tested[229] and it was
found that the optimal mixing parameter slightly depends on the choice of the extrapola-
tion scheme as well as on the chosen error descriptor (MAE vs. RMSD). In this work, a
third extrapolation scheme was added.
As CBS extrapolation and BSSE correction are crucial for obtaining accurate noncova-
lent interaction energies, three different CBS extrapolation schemes were applied and
compared (see also the more detailed elaboration in Section 3.3.2):

• The first scheme is based on

ERef(X) = ERef,CBS + A · e−α
√

X (3.1)
ECorr(X) = ECorr,CBS + X−β (3.2)

where X is the basis cardinal number and α and β are parameters either determined
from fitting to results from at least three basis sets for the system under consideration
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or determined by fitting to a large number of molecules. It is commonly attributed
to Petersson and coworkers.[226,248] Here, the parameters determined be Neese and
Valeev[226] for aug-cc-pV[T,Q]Z were used (α = 5.79, β = 3.05).

• The second scheme is based on

ERef(X) = ERef,CBS + A · e−αX (3.3)
ECorr(X) = ECorr,CBS + X−β (3.4)

It was introduced by Helgaker et al.[249–253] Also for this scheme, a fixed parameter
set was used, namely the universally applied choice α = 1.63 and β = 3.05.

• The third scheme applied (focal point analysis[254,255]) is the one that is commonly
used to approximate the correlation energy of a large basis and an expensive method
from MP2 calculations:

EREMP,large ≈ EMP2,large + EREMP,small − EMP2,small (3.5)

This scheme is not as accurate as actual CBS extrapolation schemes but the method
of choice when expensive calculations with large basis sets are not affordable.

Figure 3.6 shows the mean signed deviation, the mean absolute deviation and the root
mean square deviation as well as their relative counterparts for REMP based on canonical
orbitals. The reference reaction energies are expressed as dissociation energies. RE2
thus slightly underbinds noncovalent complexes while MP2 tends to slightly overbind
them (absolute errors) or is on average right on spot (relative errors). MAD and RMSD
however reveal that both the absolute and relative error are improved by REMP. Quite
interestingly, the position of the minimum and its depth slightly depend on the choice
of CBS extrapolation technique. Method 2 delivers the best results, closely followed by
method 1. Method 3 is not competitive and exhibits significantly larger errors. There
might however be a bias towards method 2 as it can be safely assumed that it was
also used for the reference numbers. The smallest MAD achieved with REMP amounts
to 0.036 kcal mol−1 at A = 0.25, corresponding to a relative error of 9.1 %. This is in
reasonable agreement with the other thermochemistry results, but shows that noncovalent
interactions tend to require rather large A values. Method 1 has its minimum in the
MAD at A = 0.35) (0.044 kcal mol−1)

It should be noted that there is a broad range in A where both method 1 and 2 yield
noncovalent interaction energies with errors smaller than 0.1 kcal mol−1 and relative errors
smaller than 10 %. Extrapolation method 3 also has errors mostly below 0.1 kcal mol−1,
but the relative errors are mostly larger than 15 %.

Table 3.5 lists the RE and MP statistics as well as the best performing mixture for both
extrapolation methods along with some representative DFT results. As the DFT results
were obtained with a different basis set (def2-QZVP), this comparison should not be
overinterpreted. On the other hand, def2-QZVP is a very good basis set for DFT, as
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Table 3.5: Absolute errors for the RG18 benchmark set, all in kcal mol−1. REMP energies were extrap-
olated from aug-cc-pV[T/Q]Z for dimers and aug-cc-pwCV[T/Q]Z for higher aggregates
as described above. DFT errors were taken from Reference [256] without modification.

A MSD MAD stdev RMSD min max

method 1
0.00 −0.074 0.074 0.050 0.088 −0.174 −0.006
0.30 −0.042 0.045 0.051 0.065 −0.212 0.015
1.00 0.040 0.115 0.164 0.164 −0.296 0.384

method 2
0.00 −0.039 0.062 0.062 0.072 −0.125 0.117
0.25 −0.012 0.036 0.046 0.046 −0.101 0.081
1.00 0.075 0.103 0.152 0.166 −0.064 0.392

DFT results (selection, obtained with the def2-QZVP basis, taken from Ref. [256])
revTPSS, D3(BJ) 0.029 0.057 0.074 0.078 −0.130 0.200

revTPSSh, D3(BJ) 0.027 0.061 0.075 0.078 −0.170 0.160
BLYP, D3(BJ) 0.005 0.055 0.082 0.080 −0.130 0.210

APFD 0.053 0.071 0.085 0.098 −0.070 0.230
B2PLYP, D3(0) −0.059 0.153 0.180 0.185 −0.410 0.240
B3LYP, D3(BJ) −0.077 0.133 0.185 0.196 −0.620 0.250

DSD-PBEB95, D3(BJ) 0.097 0.171 0.274 0.283 −0.300 0.830
M062X, no D −0.033 0.231 0.315 0.308 −0.590 0.800
BP86, D3(0) −0.524 0.554 0.700 0.859 −2.790 0.170

DFT generally has different basis set requirements than wavefunction methods.[7] The
fact that a completely different basis set was used than for the reference calculations
probably explains the surprising ranking of the DFT methods. Specifically, it was found
that mGGA and hybrid functionals perform better than double hybrids. Given the
usually outstanding performance of double hybrid functionals, this is probably the result
of fortunate error cancellation. These considerations apart, REMP clearly outperforms
all tested density functional for the RG18 benchmark set. The supposedly best density
functional – revTPSS-D3(BJ) – achieves an RMSD of 0.08 kcal mol−1. The hybrid variant
– revTPSSh-D3(BJ) – is essentially on par, closely followed by BLYP-D3(BJ). The
best double hybrid, B2PLYP-D3(0), exhibits an RMSD which is twice as large. The
mediocre performance of the double hybrid functionals may be due to the MP2 correlation
contribution, which might require some form of CBS extrapolation for sub-0.1 kcal mol−1

performance.[257–260] REMP(0.25) in conjunction with the second extrapolation method,
on the other hand, achieves an RMSD of merely 0.05 kcal mol−1, with the MSD being only
−0.01 kcal mol−1. Considering that the reference energies were given with 0.01 kcal mol−1

precision, a part of the REMP error may even be ascribed to reference round-off errors.
On the first glance this is an impressive result, therefore it should be kept in mind that
the average reaction energy of the RG18 set amounts to merely 0.58 kcal mol−1. An
analysis of the relative errors therefore is advisable, too. As has been shown above, REMP
achieves a mean absolute relative error clearly below 10 %. A comparison of the respective
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DFT results (cf. Table 6.3) shows that none of the selected DFT methods is capable of
achieving an MARE below 10 %. Also in this respect, REMP is clearly superior to DFT.

Due to time and resource limitations, it was not possible to obtain OO-REMP results for
the RG18 benchmark set. As OO-REMP in various tests turned out to be at least as
accurate as REMP, it can be expected that OO-REMP would further improve upon the
REMP results for this set.

3.3.2 The A24 Benchmark Set

The A24 set[261] consists of 24 noncovalent interactions of small closed-shell molecules
for which highly accurate reference numbers are available. The reference numbers
include electronic energies up to CCSDT(Q), core corrections, and optionally rela-
tivistic corrections.[262,263] There reference numbers used here are a best estimate for
CCSDT(Q)/CBS without relativity, constructed from

• The CCSD(T)/CBS estimate by Sirianni, Burns and Sherrill[264] (A24B)

• The ∆core correlation correction by Rezak et al.[261,263]

• The best-estimate ∆CCSDT(Q) correction by Burns et al.[262] whenever available,
otherwise the aVDZ correction from the same source (HCN dimer and formaldehyde
dimer)

The reference interaction energies obtained by this composite approach are listed in
Table 3.6 together with the dominant kind of interaction .

Again, the question emerges how to best extrapolate to the CBS limit, especially if one
wants to compare achieve extreme accuracy for comparing to CCSDT(Q) data. In the
following, four different procedures were tested and are compared to each other:

1) Full CBS extrapolation, β = 3.00: The SCF energy is extrapolated from aug-
cc-pVTZ and aug-cc-pVQZ with the Petersson formula[248,265–268] and a fixed
exponent α = 5.79 as proposed by Neese and Valeev.[226] The correlation energy
is extrapolated from aug-cc-pVTZ and aug-cc-VQZ with the Halkier-Helgaker
formula[252,253] and a fixed exponent of β = 3.0 (the literature default[226]).

2) Full CBS extrapolation, β = 3.05: The SCF energy is extrapolated from aug-cc-
pVTZ and aug-cc-VQZ with the Petersson formula and a fixed exponent α = 5.79.
The correlation energy is extrapolated from aug-cc-pVTZ and aug-cc-VQZ with the
Halkier-Helgaker formula and a fixed exponent of β = 3.05 as proposed by Neese
and Valeev for this basis set combination.[226]

3) ∆MP2, β = 3.00: The SCF energy is taken from RHF/aug-cc-pV5Z, the MP2
correlation energy is extrapolated from aug-cc-pVTZ and aug-cc-pVQZ with a
fixed exponent of β = 3.00. Finally, the correlation energy difference of OO-REMP
and MP2 calculated with the aug-cc-pVQZ basis is added, where the OO-REMP
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Table 3.6: Reference interaction energies and interaction characterization for the A24 benchmark
set, best estimate for CCSDT(Q)/CBS + core correlation. All energies in kcal mol−1 HB:
hydrogen-bonded, DD: dispersion dominated, MX: mixed character. The assignment to
dominating interaction characters is based on SAPT2+3(CCD)/aTZ calculations and was
inferred from Figure 1 of Reference [262]. Note that it slightly differs from Řezác and
Hobza’s original assignment.[261]

# system est. CCSDT(Q)/CBS character

1 water· · · ammonia −6.559 HB
2 water dimer −5.057 HB
3 HCN dimer −4.767 HB
4 HF dimer −4.534 HB
5 ammonia dimer −3.171 HB
6 HF· · · methane −1.692 MX
7 ammonia· · · methane −0.785 MX
8 water· · · methane −0.677 MX
9 formaldehyde dimer −4.533 MX

10 water· · · ethene −2.590 MX
11 formaldehyde· · · ethene −1.642 MX
12 ethyne dimer −1.542 MX
13 ammonia· · · ethene −1.396 MX
14 ethene dimer −1.115 DD
15 methane· · · ethene −0.517 DD
16 borane· · · methane −1.530 MX
17 methane· · · ethane −0.843 DD
18 methane· · · ethane −0.616 DD
19 methane dimer −0.542 DD
20 Ar· · · methane −0.412 DD
21 Ar· · · ethene −0.361 DD
22 ethene· · · ethyne 0.784 DD
23 ethene dimer 0.894 DD
24 ethyne dimer 1.080 DD

average −1.755±2.025
abs. average 1.985
median −1.255

correlation energy is taken as difference of the OO-REMP/aug-cc-pVQZ and the
RHF/aug-cc-pVQZ energy (hybrid of the conventional CBS scheme and the focal
point scheme[244,262,269,270]).

4) ∆MP2, β fitted: The SCF energy is taken from RHF/aug-cc-pV5Z3, the MP2
correlation energy is extrapolated from aug-cc-pVTZ, aug-cc-pVQZ and aug-cc-
pV5Z with a free fitted exponent. Finally, the correlation energy difference of
OO-REMP and MP2 calculated with the aug-cc-pVQZ basis is added, where the

3aug-cc-pV[T/Q/5]Z calculations were performed with ORCA as wavels is not able to treat the h
functions present in the 5Z basis.
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Figure 3.7: Comparison of different CBS extrapolation schemes for the A24 benchmark set. Left-hand
panel: MAD, right-hand panel: RMSD. See test for further explanations. Errors are
calculated with respect to the reference interaction energies listed in Table 3.6.

OO-REMP correlation energy is taken as difference of the OO-REMP/aug-cc-pVQZ
and the RHF/aug-cc-pVQZ energy.

In principle, many more combinations are possible, the SCF energy could be extrapolated
using a recipe, a different basis set could be used for the ∆MP2 correction etc.

Figure 3.7 shows a comparison of the aforementioned extrapolation schemes. The most
striking observations are that OO-RE and OO-MP2 results are of virtually the same quality
(with OO-MP2 being even slightly superior) while in between, there is an improvement
by up to a factor of six upon the parent method! This will be discussed later, the focus
here is on the extrapolation technique. As can be seen, while there is almost no difference
between the first three methods, the last one where the CBS MP2 correlation energy is
fitted to three basis sets clearly falls behind.

A comparison of the first two extrapolation recipes reveals no significant differences,
thus either choice for the correlation energy exponent is fine. Judged by the MAD,
the results using a ∆MP2 scheme and a large-basis SCF energy are even better by
≈0.005 kcal mol−1 up to A = 0.35 and barely noticeable worse above. The results where
the CBS MP2 correlation energy is fitted with a free exponent are worse by 0.01–
0.04 kcal mol−1 compared to the best results, on the other hand, they are still impressively
accurate and interestingly, the ideal value for A is practically the same as for the other
schemes. From the RMSD plot, essentially the same conclusions can be drawn. As the
RMSD is more sensitive to outliers, the absolute numbers are larger and the difference
between the good and the bad extrapolation schemes is larger. The comparison of different
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extrapolation schemes shows that if sufficiently large basis sets and validated extrapolation
schemes are employed, it is possible to arrive at almost identical results from different
schemes. The aug-cc-pVTZ basis set used in scheme 4 is probably too small and should
be replaced by aug-cc-pV6Z for freely fitting the exponent. Inspection at the single
reaction level shows that in case of scheme 4, the vast majority of the error is caused
by reactions 20 and 21 (Ar· · · methane and Ar· · · ethane), each systematically being off
by at least 0.2 kcal mol−1. Given that these reactions behave inconspicuously with other
extrapolation schemes and that MP2 is not the method of choice for rare gases, it might
well be that the free-exponent CBS correlation energy is severely off if rare gases are
involved. For the remaining discussion, extrapolation scheme 2 will be used, as it is the
most sound one.

Figure 3.8 shows the MSD, MAD and RMSD obtained with REMP and OO-REMP
averaged over all members of the A24 benchmark set in comparison to the CCSD(T)/CBS
result and using the CCSDT(Q)/CBS+core results from Table 3.6 as reference. Both
REMP and OO-REMP exhibit minima in the MAD and RMSD curves, but OO-REMP
clearly outperforms canonical REMP. Quite interestingly, one finds that MP2 performs
quite well and yields better results than pure RE, OO-RE and OO-MP2. Concerning
REMP, the flat minimum of the MAD curve is located at A ≈ 0.35 while the RMSD
becomes minimal at A ≈ 0.50. OO-REMP on the other hand exhibits rather steep minima
for both MAD and RMSD which are located at A ≈ 0.40. The REMP(0.35) results are
already impressively accurate with an MAD below 0.07 kcal mol−1, but they are still
inferior to the best OO-REMP result, which is virtually on par to CCSD(T) with an
MAD slightly larger than 0.02 kcal mol−1 (see Table 6.4). OO-REMP also outperforms
REMP in the whole range 0.20 ⩽ A ⩽ 0.60.

Figure 3.9 reveals why OO-REMP performs so much better for the A24 benchmark
set than canonical REMP: While different dominating interactions require significantly
different optimal A values, the minima in the right-hand panel are almost on top of each
other, meaning that when orbital optimization is operational, there is a single value for
A which performs best regardless of the kind of dominating interaction. In the case of
canonical REMP, the overall smallest RMSD is obtained at around A = 0.50 while the
DD systems require A = 0.25, the HB systems require A = 0.65 and the MX systems
need A = 0.70. This also indicates that in case of the mixed systems, the hydrogen-
bonded part clearly dominates the error, being usually larger. Despite the inconsistency
between different subsets, it should be noted that e.g. the results obtained for HB and
MX systems at the DD minimum, and vice versa, are still rather good with RMSDs below
0.15 kcal mol−1 at the “foreign” minima. On the other hand, none of the minima comes
even close to the performance of CCSD(T)/CBS.

Turning to OO-REMP, one finds that all three subsets exhibit their minima around
A ≈0.35–0.40. Both the MAD and the RMSD are clearly below 0.05 kcal mol−1 in total
and for the three subsets individually. In case of the HB systems, the minimum is even
below the CCSD(T)/CBS value and in all other cases, the difference between OO-REMP
and CCSD(T) amounts to less than 10 cal mol−1. So unless the CCSD(T)/CBS values
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Figure 3.8: MSD, MAD and RMSD for the A24 benchmark set. Error bars indicate one standard
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are not systematically lacking some important contributions compared to the OO-REMP,
results, OO-REMP suggests itself as cost efficient alternative to CCSD(T) for such
problems. If moving towards the mixing parameter value that turned out to be best
in other scenarios (A ≈ 0.25), the accuracy decreases, but MAD and RMSD are still
0.10 kcal mol−1 in total and for every subset individually.

Again, a look at relative errors seems appropriate. Figure 3.10 shows relative errors for
REMP and OO-REMP relative to CCSDT(Q)/CBS and in comparison to CCSD(T)/CBS.
The conclusions that can be drawn from the relative errors are essentially the same as with
the absolute errors. On a relative scale, one finds that both REMP and OO-REMP as well
as CCSD(T) tend to underestimate noncovalent interactions (which is in contrast to the
absolute errors; in the case of the relative errors, a few systems with very small reference
interaction energy may easily change the sign of an unregularized relative error). In terms
of the MARE and the RMSRE, the trends that have been found before, are essentially
confirmed. Canonical REMP now performs best with A = 0.35 (RMSRE=6.2 %), which
is less than the best-performing A from absolute errors. OO-REMP achieves an RMSRE
of 3.0 % at A = 0.45, in fairly good agreement with the best A from absolute errors.

Figure 3.11 shows the decomposition of the relative error in terms of the three subsets.
One finds that the HB subset with its potentially larger interaction energies is nearly
insensitive to variations in A and exhibits the by far smallest relative errors. The DD
systems, on the other hand, which have rather small interaction energies show the largest
relative errors. The overall relative error is therefore dominated by the DD and the mixed
systems.

Again, one finds some distinctive differences between REMP and OO-REMP. While the
HB systems are insensitive to a change in A, the shallow minima in the RMSRE are
located at A = 0.65 (REMP, 1.17 %) and A = 0.40 (OO-REMP, 0.82 %), respectively.
The sensitive DD systems have minima in the RMSRE at A = 0.30 (REMP, 7.43 %) and
A = 0.45 (OO-REMP, 3.90 %). The mixed systems, finally, exhibit minima at A = 0.60
(REMP, 5.38 %) and A = 0.45 (OO-REMP, 2.55 %). OO-REMP is thus much more
consistent, the range in A where an RMSRE below 10 % for all subsets is reached, is
much broader, and it is the only method capable of achieving an RMSRE below 5 % for
all subsets separately. Compared to CCSD(T)/CBS, the relative errors of OO-REMP
are slightly larger, on the other hand, CCSD(T)/CBS shows the same order for the
errors (HB<MX<DD) as OO-REMP. As a side-note, it should be kept in mind that
the RMSRE is below 10 % in the A parameter range favored by other benchmark sets
(0.15 ≤ A ≤ 0.25), so that there is no need for finding a different optimal parameter for
noncovalent interactions.

The rather large optimal A value is unusual and might be a side-effect of an insufficiently
large basis set combination and further effects. As the reference includes a core-correlation
correction, it seems appropriate to repeat the calculation with the aug-cc-pwCV[T,Q]Z
combination to verify that the unusually large mixing parameter choice does not simply
compensate for an insufficiently large basis set. The role of the counterpoise correction
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might also need a critical reevaluation. It is often claimed that the Boys-Bernardi correction
tends to overshoots the BSSE,[7,271] and as MP2 systematically overbinds all complexes,
one might hypothesize that the unusually large optimal A value compensates for an
overshooting BSSE correction (see Section 3.3.3 for a more detailed discussion of this
matter).

To summarize these results, one finds that REMP provides some systematic improvement
over the parent methods, but at a rather unusual, large value for the mixing parameter.
OO-REMP further improves on REMP with average relative errors clearly below 5 %,
almost on par with CCSD(T).

3.3.3 The O23 Benchmark Set

Results for the O23 benchmark set were already published in Reference [51].

The O23 benchmark set is a set originally consisting of 23 open-shell noncovalent interac-
tion energies constructed by Bozkaya and coworkers.[121,272] The reference energies were
obtained at the CCSD(T)/CBS + counterpoise correction[273] level of theory[121] (CBS
extrapolation done from aug-cc-pV[T/Q]Z, all electrons correlated). From the original
set, later the Ar· · · NO system (reaction 12) was removed as it exhibited convergence
issues at the OCEPA level of theory (orbital iterations do not converge for A ⪅ 0.1 4).
The average absolute reaction energy of this set amounts to 8.60 kcal mol−1, spanning
from 0.00 kcal mol−1 (He· · · Li) to −65.22 kcal mol−1 (H2O· · · Be+).

OO-REMP calculations were performed for the O23 benchmark set with the same basis
set combination as in the case of the reference results, and the CBS extrapolation has been
performed with the same formulae and parameters. A counterpoise correction was applied
to account for the remaining basis set superposition error. UREMP and RO-REMP were
not tested as they were expected to be not competitive for this set.

During the review phase of Reference [52], it was noted that a slightly unusual value
for the parameter α of the SCF extrapolation procedure (the two-point fixed-exponent
formula according to Halkier et al.[253] was used with α = 1.60 instead of α = 1.63). The
results presented here use the accepted literature exponent (α = 1.63), showing that the
results do not significantly depend on the last decimal place of the exponent.

Figure 3.12 shows a graphical representation of absolute and relative errors obtained with
OO-REMP for the O23 benchmark set. Quite interestingly, the conclusions that can be
drawn from comparing the absolute and the relative errors5 could hardly be more different.
Probably the most important finding is that both the MAD and the RMSD are below
1 kcal mol−1 throughout the whole range. For relatively weak noncovalent interactions,

4A number of cases from the O23 set was used in Ref. [204], but compared to the original set, the
open-shell noncovalent interaction benchmark set in the latter reference is remarkably pruned.

5The He· · · Li was excluded for calculating relative errors as its reference interaction energy was given
as 0.00 kcal mol−1, leading to a diverging relative error.
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this is of course the bare minimum to be expected and not overwhelming. Looking into
the results in more detail, one finds that the MAD exhibits a minimum at A = 0.45
(0.10 kcal mol−1), while the RMSD (being sensitive top outliers) becomes minimal at
A = 0.35 (0.18 kcal mol−1). Those results do no completely agree, but as in the whole
range of 0.20 ≥ A ≥ 0.45 the RMSD is below 0.2 kcal mol−1, the exact choice is probably
not that critical. Judged by the relative error, A = 0.05 would be the optimal choice.
And while the MARE stays below 10 % up to A = 0.60, the RMSRE steeply increases
with increasing A, reaching already more than 10 % at A = 0.15. In detail, one finds
that the relative errors are dominated mostly by the triplet Lithium atom dimer, having
a reference interaction energy of solely −0.97 kcal mol−1. Issues with small reference
numbers leading to large relative errors are often countered by calculating regularized
relative errors. This however requires a reasonable choice for the regularization parameter,
for which no example in the literature was found related to noncovalent interactions.

Table 3.7: Absolute error measures for the O23 benchmark set. All in kcal mol−1. OO-REMP/CBS(aug-
cc-pV[T/Q]Z), all electrons correlated, reference numbers: CCSD(T)/CBS(aug-cc-
pV[T/Q]Z), all electrons correlated, taken from Ref. [121].

A MSD MAD stdev RMSD min max

0.00 0.198 0.214 0.286 0.342 −0.150 1.037
0.25 0.123 0.126 0.143 0.186 −0.035 0.464
0.45 0.086 0.100 0.182 0.197 −0.104 0.661
0.50 0.077 0.113 0.208 0.217 −0.112 0.703
1.00 −0.009 0.384 0.670 0.655 −1.927 1.562

MP2 0.182 0.681 1.464 1.444 −5.450 3.550
MP3 0.287 0.594 1.159 1.170 −2.730 4.350

CCSD 0.362 0.379 0.493 0.603 −0.200 1.590
OMP2.5 0.065 0.120 0.212 0.217 −0.210 0.780

OMP3 0.143 0.234 0.411 0.427 −0.500 1.610

All in all, and also compared to the competing methods in Table 6.6, it can be concluded
that OO-REMP performs outstandingly well for the O23 benchmark set. As expected,
MP2 and MP3 (UMP2 & UMP3) are completely unreliable for open shell noncovalent
interactions, with RMSDs larger than 1 kcal mol−1. CCSD and OMP3 are better than
the former methods but are inferior to the best OO-REMP mixture. OMP2.5 – being
conceptually somewhat related to OO-REMP – provides competitive results that are
only slightly worse than the best OO-REMP results. Currently, there are no DFT results
available for the O23 benchmark set, and it was out of the scope of this work to generate
these numbers.

Regarding the optimal REMP mixing ratio, it is quite interesting that the choice of A
which provides the best results differs significantly from the one that provides correlation
energies closest to 100 % or the smallest possible scatter of the correlation energy (cf.
Sec. 3.1). The reason for this is unclear, especially as the amount of recovered correlation
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energy decreases with increasing A. Both the OO-REMP and the reference CCSD(T)
calculations employ identical basis sets, CBS extrapolation schemes and an identical
counterpoise correction. Errors resulting from basis set incompleteness are therefore
expected to cancel out. On the other hand, these results are perfectly in line with those
for the RG18 benchmark set (cf. Sec. 3.3.1), insofar as noncovalent interactions tend
to require rather large values for A, the outcome for the O23 set is consistent with the
previous findings. Moreover, while there is a minimum in the MAD and the RMSD at
quite large values of A, the results obtained with 0.15 ≥ A ≥ 0.25 are not bad at all and
for sure useful.

There are two hypotheses for the unusually large optimal mixing parameter value for
noncovalent interactions. Calculations of noncovalent interactions typically employ basis
set extrapolation and counterpoise correction schemes. The Boys-Bernardi scheme is
often claimed to slightly overshoot the true BSSE6, and it is not entirely clear whether
(OO-)REMP and CCSD(T) are affected in the same way so that these effects cancel out.
The second hypothesis is that TDEs are especially important for accurately describing
the correlation in noncovalently bound systems. As MP2 typically overestimates their
contribution, a larger MP fraction in Ĥ(0) would lead to a larger amount of correlation
energy being recovered and thus provide a better description of these systems. To confirm
this hypothesis, one would need a detailed breakdown of the correlation part of the
interaction energy in terms of SDEs and TDEs. The reference numbers for such an
analysis would have to be generated at least at the CCSDT level of theory. If the reason
for the unusual high mixing parameter value is rooted in the extraordinary importance of
the TDEs, then the S2REMP ansatz might lead to further improvements as it was shown to
get both the SDEs and the TDEs right without sacrificing much of the correlation energy.
In conjunction with the CBS extrapolation, again the question emerges whether SDEs
and TDEs converge at the same rate and with the same functional dependence to the CBS
limit. The W4 composite level of theory e.g. employs different exponents for extrapolating
the SDE and TDE components of the RCCSD correlation energy[225] based on a proposal
by Klopper[276] (see also references therein for context and competing schemes). It has
furthermore been shown by Klopper that already for the smallest noncovalently bound
system, the helium dimer, great care has to be taken when extrapolating to the CBS
limit.[68] Such effects are expected to be not important and cancel out for the current
benchmark set as the reference CCSD(T) energies were also generated with a simple
extrapolation. For future investigations it might be important to keep this in mind, as
REMP is constructed with the idea to get both kinds of double excitations right, providing
an ideal staring point for separate extrapolation (i.e. using different exponents for SDEs
and TDEs).

6see e.g. Reference [271]; in recent times, this point of view has however been questioned,[274] Sherrill
and coworkers recently advocated for using half-corrected energies,[262] and Martin and coworkers
found that it depends on the method and basis set[275]
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Figure 3.12: Graphical representation of absolute and relative errors for the O23 open-shell
noncovalent interaction benchmark, OO-REMP/CBS(aug-cc-pV[T/Q]Z). Reference:
CCSD(T)/CBS(aug-cc-pV[T/Q]Z). See Tables 6.6 and 6.7 for numerical values. The
He· · · Li system was excluded for calculating relative errors.
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3.3.4 The S22 Benchmark Set

The S22 benchmark set[277] goes back to Hobza and coworkers and is probably the most
famous benchmark set for noncovalent interactions. The reference interaction energies have
been revised several times[269,278] and it was investigated in countless studies.[244,264,279]

The currently accepted best-estimate reference values are the S22B interaction energies of
Marshall et al.[216,269] These reference calculations either directly extrapolate large-basis
CCSD(T) calculations for the small systems or use MP2/CBS+∆CCSD(T)

MP2 composite
schemes and are thus of approximate CCSD(T)/CBS quality.
The S22 set features a broad variety of systems, from small dominantly hydrogen-bonded
water dimers to Watson-Crick base pairs and dispersion-dominated benzene dimers.
Whereas the smaller systems are easily computationally accessible, the larger systems
are quite demanding and calculations beyond triple-ζ basis sets are hardly possible with
steep-scaling wavefunction methods. This makes it difficult to treat all systems at an
equal footing. In an earlier stage,[229] various extrapolation techniques were assessed for
the S22 set in conjunction with REMP. For the sake of brevity, only one protocol will be
presented here, namely a focal-point scheme:[254,255]

• The MP2/CBS energy is extrapolated from aug-cc-pVTZ and aug-cc-pVQZ with
the Petersson extrapolation[268] with fixed exponents of α = 5.79 and β = 3.05 as
in Section 3.3.2. Core electrons are kept frozen.

• The MP2/CBS energy is augmented with a ∆REMP-MP2 correction as regularly
done with CCSD(T). The REMP correction is calculated from the largest feasible
basis set for each system which allows REMP calculations to be performed within
reasonable time employing standard high-performance gear7. Again, core electrons
were kept frozen.

With this computational compound protocol, it is possible to obtain approximate REMP/CBS
interaction energies at reasonable cost. The MP2/CBS energies, e.g. can all be obtained
in a few hours of wall clock time using ORCA on modern hardware.

For computing the ∆REMP-MP2 correction, the largest feasible aug-cc-pVXZ basis set
was used (see Table 3.8). Core electrons were kept frozen during correlation treatment.

Figure 3.13 shows the results obtained for the S22 benchmark set with the composite
extrapolation scheme described above. As has been the case before, there is an obvious

7In a heroic and reckless attempt, it was possible to converge the REMP/aug-cc-pVTZ wavefunction
for the Adenine-Thymine Watson-Crick complex for a single A value (A = 0.15) on one of the old
chem compute nodes, wasting at least 8000 h of CPU time (the calculation had to be restarted at lest
twice) and using ≈242 GB RAM. Even if it is taken into account that the program has since been
improved and adapted to get along with less RAM, and that e.g. the compute nodes of the JUSTUS2
cluster are vastly more powerful, each scan point will still easily burn 1–2 weeks of wall clock time
on one compute node. Such calculations are thus in principle technically feasible, but the effort is
disproportionate to the insight gained. After finding an appropriate mixing ratio A, it is of course
possible to run production calculations for a single fixed mixing ratio, but complete A range scans are
prohibitively expensive.
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Figure 3.13: Absolute (left panel) and relative (right panel) errors for the S22 benchmark set. Data
collected from MP2/CBS+∆REMP-MP2 (see text for details). Errors are with respect
to the S22B benchmark results by Marshall et al.[269] Error bars indicate one standard
deviation.
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Table 3.8: Basis sets used for calculating the ∆REMP-MP2 correction for the S22 benchmark set and
interaction classification according to Ref. [269].

1 HB ammonia dimer aug-cc-pVQZ
2 HB water dimer aug-cc-pVQZ
3 HB formic acid dimer aug-cc-pVQZ
4 HB formamide dimer aug-cc-pVQZ
5 HB uracil dimer h-bond aug-cc-pVDZ
6 HB 2-pyridone 2-aminopyridine complex aug-cc-pVDZ
7 HB adenine thymine Watson-Crick aug-cc-pVDZ
8 DD methane dimer aug-cc-pVQZ
9 DD ethene dimer aug-cc-pVQZ

10 DD benzene methane complex aug-cc-pVTZ
11 DD benzene dimer parallel displaced stack aug-cc-pVTZ
12 DD pyrazine dimer aug-cc-pVTZ
13 MX uracil dimer stack aug-cc-pVDZ
14 DD indole benzene stack aug-cc-pVDZ
15 MX adenine thymine complex stack aug-cc-pVDZ
16 MX ethene ethyne complex aug-cc-pVQZ
17 MX benzene water complex aug-cc-pVTZ
18 MX benzene ammonia complex aug-cc-pVTZ
19 MX benzene HCN complex aug-cc-pVTZ
20 DD benzene dimer T-shape aug-cc-pVTZ
21 MX indole benzene T-shape aug-cc-pVDZ
22 MX phenol dimer aug-cc-pVDZ

improvement upon mixing the parent methods. The results are furthermore qualitatively
in line with the findings for the A24 basis set, especially concerning the optimal RE/MP
mixing ratio. The best results are again obtained in the range of 0.30 ≤ A ≤ 0.45. This
is larger than the thermochemistry optimum but consistent with the other noncovalent
interaction benchmark sets. the reasons for this discrepancy were already discussed in
the context of the A24 benchmark set.

The present results for the S22 set should not be considered to be authoritative as
the employed basis sets and the extrapolation procedure give room for improvement.
Nevertheless, even with rather small basis sets, the outcome can be considered to be at least
a partial success. The MAD and RMSD are clearly below 0.5 kcal mol−1 with an optimal
mixing parameter choice (A ≈ 0.4, 0.24 kcal mol−1 and 0.32 kcal mol−1, respectively) and
the MARE and RMSRE are brought below 5 %.

Burns et al.[244] tested a large number of model chemistries for noncovalent interactions.
Their results will not be repeated here, it is just noted that their MP2/aug-cc-pVTQZ
result was exactly reproduced. In essence, they found that with large enough basis
sets, MP2C,[280,281] MP2.5[150] and SCS(MI)-CCSD[282,283] provide results wit MADs of
≈0.2 kcal mol−1 or below. None of the DFT methods they tested (using the aug-cc-pVTZ
basis set) reached such an accuracy.
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Table 3.9: Absolute error statistics for the S22 benchmark set. All errors are relative to the
S22B reference interaction energies[269] and in kcal mol−1.

A MSD MAD STDEV RMSD min max
0.00 0.75 0.75 0.65 0.98 0.05 2.44
0.15 0.46 0.47 0.46 0.65 −0.01 1.63
0.20 0.38 0.38 0.41 0.55 −0.02 1.37
0.25 0.30 0.30 0.37 0.47 −0.04 1.11
0.30 0.22 0.26 0.34 0.40 −0.12 0.88
0.35 0.15 0.24 0.32 0.35 −0.34 0.80
0.40 0.07 0.24 0.32 0.32 −0.56 0.72
0.45 0.00 0.24 0.34 0.33 −0.78 0.66
0.50 −0.07 0.27 0.38 0.38 −1.01 0.59
0.55 −0.14 0.30 0.43 0.44 −1.24 0.53
0.60 −0.21 0.35 0.48 0.52 −1.48 0.48
1.00 −0.78 0.87 1.14 1.36 −3.59 0.27

MP2/aug-cc-pVTQZa) 0.87
MP2C/aug-cc-pVTQZa) 0.16
MP2C/[aVTQZ;δaTZ]b) 0.16
MP2.5/[aVTQZ;δaTZ]b) 0.19
CCSD/[aVTQZ;δaTZ]b) 0.90

SCS(MI)-CCSD/[aVTQZ;δaTZ]b) 0.09
SCS-PCPF-MI/[aVTQZ;δaDZ]c) 0.09

BP86-D3(BJ)/def2-QZVPd) 0.39 0.51 0.70
B3LYP-D3(BJ)/def2-QZVPd) 0.29 0.31 0.43

ωB97X-D3(0)/def2-QZVPd) 0.07 0.21 0.29
B2GPPLYP-D3(BJ)/def2-QZVPd) 0.09 0.14 0.20

a) Taken from Table VI of Ref. [244]
b) Taken from Table VII of Ref. [244]
c) Taken from Table 3 of Ref. [143]
d) Taken from Ref. [284]

When inspecting the numbers in Table 3.9, it should be considered that at least SCS(MI)-
CCSD was trained on the S22 set. The same holds for SCS-PCPF-MI, which was trained
on a subset of S22. Regarding the computational cost, MP2.5, (SCS)-CCSD, and SCS-
PCPF-MI exhibit the same computational scaling as REMP (O(n6)). A direct comparison
of the numbers in Table 3.9 is furthermore problematic as the REMP results mix several
basis sets for calculating the δaXZ correction. One furthermore finds that DFT especially
with certain double hybrids and large enough basis sets is fairly accurate for the S22 set.

Figure 3.14 shows a comparison for the three subsets hydrogen-bonded, mixed character,
and dispersion dominated (see Table 3.8 for the assignment). The three subsets behave
essentially as their counterparts from the A24 set (cf. Figures 3.9 and 3.11). The
dispersion-dominated subset is best described with A ≈ 0.25, while the hydrogen-bonded
systems demand A ≈ 0.70 − 0.80. The mixed systems are interesting insofar as they are
right in the middle between HB and DD in the case of S22. In the case of the A24 set,
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Figure 3.14: Absolute (left panel) and relative (right panel) errors for the HB, MX and DD subsets
of the S22 benchmark set. Data collected from MP2/CBS+∆REMP-MP2 (see text for
details). Errors are with respect to the S22B benchmark results by Marshall et al.[269]

Error bars indicate one standard deviation.
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the mixed systems behave rather similar to the hydrogen-bonded systems. The obvious
difference between A24 and S22 is that the mixed systems of S22 are on average fairly large,
featuring more dispersion interactions than the average mixed system of A24. The relative
errors of the S22 set exhibit the same trends as the A24 set regarding the minima position.
The positions of the minima of the relative errors are furthermore in good agreement
with those of the absolute errors. Another common feature of A24 and S22 is that the
smallest average absolute error is found in the set of dispersion-dominated systems, while
the smallest average relative error is encountered in the set of hydrogen-bonded systems.

So far, no complete set of results obtained with OO-REMP is available. OO-REMP has
the drawback that the current canonical implementations do not allow to freeze core
electrons during the iterative orbital optimization, which makes calculations especially for
larger molecules considerably more costly. Given that OO-REMP clearly outperformed
canonical REMP in case of the A24 set and that it led to much more consistent results, it
can be envisaged that the same will hold for the S22 set, considering the striking similarity
of the canonical REMP S22 and A24 results. A possible cost-efficient alternative to full
large-basis OO-REMP calculations for all systems would be to employ the composite
scheme that was successfully applied for canonical REMP.

There is furthermore the S22x5 benchmark set[151] derived from S22. In addition to S22,
it features structures at 0.9, 1.2, 1.5, and 2.0 times the equilibrium distance along the
direction of the noncovalent interaction. The S22x5 benchmark set therefore also allows to
test for non-parallelism errors and for correct dissociation of of noncovalent interactions.
Some preliminary data for S22x5 was so far gathered,[229] but no complete set of results
exists (both for REMP and OO-REMP).

A topic which has not been considered so far at all are three-body noncovalent interactions.[285]

These turned out to be challenging for dispersion-corrected DFT,[286] hence it would be
interesting to test REMP and OO-REMP on this still rather unexplored terrain.

3.4 Reaction Energies of Metal-organic Reactions

So far, all all benchmark sets were exclusively constructed from first- and second row
(main group) elements. A quantum-chemical method with a broad scope of applicability
should however be applicable to the whole periodic table and not only to the easy part.
This is especially true as transition metal chemistry and transition metal catalysis is still
an important and ever-growing field.

On the other hand, there are only a few high-quality benchmark sets for transition
metal chemistry like the 3dMLBE20 set,[287] a set by Cheng et al.,[288] a set of bond
dissociation energies by Fang et al.,[289] or the ccCA-TM/11 set.[290,291] The main reason
is that transition metals often exhibit a distinctively different electronic structure than
main-group elements, with unpaired electrons and crowded electron pairs. Often the
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electronic structure is of multiconfigurational nature, making it difficult to obtain accurate
reference energies even with sophisticated single-reference wavefunction methods.[292]

For reaching reasonable quantitative agreement between calculated and (hard to obtain)
experimental bond dissociation energies, scalar-relativistic coupled cluster methods with
core-valence correction and higher-order excitation corrections are necessary,[288] and
the standard tool for generating computational benchmark data – CCSD(T)/CBS – is –
despite of different claims[289] – of limited use in these cases.[287,292] The question whether
single-reference CCSD(T) is an appropriate reference method crucially depends on the
amount of multiconfigurational/multireference character of the species involved.[292] Post-
CCSD(T) effects can either be covered by going up to CCSDTQ (neglecting even higher
excitations) or by using multireference correlation methods. Unfortunately, all available
a posteriori single reference diagnostics for multireference character do not correlate
sufficiently well with the actual size of the multireference correction found in the case of
transition metal compounds,[292] so that there is still room for improvement.

The current formulations of REMP and OO-REMP are strictly limited to single reference
Slater determinants, making the treatment of multireference systems unreliable.8 When
looking for suitable benchmark sets, the selection thus has to be limited to such sets
which are tractable at the single reference level. Such a set is e.g. the MOR41 set by
Dohm et al.[293] which is composed of real-life examples of various kinds of closed-shell
transition metal reactions. The absence of strong multireference character was warranted
by calculating the T1 diagnostic and by inspecting FOD plots for signs of multireference
character for all molecules. The MOR41 set thus only contains reactions where it is safe
to assume that CCSD(T)/CBS or in this case DLPNO-CCSD(T)/CBS(def2-[T/Q]ZVPP)
will provide reasonable reference electronic reaction energies. Moreover, the authors argue
that their reference reaction energies are only correct to a safety margin of ±2 kcal mol−1.

RI-REMP and RI-OO-REMP (PSI4 designation: RI-OREMP) calculations were per-
formed for as many reactions of the MOR41 set as possible. These calculations make use
of the REMP implementation in the DF-OCC code of PSI4, which has the capability to
freeze core electrons during the orbital optimization procedure as well as (experimental)
support for effective core potentials which is vital for calculations starring 4d and 5d
metals. At a late stage, it was found that PSI4 uses different default frozen core electron
numbers for transition metals than wavels or the reference ORCA calculations. This gives
of course rise to some additional deviations apart from the RI error. Unfortunately, it
was too late to rerun all calculations when this problem was recognized. But as it was
so far not possible to obtain REMP results with two consecutive basis for doing a CBS
extrapolation, all comparisons are rather qualitative than quantitative anyway.

8Care has to be taken with the nomenclature here. The attribution of single- or multireference character
always depends on the chosen basis. The basis chosen in this work are plain Slater determinants, but
it could also be configurations or configuration state functions. There are known cases whose reference
is e.g. well described by a single open shell low-spin configuration state function. In a CSF picture,
this would be a single reference case, in a determinant picture, this would still be a multireference
case.
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The def2-TZVPP basis set was chosen for all calculations. The RI-REMP and RI-OREMP
calculations additionally use the def2-universal-jkfit auxiliary basis (the “universal” or
def2/JK) as JK fitting basis for the Hartree-Fock calculation and the reference determinant
of the RI-OREMP calculation, and the def-TZVPP-RIFIT (the def2-TZVPP cbas or
def2-TZVPP/C) auxiliary basis set as correlation fitting basis set, i.e. as auxiliary basis
for two-, three-, and four-external exchange integrals. The details of the implementation
can be found in Ref. [204].

The canonical REMP code in PSI4 constructs the external exchange operator by first
transforming exact ERIs from the AO to the MO basis, requiring up to n4

virt/8 doubles
for storing transformed ERIs. These are then contracted with the amplitudes to form
the EEO, optionally using symmetry up to D2h. Such an algorithm is efficient for small
molecules and with enough storage at hand. It also has the advantage that the actual
formation of the EEO scales as O(n2

occn
4
virt), that symmetry can conveniently be used, and

that the contraction of amplitudes and integrals can be done very efficiently using level 3
BLAS routines. The drawback is that the sparsity of the ERI tensor is lost. The formation
of the EEO in the AO basis has the drawback that it formally scales as O(n2

occn
4
bas), but

this is usually overcompensated by the sparsity of the ERI tensor. When an efficient
prescreening is used, and when only contractions which integrals that are actually nonzero
are performed, this is usually the most efficient choice for larger molecules, as long as no
virtual space truncation is performed.

Using the RI approximation for the two-electron integrals (TEI) / electron repulsion
integrals (ERI) has the advantage that not all ERIs in the AO basis have to be calculated
and transformed to the MO basis, thus saving the CPU time for recalculating all ERIs
in each iteration, or saving memory (disk or RAM) needed for storing AO/MO basis
exact ERIs. Instead, three-index ERIs are calculated, which are easier to store on disk
or in memory. From the three-index ERIs, the four-index-integrals are reconstructed
and contracted with the amplitudes to form the EEO. In principle, this can again be
done in either the AO or the MO basis. Unfortunately, there is no gain in terms of
efficiency from using the RI approximation compared to exact ERIs9 in the case of
coupled cluster/coupled pair type methods. The reconstructed ERIs still need to be
processed in the same way as the exact ERIs, and there is only a gain in efficiency
when the reconstruction of the four-index ERIs from three-index ERIs is faster than
their exact calculation (or reading them from disk). The current PSI4 implementation
in the DFOCC module furthermore has the drawback that there is neither symmetry
no batching implemented, i.e. the program needs n2

virtnaux/2+n4
virt/8 doubles of RAM

for the reconstruction of the ERIs. This limits the size of the systems tractable at the
moment to molecules with ≈ 1000 AO basis functions and ≈ 2000 JK or C auxiliary
basis functions before the memory demand becomes unsustainably large. But already
this modes number of basis functions required some fixes in the code, namely replacing

9also see this explanation by Frank Neese in the ORCA users forum:
https://orcaforum.kofo.mpg.de/viewtopic.php?f=8&t=7646&p=33016&hilit=integral#p33016
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Figure 3.15: Correlation between the errors of RI-REMP and canonical REMP for a selection of
reactions of the MOR41 benchmark set. Points of the same type belong to different
values of the mixing parameter A. Errors were calculated wrt. the original MOR41
reference reaction energies.

many 32 bit (four byte) integers by 64 bit (eight byte, long long int) integers, before
any production calculation was possible.

Running all calculations of the MOR41 benchmark set with the currently available (OO-
)REMP programs is clearly out of scope. The authors of Ref. [293] state that running the
largest DLPNO-CCSD(T)/def2-QZVPP necessary (>100 atoms, ≈ 5000 basis functions)
took 3 weeks of (wall clock) time on not further specified hardware. As soon as there is a
DLPNO version of REMP, such calculations are of course possible, but until then, it would
require a massively parallel (MPI) implementation of REMP. Given that (canonical)
REMP is trivially implemented on top of an existing CEPA/0 program (which is in
turn an approximation to CCD), this should be fairly easy as soon as one has a working
DLPNO-CCSD (or PNO-LCCSD) code at hand.

Figure 3.15 shows a comparison between the errors of RI-REMP and the errors of
canonical REMP for a limited set of reactions. All in all, the agreement is reasonably
good, and the residual inconsistency can be attributed to the different frozen core settings.
This shows that the RI error is sufficiently small and that RI-REMP is an adequate
approximation to canonical REMP similar to other RI-accelerated methods.
It was possible to obtain raw DLPNO-CCSD(T)/def2-TZVPP data for most reactants of
the MOR41 benchmark set, which allow for a more sound comparison to RI-REMP/def2-
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Figure 3.16: Statistics for the 15 smallest systems of the MOR41 benchmark set, RI-REMP/def2-
TZVPP. Reference data: DLPNO-CCSD(T)/def2-TZVPP. Error bars indicate one stan-
dard deviation.

TZVPP results. In total, there is complete DLPNO-CCSD(T) and RI-REMP data for a
total of 15 reactions.10

Figure 3.16 shows a statistical evaluation for this subset. The performance provided by
RI-REMP is admittedly not great but also not terrible. RE, i.e. CEPA(0)/D, exhibits a
reasonable performance with an MAD of 4.4 kcal mol−1. MP2, on the other hand, has
10reaction 1, reaction 2, reaction 3, reaction 6, reaction 12, reaction 13, reaction 15, reaction 18, reaction 19,

reaction 20, reaction 23, reaction 29, reaction 36, reaction 39, and reaction 40 as defined in Ref. [293].
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an MAD of almost 12 kcal mol−1, being unacceptably large for any application. REMP
hybridization leads to a considerable improvement upon both RE and MP, specifically
the MAD reaches a minimum with REMP(0.24) of 2.6 kcal mol−1, bringing down the RE
error by almost one half. The corresponding RMSD is 3.5 kcal mol−1. On an absolute
scale, this is still an alarmingly large error. On the other hand, this result has to be put
into relation to results of competing methods. Furthermore, it should again be stressed
that the reference reaction energies themselves are provided with a safety margin of
2 kcal mol−1. None of the wavefunction methods tested in Ref. [293] reaches this accuracy
for the full set, and only a hand full of the more expensive hybrid and double hybrid
density functionals perform equally well or better. It is furthermore quite satisfying
that the range in A where REMP performs best is again between an MP fraction of 15
and 25 %, being qualitatively in line with all other covalent thermochemistry benchmark
sets. Furthermore, the subset used here could be biased in the sense that in case of
the smaller systems, the central transition metal atom makes up a larger portion of the
molecule compared to the big molecules neglected here. It has been shown before that
isolated transition metal atoms and ions demand different REMP mixing ratios than
main group elements[76] judged by the amount of recovered correlation energy and the
wavefunction error. It is however unclear to which extent this is transferable to transition
metal organometallics.

There is also a number of preliminary results from RI-OO-REMP, but the size of the
systems that can be treated is currently even more limited than in the case of RI-
REMP. As OO-REMP so far turned out to be clearly superior to REMP in any aspect,
developments and investigation in this direction propose themselves.

3.5 Equilibrium Structures of Small Molecules

The results presented in this section were already published in Reference [53], the vast
majority of the raw data was generated by Robert Richter[294] and Luca Völkl.[295]

So far, all investigations were exclusively concerned with thermochemistry, preferably of
molecular structures claimed to be minima on the potential energy surface (PES). This
section now deals with finding minima on the potential energy surface and the question
how well REMP performs for this task. Finding minimum structures of molecules is one
of the most basic tasks of computational chemistry and typically one of the first steps
of any computational study. Nature tends to minimize the free energy, and molecules
therefore tend to spend most of their time near to a local minimum on the PES. The
vast number of experimental analytical techniques furthermore assumes that the object
of study initially is in a ground state minimum. For any meaningful comparison of
calculation and experiment, it is therefore of utmost importance to be able to accurately
predict molecular equilibrium structures. This is especially true for methods that claim
universal applicability.
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It turns out that the accurate experimental determination of equilibrium structures with
sub-pm accuracy is quite involved and requires the exact measurement of rotational
spectra and often calculations for obtaining further corrections for rotation-vibration
couplings.[296] For instance, it was only in 2018 when it was possible to obtain a really
accurate equilibrium structure for the hydrogen peroxide molecule,[297] and for other
molecules like the dichlorine molecule, even today no structure with asserted sub-pm
accuracy is available.

In order to test the ability of REMP and OO-REMP for predicting equilibrium molecular
structures, a set consisting of 59 bond lengths of 50 small closed and open shell main
group molecules was compiled. This set is inspired by the work of Bak et al.,[298] Coriani
et al.[299] as well as Tentscher et al.[300] Their sets of molecules were merged, and the
reference data was updated to the latest/best available experimental estimate (which
changes significantly in some cases). Furthermore, problematic cases (e.g. F2) were
removed from the set and further small molecules missing so far (e.g. O2) were added.
The primary criteria for inclusion into the set was that the structure is an (empirical)
experimental equilibrium structure, i.e. that the anharmonicity, the centrifugal distortion,
and the rotation-vibration coupling were properly taken care of, and that the uncertainty
of the bond length is below 0.1 pm. Furthermore, the data should be generated from
several isotopologues to remove isotope effects.11 At first glance, the requirement of an
uncertainty below 0.1 pm seems to be an overly strict criterion, given that there is not so
much data available fulfilling it. These criteria furthermore completely rule out the use
of solid state X-ray structures, as these typically correspond to the position expectation
value of the zeroth vibrational level r0 instead of the distance belonging to the minimum
of the PES re. Already in the presence of weak anharmonicity, the difference between
r0 and re may reach some tenth of a picometer. Neglecting such details may lead to
systematically too large, false positive errors for very accurate methods: It was shown that
there are computational methods which are actually capable of predicting equilibrium
bond lengths with an accuracy of 0.1 pm.[301]

As it soon turned out to be vital to also correlate the core electrons for accurate results,
no frozen core approximation is applied throughout this section.

Figure 3.17 shows the essence of the bond length benchmark for REMP and OO-REMP.
Depending on the basis set, one finds that canonical REMP systematically underestimates
main group bond lengths. And while canonical MP2 is on average quite accurate (smallest
MSD), it exhibits the largest uncertainty (largest MAD and RMSD), making it unreliable
with mean absolute errors of at least 0.6 pm. The most accurate method of the canonical
REMP series is RE (i.e. CEPA(0)/D). In between, one finds that the bond lengths do
first systematically decrease up to A ≈ 0.35, then they start to increase again. The MAD
and especially the RMSD are largely unaffected, varying only slowly between 0 ≤ A ≤ 0.6.
Quite interestingly, one finds that REMP exhibits the smallest errors in conjunction with
11the minimum of the Born-Oppenheimer potential energy surface corresponding to the equilibrium

structure does not depend on the isotopic composition.
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Figure 3.17: Statistics for the bond length benchmark set, average over 59 bond lengths. Reference:
best available experimental/semiempirical bond length.

the aug-cc-pwCVTZ basis set (MAD ≈ 0.4 pm), indicating a Pauling point. With the even
larger aug-cc-pwCVQZ basis set the results clearly become worse. This results also implies
that REMP will not benefit from a CBS extrapolation of the gradients, as all [T/Q] basis
combinations shown in Figure 3.17 exhibit shorter bond length with the larger basis.
In conclusion, one can say that canonical REMP regardless of the mixing parameter is
not a useful method for structural optimizations. It is not much more accurate than
MP2, but has a prohibitively large computational cost for crude survey calculations.
Approximating the 95 % confidence interval with 2× the RMSD,[302,303] one finds a 95 %
CI of almost 1.5 pm. Such an accuracy might be sufficient for survey calculations, but
not for high-quality in-depth calculations.

Turning to OO-REMP, one finds some notable differences compared to the canonical
variant. The most striking difference is that now on average the bonds are ≈ 0.5 pm longer,
while the general basis set trends are preserved. Instead of a systematic underestimation,
one finds that within 0≤ A ≤ 0.5, the signed average bond length errors are in a narrow
interval of ±0.25 pm. Again one finds that triple zeta basis sets predict longer bonds than
quadruple zeta basis sets, but the former now tend to be slightly too large while the latter
tend to be too small. The MAD and the RMSD show unambiguous minima in the range
between A = 0.15 and A = 0.40, depending on the basis set. In any case the minima are
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rather flat and the precise value of A is less important than the basis set. Contrary to
canonical REMP, the cc-pwCVTZ, aug-cc-pwCVTZ and aug-cc-pwCVQZ basis sets lead
to almost identical RMSDs of ≈ 0.20 pm (0.18, 0.18, and 0.22 pm for the three basis sets
at their respective minima). This in turn implies a 95 % confidence interval of less than
0.5 pm, probably well suited for high-quality, predictive calculations.

It was also possible to obtain fixed-basis CCSD(T) results for the same basis sets as listed
in Figure 3.17 using ORCA and numerical gradient techniques. CCSD(T) was found to
deliver even more accurate results than OO-REMP at the drawback of a significantly larger
computational cost. In fact, CCSD(T)/aug-cc-pwCVQZ achieved an MAD of 0.08 pm
and an RMSD of 0.12 pm. This result is qualitatively in line with that of Pawłowski et
al.,[304] who found an MAD of ≈0.1 pm using CCSD(T) and different basis sets.

The above result shows that the scrupulous selection of reference data is mandatory for
rigorous validations. Otherwise, poor reference data may artificially spoil the performance
of a good method. Given the accuracy of CCSD(T), one would ideally demand an
even smaller uncertainty for the reference data as it is already now hardly possible to
discriminate between the reference uncertainty and the tested methods uncertainty. This
is also backed by a second set of bond lengths tested, where the reference data is of
inferior quality. The low quality set contains re values with large experimental uncertainty,
but it also contains r0 values, as this is often the only quantity available. The statistical
indicators for this set are worse for both OO-REMP and CCSD(T), a result which can
be attributed to the poor quality of the reference data (see Ref. [53]).

Figure 3.18 shows some arbitrarily selected bond length error examples calculated at the
REMP/aug-cc-pwCVTZ and OO-REMP/aug-cc-pwCVTZ level of theory. This particular
basis set was chosen as it led to the best performance for both REMP and OO-REMP. As
it can be seen, there is good reason to exclude the F2 molecule from the benchmark set,
although there is highly reliable reference data available. The pronounced multireference
character of this molecule leads to a wild variation of the results with changes in A, and
it furthermore leads to convergence issues and finally a diverging bond for OO-REMP
below A = 0.15, hence there are not data points for A < 0.15. Figure 3.19 furthermore
shows that MP2 and OO-MP2 exhibit the largest error spread with some bond lengths
being underestimated and others being overestimated. RE2 and OO-RE2 on the other
hand lead to a small scatter but a consistent overestimation of almost all bond lengths.
In between at A ≈ 0.20 there is a region with small scatter and bond length centered
somewhat around zero. One furthermore finds that OO-REMP quite consistently predicts
slightly longer bond lengths than REMP and that OO-REMP is not in all cases more
accurate than REMP. The results shown in Figure 3.19 are also interesting insofar as
one finds that choosing A ≈ 0.20 provides not only good results for well-behaved single
reference molecules (and close to zero error for the two-electron system H2), but also
reasonable results for complicated systems like PN or OF which supposed multireference
character.
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Figure 3.18: Some examples for bond length errors calculated with REMP and OO-REMP. Crosses
indicate canonical REMP, dots indicate OO-REMP. Basis set: aug-cc-pwCVTZ.

For further ranking of the REMP and OO-REMP results, there need to be data from
other methods like DFT or different coupled cluster excitation levels. For a smaller set
of molecules, Karton and Martin[301] found that CCSD(T)/CBS provides an MAD of
0.17 pm, which is in line with our results. They furthermore found that the inclusion of
connected quadruples is mandatory for reliably achieving sub-pm accuracy as is done in
the W4[225,305] composite approach. The obvious drawback of such composite approaches
(“layered extrapolation”) is that there are typically no analytical gradients available,
making the calculation of equilibrium structures cumbersome and expensive.

The structure benchmark data collection also contains two sets of equilibrium bond
angle sets. Bond angles and especially proper dihedral angles are generally even harder
to obtain experimentally than bond lengths. Angles are more flexible and even more
prone to anharmonic effects than bonds, which is generally reflected in the larger relative
uncertainties. Furthermore, a molecule needs at least three atoms to have a bond angle,
causing that an exact structure determination becomes very involved. The bond angle
benchmark largely corroborates the bond length analysis, but one finds a significantly
smaller dependence of the results on the mixing parameter A.
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Figure 3.19: Zoom into the interesting region of Figure 3.18. See the caption of Figure 3.18 for
details.

3.6 Harmonic Vibrational Frequencies of Small Molecules

The results presented in this section were already published in Reference [53], the majority
of the raw data was generated by Paul Idzko.[306]

The set of equilibrium structures of the previous section was used to create yet another
benchmark set. For a subset of molecules, experimental harmonic vibrational wavenumbers
were available, i.e. true ν̃e numbers that have been corrected for rotational distortion and
anharmonicity by measuring several overtones and combination bands. Such data is only
available from precise gas-phase measurements or measurements in rare gas matrices,
hence the size of molecules is rather limited. For the harmonic vibrational wavenumbers,
no precision criterion was applied. Typically, the precision of such data is assumed to be
much better than what can be achieved by quantum chemical methods.12

The use of frequencies that were properly extrapolated to the harmonic limit is crucial, as
the following example shows: In the case of the 12C16O molecule, e.g., the hypothetical13

12If uncertainties are provided, they are typically significantly smaller than 0.1 cm−1.
13the Q branch itself at 2143 cm−1 is forbidden due to angular momentum conservation and thus not

observed experimentally in the gas phase, only the P and R branches bracketing it.
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Figure 3.20: Statistics for the vibrations benchmark set, average over 81 harmonic vibrational modes of
43 molecules. Reference: best available experimental harmonic vibrational wavenumbers.

pure vibrational, anharmonic 0→1 transition has a wavenumber of 2143 cm−1,[307] while
the extrapolated harmonic vibrational wavenumber amounts to 2169.8 cm−1.[308] The
difference between the harmonic vibrational wavenumber typically calculated and the
corresponding experimental value by a coarse experiment thus amounts to more than
25 cm−1. As is well known and as will be shown below, this difference is significantly
larger than the typical uncertainty of high-level quantum-chemical methods. The use of
harmonic vibrational frequencies as proper reference is therefore mandatory.

Great care has to be taken to select proper nuclear masses as vibrational wavenumbers
are mass-dependent. Quantum-chemical calculations primarily yield the partial second
derivatives of the potential energy surface with respect to two nuclear coordinates at a
given point (the Hessian), which corresponds to force constants. The nuclear masses are
then introduced by mass-weighting the Hessian prior to diagonalization. If calculated
harmonic frequencies shall be compared to experimental data, it is often necessary to
manually specify the atomic masses as quantum chemistry programs often use averaged
atomic masses instead of the mass of the most abundant isotope. The benchmark set also
contains data from molecules for which data for more than one isotopologue was available,
e.g. AlH&AlD, H2, HD & D2 etc. The Hessian was always calculated at the respective
minimum geometry provided by the tested method to remove any ambiguity regarding
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the choice of the structure. The vibrational frequencies benchmark set therefore contains
molecules for which no precise experimental equilibrium structure data was available
but good harmonic frequencies data. The Hessian was constructed from a five-point
numerical differentiation of energies (REMP) or gradients (OO-REMP), respectively, as
implemented in PSI4. For this benchmark set, so far no CCSD(T) data or results for
other methods exists.

Figure 3.20 shows a graphical representation of the statistical descriptors for the vi-
brational frequencies benchmark. Overall, one finds trends comparable to the structure
benchmark. Both REMP and OO-REMP again seem to have a basis set Pauling point
with the aug-cc-pwCVTZ basis set. The REMP data furthermore shows that for this
benchmark set, there is no improvement by hybridization, analogously to the equilibrium
structures. Pure RE/aug-cc-pwCVTZ provides the best vibrational frequencies with
an MAD of 17.3 cm−1 (RMSD=37.4 cm−1). With increasing MP2 fraction, the MAD
and RMSD increase steadily until the MAD surpassed 45 cm−1 with pure MP2. It can
be noticed that on average all REMP frequencies are too high, indicating that REMP
predicts bonds as too stiff. OO-REMP/aug-cc-pwCVTZ, on the other hand, exhibits
shallow minima in the MAD and the RMSD at 0.10 < A < 0.20 (OO-REMP(0.10)
yields an MAD of of 11.8 cm−1 and an RMSD of 15.3 cm−1). Compared to canonical
REMP, the mean signed deviation is also smaller, with OO-REMP(0.10)/aug-cc-pwCVTZ
being almost spot-on. Lastly, the dramatically smaller RMSD:MAD ratio of OO-REMP
indicates that it is less plagued by outliers than canonical REMP. In conclusion, the
bonds predicted by OO-REMP are thus on average not only slightly longer than their
corresponding REMP counterparts (cf. Figure 3.17) but also less rigid, which is a result
of the improved description of the electronic correlation.

As there is currently no data available from other methods, it is difficult to rank REMP
and OO-REMP compared to other methods, especially CCSD(T) and common density
functionals. The latter comparison would be particularly interesting as DFT is routinely
used in thermochemistry protocols to calculate the ZPVE correction. 14. From an absolute
point of view, an MAD of 12 cm−1 seems impressive. If the 95 % CI is again approximated
with 2× the RMSD, one obtains a 95 % CI of ≈30 cm−1. Wennmohs and Neese assessed
the performance of a large number of coupled-pair type methods on a small number of
molecules.[96] They found an MAD of 8.5 cm−1 for CCSD(T), and MAD of 25.6 cm−1 for
NCPF/1 (their best coupled-pair method), and an MAD of 56.4 cm−1 (data from Table 4
of Ref. [96]). Although their set of molecules is smaller and differs a bit from the one
used here, the performance of MP2 is comparable (cf. Fig. 3.20). Tentscher et al.[300] also
assessed the capability of a large number of methods to predict harmonic vibrational
wavenumbers of small radicals. They found that at least RO-CCSD(T) including core
correlation and large (core-polarized) basis sets are necessary to reach an MAD below

14Of course it will not be as simple as just substituting DFT with something “better”, because part of
the success of DFT is rooted in the error compensation of wrongly predicted harmonic frequencies
and the effect of anharmonicity, leading to scale factors close to unity.[309] Additionally, it might be
necessary to determine scaling factors for OO-REMP, too, for obtaining good ZPE corrections.
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10 cm−1. UCCSD(T) and also CC3 turned out to be insufficient with MADs larger than
30 cm−1. Tew et al.[310] found a MAD of 6.2 cm−1 for frozen core CCSD(T)/aug-cc-pVQZ
compared to the basis set limit, and have shown that for reaching quantitative agreement
with the experiment, corrections beyond perturbative triples, core correlation corrections,
and also relativistic corrections are necessary. While some of these tend to cancel each
other, each of these corrections may amount to several cm−1. Martin[311] also found a
slight overestimation by CCSD(T) at the CBS limit. Pawłowski et al.[304] also estimate
the error of CCSD(T) with QZ basis sets to be ≈ 9 cm−1. Karton and Martin[301] found
similar results, and only after the inclusion of corrections beyond CCSDTQ, i.e. with
the full W4 model, they were able to achieve an MAD below 1 cm−1. From this point of
view, the performance of OO-REMP, yielding MADs below 20 cm−1 with various basis
sets, is even more impressive. All in all, the quality of the results is quite promising.

3.7 Dipole Moments of Small Molecules

3.7.1 Main Group Element Molecules

The results presented in this section were already published in Reference [53], a part of
the data was generated by André Förstner.[312]

The static dipole moment is the most simple electric multipole moment (apart from total
charges, which are actually monopoles), and play a crucial role in noncovalent interactions
and the mutual orientation of molecules. Electric dipole moments are furthermore proper
observables and if the system under investigation has net zero charge, they are gauge
invariant.15 Molecular electric dipole moments can be measured rather precisely,[316]

typical measurements make use of the Stark effect, i.e. the splitting of degenerate lines
under the action of an external electric field. In the gas phase, the dipole moment can
be deduced from pure rotational spectra (microwave spectra) with additional external
fields with an accuracy of 1 % or better. An alternative technique is molecular beam
electric resonance with a claimed uncertainty of 0.02 % and a precision clearly better
than 1 %.16 As will be shown below, the experimental uncertainty is smaller than the
typical computational uncertainty, the number of significant digits is thus sufficient to
make valid judgments of the predictive performance of the investigated methods. The
calculation of molecular dipole moments is straightforward, either fully analytically (if a
15Multipole moments correspond to the expansion of the charge distribution in a basis of spherical

harmonics. Generally, only the lowest non-vanishing expansion coefficient is independent of the choice
of the origin (i.e. the dipole for neutral molecules and the center of charge for ions). All higher moments
will depend on the choice of the origin[313] and the only thing that can be done about it is to choose
the origin reasonably as e.g. the center of mass. Dipole moments of ions are also considerably more
difficult to measure than those of neutral molecules.[314,315]

16Molecular beam electric resonance (MBER) dipole moments are typically reported with at least three
significant decimals, often even more, see e.g. Refs. [317–320]. The uncertainty of these numbers is
thus clearly below 1 %. Ref. [319] describes a typical MBER apparatus as it has been built 50 years
ago.
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(relaxed) one-particle density is available), or as numerical derivative of the energy with
respect to external electric fields. As such, the dipole moment can serve as substitute
for assessing the quality of the one-particle density itself, which in turn is related to the
quality of the wavefunction.

The ability to predict molecular dipole moments was assessed with two different benchmark
sets: The smaller set consists of 20 small, formally closed shell singlet and single reference
molecules for which experimental dipole moments are available,[194] the larger set consists
of 150 closed and open shell molecules, where CCSD(T) was taken as reference.[321] In
both cases, the CCSD(T) structures provided with the benchmark data were used. For
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Figure 3.21: Mean absolute deviations of computed dipole moments from the respective reference.
Left-hand panel (a): S20 set,[194] REMP and OO-REMP calculations performed with
the aug-cc-pV5Z(-h) basis set, reference: best available experimental value; right-hand
panel: HHG152 set[321] excluding singlet methylene and ozone, OO-REMP/aug-cc-pVQZ,
reference: CCSD(T)/aug-cc-pVQZ. See Ref. [53] for further details.

the small S20 set,[194] it was found that both REMP and OO-REMP improve on their
parent methods. REMP systematically overestimates dipole moments by ≈0.03 D and
the MAD an RMSD have both shallow minima around A = 0.30, see Fig. 3.21(a). This
corresponds to a mean absolute relative error of ≈4 %. OO-REMP performs significantly
better, the MAD and the RMSD become minimal between 0.25 ≤ A ≤ 0.30, ant the
MAD amounts to 0.022 D. The relative error becomes minimal in the same region and
amounts to 2.7 %. For comparison, CCSD(T) achieved an MAD of 0.016 D corresponding
to an MARE of 1.95 %. CCSD(T) is thus still slightly better than REMP and OO-REMP
and can thus serve as reference method for dipole moments, but the distance especially
to OO-REMP is small, so results obtained with CCSD(T) as reference should not be
overinterpreted. For this set, also a number of DFT results were available, but none of
the tested functionals came even close to REMP.

The second set originally consisted of 152 closed and open shell molecules and noncovalent
complexes,[321] but O3 and singlet CH2 had to be excluded. O3 exhibited the known
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problem that for A < 0.17 the orbital optimization did not converge. 1CH2 had the
problem that the initial broken symmetry determinant either did not lead to convergence
or collapsed to a closed shell singlet, depending on A. In either case, the CCSD(T) reference
numbers are questionable, anyway. For O3, it has been shown that there are sizable
post-(T) contributions,[224] invalidating CCSD(T) as reference method. The CCSD(T)
calculation for 1CH2 builds upon a broken-symmetry determinant with ⟨Ŝ2⟩ = 0.72,
being a mixture of the open shell singlet and the ms = 0 component of the triplet. It
can safely be expected that UCCSD(T) cannot compensate for such an amount of spin
contamination. The given reference dipole moment might thus serve as reference for
methods building upon the same ill-defined spin state, but not as adequate reference for
spin-pure singlet methylene. The set contains some other molecules with UHF unstable
singlets, but quite fortunately, they did not give rise to convergence issues if a broken
symmetry determinant obtained from a stability analysis was used to seed the orbital
optimization.17

It has been shown before that OO-REMP performs remarkably well also for electronically
more complicated open shell systems. On the other hand, canonical REMP struggles
for these systems, and as analytical dipole moments currently are only available for
OO-REMP, only OO-REMP has been applied to the larger benchmark set. For the larger
set, no experimental data is available in all cases, therefore CCSD(T) has been used as
reference. As shown above, CCSD(T) is assumed to be still a bit more accurate than
OO-REMP and hence acceptable as reference method for lack of alternatives.

For OO-REMP, one finds a shallow minimum in the range of 0.15 < A < 0.30 where the
MAD amounts to 0.02 D, corresponding to a relative error of 2.5–2.8 % (see Fig. 3.21(b)).
For comparison, MP2 and CCSD yield 0.2 D (0.04 D)) corresponding to an MARE of
27 % (7.5 %). OO-REMP thus outperforms CCSD by a factor of 2 at virtually the same
computational cost. A further breakdown of the set into UHF stable closed shell singlets
and unstable singlets or higher multiplicities shows that OO-REMP performs better for the
closed shell cases (MAD ≈ 0.01 D) and worse for the open shell cases (MAD ≈ 0.3 D), but
the minimum is in both case located around A ≈ 0.20 and the difference in performance
is not dramatic. All figures of merit regarding relative errors furthermore improve if
regularized relative errors instead of plain relative errors are computed. OO-REMP(0.20)
then scores an RMSRE of 2.1 %, which is clearly superior to all methods reported in
Reference [321] (ignoring the different choice of basis sets). Only some double hybrid
functionals are able to compete yielding RMSREs in the 3.x % range.

For a small set of molecules, Karton and Martin[301] were able to calculate dipole moments
at the W4 level. Surprisingly, they found that dipole moments are practically converged
at the CCSD(T)/CBS level and that the remaining difference between W4 and available
reference data (MAD of 0.038 a.u.) is significantly larger than the residual difference
17wavels itself is currently still not capable of performing any kind of stability analysis. The respective

calculations were performed with ORCA, subsequently the resulting broken-symmetry orbitals were
extracted from the output file, transferred to the wavels start orbital format and used to seed a UHF
calculation.
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between CCSD(T) and W4 (MAD of 0.004 a.u.). This again justifies the use of CCSD(T)
as reference level of theory, at least for single reference molecules.

The outcome of the dipole moments investigation is quite interesting. On one hand, one
finds again that REMP and OO-REMP improve upon their parent methods, and that
the minima with respect to the mixing parameter A are in the same range as in most
other cases (structures and covalent thermochemistry). On the other hand, one finds
a clear disagreement with the recovered correlation energy investigation (Section 3.1).
This is important as both the amount of recovered correlation energy and the dipole
moment can be regarded as proxy measure for the quality of the wavefunction. The
seeming contradiction can be resolved by considering that both quantities apply some
kind of weighting to the wavefunction: for calculating the correlation energy, the excited
configuration coefficients are contracted with Ĥ matrix elements, while for calculating the
dipole moment, the density calculated from the wavefunction is contracted with dipole
matrix elements. The energy criterion thus weights those excited configurations larger
which provide the most correlation energy, while the dipole moment places emphasis on
those configurations which have the largest influence on the charge distribution in the
molecule.

A non-weighted measure for the wavefunction quality would be the overlap criterion[50]

originally used for assessing the REMP wavefunction quality. As has been discussed
above, the wavefunction overlap of OO-REMP wavefunctions with e.g. Coupled Cluster
wavefunctions is not easily available, one therefore has to resort to some replacement
measure.

3.7.2 A Transition Metal Element Molecule

It is instructive to not only investigate simple main group element molecules but to
also consider at least one example of a transition metal species. Due to its approximate
closed-shell singlet nature, CuF is still tractable at a single reference level of theory.

Figure 3.22 shows the dipole moment of CuF calculated at the RHF and OO-REMP level
with two different basis sets. Furthermore, two experimental reference values are shown.
An experimental equilibrium bond length of 1.744 922 Å was used for all calculations.[322]

The comparison between aug-cc-pwCVQZ and aug-cc-pwCV5Z(-hi) shows that the dipole
moment is practically converged at that basis set saturation level.18

There are currently (at least) two experimental dipole moments available, one rather
unreliable value of 5.77±0.20 D[322] (Hoeft et al., 1970) and one rather accurate value
18aug-cc-pwCV5Z(-hi) calculations were performed using wavels. The h and i functions had to be

stripped from the basis set due to limitations of the integral engine. aug-cc-pwCVQZ calculations were
performed using PSI4. The analytical dipole moment implementation in PSI4 was not yet thoroughly
verified, but close agreement between both results indicates that the implementation is indeed correct.
Moreover, also for PSI4 either i functions would have to be stripped, or the the integral library would
have to be recompiled from scratch.
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Figure 3.22: Calculated permanent electric dipole moment of CuF and comparison to experimental
reference data. Computational method: OO-REMP or RHF and basis set as indicated.
Horizontal blue and green lines indicate RHF dipole moments, crosses indicate OO-
REMP values. Reference 1 is taken from Ref. [322], reference 2 is taken from Ref. [323].
Hatched areas indicate ±one experimental standard deviation.

of 5.26±0.02 D[323] (Wang et al., 2010). The newer value is compatible with the old one
at a 3σ or 95 % CI level, but not vice versa. Generally, it is assumed that the newer
experimental value is more reliable. The older value is listed nevertheless, as a number of
theoretical studies use it as reference.[324,325]

Figure 3.22 and Table 3.10 show that OO-REMP in the regularly best-performing region
predicts the dipole moment ≈5 % too large. The most probable explanation is the neglect
of (scalar-)relativistic effects. A comparison between MRCI and MRCI+DKH2 shows
that inclusion of relativistic effects significantly lowers the dipole moment. This is further
corroborated by the close agreement of scalar-relativistic CCSD(T) calculations with the
newer experimental result. Unsurprisingly, RHF predicts a way too large dipole moment,
i.e. it predicts the bond to be too ionic. DFT, on the other hand, predicts systematically
too small dipole moments.[325]

In order to test the hypothesis whether relativistic effects are responsible for the lower
dipole moment, additional calculations including scalar-relativistic corrections were per-
formed. The second-order Douglas-Kroll-Hess Hamiltonian[326–332] (DKH2) was chosen as
it is implemented both in PSI4[331] and ORCA.[331,333–335] It is originally a two-component
formalism,[336] but it is common practice to further neglect parts of it: The implementa-
tions used in this work, e.g., drop the spin-dependent terms, so that the DKH Hamiltonian
effectively acts as a perturbative correction to the one-electron matrix elements, introduc-
ing scalar-relativistic corrections. Spin-orbit terms are neglected entirely.[337] DKH2 in this
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Table 3.10: Comparison of experimental and theoretical dipole moments for the CuF molecule in its
X1Σ+ ground state. All values in Debye.

RHF/aug-cc-pwCV5Z(-hi) 6.18
OO-REMP(0.00)/aug-cc-pwCV5Z(-hi) 5.58
OO-REMP(0.20)/aug-cc-pwCV5Z(-hi) 5.51
OO-REMP(0.55)/aug-cc-pwCV5Z(-hi) 5.31
OO-REMP(1.00)/aug-cc-pwCV5Z(-hi) 4.67

Dirac-Coulomb 4C HF /large basis[325] 6.13
Dirac-Coulomb 4C CAM-B3-LYP /large basis[325] 5.11

scalar-relativistic CCSD(T)/CBS[325] 5.29
MRCI/5Z[324] 5.93

MRCI+DKH2/5Z[324] 5.64
RCCSD(T)+DKH2/5Z[324] 5.31

experiment (1970)[322] 5.77±0.20
experiment (2010)[323] 5.26±0.02

form has the advantage that it is a simple correction to the one-electron integrals[331,334] as
long as only energies are concerned and the correction comes at a negligible computational
cost. Typically, DKH calculations are performed with scalar-relativistic recontractions of
common basis sets. When assigning changes in an expectation value upon a modification
of the Hamiltonian, it is advisable to ensure that the change is due to a change in the
Hamiltonian and not due to a change in the basis set. Not all basis sets are available
as scalar-relativistically recontracted version, they are available for a considerably lower
number of elements, different programs feature different basis sets in their built-in library
and even less basis sets are available from basissetexchange.org.

The calculation of static electric dipole moments including the DKH correction is straight-
forward: The new density is just contracted with the dipole matrix elements as in the
nonrelativistic case. DKH2 will not add any correction to the dipole matrix elements.[330]

Figure 3.23 depicts the dipole moments that are obtained upon inclusion of the DKH2
treatment compared to a nonrelativistic treatment. Similar to the MRCI results in
Table 3.10, one finds that scalar-relativistic results lower the dipole moment by ≈0.2 D.
Importantly, this is almost independent of the basis set used, i.e. the use of a relativistically
recontracted basis set is not absolutely mandatory here. The corrections introduced by the
DKH2 one-electron Hamiltonian turned out to be vastly more important than the choice
of the basis set. DKH2-OO-REMP dramatically improves upon OO-REMP considering
this example. The mixing ratio where the error becomes minimal shifts from 55–65 %
MP2 to ≈40 % and the relative error of DKH2-OO-REMP(0.20)/aug-cc-pwCVQZ-DK
amounts to only 2.3 % compared to 5.1 % from OO-REMP(0.20)/aug-cc-pwCVQZ. Upon
inclusion of basic scalar-relativistic corrections, the relative error for transition-metal
species is hence not larger than for main-group molecules (see Sec. 3.7.1).

basissetexchange.org
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Figure 3.23: Comparison of the electric dipole moment of CuF computed with OO-REMP and
different basis sets depending on the relativistic treatment. Crosses indicate a strictly
nonrelativistic treatment, squares indicate inclusion of scalar-relativistic effects at the
one-electron level by the DKH2 ansatz. Blue symbols indicate the aug-cc-pwCVQZ basis,
red symbols indicate the combination Cu:aug-cc-pwCVQZ-DK/F:aug-cc-pCVQZ-DK.
The left panel shows the absolute dipole moment, the right panel shows the relative
error with respect to Ref. [323].

Table 3.11: Comparison of electric dipole moments of CuF computed with different basis sets and
with or without DKH2 relativistic corrections. All values in Debye.

basis set non-relativistic DKH2

RHF
aug-cc-pwCV5Z 6.184 6.103

Cu:aug-cc-pwCV5Z-DK/F:cc-pV5Z-DK 6.187 6.093

OO-CEPA(0)/D
aug-cc-pwCV5Z 5.595 5.464

Cu:aug-cc-pwCV5Z-DK/F:cc-pV5Z-DK 5.591 5.435

Table 3.11 shows the dipole moment of CuF calculated with different methods, different
basis sets19 and different levels of relativistic treatment. All calculations in Table 3.11
were performed with ORCA 5.0.3. This serves as independent check to verify the PSI4

19The unconventional basis combination arises from the unavailability of better “-DK” basis sets in the
ORCA basis library for fluorine.
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results by an independent DKH2 implementation.20 Overall, the previous findings are
almost quantitatively reproduced despite the differing basis sets. At the RHF level,
scalar-relativistic effects decrease the dipole moment by ≈0.1 D (being still too large),
while at the OCEPA level, the correction amounts to almost 0.2 D. The correction is
in both cases larger with the recontracted basis. Given that the numbers in Table 3.11
and the (DKH)-OO-REMP(0.00) results in Figure 3.23 do agree almost quantitatively, it
can be assumed that the DKH-OO-REMP dipole moments are technically correct. The
interpretation of the results in Table 3.11 is not straightforward. Half of the relativistic
shift is contributed by the reference determinant, the other half is due to correlation. A
possible explanation would be that the relativistic orbital contraction is stronger at the
copper atom, making it more electronegative. This especially affects the Cu 4s orbital
which participates in the bonding, making the Cu-F bond slightly less polar. There is of
course also significant contribution of Cu 3d orbitals in the bond, and these are known to
slightly expand. On the other hand, the Cu-d-F-p-π bonding and antibonding orbitals are
filled, so that their effect should cancel. The fluorine atom is also affected by relativity,
but to a lesser extent. Correlation also involves virtual orbitals, and as the orbitals into
which correlation takes place were not determined, no conclusive explanation can be
given. One possible explanation would be enhanced correlation from fluorine into vacant
Cu-p orbitals which are energetically lowered by scalar-relativistic effects, but a detailed
analysis is out of scope, here.
The dipole moment of CuF is of course just a single example and no statistically sound
data collection. More data needs to be gathered to corroborate the findings. Nevertheless,
it shows that OO-REMP might be also a useful method for transition metal systems.

Ironically, these last results close the circle to the introduction where it was stated that
relativistic effects are ignored in the vast majority of cases. The example of the dipole
moment of a seemingly simple molecule show that all too often basic assumptions turn out
to become invalid when the scope is extended. Every now and then established assertions
should be questioned and checked against unbiased facts.

3.8 Performance Summary for Different Properties

The preceding sections have shown that REMP and OO-REMP are able to deliver very
accurate results and that there is almost always an improvement observable with an
appropriate choice of the mixing parameter A. Table 3.12 shows a summary of the
previousy presented results and a comparison how REMP and OO-REMP perform for
various properties compared to other methods. The data listed in Table 3.12 was mostly
generated in this work or in related works that use the same benchmark sets, as indicated.
In some cases, however, no data for the same benchmark set was available, it was then
20Well, actually not completely independent. The DKH implementation used in PSI4 is the one by B. A.

Hess, M. Reiher and A. Wolf, linked in as optional module. The DKH implementation in ORCA is
due to F. Neese, but the output mentions help by Hess, Reiher and Wolf. There is thus a nonzero
possibility that both implementations share common mistakes.
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necessary to resort to reasonably comparable datasets. A mixing ratio of 80:20 (RE:MP)
was chosen for Table 3.12 as it is close to the optimum mixing in the majority of cases
and a choice that can generally be recommended.
As can be seen, REMP and OO-REMP in most cases improve upon the results of their
respective parent methods with respect to almost all considered properties. One further-
more finds that orbital optimization often leads to only a minor improvement for RE and
hardly any improvement for MP. In contrast, orbital optimization invariably leads to an
improvement for REMP. OO-REMP(0.20) is found to provide significantly better results
than CCSD at formally the same computational cost and only slightly inferior results
compared to CCSD(T) (whenever CCSD(T) was not used as reference). Table 3.12 also
lists results from the widely popular B3-LYP functional and the prototypical double
hybrid, B2-PLYP. In contrast to OO-REMP, none of the two functionals achieves an ac-
curacy of 1 kcal mol−1 for thermochemical applications. Quite interestingly, it also turned
out that in the case of the benchmark sets and density functionals listed in Table 3.12,
the inclusion of an empirical dispersion correction worsens the results.
Unfortunately, no extensive comparison to the most recent range-separated, dispersion
corrected, spin-component scaled double-hybrid functionals[338] (ωDSD or xDSD function-
als) is possible. Such functionals typically have at least half a dozen adjustable empirical
parameters. It is now common practice to parameterize new functionals on large databases
like e.g. the GMTKN55, warranting statistically significant results for thermochemistry.
At the same time, there is typically no data on how well such functionals perform for
other properties like molecular structures. An interesting and logical development in
this direction is the inclusion of MP3 correlation[339] leading to DSD3 functionals. The
improved correlation comes at the expense of yet another parameter and a formal com-
putational cost of n6 while achieving only modest improvements.
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Table 3.12: Overview of the average performance for various kinds of reaction types and properties.
Given are mean absolute deviations or mean absolute relative errors. Values are in
kcal mol−1 or percent as indicated. ref. indicates that the respective method was
used as reference. Canonical REMP refers to either the restricted closed shell or the
unrestricted variant. Basis sets are either reasonably large or a CBS extrapolation
was performed. If not specified otherwise, no dispersion correction was applied to
DFT methods.
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REMP(0.20) 1.2 4.2 3.3 3.7 0.8 0.39 0.4 5.3
OO-REMP(0.20) 0.5 0.8 1.1 0.6 0.4 0.13 0.2 3.0

RE2 1.4 3.9 6.4 4.8 1.1 0.36 0.3 9.3
OO-RE 1.0 0.9 4.4 2.3 1.3 0.29 0.3 6.7

MP2 2.0 4.4 10.9 9.8 3.1 0.69 0.3 14.0
OO-MP2 2.6 2.9 15.3 8.8 4.7 1.28 0.5 15.7

CCSD 1.4a) – 8.4 3.8 1.7 ≈ 0.4 − 0.5b) ≈0.3c) 9.2d)

CCSD(T) ref. ref. 0.6 0.5 0.2 0.08 0.2 2.0d)

B3-LYP 2.7e) 4.9f) 3.2g) 3.2h) 1.7i) 0.68j) – 6.2d)

B2-PLYP – 2.3f) 1.9g) 2.1h) 1.8i) 0.30j) – – k)

ωDSD72-PBEP86-D4 – 0.9l) 2.2l) – – – – –
a) Recalculated from Table 1 of Ref. [215] with those reactions included here
b) Inferred from Table IV of Ref. [298], Table III of Ref. [299], and Table 4 of Ref. [300]
c) taken from Table VII of Ref. [299]
d) Calculated from Table 2 of Ref. [194]
e) Taken from Table II of Ref. [47] (larger set, QCISD(T) as reference)
f) Taken from Ref [340]
g) Taken from Table 6 of Ref. [224] (nonMR)
h) Taken from Table 7 of Ref. [224] (all 99 reactions including MR)
i) Taken from Table 9 of Ref. [224]
j) Taken from Table 4 of Ref. [300] (B2-PLYP-D, B3-LYP without D)
k) No data is available for the S20 benchmark set, but B2-PLYP outperformed B3-LYP on

the benchmark set of Ref. [321] (RMSE of 5.31 % vs. 6.98 %)
l) Taken from Table S5 of Ref. [338], ω = 0.13; entry “W4-11” is assumed to be the set of

atomization energies including the MR cases
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In this work, the REMP and OO-REMP classes of methods have been introduced and
benchmarked. It has been shown that – as hypothesized – the hybrid methods lead to
results that improve over both parent methods and that promising accuracy is achieved
so that at least the orbital-optimized variant may become a routine method. It has
furthermore been shown that the ideal mixing is nearly independent of the molecule and
property under consideration, so that a globally optimal mixing ratio can be established.

To take up the lines from the introduction, it has been shown that the instantaneous
two-electron interaction is indeed an important component of the Hamiltonian which
cannot completely be treated as a perturbation. The RE perturbation theory which
includes the instantaneous two-electron repulsion for all perturbers of the same excitation
degree in the unperturbed Hamiltonian Ĥ(0) leads to significantly more accurate results
than MP-PT. At the same time, it was found that RE in low orders tends to overshoot
on the correlation energy and that this can be corrected by damping the two-electron
operator in Ĥ(0). The results provided by REMP and OO-REMP generally show better
agreement with reference results and exhibit a sharper error distributions, which implies
both smaller systematic and statistical errors. It is especially important that it was
possible to achieve chemical accuracy for a variety of well-established benchmark sets.
REMP and OO-REMP are thus not just yet another proof-of principle or toy methods but
potential methods for routine application when a higher accuracy is required than the one
provided by typical density functional methods. In particular, the combination of easily
available analytical gradients, high accuracy, O(n6) scaling and easy-to-implement working
equations is a unique feature of OO-REMP. The only method for routine calculations
which has an even higher accuracy – CCSD(T) – has a steeper scaling of O(n7) and is
generally computationally more demanding. Additionally, analytical gradients are hardly
available owing to their difficult nature.

The (OO-)REMP approach allows for further possible improvements. As has been shown,
for several applications, and if no very high accuracy is required, already canonical
REMP provides reasonably accurate results. It is therefore desirable to also derive and
implement analytical first derivatives for REMP. Bozkaya and Sherrill derived the z-vector
equations for CEPA/0,[46] it should thus not be too complicated to implement the REMP
orbital response equations, especially as the MP2 z-vector equations are known for a
long time.[341] Combining these to yield z-vector equations for REMP will give access to
relaxed first-order properties.

Introducing more degrees of freedom into the Hamiltonian by using different scaling
factors for different configuration state function classes (see Section 2.2) leads to the
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S2REMP approach. The S2REMP approach was extensively evaluated by Marc Edelmann
in his master thesis.[211] It was shown that already one additional independent parameter
leads to significant improvements over the REMP ansatz with one parameter. Specifically,
it was found that of the three parameters S (scaling the SDE-SDE interaction), A (scaling
the SDE-TDE interaction) and T (scaling the TDE-TDE interaction), S and T may be
constrained to the same value. It was furthermore shown that the choice of A = 0.25,
S = 0.05, T = 0.05 provides the best overall results, leading to a significant improvement
both with respect to the amount of recovered correlation energy and with respect to
the quality of the doubles-part of the wavefunction (all values specifying the amount
of Ĥ

(0)
MP in Ĥ(0)). As such, these findings are very promising, and with this choice for a

test set of 44 molecules, 100.1±0.6 % of the CCSDTQ correlation energy was recovered.
Further validation, however, will require a much faster implementation than the current
one, which is based on a CI program operating with explicit matrix representations of
the Hamiltonians. This implies that sigma vector equations like Eq. (2.74) in a Serber
CSF basis (see Section 2.2) need to be derived and implemented. The S2REMP approach
has the clear drawback that the mixing parameters are tied to specific CSFs and their
interaction, making a generalization to higher orders nontrivial, as more open shells will
require even a larger number of parameters. The generalization to open shell cases will
be nontrivial, too, as at least in the ROHF case, the first-order wavefunction will contain
single excitations, eventually requiring yet another parameter. The S2REMP approach
may also be coupled to orbital optimization, although it can be expected that the working
equations will be fairly complex and complicated to derive.

In terms of speed-up, the combination of REMP and pair natural orbital (PNO) techniques
seems promising. Pioneered by Meyer[94,95,132] and Taylor,[342] and later by Staemmler
and Fink,[181] this method was recently revived by Neese et al.[343–352] with notable
contributions by Werner et al.[353–361] and Kállay et al.[362,363] Usage of PNOs allows to
drastically shrink the virtual space of calculations and eventually leads to linear scaling. In
the case of canonical REMP, the implementation and application will be straightforward,
given that a PNO machinery is available, as usage of PNOs has been demonstrated for
both MP2[347,349,353,354,364] and CEPA/0.[176,343,345,346,365] In the case of OO-REMP, the
situation is considerably more difficult, as every orbital macroiteration will invalidate the
current set of PNOs. To the best of the knowledge of the author, this is still an unsolved
problem.

The most important extension of the REMP approach would be a generalization to mul-
ticonfigurational reference wavefunctions. It has recently be shown that the uncontracted
multireference RE approach performs better than any other second order MRPT approach
and is even capable of quantitatively describing the chromium dimer,[366,367] a system
which is notoriously difficult to model due to the large number of active orbitals and
electrons, the presence of both large static and large dynamic correlation and hence an
extremely bad zeroth order description by CASSCF. The character of the wavefunction
additionally changes with increasing bond distance from various low spin configurations
to a high-spin atomic configuration. Given that the REMP approach leads to a significant
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improvement in the closed-shell singlet case, it can be anticipated that there will be at
least some improvement if MRRE is combined with some multireference Møller-Plesset
derivative like MRMP2[368–371] or NEVPT2.[86–89] There is already some interesting work
by Saitow and Yanai[372] who combined CASPT2 and a CEPA/0-like treatment for
different spaces with PNOs.

There is more work to be done with respect to benchmarking REMP and OO-REMP for
additional properties: The current implementation allows for the calculation of electric
multipole moments up to hexadecapoles with arbitrary origin. Given that higher order
multipole moments were for a long time claimed to be decisive for the structure of
noncovalent aggregates, it seems worthy to build up a benchmark set for these properties.
However, as they are not easily accessible experimentally and plagued by arbitrariness
of the gauge origin,[313] the majority of the data will have to be calculated by high-
level methods with the advantage that the origin will be well-defined. Static dipole
polarizabilities, hyperpolarizabilities[301,373–375] and higher moment polarizabilities are
accessible by numerical differentiation of energies obtained with finite external electric
fields. The necessary code is available and operational but due to time and resource
restrictions, it was so far not possible to perform such calculations. The performance for
the dipole moment of CuF and some preliminary results for the MOR41 set not shown
in this work indicate that at least OO-REMP might be also useful for single-reference
transition metal systems. Further investigations in this direction seem worthwhile and
promising.

A very interesting and potentially useful long-term goal would be the derivation and
implementation of excitation energies and other properties via response theory.[376] MP2 is
not useful for computing excitation energies,[377] and to the best knowledge of the author,
there have so far not been any attempts to compute excitation energies from CEPA/0,
OO-MP2 or OCEPA from a response theory formalism. There has, however, recently
been some effort towards TD-OOMP2[378–380] and TD-OCEPA.[381] All ingredients for
a TD-OO-REMP ansatz are therefore in principle available and only need to be wired
together. This will give access to optical properties like optical absorption spectra,
frequency-dependent polarizabilities or hyperpolarizabilities, that can be used to simulate
e.g. higher harmonic generation effects.[382–384] It has been shown that TD-OO-MP2
provides results that are comparable in quality to TDCC2 and TDCCSD as well as their
linear response counterparts.[378–380] The advantage of real-time time-dependent methods
is that they are typically easier to derive and implement than their linear-response
counterparts and that they also work when the linear response approximation breaks
down. Their disadvantage is that they often require the time-dependent wavefunction
to be propagated for tens of thousands of time steps, with specific pulse shapes for a
specific property.[379] Given that the OO-REMP ground state wavefunction seems to be
of decent quality and that OO-REMP turned out to be superior to both parent methods,
attempts in this direction seem to be promising.

The methodology developed in this thesis is now publicly available to everyone via
https://psicode.org or https://github.com/psi4/psi4/ both as source code and

https://psicode.org
https://github.com/psi4/psi4/
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starting from version 1.7 (released on 2022-12-06) also in the precompiled binaries of
PSI4. As the code base of the df-occ subprogram recently underwent further changes1, it
can be expected that also the RI-accelerated REMP variants (df-REMP and df-OREMP)
will gain some speedup.

1Improvements in the external exchange operator by Yavuz Alagöz and Uğur Bozkaya not yet merged
to the master branch
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6 Appendix

6.1 Derivation of the OO-REMP working equations

The starting point for the derivation is the REMP energy functional Eq. (2.85):

Ẽ
(2)
REMP(κ) = ⟨0|Ĥκ|0⟩ + ⟨0|(Ŵ κ

NT̂2)c|0⟩ + ⟨0|(Λ̂2(Ŵ κ
N + (f̂κ

N + (1 − A)Ŵ κ
N)T̂2)c)c|0⟩

(6.1)

Derivation of Eq. (6.1) for tij
ab yields

∂ Ẽ
(2)
REMP(κ)
∂ tij

ab

= ⟨0|(Ŵ κ
Nâ†b̂†ĵ î)c|0⟩ + ⟨0|(Λ̂2f̂κ

Nâ†b̂†ĵ î)c|0⟩ + (1 − A)⟨0|(Λ̂2(Ŵ κ
Nâ†b̂†ĵ î)c)c|0⟩,

(6.2)

derivation for λab
ij yields

∂ Ẽ
(2)
REMP(κ)
∂ λab

ij

= ⟨0|(̂i†ĵ†b̂âŴ κ
N)c|0⟩ + ⟨0|(̂i†ĵ†b̂âf̂κ

NT̂2)c|0⟩ + (1 − A)⟨0|(̂i†ĵ†b̂â(Ŵ κ
NT̂2)c)c|0⟩.

(6.3)

Eq. (6.2) and (6.3) are just the Hermitian conjugate of each other, it is immediately
clear that – in contrast to coupled cluster theory – the solutions of the regular amplitude
equations also solve the λ equations via

λab
ij = tij∗

ab . (6.4)

In case of real orbitals, this is furthermore simplified to λab
ij = tij

ab.

Derivation of Eq. (6.1) for κpq around κpq = 0 yields the orbital gradient:

∂Ẽ
(2)
REMP(κ)
∂κpq

∣∣∣∣∣
κpq=0

= wpq
!= 0. (6.5)

Deriving in the vicinity of κpq = 0 is not strictly necessary but it keeps the resulting
expressions somewhat manageable. The assumption that the orbital gradient and thus
the orbital rotation parameters are small is valid in many cases and this approximation
will become even better when convergence is approached. On the other hand, it will
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probably be invalid if the orbital gradient is very large. This might actually be one of the
reasons for failing orbital convergence in nasty cases.

For performing the derivative, the definitions of the rotated operators (Eqs. (2.90), (2.92),
(2.93)) are inserted in Eq. (6.1). Subsequently, the exponentials are expanded in the Taylor
series (Maclaurin series to be precise) of the exponential function. The approximation of
a vanishing orbital rotation is the used to eliminate the exponential functions from the
expressions

Ẽ
(2)
REMP(κ) =⟨0|e−K̂ĤeK̂ |0⟩

+ ⟨0|(e−K̂ŴN eK̂ T̂2)c|0⟩

+ ⟨0|(Λ̂2e−K̂ŴNeK̂)c|0⟩

+ ⟨0|(Λ̂2(e−K̂ f̂NeK̂ T̂2)c)c|0⟩

+ (1 − A)⟨0|(Λ̂2(e−K̂ŴNeK̂ T̂2)c)c|0⟩ (6.6)

where

K̂ =
∑
pq

Kpqp̂†q̂ =
∑
p>q

κpq(p̂†q̂ − q̂†p̂) (6.7)

and

eK̂ = e
∑

p>q
κpq(p̂†q̂−q̂†p̂) = 1 +

∑
p>q

κpq(p̂†q̂ − q̂†p̂) + 1
2(
∑
p>q

κpq(p̂†q̂ − q̂†p̂))2 + . . .

(6.8)

e−K̂ = e
−
∑

p>q
κpq(p̂†q̂−q̂†p̂) = 1 −

∑
p>q

κpq(p̂†q̂ − q̂†p̂) + 1
2(
∑
p>q

κpq(p̂†q̂ − q̂†p̂))2 − . . .

(6.9)

Deriving Eq. (6.6) for the orbital rotation parameters κpq and subsequently setting the
remaining κpq to zero yields
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∂Ẽ
(2)
REMP(κ)
∂κpq

∣∣∣∣∣
κpq

= − ⟨0|(p̂†q̂ − q̂†p̂)Ĥ|0⟩ + ⟨0|Ĥ(p̂†q̂ − q̂†p̂)|0⟩

− ⟨0|((p̂†q̂ − q̂†p̂)ŴN T̂2)c|0⟩ + ⟨0|(ŴN (p̂†q̂ − q̂†p̂)T̂2)c|0⟩

− ⟨0|(Λ̂2(p̂†q̂ − q̂†p̂)ŴN)c|0⟩ + ⟨0|(Λ̂2ŴN(p̂†q̂ − q̂†p̂))c|0⟩

− ⟨0|(Λ̂2((p̂†q̂ − q̂†p̂)f̂NT̂2)c)c|0⟩ + ⟨0|(Λ̂2(f̂N(p̂†q̂ − q̂†p̂)T̂2)c)c|0⟩

− (1 − A)⟨0|(Λ̂2((p̂†q̂ − q̂†p̂)ŴNT̂2)c)c|0⟩ + (1 − A)⟨0|(Λ̂2(ŴN(p̂†q̂ − q̂†p̂)T̂2)c)c|0⟩
(6.10)

= ⟨0|[Ĥ, (p̂†q̂ − q̂†p̂)]|0⟩︸ ︷︷ ︸
1

+ ⟨0|([ŴN , (p̂†q̂ − q̂†p̂)]T̂2)c|0⟩︸ ︷︷ ︸
2

+ ⟨0|(Λ̂2[ŴN , (p̂†q̂ − q̂†p̂)])c|0⟩︸ ︷︷ ︸
3

+ ⟨0|(Λ̂2([f̂N, (p̂†q̂ − q̂†p̂)]T̂2)c)c|0⟩︸ ︷︷ ︸
4

+ (1 − A) ⟨0|(Λ̂2([ŴN, (p̂†q̂ − q̂†p̂)]T̂2)c)c|0⟩︸ ︷︷ ︸
5

(6.11)

i.e. from the exponentials only the leading term (e0 = 1) survives. The first term is also
well known as orbital gradient or variational condition from Hartree-Fock theory.[17] The
resulting matrix element will therefore be no surprise.

Eq. (6.11) is now suitable for being evaluated with second quantization programs.

In this work, the python package secondquant from the sympy collection
(sympy.physics.secondquant) was used.[385,386] The scripts used here were inspired by
the second quantization tutorial by Morten Hjorth-Jensen.[387]

The involved operators are defined as follows:

Ŵ = 1
4vrs

tu r̂†ŝ†ût̂ (6.12)

ŴN = 1
4vrs

tu{r̂†ŝ†ût̂} (6.13)
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where vrs
tu is the antisymmetrized two-electron integral defined as

vrs
tu = ⟨rs||tu⟩ = ⟨rs|tu⟩ − ⟨rs|ut⟩ = −vsr

tu = −vrs
ut = vsr

ut (6.14)
f̂ = f r

s r̂†ŝ (6.15)
ĥ = hr

sr̂†ŝ (6.16)
f̂N = f r

s {r̂†ŝ} (6.17)

Ĥ = hr
sr̂†ŝ + 1

4vrs
tu r̂†ŝ†ût̂ (6.18)

ĤN = hr
s{r̂†ŝ} + 1

4vrs
tu{r̂†ŝ†ût̂} (6.19)

T̂2 = 1
4 tij

ab â†b̂†ĵ î (6.20)

Λ̂2 = 1
4λcd

kl k̂
† l̂†d̂ĉ (6.21)

where {} indicates the normal-ordered product, i.e. that the operators are to be brought
to normal order but that no contractions inside are made. Furthermore, when contractions
with other operators are formed, no contractions inside the normal-ordered operators are
made. i, j, k, l, a, b, c, d, r, s, t, u are dummy indices that can be summed over and replaced
while the target indices p and q of the orbital gradient are no dummies and must not be
replaced. The symbols a, b, c, d are restricted to refer to orbitals above the Fermi level
while i, j, k, l are restricted to be below the Fermi level. p, q, r, s, t, u are not restricted a
priori, but restrictions will occur naturally from contractions. All indices in the following
refer to spin orbitals.

Part 1 is just the orbital gradient of the reference determinant, which is simply the
Fockian. For the first commutator, one obtains the following nonzero contractions:

⟨0|[Ĥ, (p̂†q̂ − q̂†p̂)]|0⟩
= − δasδirδrpδsqhs

r + δasδirδrqδsphs
r

+ δatδirδjsδruδspδtqvtu
rs − δatδirδjsδruδsqδtpvtu

rs

+ δapδirδjqδrsδtpδuqvsu
rt + δapδiqδrpδsqhs

r

− δaqδirδjpδrsδtpδuqvst
ru − δaqδipδrpδsqhr

s (6.22)

by resolving δ’s over repeated indices and unifying dummy indices, one obtains

= + δapδiqhp
q − δipδaqhq

p + δapδiqhq
p − δipδaqhp

q

+ δaqδirδjpδruvqu
rp − δapδirδjqδruvpu

rq

+ δapδirδjqδrsvsq
rp − δaqδirδjpδrsvsp

rq (6.23)
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by resolving δjr and δrs, and applying a more conventional notation, one obtains

= + δapδiqhpq − δipδaqhpq + δapδiqhpq − δipδaqhpq

− δaqδip

occ∑
j

⟨qj||pj⟩ + δapδiq

occ∑
j

⟨pj||qj⟩

+ δapδiq

occ∑
j

⟨qj||pj⟩ − δaqδip

occ∑
j

⟨pj||qj⟩ (6.24)

=2(P̂−(p, q)(δapδiqhpq + δapδiq⟨pj||qj⟩)) (6.25)
=2(δapδiqfpq − δaqδipfqp) (6.26)

stating that

• the contribution of the reference to the orbital gradient is given by the asymmetry
of the MO basis Fock matrix and that

• there are only contributions from the occupied-virtual and virtual-occupied block,
as expected.

For further use, this result can be expressed in terms of the reference contribution of the
one- and two-particle density matrices γref

pq and Γref
pqrs:

γref
pq = δocc

pq (6.27)

Γref
pqrs = 1

4(δocc
pr δocc

qs − δocc
ps δocc

qr ) (6.28)

so that the reference orbital gradient can be expressed as part of a generalized Fock
matrix Fpq:

wref
pq = 2(F ref

pq − F ref
qp ) = 2P̂−(p, q)Fpq (6.29)

=2(
∑

r

hprγref
rq + 2

∑
rst

⟨rs||tp⟩Γref
rstq −

∑
r

hqrγref
rp − 2

∑
rst

⟨rs||tq⟩Γref
rstp) (6.30)

=2P̂−(p, q)
(∑

r

hprγref
rq + 2

∑
rst

⟨rs||tp⟩Γref
rstq

)
(6.31)
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By inserting Eqs. (6.27) and (6.28) in Eq. (6.30), it can be shown that this definition
indeed recovers the Fockian formed from the reference determinant:

F ref
pq =

∑
r

hprδocc
rq + 2

∑
rst

⟨rs||tp⟩1
4(δocc

rt δocc
sq − δocc

rq δocc
st ) (6.32)

=
∑

r

hprδocc
rq + 2(1

4
∑

s

∑
j

⟨js||jp⟩δocc
sq − 1

4
∑

r

∑
j

⟨rj||jp⟩δocc
rq ) (6.33)

=
∑

r

hprδocc
rq + 2(1

4
∑

s

∑
j

⟨js||jp⟩δocc
sq + 1

4
∑

s

∑
j

⟨sj||pj⟩δocc
sq ) (6.34)

=
∑

r

hprδocc
rq +

∑
s

∑
j

⟨js||jp⟩δocc
sq (6.35)

=


p ∈ {occ}, q ∈ {occ} fij

p ∈ {virt}, q ∈ {occ} fai

p ∈ {occ}, q ∈ {virt} 0
p ∈ {virt}, q ∈ {virt} 0

(6.36)

If p and q both belong to the set of occupied orbitals, their contributions to the orbital
gradient cancel exactly and wpq is zero as expected. The orbital gradient furthermore
vanishes if p and q both are virtual orbitals. If either p or q is a virtual index, Eq. (6.26) is
recovered and wqp = −wpq is fulfilled. The definition Eq. (6.28) ensures that the TPDM
has the correct exchange symmetry.

For part 2 , one obtains

⟨0|([ŴN , (p̂†q̂ − q̂†p̂)]T̂2)c|0⟩

=1
2(−δbpδcqvij

ac − δbpδkqvij
ak + δbqδcpvij

ac + δbqδkpvij
ak

− δcpδjqvci
ab + δcqδjpvci

ab − δjpδkqvik
ab + δjqδkpvik

ab)t
ij
ab (6.37)

and after expansion, one obtains

=1
2(δcpδbqvij

act
ij
ab − δcqδbpvij

act
ij
ab + δkpδbqvij

aktij
ab − δkqδbpvij

aktij
ab

+ δcpδjqvic
abt

ij
ab − δcqδjpvic

abt
ij
ab + δkpδjqvik

abt
ij
ab − δkqδjpvik

abt
ij
ab) (6.38)

Part 3 yields

⟨0|(Λ̂2[ŴN , (p̂†q̂ − q̂†p̂)])c|0⟩

=1
2(−δbpδcqvac

ij − δbpδkqvak
ij + δbqδcpvac

ij + δbqδkpvak
ij

− δcpδjqvab
ci + δcqδjpvab

ci − δjpδkqvab
ik + δjqδkpvab

ik )λab
ij

=1
2(δcpδbqvac

ij λab
ij − δcqδbpvac

ij λab
ij + δkpδbqvak

ij λab
ij − δkqδbpvak

ij λab
ij

+ δcpδjqvab
ic λab

ij − δcqδjpvab
ic λab

ij + δkpδjqvab
ik λab

ij − δkqδjpvab
ik λab

ij ) (6.39)
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Again, the Einstein summation convention is applied, i.e. i, j, a are indices that are
summed over. By recalling that tij

ab = λab
ij , Eqs. (6.38) and (6.39) can be merged into a

single contribution to the orbital gradient by defining the two-particle density matrix
Γijab as

Γijab = 1
4 tij

ab = 1
4λij

ab = Γabij . (6.40)

The orbital gradient resulting from Eqs. (6.38) and (6.39) can then just be expressed as
equivalent to Eq. (6.30). Summing Eqs. (6.38) and (6.39) yields

⟨0|([ŴN , (p̂†q̂ − q̂†p̂)]T̂2)c|0⟩ + ⟨0|(Λ̂2[ŴN , (p̂†q̂ − q̂†p̂)])c|0⟩

=1
2(δcpδbqvij

act
ij
ab − δcqδbpvij

act
ij
ab + δkpδbqvij

aktij
ab − δkqδbpvij

aktij
ab

+ δcpδjqvic
abt

ij
ab − δcqδjpvic

abt
ij
ab + δkpδjqvik

abt
ij
ab − δkqδjpvik

abt
ij
ab

+ δcpδbqvac
ij λab

ij − δcqδbpvac
ij λab

ij + δkpδbqvak
ij λab

ij − δkqδbpvak
ij λab

ij

+ δcpδjqvab
ic λab

ij − δcqδjpvab
ic λab

ij + δkpδjqvab
ik λab

ij − δkqδjpvab
ik λab

ij ) (6.41)
(6.40)= 4(δcpδbqvij

acΓijab − δcqδbpvij
acΓijab + δkpδbqvij

akΓijab − δkqδbpvij
akΓijab

+ δcpδjqvic
abΓijab − δcqδjpvic

abΓijab + δkpδjqvik
abΓijab − δkqδjpvik

abΓijab) (6.42)

=4P̂−(p, q)
(
δkpδjqvab

ik Γabij + δkpδbqvij
akΓijab + δcpδjqvab

ic Γabij + δcpδbqvij
acΓijab

)
(6.43)

=2P̂−(p, q)
(∑

rst

2⟨rs||tp⟩Γrstq

)
(6.44)

=2(F 2el
pq − F 2el

qp ) (6.45)

where

F el
pq =

∑
rst

2⟨rs||tp⟩Γrstq (6.46)

which can be generalized to coincide with the second part of Eq. (6.31).
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Part 4 provides the following lengthy contribution to the orbital gradient (again, the
Einstein convention is applied):

⟨0|(Λ̂2([f̂N, p̂†q̂]T̂2)c)c|0⟩

=
δapδiqfa

i λbc
jktjk

bc

4 +
δapδiqf i

aλbc
jktjk

bc

4

+
δapδkqfa

i λbc
ij tjk

bc

2 +
δapδkqf i

aλbc
jktij

bc

2

−
δaqδipfa

i λbc
jktjk

bc

4 −
δaqδipf i

aλbc
jktjk

bc

4

−
δaqδkpfa

i λbc
ij tjk

bc

2 −
δaqδkpf i

aλbc
jktij

bc

2

−
δbpδdqfa

b λac
ij tij

cd

2 −
δbpδdqf b

aλcd
ij tij

ac

2

+
δbqδdpfa

b λac
ij tij

cd

2 +
δbqδdpf b

aλcd
ij tij

ac

2

+
δcpδiqfa

i λab
jktjk

bc

2 +
δcpδiqf i

aλbc
jktjk

ab

2

−
δcqδipfa

i λab
jktjk

bc

2 −
δcqδipf i

aλbc
jktjk

ab

2

+
δjpδlqf i

jλab
kl t

ik
ab

2 + δjpδlqf j
i λab

ik tkl
ab

2

−
δjqδlpf i

jλab
kl t

ik
ab

2 − δjqδlpf j
i λab

ik tkl
ab

2 (6.47)

From the raw output of sympy, the first and third row in Eq. (6.47) may actually discarded
as they are not fully contracted (summation runs only over indices of t and λ, forming
closed loops over these vertices and leaving the vertex corresponding to the Fockian
unconnected). In the remaining terms, the t and λ vertices are all connected via three
lines per pair. By introducing the correlation contribution to the one-particle density

γcorr
ij = −1

2
∑
kcd

tik
cdλcd

jk = 1
2
∑
kcd

tki
cdλcd

jk etc. (6.48)

γcorr
ab = 1

2
∑
klc

tkl
bcλ

ac
kl = −1

2
∑
klc

tkl
cbλ

ac
kl etc. (6.49)

(note the antisymmetry of the one-particle density upon swapping the order of arguments
of the amplitudes) the remaining terms can be simplified considerably as

⟨0|(Λ̂2([f̂N, p̂†q̂]T̂2)c)c|0⟩
=2(δapδkqf i

aγcorr
ik − δaqδkpfa

i γcorr
ki + δbpδdqfa

b γcorr
ad − δbqδdpf b

aγcorr
da

− δcpδiqf i
aγcorr

ca + δcqδipfa
i γcorr

ac + δjpδlqf i
jγcorr

il − δjqδlpf j
i γcorr

li ) (6.50)
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In case of REMP, we can assume that fpq = fqp and γpq = γqp (real orbitals, structure of
amplitude equations). Furthermore, the dummy indices can be made more convenient:

=2P̂−(p, q)
(
δipδjqfikγcorr

kj + δipδaqficγ
corr
ca + δapδiqfakγcorr

ki + δapδbqfacγ
corr
cb

)
(6.51)

Eq. (6.51) already resembles the structure known from the reference orbital gradient. By
inserting the definition of the Fockian, it can be decomposed further

fpq = hpq +
occ∑
k

Jpq
kk − Kpq

kk = hpq +
occ∑
k

⟨pk||qk⟩ (6.52)

It is immediately clear that the one-electron contribution to the orbital gradient can be
generalized as

wpq = 2P̂−(p, q)
(∑

r

hprγcorr
rq

)
. (6.53)

The two-electron contribution yields

2P̂−(p, q)
(

δipδjq

∑
k

occ∑
l

⟨il||kl⟩γcorr
kj + δipδaq

∑
c

occ∑
l

⟨il||cl⟩γcorr
ca

+δapδiq

∑
k

occ∑
l

⟨al||kl⟩γcorr
ki + δapδbq

∑
c

occ∑
l

⟨al||cl⟩γcorr
cb

)
(6.54)

where the summations have been written out explicitly. Next, another formal summation
is introduced for the two-electron integral indices that are equal. Additionally, the
permutational symmetry of the TEIs is used for reordering them in a more convenient
form:

= 2P̂−(p, q)
(

δipδjq

∑
k

occ∑
lm

⟨lk||mi⟩δlmγcorr
kj + δipδaq

∑
c

occ∑
lm

⟨lc||mi⟩δlmγcorr
ca

+δapδiq

∑
k

occ∑
lm

⟨lk||ma⟩δlmγcorr
ki + δapδbq

∑
c

occ∑
lm

⟨lc||ma⟩δlmγcorr
cb

)
(6.55)

The two-electron contribution of 4 my thus be covered by introducing the separable
two-particle density matrix as

Γsep
rstq =δocc

rt γsq

Such a definition would however destroy the exchange symmetry of the TPDM. It is thus
better to evenly distribute the OPDM contributions:

Γsep
rstq =1

4(δocc
rt γsq + δocc

sq γrt − δocc
st γrq − δocc

rq γst) (6.56)
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or with more convenient indices

Γsep
pqrs =1

4(δocc
pr γqs + δocc

qs γpr − δocc
qr γps − δocc

ps γqr) (6.57)

which now obeys the exchange symmetry but leads to an identical result. From a
computational point of view, it is irrelevant whether the contribution of 3 to the orbital
gradient is formed from Eq. (6.51) or by separating the one- and two-electron contributions.
Both the direct contraction and the formation of the separable TPDM scale as n3 and
are thus insignificant compared to other parts.

Part 5 results in the following raw result:

⟨0|Λ̂2[ŴN, (p̂+q̂ − q̂+p̂)]T̂2|0⟩

=1
4(4δbpδdqtik

acv
dk
cj − δbpδeqtij

cdvae
cd − δbpδkqtij

cdvak
cd − 4δbpδlqtik

acv
kl
cj

− 4δbqδdptik
acv

dk
cj + δbqδeptij

cdvae
cd + δbqδkptij

cdvak
cd + 4δbqδlptik

acv
kl
cj

+ 4δcpδdqtik
acv

bk
dj − δcpδjqtkl

abv
kl
ci + 2δcpδlqtik

abv
ck
jl + 2δcpδlqtik

abv
kl
cj

− 4δcpδlqtik
acv

bk
jl − δcpδlqtkl

abv
ck
ij − 4δcqδdptik

acv
bk
dj + δcqδjptkl

abv
kl
ci

− 2δcqδlptik
abv

ck
jl − 2δcqδlptik

abv
kl
cj + 4δcqδlptik

acv
bk
jl + δcqδlptkl

abv
ck
ij

− δdpδeqtij
cdvab

ce − 4δdpδjqtik
acv

bk
cd + 2δdpδkqtij

acv
bd
ck + 2δdpδkqtij

acv
bk
cd

− δdpδkqtij
cdvab

ck − 4δdpδkqtik
acv

bd
cj + δdqδeptij

cdvab
ce + 4δdqδjptik

acv
bk
cd

− 2δdqδkptij
acv

bd
ck − 2δdqδkptij

acv
bk
cd + δdqδkptij

cdvab
ck + 4δdqδkptik

acv
bd
cj

+ 4δjpδlqtik
acv

bk
cl − δjpδmqtkl

abv
kl
im − 4δjqδlptik

acv
bk
cl + δjqδmptkl

abv
kl
im

+ 4δkpδlqtik
acv

bl
cj − 4δkqδlptik

acv
bl
cj − δlpδmqtkl

abv
km
ij + δlqδmptkl

abv
km
ij )λab

ij (6.58)

and with λ multiplied out

=1
4(4δbpδdqvdk

cj tik
acλ

ab
ij − δbpδeqvae

cd tij
cdλab

ij − δbpδkqvak
cd tij

cdλab
ij − 4δbpδlqvkl

cjtik
acλ

ab
ij

− 4δbqδdpvdk
cj tik

acλ
ab
ij + δbqδepvae

cd tij
cdλab

ij + δbqδkpvak
cd tij

cdλab
ij + 4δbqδlpvkl

cjtik
acλ

ab
ij

+ 4δcpδdqvbk
dj tik

acλ
ab
ij − δcpδjqvkl

ci tkl
abλ

ab
ij + 2δcpδlqvck

jl tik
abλ

ab
ij + 2δcpδlqvkl

cjtik
abλ

ab
ij

− 4δcpδlqvbk
jl tik

acλ
ab
ij − δcpδlqvck

ij tkl
abλ

ab
ij − 4δcqδdpvbk

dj tik
acλ

ab
ij + δcqδjpvkl

ci tkl
abλ

ab
ij

− 2δcqδlpvck
jl tik

abλ
ab
ij − 2δcqδlpvkl

cjtik
abλ

ab
ij + 4δcqδlpvbk

jl tik
acλ

ab
ij + δcqδlpvck

ij tkl
abλ

ab
ij

− δdpδeqvab
ce tij

cdλab
ij − 4δdpδjqvbk

cdtik
acλ

ab
ij + 2δdpδkqvbd

cktij
acλ

ab
ij + 2δdpδkqvbk

cdtij
acλ

ab
ij

− δdpδkqvab
cktij

cdλab
ij − 4δdpδkqvbd

cj tik
acλ

ab
ij + δdqδepvab

ce tij
cdλab

ij + 4δdqδjpvbk
cdtik

acλ
ab
ij

− 2δdqδkpvbd
cktij

acλ
ab
ij − 2δdqδkpvbk

cdtij
acλ

ab
ij + δdqδkpvab

cktij
cdλab

ij + 4δdqδkpvbd
cj tik

acλ
ab
ij

+ 4δjpδlqvbk
cl tik

acλ
ab
ij − δjpδmqvkl

imtkl
abλ

ab
ij − 4δjqδlpvbk

cl tik
acλ

ab
ij + δjqδmpvkl

imtkl
abλ

ab
ij

+ 4δkpδlqvbl
cjtik

acλ
ab
ij − 4δkqδlpvbl

cjtik
acλ

ab
ij − δlpδmqvkm

ij tkl
abλ

ab
ij + δlqδmpvkm

ij tkl
abλ

ab
ij ) (6.59)
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Compared to the raw result of 4 , there are no uncontracted terms in the sympy output.
Eq. (6.58) can be simplified in various ways. The first possible simplification is that it is
possible to identify the one-particle densities already defined in Eqs. (6.48) and (6.49).
The remaining part can be simplified by introducing correlated two-particle density
matrices:

Γijkl = 1
8
∑
cd

λcd
kl t

ij
cd (6.60)

Γabcd = 1
8
∑
kl

λcd
kl t

kl
ab (6.61)

Γiajb = −1
4
∑
kc

λac
jktik

bc (6.62)

It will soon be clear why this sign and prefactor convention is reasonable. After inserting
the density matrix definitions, one obtains

⟨0|Λ̂2[ŴN, (p̂+q̂ − q̂+p̂)]T̂2|0⟩ (6.63)

insert density definitions

=1
4(−16δbpδdqvdk

cj Γkbjc − 8δbpδeqvae
cdΓcdab − 8δbpδkqvak

cd Γcdab + 16δbpδlqvkl
cjΓkbjc

+ 16δbqδdpvdk
cj Γkbjc + 8δbqδepvae

cdΓcdab + 8δbqδkpvak
cd Γcdab − 16δbqδlpvkl

cjΓkbjc

− 16δcpδdqvbk
dj Γkbjc − 8δcpδjqvkl

ci Γklij − 4δcpδlqvck
jl γkj − 4δcpδlqvkl

cjγkj

+ 16δcpδlqvbk
jl Γkbjc − 8δcpδlqvck

ij Γklij + 16δcqδdpvbk
dj Γkbjc + 8δcqδjpvkl

ci Γklij

+ 4δcqδlpvck
jl γkj + 4δcqδlpvkl

cjγkj − 16δcqδlpvbk
jl Γkbjc + 8δcqδlpvck

ij Γklij

− 8δdpδeqvab
ce Γcdab + 16δdpδjqvbk

cdΓkbjc + 4δdpδkqvbd
ckγbc + 4δdpδkqvbk

cdγbc

− 8δdpδkqvab
ckΓcdab + 16δdpδkqvbd

cj Γkbjc + 8δdqδepvab
ce Γcdab − 16δdqδjpvbk

cdΓkbjc

− 4δdqδkpvbd
ckγbc − 4δdqδkpvbk

cdγbc + 8δdqδkpvab
ckΓcdab − 16δdqδkpvbd

cj Γkbjc

− 16δjpδlqvbk
cl Γkbjc − 8δjpδmqvkl

imΓklij + 16δjqδlpvbk
cl Γkbjc + 8δjqδmpvkl

imΓklij

− 16δkpδlqvbl
cjΓkbjc + 16δkqδlpvbl

cjΓkbjc − 8δlpδmqvkm
ij Γklij + 8δlqδmpvkm

ij Γklij) (6.64)
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subsequently, the terms are reordered so that terms belonging to each other stand next
to each other:

=2δmpδlqvij
kmΓijkl − 2δmqδlpvij

kmΓijkl + 2δmpδjqvkl
imΓklij − 2δmqδjpvkl

imΓklij

+ 2δcpδjqvkl
ic Γklij − 2δcqδjpvkl

ic Γklij + 2δcpδlqvij
kcΓijkl − 2δcqδlpvij

kcΓijkl

+ 4δlpδkqvcj
bl Γcjbk − 4δlqδkpvcj

bl Γcjbk + 4δlpδbqvcj
klΓcjkb − 4δlqδbpvcj

klΓcjkb

+ 4δlpδcqvbk
jl Γbkjc − 4δlqδcpvbk

jl Γbkjc + 4δdpδkqvcj
bdΓcjkb − 4δdqδkpvcj

bdΓcjbk

+ 4δdpδjqvbk
cdΓbkcj − 4δdqδjpvbk

cdΓbkcj + 4δdpδbqvcj
kdΓcjkb − 4δdqδbpvcj

kdΓcjkb

+ 4δdpδcqvkb
jdΓkbjc − 4δdqδcpvkb

jdΓkbjc + 4δlpδjqvbk
cl Γbkcj − 4δlqδjpvbk

cl Γbkcj

+ 2δkpδbqvcd
akΓcdab − 2δkqδbpvcd

akΓcdab + 2δkpδdqvab
ckΓabcd − 2δkqδdpvab

ckΓabcd

+ 2δepδbqvcd
aeΓcdab − 2δeqδbpvcd

aeΓcdab + 2δepδdqvab
ce Γabcd − 2δeqδdpvab

ce Γabcd

+ δlpδcqvck
jl γkj − δcpδlqvck

jl γkj + δlpδcqvkl
cjγkj − δcpδlqvkl

cjγkj

+ δdpδkqvbd
ckγbc − δdqδkpvbd

ckγbc + δdpδkqvbk
cdγbc − δdqδkpvbk

cdγbc (6.65)

identical terms can now be merged by unifying summation dummy indices; by swapping
the summation dummies j/k and b/c in the OPDM contributions, these can be simplified,
too as γkj = γjk

= + 4δmpδlqvij
kmΓijkl − 4δmqδlpvij

kmΓijkl + 4δcpδlqvij
kcΓijkl − 4δcqδlpvij

kcΓijkl

+ 4δlpδkqvcj
bl Γcjbk − 4δlqδkpvcj

bl Γcjbk + 4δlpδbqvcj
klΓcjkb − 4δlqδbpvcj

klΓcjkb

+ 4δlpδcqvbk
jl Γbkjc − 4δlqδcpvbk

jl Γbkjc + 4δdpδkqvcj
bdΓcjkb − 4δdqδkpvcj

bdΓcjbk

+ 4δdpδjqvbk
cdΓbkcj − 4δdqδjpvbk

cdΓbkcj + 4δdpδbqvcj
kdΓcjkb − 4δdqδbpvcj

kdΓcjkb

+ 4δdpδcqvkb
jdΓkbjc − 4δdqδcpvkb

jdΓkbjc + 4δlpδjqvbk
cl Γbkcj − 4δlqδjpvbk

cl Γbkcj

+ 4δkpδdqvab
ckΓabcd − 4δkqδdpvab

ckΓabcd + 4δepδdqvab
ce Γabcd − 4δeqδdpvab

ce Γabcd

+ 2δlpδcqvck
jl γkj − 2δcpδlqvck

jl γkj + 2δdpδkqvbd
ckγbc − 2δdqδkpvbd

ckγbc (6.66)

now, the permutation operator can again be introduced

=2P̂−(p, q)(2δmpδlqvij
kmΓijkl + 2δcpδlqvij

kcΓijkl + 2δlpδkqvcj
bl Γcjbk + 2δlpδbqvcj

klΓcjkb

+ 2δlpδcqvbk
jl Γbkjc + 2δdpδkqvcj

bdΓcjkb + 2δdpδjqvbk
cdΓbkcj + 2δdpδbqvcj

kdΓcjkb

+ 2δdpδcqvkb
jdΓkbjc + 2δlpδjqvbk

cl Γbkcj + 2δkpδdqvab
ckΓabcd + 2δepδdqvab

ce Γabcd

+ δlpδcqvck
jl γkj + δdpδkqvbd

ckγbc) (6.67)

so that the contributions by two-particle densities can be generalized as

=2P̂−(p, q)(2
∑
rst

vrs
tp Γcorr

rstq) = 2P̂−(p, q)(2
∑
rst

⟨rs||tp⟩Γcorr
rstq) (6.68)
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Regarding the OPDM contributions (δlpδcqvck
jl γkj + δdpδkqvbd

ckγbc), it was not possible to
elucidate their origin and nature. Such terms are not present in the OCEPA formulation
of Bozkaya and Sherrill. It is not possible to rewrite them in the scheme of the separable
TPDMs, as both p and q occur in the ERI part while the OPDM part does not contain any
target index. Furthermore, writing these contributions as separable TPDM would require
one- and three-external TPDMs which are needed nowhere else. The only possibility is
that these contributions are not fully contracted in nature and thus can and should be
discarded entirely.
Due to the contraction pattern of integrals and densities (first three indices are contracted,
must share the occupation pattern), there are only 12 different combinations of occupied
and virtual indices possible with the densities present in the last part:

rstp rstq

oooo oooo
oooo ooov
ovoo ovov
ovov ovov
ovvo ovvo
ovvv ovvo
vooo voov
voov voov
vovo vovo
vovv vovo
vvvo vvvv
vvvv vvvv

all of these are present in Eq. (6.67), thus it is possible to also generalize the last part in
the same way as before.
It was furthermore impossible to reproduce where Bozkaya and Sherrill got the additional
factor 2 in their orbital gradient from (e.g. Eq. (37) in Ref. [46]).

On the other hand, as the orbital gradient is a property which is brought to zero, a
missing factor 2 just means that the convergence criterion has to be tightened by that
factor.

Collecting all contributions from 1 – 5 , the orbital gradient may be written as

wpq =2Fpq − 2Fqp = 2P̂−Fpq (6.69)

where the generalized Fock matrix Fpq is defined as

Fpq =
∑

r

hprγrq + 2
∑
rst

⟨rs||tp⟩Γrstq (6.70)
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with the one-particle density matrix (OPDM) γpq and the two-particle density matrix
(TPDM) Γpqrs being defined as

γpq = γref
pq + γcorr

pq (6.71)

where

γref
pq = δocc

pq from 1 , Eq. (6.27) (6.72)

γcorr
ij = −1

2

occ∑
m

virt∑
ef

tim
ef λef

jm from 2 , Eq. (6.48) (6.73)

γcorr
ab = 1

2

occ∑
mn

virt∑
e

tmn
be λae

mn from 2 , Eq. (6.49) (6.74)

Γpqrs = Γref
pqrs + Γsep

pqrs + Γcorr
pqrs (6.75)

where

Γref
pqrs = 1

4(δocc
pr δocc

qs − δocc
ps δocc

qr ) from 1 , Eq. (6.28) (6.76)

Γsep
pqrs = 1

4(δocc
pr γqs + δocc

qs γpr − δocc
qr γps − δocc

ps γqr) from 4 , Eq. (6.57) (6.77)

Γcorr
ijkl = 1

8
∑
cd

λcd
kl t

ij
cd from 5 , Eq. (6.60) (6.78)

Γcorr
ijab = 1

4 tij
ab from 2 & 3 , Eq. (6.40) (6.79)

Γcorr
iajb = −1

4
∑
kc

λac
jktik

bc from 5 , Eq. (6.62) (6.80)

Γcorr
abcd = 1

8
∑
kl

λcd
kl t

kl
ab from 5 , Eq. (6.61) (6.81)

The REMP scaling factor A for Γcorr
ijkl , Γcorr

iajb, and Γcorr
abcd can be either included in the

densities (as has been done in both the wavels and the PSI4 implementation) or only
added when the generalized Fock matrix is constructed.

The latter one should be the preferred way of treating the TPDMs in later developments.
The densities Γijkl Γiajb and Γabcd or course also do exist for MP2, they are just not
needed for calculating the orbital gradient. They are needed when two-electron properties
(like ⟨Ŝ2⟩) are calculated, however, and in this case, they should also not be scaled.

The currently available implementations of OO-REMP are correct, but the scaling of the
TPDMs should nevertheless be moved to the generalized Fock matrix code.
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6.2 Tables

6.2.1 Tables for the RG18 benchmark set

Table 6.1: Absolute errors for the RG18 benchmark set, all in kcal mol−1. Energies were extrapolated
from aug-cc-pV[T/Q]Z for dimers and aug-cc-pwCV[T/Q]Z for higher aggregates as
described in Section 3.3.1.
A MSD MAD stdev RMSD min max

method 1
0.00 −0.074 0.074 0.050 0.088 −0.174 −0.006
0.15 −0.058 0.058 0.043 0.072 −0.191 −0.003
0.20 −0.053 0.053 0.044 0.068 −0.198 0.001
0.25 −0.048 0.048 0.047 0.066 −0.205 0.006
0.30 −0.042 0.045 0.051 0.065 −0.212 0.015
0.35 −0.037 0.044 0.056 0.066 −0.218 0.040
0.40 −0.031 0.045 0.062 0.068 −0.225 0.064
0.45 −0.026 0.049 0.069 0.072 −0.231 0.089
0.50 −0.020 0.054 0.076 0.077 −0.237 0.115
1.00 0.040 0.115 0.164 0.164 −0.296 0.384

method 2
0.00 −0.039 0.062 0.062 0.072 −0.125 0.117
0.15 −0.023 0.042 0.048 0.052 −0.109 0.095
0.20 −0.018 0.036 0.046 0.048 −0.105 0.088
0.25 −0.012 0.036 0.046 0.046 −0.101 0.081
0.30 −0.007 0.038 0.047 0.046 −0.099 0.074
0.35 −0.002 0.041 0.050 0.049 −0.096 0.071
0.40 0.004 0.044 0.054 0.053 −0.093 0.094
0.45 0.009 0.047 0.060 0.059 −0.091 0.117
0.50 0.015 0.051 0.066 0.066 −0.088 0.140
1.00 0.075 0.103 0.152 0.166 −0.064 0.392

method 3
0.00 −0.094 0.094 0.052 0.106 −0.194 −0.020
0.15 −0.079 0.079 0.046 0.090 −0.217 −0.021
0.20 −0.073 0.073 0.047 0.086 −0.224 −0.021
0.25 −0.068 0.068 0.049 0.083 −0.232 −0.019
0.30 −0.063 0.063 0.053 0.081 −0.239 −0.013
0.35 −0.058 0.058 0.058 0.081 −0.246 0.007
0.40 −0.052 0.057 0.064 0.081 −0.254 0.027
0.45 −0.047 0.061 0.070 0.083 −0.261 0.048
0.50 −0.041 0.065 0.077 0.086 −0.268 0.069
1.00 0.016 0.112 0.164 0.160 −0.335 0.329
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Table 6.2: Relative errors for the RG18 benchmark set, all in percent. Energies were extrapolated from
aug-cc-pV[T/Q]Z for dimers and aug-cc-pwCV[T/Q]Z for higher aggregates as described
in Section 3.3.1.

A MSRE MARE rel. stdev RMSRE min max

method 1
0.00 −13.3 13.3 4.2 13.9 −22.5 −4.6
0.15 −11.5 11.5 6.0 12.9 −25.5 −1.0
0.20 −10.9 11.0 6.9 12.8 −26.5 0.4
0.25 −10.3 10.5 7.7 12.8 −27.5 1.8
0.30 −9.7 10.2 8.6 12.8 −28.4 3.2
0.35 −9.0 10.1 9.6 13.0 −29.3 4.7
0.40 −8.4 10.1 10.5 13.2 −30.3 6.1
0.45 −7.7 10.5 11.5 13.6 −31.2 8.0
0.50 −7.1 11.0 12.4 14.0 −32.0 10.2
1.00 0.1 19.0 22.7 22.1 −40.4 34.2

method 2
0.00 −8.7 12.3 10.6 13.4 −23.6 11.5
0.15 −6.9 9.9 10.2 12.1 −26.7 9.2
0.20 −6.3 9.2 10.3 11.8 −27.7 8.5
0.25 −5.7 9.1 10.5 11.6 −28.6 7.9
0.30 −5.0 9.1 10.8 11.6 −29.6 7.3
0.35 −4.4 9.2 11.1 11.7 −30.5 6.7
0.40 −3.8 9.4 11.6 11.9 −31.4 7.0
0.45 −3.1 9.7 12.1 12.2 −32.3 8.7
0.50 −2.4 10.1 12.7 12.6 −33.2 11.0
1.00 4.8 16.6 20.9 20.9 −41.6 35.0

method 3
0.00 −19.0 19.0 7.2 20.3 −38.1 −10.9
0.15 −17.2 17.2 8.4 19.1 −40.3 −6.1
0.20 −16.6 16.6 9.0 18.8 −41.0 −4.5
0.25 −16.0 16.0 9.6 18.5 −41.7 −2.8
0.30 −15.3 15.3 10.3 18.3 −42.4 −1.1
0.35 −14.7 14.7 11.1 18.2 −43.1 0.6
0.40 −14.0 14.5 11.9 18.2 −43.8 2.3
0.45 −13.4 14.6 12.7 18.2 −44.5 4.1
0.50 −12.7 14.8 13.6 18.3 −45.1 5.8
1.00 −5.6 19.1 23.0 23.1 −51.7 29.4

Table 6.3: Relative errors of DFT methods for the RG18 benchmark set, all in percent. Energies were
retrieved from Reference [256] and used without modification. The def2-QZVP basis set
was used in all cases. All errors in percent.

A MSRE MARE rel. stdev RMSRE min max

DFT/def2-QZVP
revTPSS, D3(BJ) 12.8 15.1 19.5 22.9 −8.6 66.7

revTPSSh, D3(BJ) 8.3 13.1 15.7 17.4 −15.0 50.0
BLYP, D3(BJ) 5.2 11.5 16.4 16.8 −12.1 47.8

APFD 13.9 15.7 15.5 20.5 −4.6 47.8
B2PLYP, D3(0) −12.2 32.7 39.7 40.5 −77.8 100.0

B2PLYP, D3(BJ) −19.9 31.5 32.3 37.2 −74.1 47.8
DSD-PBEB95, D3(BJ) 13.1 27.5 33.7 35.3 −63.0 72.2

M062X, no D 5.8 44.4 53.8 52.6 −62.5 112.5
BP86, D3(0) −111.4 115.9 108.5 153.4 −337.5 23.6
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6.2.2 Tables for the A24 benchmark set

Table 6.4: Absolute error measures for REMP, OO-REMP and CCSD(T) for the A24 benchmark
set, all errors wrt. approximate CCSDT(Q)/CBS results from Ref.[262]. All values in
kcal mol−1. REMP and OO-REMP are extrapolated from aug-cc-pV[T,Q]Z, CCSD(T) is
taken from Ref. [264]. See Section 3.3.2 for computational details.

A MSD MAD stdev RMSD min max

REMP
0.00 0.130 0.135 0.161 0.204 −0.047 0.784
0.05 0.115 0.118 0.140 0.179 −0.034 0.680
0.10 0.100 0.103 0.124 0.157 −0.028 0.592
0.15 0.087 0.090 0.110 0.139 −0.026 0.515
0.20 0.075 0.080 0.100 0.123 −0.029 0.449
0.25 0.063 0.072 0.091 0.110 −0.035 0.391
0.30 0.052 0.068 0.085 0.099 −0.049 0.339
0.35 0.042 0.066 0.081 0.090 −0.064 0.293
0.40 0.033 0.066 0.079 0.084 −0.085 0.252
0.45 0.023 0.066 0.078 0.080 −0.108 0.215
0.50 0.015 0.067 0.079 0.079 −0.132 0.181
0.55 0.006 0.069 0.081 0.080 −0.157 0.150
0.60 −0.002 0.071 0.085 0.083 −0.183 0.122
0.65 −0.010 0.074 0.089 0.088 −0.210 0.109
0.70 −0.017 0.077 0.094 0.094 −0.238 0.103
0.75 −0.025 0.080 0.100 0.101 −0.267 0.098
0.80 −0.032 0.083 0.106 0.109 −0.296 0.094
0.85 −0.039 0.088 0.113 0.117 −0.326 0.089
0.90 −0.046 0.093 0.120 0.126 −0.358 0.086
0.95 −0.053 0.099 0.128 0.136 −0.390 0.082
1.00 −0.060 0.106 0.135 0.145 −0.423 0.079

OO-REMP
0.00 0.125 0.128 0.109 0.164 −0.035 0.566
0.05 0.106 0.110 0.087 0.136 −0.044 0.451
0.10 0.089 0.093 0.069 0.112 −0.051 0.353
0.15 0.073 0.078 0.055 0.090 −0.057 0.268
0.20 0.058 0.063 0.043 0.072 −0.062 0.193
0.25 0.044 0.050 0.034 0.056 −0.065 0.126
0.30 0.031 0.037 0.029 0.042 −0.067 0.096
0.35 0.019 0.026 0.029 0.034 −0.068 0.082
0.40 0.007 0.025 0.031 0.031 −0.068 0.070
0.45 −0.005 0.030 0.037 0.036 −0.084 0.058
0.50 −0.016 0.037 0.043 0.045 −0.127 0.047
0.55 −0.027 0.044 0.051 0.056 −0.167 0.036
0.60 −0.037 0.052 0.058 0.068 −0.205 0.031
0.65 −0.048 0.060 0.066 0.080 −0.241 0.029
0.70 −0.058 0.068 0.075 0.093 −0.276 0.026
0.75 −0.068 0.076 0.083 0.106 −0.310 0.024
0.80 −0.077 0.085 0.092 0.119 −0.342 0.023
0.85 −0.087 0.094 0.101 0.132 −0.374 0.022
0.90 −0.097 0.103 0.110 0.145 −0.405 0.022
0.95 −0.106 0.112 0.120 0.158 −0.436 0.021
1.00 −0.116 0.121 0.129 0.172 −0.467 0.021

CCSD(T)/CBS/FC 0.021 0.023 0.017 0.026 −0.032 0.053
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Table 6.5: Relative error measures for REMP, OO-REMP and CCSD(T) for the A24 benchmark
set, all errors wrt. approximate CCSDT(Q)/CBS results from Ref.[262]. All values in
kcal mol−1. REMP and OO-REMP are extrapolated from aug-cc-pV[T,Q]Z, CCSD(T) is
taken from Ref. [264]. See Section 3.3.2 for computational details.

A MSRE MARE rel. stdev RMSRE min max

REMP
0.00 −7.7 8.0 5.6 9.4 −17.3 3.3
0.05 −6.8 7.1 5.3 8.6 −15.0 2.9
0.10 −6.1 6.3 5.0 7.9 −14.0 2.1
0.15 −5.6 5.6 4.8 7.3 −13.0 0.9
0.20 −5.1 5.1 4.6 6.8 −12.4 0.2
0.25 −4.7 4.9 4.5 6.5 −12.1 0.8
0.30 −4.4 4.9 4.6 6.3 −11.8 2.0
0.35 −4.1 5.0 4.8 6.2 −11.5 3.3
0.40 −3.9 5.2 5.1 6.3 −11.3 4.6
0.45 −3.7 5.5 5.6 6.6 −12.5 6.0
0.50 −3.6 5.7 6.1 7.0 −14.8 7.4
0.55 −3.4 6.0 6.8 7.5 −17.2 8.8
0.60 −3.4 6.3 7.5 8.1 −19.8 10.2
0.65 −3.3 6.7 8.3 8.8 −22.4 11.6
0.70 −3.3 7.1 9.2 9.6 −25.1 13.0
0.75 −3.3 7.5 10.1 10.4 −27.9 14.5
0.80 −3.3 7.9 11.0 11.2 −30.8 15.9
0.85 −3.3 8.4 12.0 12.2 −33.8 17.4
0.90 −3.4 8.9 13.0 13.1 −36.8 18.9
0.95 −3.4 9.4 14.0 14.1 −39.9 20.3
1.00 −3.5 10.0 15.0 15.1 −43.1 21.8

OO-REMP
0.00 −6.4 9.0 7.8 10.0 −15.1 11.9
0.05 −5.4 8.1 7.2 8.9 −13.6 11.9
0.10 −4.6 7.1 6.6 7.9 −12.0 11.1
0.15 −3.9 6.2 5.9 7.0 −10.6 9.9
0.20 −3.3 5.2 5.2 6.0 −9.8 8.3
0.25 −2.8 4.3 4.4 5.1 −9.2 6.4
0.30 −2.3 3.5 3.7 4.3 −8.5 4.5
0.35 −1.9 2.6 3.1 3.6 −7.9 3.1
0.40 −1.6 2.3 2.8 3.1 −7.4 1.5
0.45 −1.3 2.3 2.7 3.0 −6.8 2.8
0.50 −1.0 2.7 3.1 3.2 −6.3 4.1
0.55 −0.8 3.1 3.8 3.8 −8.4 5.5
0.60 −0.6 3.6 4.7 4.6 −11.3 6.8
0.65 −0.5 4.2 5.6 5.5 −14.3 8.1
0.70 −0.3 4.8 6.7 6.5 −17.4 9.3
0.75 −0.2 5.4 7.8 7.6 −20.6 10.6
0.80 −0.1 6.1 8.9 8.7 −23.9 11.8
0.85 0.0 6.8 10.1 9.9 −27.3 13.3
0.90 0.0 7.5 11.4 11.1 −30.7 15.1
0.95 0.1 8.3 12.6 12.4 −34.3 16.9
1.00 0.1 9.0 13.9 13.6 −38.0 18.7

CCSD(T)/CBS/FC −0.7 1.7 1.9 2.0 −2.5 4.3
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6.2.3 Tables for the O23 benchmark set

Table 6.6: Absolute error measures for the O23 benchmark set. All in kcal mol−1. OO-REMP/CBS(aug-
cc-pV[T/Q]Z), all electrons correlated, reference numbers: CCSD(T)/CBS(aug-cc-
pV[T/Q]Z), all electrons correlated from Ref. [121].

A MSD MAD stdev RMSD min max

0.00 0.198 0.214 0.286 0.342 −0.150 1.037
0.01 0.192 0.206 0.272 0.328 −0.138 0.957
0.05 0.175 0.184 0.228 0.284 −0.092 0.727
0.10 0.159 0.162 0.193 0.246 −0.031 0.681
0.11 0.156 0.158 0.187 0.240 −0.018 0.670
0.12 0.153 0.154 0.182 0.235 −0.005 0.658
0.13 0.151 0.151 0.177 0.230 −0.004 0.646
0.14 0.148 0.148 0.173 0.225 −0.004 0.633
0.15 0.145 0.146 0.169 0.220 −0.004 0.620
0.16 0.143 0.143 0.165 0.215 −0.004 0.607
0.17 0.140 0.141 0.161 0.211 −0.004 0.593
0.18 0.138 0.138 0.158 0.207 −0.004 0.578
0.19 0.136 0.136 0.155 0.204 −0.004 0.563
0.20 0.134 0.135 0.153 0.200 −0.008 0.548
0.21 0.131 0.133 0.150 0.197 −0.014 0.532
0.22 0.129 0.131 0.148 0.194 −0.019 0.516
0.23 0.127 0.130 0.146 0.191 −0.025 0.499
0.24 0.125 0.128 0.145 0.189 −0.030 0.482
0.25 0.123 0.126 0.143 0.186 −0.035 0.464
0.26 0.121 0.125 0.142 0.184 −0.040 0.458
0.27 0.119 0.123 0.142 0.182 −0.045 0.471
0.28 0.117 0.122 0.141 0.181 −0.050 0.483
0.29 0.115 0.120 0.141 0.180 −0.054 0.496
0.30 0.113 0.119 0.142 0.179 −0.058 0.508
0.35 0.103 0.111 0.148 0.178 −0.077 0.564
0.40 0.094 0.104 0.161 0.184 −0.092 0.615
0.45 0.086 0.100 0.182 0.197 −0.104 0.661
0.50 0.077 0.113 0.208 0.217 −0.112 0.703
0.60 0.060 0.152 0.273 0.273 −0.381 0.778
0.70 0.043 0.201 0.353 0.347 −0.704 0.934
0.80 0.026 0.258 0.445 0.436 −1.066 1.132
0.90 0.008 0.319 0.551 0.538 −1.472 1.341
1.00 −0.009 0.384 0.670 0.655 −1.927 1.562
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Table 6.7: Relative error measures for the O23 benchmark set. All in percent. OO-REMP/CBS(aug-cc-
pV[T/Q]Z), all electrons correlated, reference numbers: CCSD(T)/CBS(aug-cc-pV[T/Q]Z),
all electrons correlated from Ref. [121].

A MSRE MARE rel. stdev RMSRE min max

0.00 −5.1 6.1 6.3 8.0 −20.4 7.0
0.01 −5.2 5.9 6.1 7.9 −20.3 6.5
0.05 −5.6 6.0 5.8 8.0 −19.6 4.6
0.10 −6.0 6.3 6.5 8.8 −20.9 2.2
0.11 −6.1 6.3 6.8 9.0 −22.9 1.8
0.12 −6.2 6.3 7.0 9.2 −24.8 1.3
0.13 −6.3 6.4 7.3 9.5 −26.7 0.8
0.14 −6.4 6.4 7.6 9.7 −28.5 0.4
0.15 −6.4 6.4 7.9 10.0 −30.3 0.0
0.16 −6.5 6.5 8.1 10.3 −32.1 −0.1
0.17 −6.6 6.6 8.4 10.5 −33.8 0.0
0.18 −6.6 6.6 8.7 10.8 −35.4 0.0
0.19 −6.7 6.7 9.0 11.1 −37.0 0.0
0.20 −6.7 6.7 9.4 11.3 −38.6 0.0
0.21 −6.8 6.8 9.7 11.6 −40.1 0.1
0.22 −6.8 6.8 10.0 11.9 −41.6 0.1
0.23 −6.9 6.9 10.3 12.2 −43.1 0.1
0.24 −6.9 7.0 10.6 12.4 −44.5 0.1
0.25 −7.0 7.0 10.9 12.7 −45.9 0.1
0.26 −7.0 7.0 11.2 13.0 −47.2 0.2
0.27 −7.1 7.1 11.5 13.2 −48.5 0.2
0.28 −7.1 7.1 11.8 13.5 −49.8 0.2
0.29 −7.2 7.2 12.1 13.8 −51.1 0.2
0.30 −7.2 7.2 12.4 14.0 −52.3 0.2
0.35 −7.4 7.4 13.8 15.3 −58.1 0.3
0.40 −7.5 7.6 15.2 16.6 −63.4 0.4
0.45 −7.6 7.7 16.6 17.8 −68.1 0.5
0.50 −7.6 8.3 17.9 19.0 −72.5 2.6
0.60 −7.6 9.7 20.5 21.4 −80.2 10.3
0.70 −7.5 11.2 23.1 23.7 −86.7 19.0
0.80 −7.2 13.1 25.7 26.1 −92.5 28.7
0.90 −6.8 15.1 28.4 28.6 −97.5 39.7
1.00 −6.2 17.2 31.3 31.2 −102.0 51.9
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ABSTRACT

We propose a new perturbation theoretical approach to the electron correlation energy by choosing the zeroth order Hamiltonian as a linear
combination of the corresponding “Retaining the Excitation degree” (RE) and the Møller-Plesset (MP) operators. In order to fulfill Kato cusp
conditions, the RE and MP contributions are chosen to sum up to one. 15% ± 5% MP contribution is deduced to be in an optimal range from
a fit of the first order REMP wavefunction to near full configuration interaction reference data. For closed shell systems, the same range of MP
weights shows best performance for equilibrium bond distances and vibrational wavenumbers of diatomic molecules, the reaction energies
in the spin component scaled MP2 fit set, the transition energies of the BHPERI test set, and the parameterized coupled cluster with singles
and doubles (pCCSD) fit set. For these properties, REMP outperforms all other tested perturbation theories at second order and shows equal
performance as the best coupled pair approaches or pCCSD methods as well as the best double hybrid density functionals. Furthermore,
REMP is shown to fulfill all required fundamental boundary conditions of proper wavefunction based quantum chemical methods (unitary
invariance and size consistency).

Published under license by AIP Publishing. https://doi.org/10.1063/1.5086168

I. INTRODUCTION

The oldest but still most used perturbation theoretical (PT)
approach to the electron correlation energy is the Møller-Plesset
(MP) method1,2 which is defined by setting the unperturbed Hamil-
tonian to the Fock-operator. MP-PT has the advantage of being
size consistent,3,4 invariant with respect to any unitary transfor-
mation of the occupied or virtual orbitals5 and extensible to unre-
stricted and multireference cases.6–9 Formally, the computational
effort of MP2 scales with the fifth power of the system size which
renders MP2 still useful for large systems. Furthermore, a multitude
of efficient MP2 approximations have been proposed that allow the
application whenever it is possible to generate a suitable reference
wavefunction;10–13 see also the introduction of Ref. 14.

Known drawbacks of MP-PT are its poor performance for sys-
tems with clustering of electron pairs2 like late transition metals or
even the neon atom for which the perturbation series was shown

to diverge!15 To overcome these shortcomings, several modifica-
tions of MP-PT were proposed. The most successful variants are
spin component scaled MP2 (SCS-MP2)16–18 and orbital-optimized
MP2 (OO-MP2).14,19–21 The SCS-MP2 model was proposed as an
ad hoc parameterization of the same-spin and opposite-spin com-
ponents of the MP2 correlation energy. The parameter choice was
motivated by the aim to mostly retain the total MP2 correlation
energy and to correct that MP2 underestimates the correlation
energy of two electron systems like helium or H2. The actual param-
eters were fitted by minimizing the least square deviation for a
set of reaction energies. Further theoretical considerations allowed
us to motivate the SCS-MP2 parameterization and to turn SCS-
MP2 in the second order energy of a fully fledged perturbation
theory.18,22 OO-MP2 minimizes the MP2 energy by varying the
occupied orbitals of the reference wavefunction. This is most suc-
cessful if the reference wavefunction is severely damaged, e.g., by
spin contamination.14
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The Møller-Plesset partitioning is not the only possible parti-
tioning of the electronic Hamiltonian. The “Retaining the Excitation
degree” (RE) partitioning which has been developed by one of the
authors23,24 is a competing scheme which includes a more complex
unperturbed Hamiltonian than MP. It is based on the idea that the
configurations in an N-electron wavefunction basis can be assigned
an excitation degree relative to the predefined orbital sets. The zeroth
order Hamiltonian accounts for all interactions between configura-
tions that have the same number of electrons in these subsets. For
closed-shell singlet reference cases, RE2 is identical to the simplest
coupled electron pair approach (CEPA) termed CEPA/0(D)25,26

which belongs to the set of coupled-pair type methods27,28 and
dates back to Kelly.29–31 CEPA/0(D) can be derived in various
ways and is equivalent to linearized coupled-cluster with dou-
bles (LCCD)32–34 originally named linearized coupled-pair many-
electron theory (LCP-MET),35,36 many body perturbation theory
with all orders in double-excitation diagrams [MBPT-D(∞)],37,38

or optimized partitioning perturbation theory (OPT-PT).39,40

Recently, one of the present authors identified systematic errors
in first order wavefunctions of different PT methods.41 Accordingly,
RE2 has a slight tendency to overestimate the correlation energy due
to configuration state functions (CSFs) that are of singlet-coupled
doubly excited (SDE) type. Simultaneously, it underestimates cor-
relation contributions from triplet-coupled doubly excited (TDE)
CSFs to a somewhat larger degree. On the other hand, MP2 overesti-
mates the contributions of the TDEs and underestimates those of the
SDEs substantially. Based on the observation of the inverted trends
of wavefunction errors in the first order wavefunction, we investigate
in the following whether it is possible to set up a perturbation the-
ory termed “REMP” where these errors cancel by design. Hereby, the
ultimate but ambitious goal is to develop an “ideal PT”41 that repro-
duces the full configuration interaction (FCI) double coefficients in
the first order perturbed wavefunction and thus the FCI energy with
the second order PT-energy.

The paper is structured as follows: In Sec. II, the REMP
approach is proposed and our implementation is described. Addi-
tionally, an approach that allows us to judge the quality of a
wavefunction by means of an overlap criterion is developed. In
Sec. III, computational details are described as well as the perfor-
mance of REMP wavefunctions in comparison to high level coupled-
cluster calculations with up to quadruple excitations as well as other
approaches. Furthermore, the performance of REMP for molecular
and thermochemical properties is investigated in Sec. IV where we
try to obtain an unbiased assessment of our new method by vali-
dating it with benchmark sets that were used before for alternative
approaches like SCS-MP2,16 CEPA,42,43 or parameterized coupled
cluster with singles and doubles (pCCSD).44,45 Conclusions and an
outlook are given in Sec. V.

II. THEORY

A. REMP perturbation theory

Throughout this article, the indices i, j, k, l represent occupied
orbitals, while a, b, c, d are used for virtual and p, q, r, s for arbitrary
orbitals.

Rayleigh-Schrödinger perturbation theory46 can be used to
incorporate electron correlation into electronic wavefunctions.47,48

The electronic Hamiltonian Ĥ is partitioned into an unperturbed
part Ĥ(0) for which

Ĥ(0)Ψ(0) = E(0)Ψ(0) (1)

is exactly fulfilled and a perturbation Ĥ(1).
In the formalism of second quantization, the electronic Hamil-

tonian reads48–50

Ĥ =∑
p,q

hpqâ†
p âq +

1
2 ∑pqrs ⟨pq∣rs⟩â†

p â
†
q âsâr , (2)

where hpq is a matrix element of the one-electron Hamiltonian,⟨pq∣rs⟩ = ∫ φ∗p (1)φ∗q (2) 1
r12
φr(1)φs(2)dτ is a two-electron repul-

sion integral (ERI) in Dirac notation, and â/â† are the annihila-
tion/creation operators of the second quantization formalism. The
MP partitioning uses the Fock operator, F̂, as unperturbed zeroth
order Hamiltonian

Ĥ(0)MP = F̂ =∑
p,q

Fpqâ†
p âq. (3)

Using the second quantization Hamiltonian [Eq. (2)], RE-PT
can be defined by grouping the spin orbitals in orbital spaces. In
this work, two such spaces are chosen: (i) the occupied and (ii) the
virtual orbitals in the closed shell Hartree-Fock reference wavefunc-
tion. Now we can define an excitation degree, nex, which is in our
case the number of electrons in the virtual orbital space. The zeroth
order Hamiltonian includes all terms of the second quantization
Hamiltonian that do not change the excitation degree

Ĥ(0)RE = ∑
p,q;

∆nex=0

hpqâ†
p âq +

1
2 ∑p,q,r,s;

∆nex=0

⟨pq∣rs⟩â†
p â

†
q âsâr . (4)

We define the REMP method by setting the unperturbed
Hamiltonian to a constrained mixture of corresponding RE and MP
counterparts as

Ĥ(0)REMP = (1 − A) ⋅ Ĥ(0)RE + A ⋅ Ĥ(0)MP . (5)

Note that every linear combination of Ĥ(0)RE and Ĥ(0)MP fulfills the
zeroth order perturbation equation [Eq. (1)] which is required for
the perturbation theory. We choose the constraint that their contri-
butions sum up to unity to guarantee that the exact REMP wave-
functions obey the electron-electron Kato cusp conditions.51,52 The
latter result from the balance between kinetic and electron-electron
repulsion energies in the short distance limit. In a PT approach, this
requires that the unscaled kinetic energy operator appears in Ĥ(0)
since the full electron-electron repulsion operator is contained in
Ĥ(1).18 Loosening this constraint leads to models that are related
to the Feenberg-Goldhammer scaling method.53–55

In this work, we investigate the performance of REMP at sec-
ond order for electronic energies which means that A = 0 corre-
sponds to RE2 and A = 1 corresponds to MP2 energies. Further-
more, if wavefunctions are considered, these are first order in PT.
The choice of Ĥ(0) is motivated by our previous study41 where it
was found that for the water molecule in a cc-pVDZ56 basis, RE2
recovers 100.2% of the correlation energy resulting from singlet-
coupled double excitations (SDEs, see Sec. II C for the definition)
and 97.7% of the correlation energy resulting from triplet-coupled
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double excitations (TDEs), whereas MP2 provides 86.3% of the SDE
correlation energy and 116.6% of the TDE correlation energy. A lin-
ear interpolation of these correlation energy contributions allows
us to estimate that at A ≈ 0.1 the amount of recovered SDE and
TDE correlation energies amounts to about 99%, this corresponds
to a 90:10 mixture of RE and MP. Similar considerations of fur-
ther systems studied in Ref. 41 lead to the conclusion that A should
be in the range between 0.1 and 0.2. As REMP with A = 0.15
showed a balanced performance for the various tests described
below and as a fixed mixing ratio is required for reasonable appli-
cations, REMP(0.15) results are presented for all cases discussed
below.

The primary implementation of REMP was done as an exten-
sion of an arbitrary order determinantal CI program.57,58 The same
code already was used for the evaluation of REn.24 For REMP,
one additionally needs the matrix representation of Ĥ(0)MP which is
diagonal for canonical orbitals. In the routine which solves the per-
turbation equations,59 the appropriate linear combination of these
H(0) matrices is determined. This program allows us to determine
arbitrary orders of perturbation theory if the configuration space
allows us to treat the FCI problem. The obvious drawback of this
implementation is that the non-zero matrix elements of Ĥ and Ĥ(0)
are individually determined and stored which limits the application
range to expansions with about 106 doubly excited determinants.

If one restricts the perturbation to second order, it is possi-
ble to reformulate REMP in a much more efficient way by mak-
ing use of the fact that RE2 for closed-shell singlets just coincides
with CEPA/0(D).24 The whole formalism can then be treated by
the direct CI framework developed by Roos60 where storing the
Hamiltonian matrix is avoided completely. According to Pulay,
Saebø, and Meyer,61 the direct CI problem can be cast into a set
of highly efficient matrix equations (see also Refs. 43, 62, and 63).
Inserting the doubles shift for CEPA/0(D) (∆ij = 0) into the doubles
residuum equation, we obtain the RE part of the REMP residuals

σijab,RE2 = ⟨Ψ̃ab
ij ∣Ĥ − E0∣Ψ⟩ (6)

= K ij
ab + {FVCij + CijFV}ab − nocc∑

k=1
(FjkCik

ab + FikC
kj
ab) + K(Cij)ab

+
nocc∑
k,l=1

K ij
klC

kl
ab +

nocc∑
k=1
{(2Cik − Cik+)(Kkj − 1

2
Jkj)

+(Kik − 1
2
Jik)(2Ckj − Ckj+)}

ab
− nocc∑

k=1
{1

2
Cik+Jjk+ +

1
2
JikCkj+

+ JjkCik + CkjJik+}
ab

, (7)

where Kpq
rs = (pr∣qs), Jpqrs = (pq∣rs), and K(Cij)ab = ∑c,d K

ab
cdC

ij
cd. FV

represents the virtual-virtual sub-block of the Fock matrix and the
braces {}ab indicate that the (ab) element of the matrix that results
from this operation shall be taken.

This matrix representation of the doubles correlation problem
makes use of non-orthogonal CSFs (see Ref. 61 for further details)
where the right-hand side (ket) wavefunctions are given by Ψ = Φ0

+∑i⩾i∑ab C
ij
abΨ

ij
ab with the doubly excited configurations Ψab

ij = Φab
ij

+Φāb̄
ī̄j +Φab̄

īj +Φāb
īj for i > j and Ψab

ii = Φab̄
īi for i = j where, e.g., Φab̄

īj is the
Slater determinant that results if the alpha spin orbital i is substituted

by a and the beta spin orbital j by b. The left-hand side configurations
are given by Ψ̃ab

ij = 1
6(Φab

ij + Φāb̄
ī̄j + 2Φāb

īj + 2Φab̄
īj −Φab̄

īj −Φāb
īj ) for i > j

and Ψ̃ab
ii = Φab̄

īi for i = j.
The equivalent residuum equation for MP2 has been derived by

Pulay and Saebø64 as

σijab,MP2 = K ij
ab + {FVCij + CijFV}ab −∑

k
(FikCkj

ab + FkjC
ik
ab). (8)

As the terms in the MP2 residuum are identical to the first three
terms in the RE2 residuum,

σijab,REMP = (1 − A)σijab,RE2 + Aσijab,MP2 (9)

can be obtained by multiplying the fourth to seventh terms in Eq. (7)
by (1 − A). Therefore, REMP2 can be easily implemented in any
matrix oriented CI or CEPA code. Amplitude update is done with
the perturbative estimate

Cij
ab(n + 1) = Cij

ab(n) − σijab
Faa + Fbb − Fii − Fjj + δls

, (10)

where, e.g., Fii is a diagonal element of the Fock matrix in the MO
basis and δls is an adjustable level shift parameter. The perturba-
tive update scheme is coupled with a standard direct inversion in
the iterative subspace (DIIS) extrapolation scheme of the ampli-
tudes using the residuum vectors σij as DIIS error vectors.63,65–67

Level shifting and DIIS extrapolation may influence the rate of con-
vergence but do not affect the converged amplitudes. In conjunc-
tion with OpenMP68 shared-memory parallelization and an efficient
basic linear algebra subprograms (BLAS) library,69 our implemen-
tation allows us to perform conventional configuration interaction
with singles and doubles (CISD) calculations with 500 × 106 config-
urations on a single high performance compute node within about
4 days.

Briefly we note that the introduction of mixing/scaling param-
eters into the residuum equations is not unprecedented but also
used, e.g., in the framework of the parameterized CCSD (pCCSD)
model.44,45

B. Choice of the zeroth order wavefunction

Whenever perturbation theory is used, the question of the
unperturbed zeroth order wavefunction arises. In the case of REMP,
this is especially interesting as we are hybridizing different unper-
turbed Hamiltonians. A closed shell singlet Hartree-Fock reference
wavefunction is a natural choice for the unperturbed wavefunc-
tion as it is an eigenfunction of both Ĥ(0)RE and Ĥ(0)MP . This is our
choice for the present investigation while extensions to unrestricted
or multireference wavefunctions shall be investigated in subsequent
studies.

C. Configuration state functions

All analyses of wavefunctions in this contribution have been
performed in the basis of the Serber Configuration State Functions
(CSFs).70,71 In contrast to determinants, these are always eigenfunc-
tions of the Ŝ2 operator and therefore better suited for analyzing
systematic trends. Serber CSFs therefore provide a more natural and
compact representation of the wavefunction. This partitioning of the
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doubly excited manifold of the wavefunction has been used already
in a previous study by one of us41 and has proven to be mean-
ingful. The Serber CSFs give rise to two different kinds of doubly
excited singlet states, namely, the singlet coupled double excitations
(SDEs)

Ψab
ij,SDE = 1

2
√(1 + δij)(1 + δab)(Φ

āb
īj + Φab̄

īj −Φāb
īj −Φab̄

īj ), (11)

and the triplet coupled double excitations (TDEs)41,70,71

Ψab
ij,TDE = 1√

12
(2Φāb̄

ī̄j + 2Φab
ij + Φāb

īj + Φāb
īj + Φab̄

īj + Φab̄
īj ). (12)

The definition of the SDEs includes the cases where two electrons
are excited out of the same spatial orbital or into the same spatial
orbital. Using Serber CSFs instead of determinants has furthermore
the big advantage that the Hamiltonian matrix is partly decoupled:
All matrix elements between SDEs and TDEs are zero except those
between CSFs that differ by at most one occupied and one virtual
index.

D. Wavefunction error analysis

Commonly, empirical parameters in quantum chemical mod-
els are determined on the basis of energies or properties, that is,
the parameters are varied until the model predicts some ten to
a few hundred reference values as good as possible. As REMP
is a parameterized wavefunction-based method, we propose to
find reliable parameters by comparing the resulting wavefunc-
tions with accurate reference wavefunctions. As the wavefunction
of a quantum mechanical system ultimately contains all informa-
tion about this system, we think that such a criterion can deliver
additional information for assessing accurate general purpose
approaches.

As a reasonable, albeit non-unique, indicator of the wavefunc-
tion error of a given method M, we chose the squared norm of
the difference between the wavefunction obtained with this method,
Ψ(M), and a reference wavefunction, Ψ(R),

dM(X) = ⟨∣Ψ(M) −Ψ(R)∣2X⟩. (13)

In the first order perturbed wavefunctions considered in the fol-
lowing, only doubly excited configurations are included. Thus, we
restrict the wavefunction difference in Eq. (13) to the space X of
all doubly excited (ADE) configuration. As the spin-coupling within
double excitations has been identified to behave differently, the SDE
and TDE configuration spaces are also briefly considered. As rather
accurate and still tractable approximation to FCI, Ψ(R) was obtained
at the coupled cluster with singles, doubles, triples and quadruples
(CCSDTQ)/cc-pVQZ level of theory and intermediate normaliza-
tion was used for both wavefunctions. With these definitions, the
wavefunction error indicator can be conveniently evaluated by

dM(X) =∑
ijab
(cijab,X(M) − cijab,X(R))2

, (14)

where cabij,X(M) represents the double excitation CI-coefficient of the
configuration space X with the method M and the orbital indices run
over all possible values for X.

We mention that Pape and Hanrath defined a related wavefunc-
tion variance and further measures that can also be used to assess

approximate wavefunctions on the basis of FCI counterparts.72

Furthermore, we investigated other wavefunction error indicators
and one of our referees pointed out that reduced density matrices
may also be utilized to assess errors related to wavefunctions. As
all our considerations lead to similar results, we keep the present
work concise and limit our investigations to the criterion defined
in Eq. (13).

III. RESULTS

A. Computational details

All REMP calculations have been performed using a devel-
opment version of the Bochum-Basel ab initio suite of programs.
One version explicitly stores the matrix elements of the Hamilto-
nian and the unperturbed Hamiltonian and has been implemented
as an extension of the existing RE-PT program17,18,24,41 which is
based on an open-ended determinantal CI program.57,58,73,74 Fur-
thermore, a matrix oriented REMP version was implemented as an
extension of the MC-CEPA program75,76 and is inspired by the
matrix-driven CI program of ORCA (mdci). All CCSDTQ, CCSDT,
and CCSD calculations were performed using the arbitrary order
Coupled Cluster program MRCC77 version 2017-09-25 by Kállay
and Surján.78,79 All CCSD(T) calculations were performed using
ORCA 4.0.1.2.80,81 For the comparison of the wavefunctions, mrcc
has been interfaced with our programs to ensure that integrals,
MOs, signs, etc., are identical. In all other cases where comparisons
between programs were made, it was ensured that the basis def-
initions used are exactly the same. Experimental geometries were
obtained from the NIST Computational Chemistry Comparison and
Benchmark Database (CCCBDB),82–85 and atomic weights were
retrieved from the NIST Atomic Weights Database.86 Basis sets
were used as stored in the TurboMole 6.587 basis set library. If not
available there, they were taken from the EMSL basis set exchange
website.88–90

B. Unitary invariance and size consistency

For closed-shell singlet reference functions, REMP results are
invariant with respect to any unitary rotation of the occupied and/or
virtual orbitals as the unperturbed Hamiltonians of the respective
parent methods (RE- and MP-PT) are not affected by these oper-
ations. The corresponding proof for RE-PT is given in Ref. 24 in
Eq. (13) and the following paragraph (see also Refs. 91 and 92).
Unitary invariance of the Fockian can be demonstrated with simi-
lar arguments (see also Ref. 5). Due to this unitary invariance, size
consistency47 of REMP is proven by the following argument: if the
total system consists of non-interacting closed-shell subsystems with
localized orbitals, then the unperturbed Hamiltonian breaks into
distinct and uncoupled parts of the subsystems by the following
argument: if the total system consists of non-interacting closed-shell
subsystems with localized orbitals, then the unperturbed Hamilto-
nian breaks into distinct and uncoupled parts of the subsystems
(see also Refs. 3, 5, 24, 91, and 92).That is, REMP is size con-
sistent whenever the underlying reference wavefunction has this
property.

Unitary invariance and size consistency of REMP2 were
also tested numerically. For that purpose, calculations on water,
methane, ethane, and a neon dimer were performed with both
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canonical and Foster-Boys93 localized molecular orbitals. In all
cases, the converged energies of both calculations agree within a few
picohartrees.

For testing size consistency, the water dimer of the SCS-MP2 fit
set (see below) was chosen and the distance between both monomers
was increased by 10 000a0. The resulting energy agrees with the sum
of the energies of the separated monomers within a few picohartree.
The same result holds for the neon dimer (def2-TZVP basis, dis-
tance 10 000a0). The remaining energy differences can be explained
by finite convergence criteria as well as the limited precision and
numerical noise produced by double precision (64 bit) floating point
arithmetics.

C. Assessment of the REMP wavefunction

We performed REMP and CCSDTQ calculations with the cc-
pVQZ basis set for 30 main group systems and three transition
metal systems (see captions of Figs. 2 and 3, respectively; see also the
supplementary material for corresponding atomic coordinates). The
systems considered here are reasonably described by single configu-
ration reference wavefunctions, and CCSDTQ usually accounts for
more than 99.95% of the correlation energy which seems sufficient.
CC calculations with higher excitation degrees proved to be hardly
possible due to their high computational demand.

As in the previous study,41 the CC amplitudes were converted
to CI coefficients for determinants

cijab = tijab + tiat
j
b − tibt

j
a (15)

which were transformed to CI coefficients for the Serber CSFs using
Eqs. (11) and (12). REMP wavefunctions were obtained for A in the
range between 0.00 and 0.20 (0.50 for the CO molecule) in steps of
0.01. These were compared with the CCSDTQ wavefunctions pro-
viding dREMP(X) values for all double excitations (X = ADE), as well
as for the SDE and TDE subgroups.

Figure 1 shows dREMP values as a function of the REMP parame-
ter A for the CO molecule (numerical values are collected in Table S1
of the supplementary material). The best agreement of the REMP
wavefunction with the ADE portion of its CCSDTQ counterpart is

FIG. 1. Wavefunction error dREMP as a function of A for the CO molecule with the
cc-pVQZ basis.

found at A = 0.07. The corresponding dREMP(ADE)-value of 1.0⋅10−3

should be compared with the corresponding numbers of CCSD
(1.2⋅10−3), MP2 (6.5⋅10−3), CISD (4.7⋅10−3), and CCSDT (7.0⋅10−6).
Obviously, and as expected, the CCSDT wavefunction is in excel-
lent agreement with the CCSDTQ reference while the REMP d-value
indicates a slightly improved performance upon CCSD and a sub-
stantial better wavefunction than the MP and CISD counterparts.
We note that breaking up the total error into separate parts for
SDEs and TDEs reveals additional information. The delicate differ-
ences in the spin coupling of the electrons in the two singlet CSF
types lead to remarkably different preferences for the MP fraction of
the REMP Hamiltonian. While a low A value of about 0.02 is opti-
mal for the SDEs, the TDE configurations are best represented with
A = 0.28.

To get an impression of the systematical behavior upon varia-
tion of A, a set of closed shell species was investigated comprising 30
main group systems and three transition metal systems. The aver-
aged wavefunction errors of the main group systems are plotted in
Fig. 2, while those of the transition metal systems are depicted in
Fig. 3. The systems are listed in the respective figure captions of
Figs. 2 and 3 and their coordinates, as well as the numerical values of
the wavefunction errors are collected in the supplementary material.

Figure 2 shows that the averaged wavefunction errors of the
main group elements behave similar to those of the CO molecule
discussed above. The minimum of the ADE curve is more distinct
than in the corresponding data of the CO molecule, but it is found
at almost the same MP contribution (about 8%). An inspection of
the individual systems shows that the best REMP wavefunctions are
generally obtained for A-values between 0.02 and 0.12. However, the
wavefunctions of systems with double and triple bonds as well as sys-
tems with crowded electron pairs like F2, the Ne atom, F−, NP, or
MgO are best described with A-values around 0.1.

In Ref. 41, it was observed that RE- and MP-perturbation theo-
ries perform distinctly different for main group and transition metal
systems. Thus, we also considered the wavefunction errors of the

FIG. 2. Graphical representation of the wavefunction errors dREMP averaged over
the main group systems H2, H−, LiH, He, Ne, Ar, BeH2, BH3, BH−4 , CH2(1A1),
CH+

3 , CH−3 , CH4, H2O, HF, F−, LiF, BeO, BF, CO, N2, NO+, CN−, F2, HCl,
Cl−, MgO, NP, SiO, and C2H2 (ethyne). Basis set: cc-pVQZ. See Table S2 of
the supplementary material for numerical values.
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FIG. 3. Wavefunction error dREMP averaged over the transition metal systems Zn,
Zn2+, and Cu+.

metal systems (Zn, Zn2+, and Cu+). The resulting averaged dREMP(X)
graphs are shown in Fig. 3 (see Table S3 of the supplementary mate-
rial for numerical values). For the very strongly crowded electron
pairs in these systems, even larger MP contributions of about 14%
give rise to the average best wavefunctions.

In conclusion, for most of the more demanding systems, an MP
contribution in the REMP-Hamiltonian in the order of 0.08–0.14
provides wavefunctions with smallest dREMP(X) indicator. An indi-
vidual inspection of the singlet- and triplet-coupled doubly excited
configurations shows that smaller A-values of 0.02–0.12 are pre-
ferred for the SDEs, while the TDE contribution to the wavefunction
is better represented with A > 0.2.

D. Geometrical parameters of main group diatomics

The nine main group diatomics AlH, BF, BH, Cl2, CO, CS, F2,
HF, and N2 have been used by Wennmohs and Neese to benchmark
coupled pair type methods for predicting equilibrium bond lengths
re and equilibrium harmonic wavenumbers ν̃e.43 In this work, only
the valence electrons were correlated here, and the QZVP basis was
used.94 We tried to reproduce the numbers of Ref. 43 as close as
possible; unfortunately, no exact protocol was given. Therefore, we
describe our protocol as close as possible to facilitate future repro-
duction. Deviations between our results and those of Ref. 43 can be
explained by different numbers and positions of sampling points and
especially by different reduced masses.

The potential energy surface (PES) was scanned at 21 sampling
points equally spaced around the experimental equilibrium geome-
try re reaching from re − 2x0 to re + 2x0, where x0 = √h̵/2πcµν̃e,exp
is the classical turning point of the harmonic oscillator at its zero
point energy with h̵, c, and µ being the reduced Planck constant,
the speed of light, and the reduced mass, respectively. As we are not
only interested in re but also in ν̃e, the sampled area has been chosen
such that at least the part of the PES which is relevant for the ground
state vibrational wave function is covered sufficiently. The analysis
was performed for isotopically pure species composed of the major-
ity isotopes, and isotopic masses have been retrieved from the NIST
Atomic Weights Database.86 A Morse potential95 was subsequently

fitted to the data points for obtaining re and ν̃e

VMorse(r) = h̵ωe

4xe
⋅ (1 − e−

√
2µxeωe

h̵ ⋅(r−re))2
+ Te. (16)

Specifically, the Morse potential of Eq. (16) was used which
directly delivers re, ωe = 2π ν̃e c, and the anharmonicity xe. Addition-
ally, the uncertainties of the determined parameters can be estimated
from the respective fit errors. The fit error of re was in all cases neg-
ligibly small and exceeded in almost no case 0.02 pm, except for
F2/CEPA/0(SD) where the minimum was outside the sampled area.
The fit error of ν̃e was at most ≈4 cm−1. Errors of that size occurred
however only for large anharmonicities, and in most cases, the
uncertainty of ν̃e was well below 1 cm−1. All data necessary for repro-
ducing the PES scan can be found in Table S4 of the supplementary
material.

Table I impressively shows that REMP performs well for equi-
librium bond distances and harmonic vibrational frequencies. In
particular, all mixtures presented surpass their parent methods with
respect to both measures. The results closest to the experiment are
obtained with MP fractions of 10%–20%. Compared to the other
coupled-pair type methods, REMP performs remarkably well. Out of
18 coupled pair functionals, CEPA/1(SD)25,26,42,96 and the coupled
pair functional (CPF) named CPF/1 have previously been identified
as the most accurate coupled pair approaches for this test set.43 With
respect to re, REMP(0.15) is as accurate as these methods. We did not
reevaluate CPF/1 as it has been shown to deliver virtually identical

TABLE I. Mean absolute errors of selected REMP mixing ratios and competing wave
function methods relative to experimental data. All REMP results are based on second
order energies. The numbers in brackets indicate the MP fraction. Basis: def2-QZVP.
For post-HF methods, standard frozen core settings are used. Molecules: AlH, BF,
BH, Cl2, CO, CS, F2, HF, and N2.

Method re (pm) ν̃e (cm−1)

REMP2(0.00) =̂ CEPA/0(D) 0.62 54.6
REMP2(0.10) 0.32 42.9
REMP2(0.15) 0.28 39.9
REMP2(0.20) 0.30 39.5
REMP2(0.25) 0.32 39.6
REMP2(0.50) 0.38 45.9
REMP2(0.75) 0.50 50.6
REMP2(1.00) =̂MP2 0.64 61.2
CISD 1.18 97.6
CEPA/0(SD) 1.86 89.1
CEPA/1(SD) 0.30 27.5
MP3 0.92 96.3
SCS-MP2 0.40 46.0
CCSD 0.47 53.1
CCSD(T) 0.34 11.0
SCF 2.61 207.2
BP86a 1.31 62.0
B3LYPa 0.71 30.7
B2-PLYPa 0.39 21.8

aIntegration grid size 7.
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results as CEPA/1 which is conceptually closer to our method. Fur-
thermore, the best REMP mixture also outperforms SCS-MP2 with
standard scaling parameters.

The performance of REMP for harmonic frequencies is a bit
worse than that of CEPA/1 but still acceptable especially when
compared to competing methods with the same formal n6 scaling.
Briefly we note that Wennmohs and Neese obviously omitted the
SCF result of F2 for averaging which is for sure theoretically justi-
fiable. As mentioned before, CEPA/0 performs significantly poorer
if single excitations are included, i.e., CEPA/0(D) is better than
CEPA/0(SD).

Furthermore, for this set REMP(0.15) performs better than the
common generalized gradient approximation (GGA) and hybrid
density functionals BP8697,98 and B3LYP,99–103 respectively, and
about as good as B2-PLYP.104 Finally, we note that the informa-
tive value of the numbers in Table I is limited due to systematic
errors in the combination of the QZVP basis set with the con-
sidered valence correlation. Thus, the available information does
not allow to differentiate between the performance of REMP(0.15),
CEPA/1(SD), CCSD(T), and B2-PLYP for bond distances, while
CCSD(T) clearly predicts vibrational wavenumbers more accurately
than CEPA/1(SD) and B2-PLYP which may be slightly more accu-
rate than the REMP(0.15) values. In any case, the four approaches
mentioned above outperform the other methods in Table I for re
and ν̃e values.

To elucidate the error related to missing core correla-
tion, we additionally performed the aforementioned calculations

TABLE II. Mean absolute errors of selected REMP mixing ratios and competing wave
function methods relative to experimental data. All REMP results are based on second
order energies. The numbers in brackets indicate the MP fraction. Basis: cc-pwCVQZ
(H: cc-pVQZ). All electrons were active during the correlation treatment. Molecules:
AlH, BF, BH, Cl2, CO, CS, F2, HF, and N2.

Method re (pm) ν̃e (cm−1)

REMP2(0.00) =̂ CEPA/0(D) 0.72 60.4
REMP2(0.10) 0.48 48.8
REMP2(0.15) 0.50 45.9
REMP2(0.20) 0.53 46.9
REMP2(0.25) 0.58 49.5
REMP2(0.50) 0.70 51.9
REMP2(0.75) 0.75 55.1
REMP2(1.00) =̂MP2 0.82 63.0
CISD 1.92 123.2
CEPA/0(SD) 1.59 84.3
CEPA/1(SD) 0.40 35.1
MP3 1.21 102.6
SCS-MP2 0.49 47.4
CCSD 0.79 61.8
CCSD(T) 0.15 15.4
SCF 2.62 207.3
BP86a 1.27 61.3
B3LYPa 0.78 39.2
B2-PLYPa 0.36 23.0

aIntegration grid size 7.

without frozen cores for all post-HF methods (including B2PLYP)
and appropriate basis sets (cc-pwCVQZ). The respective results are
listed in Table II. As REMP now tends to systematically underes-
timate bond lengths (see Table S6 of the supplementary material
for absolute numbers), the statistical descriptors are slightly worse
than without core correlation. This is however not a unique fea-
ture of REMP, but applies to all coupled-pair type methods, CISD
and CCSD. The only method which seems to benefit significantly
from inclusion of core correlation is CCSD(T). In essence, only
including core correlation even deteriorates the results obtained
from coupled pair-type model chemistries. Other possible sources
of systematic error are basis set incompleteness and missing rela-
tivistic effects. As these are effects that are commonly neglected in
routine model chemistries, we did not investigate corrections for
both.

IV. PERFORMANCE FOR THERMOCHEMICAL
PROPERTIES

Prediction of thermodynamic and kinetic data is one of
the most important and successful applications of computational
chemistry. Therefore, the performance of REMP for the predic-
tion of reaction energies and transition energies is investigated in
Secs. IV A–IV C.

A. The SCS-MP2 calibration set

As SCS-MP2 is probably the best performing single reference
perturbation theory, we decided to use the calibration set of SCS-
MP2 to benchmark REMP. From the original set of reactions,16 we
omitted the reaction involving triplet methylene (42) as of now, our
programs are restricted to closed shell singlet cases and the tran-
sition states [reactions (39)–(41)] because these are tested in the
BHPERI test set (see below). The reference reaction energies have
been recalculated at the CCSD(T) level of theory which leads to
deviations of up to several kcal mol−1 with respect to the original
QCISD(T) results. We performed all calculations with both the cc-
pVQZ and the def2-QZVP bases. However, the results are nearly the
same; therefore, only the def2-QZVP results are presented.

Table III lists the results for all considered reactions for CCSD,
SCS-MP2, REMP(0.12), and REMP(0.15). REMP shows the small-
est errors for A = 0.12. Statistical measures for these methods are
collected in Table IV (all evaluated data are shown in Table S7
of the supplementary material). With respect to the mean abso-
lute deviation (MAD) and the root mean square (RMS) deviation,
REMP(0.12) and REMP(0.15) clearly beat SCS-MP2 on its own cal-
ibration set. We note that REMP is particularly accurate for the
isomerization reactions (28)–(34) and the noncovalent dimerization
reactions (49)–(51).

While the CCSD and the SCS-MP2 error seem to be completely
uncorrelated, there is a reasonable correlation between errors of
CCSD and REMP(0.12) with a slope less than one. The largest reac-
tion energy errors of REMP(0.12) involve either ozone [reactions
(3) and (23)] or HNO2 (reaction 10) and amount to −7.02, −4.46,
and −5.59 kcal mol−1. For these reactions, CCSD shows even larger
errors (−14.11, −12.61, and −7.00 kcal mol−1).

In order to track down the reason for the failure of REMP
and CCSD for certain reactions, we computed the D1(MP2),105
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TABLE III. Comparison of calculated reaction energies in kcal mol−1. Errors (∆∆E) refer to CCSD(T). Basis: def2-QZVP.

∆E ∆∆E

Reaction CCSD(T) CCSD SCS-MP2 REMP(0.12) REMP(0.15)

1 F2 + H2 → 2 HF −135.07 −2.98 −2.77 −0.48 −1.00
2 F2O + H2 → F2 + H2O −69.01 −2.74 −2.09 −2.69 −2.80
3 O3 + 3 H2 → 3 H2O −225.14 −14.11 3.28 −7.02 −7.33
4 H2O2 + H2 → 2H2O −87.30 −1.92 −1.69 −1.04 −1.28
5 CO + H2 →H2CO −4.86 −0.10 0.77 −0.78 −0.83
6 CO + 3 H2 → CH4 + H2O −64.51 −1.50 2.07 −2.56 −2.72
7 N2 + 3 H2 → 2 NH3 −38.96 −1.55 4.43 −1.70 −1.86
8 1CH2 + H2 → CH4 −128.71 0.98 −1.98 −0.24 −0.71
9 N2O + H2 → N2 + H2O −81.47 −5.64 1.36 −3.97 −3.76
10 HNO2 + 3 H2 → 2 H2O + NH3 −130.92 −7.00 1.47 −5.59 −5.62
11 C2H2 (ethyne) + H2 → C2H4 −49.38 −0.85 2.45 −0.82 −0.76
12 H2C==C==O + 2 H2 →H2CO + CH4 −43.19 −2.16 0.77 −1.68 −1.58
13 Benzene + 3 H2 → cyclohexane (chair) −69.57 −4.34 2.91 −0.93 −0.96
14 BH3 + 3 HF→ BF3 + 3 H2 −92.29 1.16 0.46 2.12 2.04
15 HCOOH→ CO2 + H2 2.33 1.22 −3.03 1.49 1.39
16 CO + H2O→ CO2 + H2 −6.11 2.30 −1.86 2.31 2.06
17 C2H2 (ethyne) + HF→ C2H3F −26.82 −0.16 2.84 0.06 0.15
18 HCN + H2O→ CO + NH3 −12.17 −0.70 1.73 0.52 0.59
19 HCN + H2O→HCONH2 −21.44 0.31 2.60 1.05 0.94
20 HCONH2 + H2O→HCOOH + NH3 0.83 0.07 0.30 0.28 0.32
21 HCN + NH3 → N2 + CH4 −37.72 −0.66 −0.63 −0.34 −0.27
22 CO + CH4 →H3CCHO 3.14 0.70 1.06 −0.15 −0.25
23 O3 + CH4 → 2 H2O + CO −160.63 −12.61 1.21 −4.46 −4.61
24 N2 + F2 → N2F2 17.12 1.84 4.73 2.22 2.07
25 BH3 + 2 F2 → BF + 3 HF −249.35 −4.89 −2.50 0.73 −0.04
26 2BH3 → B2H6 −43.33 2.80 3.68 1.34 1.21
27 21CH2 → C2H4 −199.47 3.45 −4.06 0.47 −0.36
28 H3CONO→H3NO2 −3.52 1.05 −2.61 0.02 −0.21
29 H2C=C: (vinylidene)→ C2H2 (ethyne) −44.90 1.38 −4.70 0.08 −0.25
30 Allene→ propyne −1.35 −0.31 −2.78 0.18 0.01
31 Cyclopropene→ propyne −23.35 −0.33 −1.11 0.35 0.34
32 Oxirane→H3CCHO −26.28 −0.21 0.14 0.56 0.60
33 Vinyl alcohol→H3CCHO −10.65 −0.23 −1.09 0.61 0.57
34 Cyclobutene→ (E)-1,3-butadiene −11.30 0.32 0.79 −0.02 0.14
35 C2H4 + 1CH2 → cyclopropane −107.42 1.57 −2.88 −0.19 −0.83
36 C2H2 + C2H4 → cyclobutene −32.45 0.33 1.40 −0.38 −0.53
37 (E)-1,3-butadiene + C2H4 → cyclohexene −44.89 −0.31 −0.13 0.08 −0.26
38 3C2H2 (ethyne)→ benzene −153.24 2.03 4.44 −1.46 −1.74
43 HF + H+ →H2F+ −122.20 −0.43 0.11 −0.38 −0.34
44 H2O + H+ →H3O+ −172.23 −0.78 −0.03 −0.55 −0.50
45 NH3 + H+ → NH+

4 −212.38 −0.88 −0.43 −0.47 −0.42
46 F− + H+ →HF −383.22 −0.73 1.33 −0.64 −0.53
47 OH− + H+ →H2O −405.17 −1.29 1.35 −0.93 −0.81
48 NH−

2 + H+ → NH3 −419.60 −1.66 0.39 −0.90 −0.81
49 2NH3 → (NH3)2 −3.12 0.30 0.41 0.15 0.14
50 2H2O→ (H2O)2 −5.02 0.31 0.44 0.19 0.18
51 2HF→ (HF)2 −4.64 0.21 0.40 0.15 0.14
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TABLE IV. Statistics for the SCS-MP2 sets in kcal mol−1. Errors (∆∆E) refer to
CCSD(T). Basis: def2-QZVP.

CCSD SCS-MP2 REMP(0.12) REMP(0.15)

Considering all reactions in Table III
MAD 1.99 1.82 1.18 1.21
RMSD 3.46 2.26 1.88 1.91
Max 14.11 4.73 7.02 7.33

Excluding reactions involving O3 (3 and 23)
MAD 1.48 1.80 0.97 1.00
RMSD 2.13 2.25 1.47 1.47
Max 7.00 4.73 5.59 5.62

D2(MP2),106 and T1(CCSD)107 diagnostics for the molecules
in Table III. The most unfavorable parameters were obtained
for O3 with D1(MP2)/D2(MP2)/T1(CCSD) = 0.055/0.261/0.027,
while HNO2 provides 0.053/0.201/0.020. In these cases, the
diagnostic parameters are clearly above the respective warning
thresholds (0.040/0.18/0.02). Further critical molecules are N2O
(0.045/0.181/0.020) and F2O (0.032/0.173/0.016) which show the
next largest errors of REMP(0.12). In these cases, the diagnos-
tic parameters indicate that the Hartree-Fock determinant is no
longer an appropriate zeroth order wavefunction. Thus, REMP
(as well as CCSD) fails in cases where poor performance can be
expected.

As ozone exhibits a strong multireference character, all reac-
tions with this molecule were excluded from the test set in Ref. 14.
If we do so, the mean absolute deviations of REMP(0.12) and
REMP(0.15) reach the 1 kcal mol−1 value of chemical accuracy, while
the SCS-MP2 value is essentially unaffected. REMP also seems to
be superior to commonly used density functionals. For plain B3LYP
and the original set, Grimme16 found a MAD of 2.7 kcal mol−1.

B. The BHPERI set

In order to test the performance for transition states, we
selected the BHPERI test set contained in the GMTKN24 benchmark
set collection.108 The BHPERI set consists of 26 activation barriers
for pericyclic reactions of closed-shell molecules. We selected those
24 reactions whose constituents were tractable by our current pro-
gram, i.e., we excluded reactions (9) and (10). We chose again the
def2-QZVP basis set and did not consider core excitations. The ref-
erence activation barriers were taken from a recent publication by
Karton and Goerigk109 who found the original CBS-QB3 activation
barriers to be quite inaccurate. Table V lists statistical descriptors
for the performance of several REMP mixing ratios, for SCS-MP2,
and density functional theory (DFT) for typical generalized gradient
approximation (GGA) functionals, hybrid functionals, and the best
double hybrid functionals.

Pure RE overestimates the activation barriers systematically.
This is a well-known shortcoming of CEPA type methods.33 MP2,
on the other hand, drastically underestimates the activation ener-
gies of the BHPERI set. It should therefore be possible to find one or
more values for A which give rise to zero mean deviation.

TABLE V. Statistical errors of different REMP mixtures averaged over 24 reactions
of the BHPERI set; errors refer to the reference values of Ref. 109. Basis set: def2-
QZVP. Values are in kcal mol−1. For comparison, a selection of commonly used
density functionals is also included.

Method MD MAD RMS Max. error

REMP(0.00)̂=CEPA/0(D) 1.68 1.79 2.02 4.03
REMP(0.10) 0.96 1.12 1.34 3.49
REMP(0.12) 0.80 1.00 1.23 3.38
REMP(0.14) 0.64 0.89 1.12 3.26
REMP(0.15) 0.56 0.84 1.08 3.20
REMP(0.16) 0.48 0.79 1.03 3.14
REMP(0.18) 0.32 0.70 0.97 3.03
REMP(0.20) 0.15 0.63 0.94 2.91
REMP(0.22) −0.02 0.64 0.93 2.79
REMP(0.23) −0.10 0.68 0.94 2.73
REMP(0.25) −0.27 0.78 0.99 2.60
REMP(1.00)̂=MP2 −7.48 7.48 7.86 11.03
SCS-MP2 −0.70 1.16 1.40 2.93
BP86a −6.71 6.71 6.96 10.00
B3LYPa −0.68 1.06 1.32 2.70
PW6B95a −0.07 1.10 1.32 3.00
M06-2Xa 0.55 1.24 1.63 4.40
B2-PLYPa −1.62 1.64 1.78 3.10
B2GP-PLYPa −1.53 1.53 1.70 3.20
PWPB95a −0.05 0.84 0.95 1.80

aData taken from the supplementary material of Ref. 109. All functionals include a
D3 or D3(BJ) dispersion correction, averaging was done only over those 24 reactions
considered in this paper, and therefore the statistics slightly deviate from those of
Ref. 109.

In the case of the BHPERI set, a larger MP fraction than before
(20% instead of 12%) was found to give the best agreement with the
reference activation barriers. Also REMP(0.15) performs quite well.
Furthermore, SCS-MP2 is outperformed by REMP with respect to
all measures for A = 0.20.

Nevertheless, this results of course from the compensation of
various errors, namely, basis set incompleteness, missing core cor-
relation, missing single excitations, missing higher excitations, and
the intended cancellation of energy denominator errors. The ideal
mixing ratios are therefore best characterized as “Pauling Points” in
the parameter space.

For the BHPERI set, there are results for a multitude of density
functionals available.108,109 When the results of Table V are com-
pared to those of Tables 5 and 6 of Ref. 109, it is found that on
average the best REMP mixing beats all available functional classes.
For this specific set, REMP(0.20) shows a slightly smaller MAD
(0.63 kcal mol−1) than all the six double hybrid density functionals
(DHDFs) investigated in Ref. 109. With an MAD of 0.84 kcal mol−1,
REMP(0.15) performs equally well as the best performing DHDF
PWPB95.

C. The pCCSD calibration set

When looking for competing methods with the same formal
scaling as REMP (n6), the parameterized coupled cluster meth-
ods44,45 are probably the theoretically most sound. We therefore
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TABLE VI. Statistical error descriptors of different REMP mixtures averaged over 36
reactions of the pCCSD calibration set; errors refer to the CCSD(T) reference values
of Ref. 45. Basis set: def2-QZVPP. Values are in kcal mol−1. Total energies can be
found in Table S10 of the supplementary material.

Method MD MAD SD RMS Max. error

REMP(0.00) 0.20 1.19 1.89 1.88 6.04
REMP(0.10) −0.20 0.82 1.27 1.27 4.86
REMP(0.11) −0.23 0.80 1.24 1.25 5.01
REMP(0.12) −0.27 0.78 1.22 1.24 5.16
REMP(0.13) −0.30 0.76 1.21 1.23 5.30
REMP(0.14) −0.34 0.75 1.20 1.23 5.44
REMP(0.15) −0.37 0.75 1.21 1.24 5.58
REMP(0.16) −0.40 0.77 1.21 1.26 5.71
REMP(0.17) −0.43 0.80 1.23 1.28 5.84
REMP(0.18) −0.46 0.82 1.25 1.31 5.97
REMP(0.19) −0.49 0.85 1.27 1.35 6.09
REMP(0.20) −0.52 0.88 1.30 1.38 6.21
REMP(1.00) −1.87 3.61 5.49 5.73 19.53
CCSDa 1.17 1.56 1.71 5.67
pCCSD/1aa 0.86 1.25 1.23 3.57
pCCSD/1ba 0.83 1.18 1.17 2.70
CEPA/1a 0.85 1.20 1.18 3.30
B3LYPa 2.63 3.29 3.44 9.45

aTable I of Ref. 45.

decided to benchmark REMP against the first set that was used in
Ref. 45 to calibrate pCCSD/1a and pCCSD/1b. This set consists of
36 reaction energies of 44 small closed shell molecules and partly
overlaps with the SCS-MP2 calibration set. Table VI contains the
statistical error descriptors for the pCCSD set for selected REMP
mixtures. In excellent agreement with the previous results, we find
again that a mixture of about 15% MP and 85% RE yields results
that are closest to CCSD(T). The overall performance of REMP(0.15)
is comparable to that of pCCSD/1b. We note that the REMP(0.15)
MAD value of 0.75 kcal mol−1 is slightly smaller than the best param-
eterized CCSD result (pCCSD/1b) of 0.83 kcal mol−1. However, the
largest REMP error is bigger than the pCCSD value. Specifically, this
error always occurs for reaction (34) (NF3 + 3H2 → NH3 + 3HF). If
this reaction was excluded from the set, also the largest error would
be comparable to that of pCCSD/1b. Interestingly, for this reaction,
CCSD is also off by −6.5 kcal mol−1, which indicates that it is cru-
cial to explicitly account for triple excitations in this case. For this
set, plain B3LYP is clearly inferior to all tested CCSD and CEPA
variants.

V. SUMMARY AND OUTLOOK

We have proposed and investigated a new type of hybrid
perturbation theory termed REMP that emerges from mixing the
unperturbed Hamiltonians of RE and MP-PT. Using only a single
empirical parameter, systematic errors of the first-order wavefunc-
tions have been minimized for a set of molecules. The obtained
mixing ratio of 10%-20% MP contribution to the unperturbed
Hamiltonian is consistent with qualitative estimates.

Compared to its parent methods, REMP delivers better wave-
functions and provides more accurate geometries and reaction ener-
gies. In contrast to some of the competing schemes, it is the first (use-
ful) member of a well-defined perturbation series and still obeys all
fundamental boundary conditions. From its parent methods, REMP
inherits the important features of being strictly size consistent, size
extensive, and unitary invariant. This was shown analytically and
also confirmed numerically up to picohartree accuracy. Finally, the
implementation of the second order PT is straightforward in existing
CISD codes.

Performance of the REMP method was tested with a wavefunc-
tion error indicator and test sets for equilibrium bond distances,
equilibrium vibrational wavenumbers, reaction energies, and acti-
vation barriers that have been taken from previous studies in order
to avoid a biased sample selection. We found that a mixing ratio
of 15% MP- and 85% RE-contribution to the unperturbed Hamil-
tonian performs best on average and we recommend to use this
in further applications of the method. REMP(0.15) outperforms
SCS-MP2 as well as all GGA and hybrid DFT approaches for all
investigated properties with the exception of B3LYP for the case
of equilibrium wavenumbers ν̃e. For thermochemical test sets, typ-
ical errors are close to or better than 1 kcal mol−1. This perfor-
mance is similar to that of CEPA/1 and parameterized coupled clus-
ter theory (pCCSD/1b), as the best coupled pair type approaches,
as well as the best double hybrid density functionals. Large errors
are observed only in those cases where single reference correlation
methods are expected to fail. While these results are very promis-
ing, further tests are needed to explore the general applicability of
REMP.

As an original wavefunction based approach, REMP can be
extended in several directions. In particular, it can be applied in
multi-configuration perturbation theory where the RE partitioning
has shown promising performance.23,32,110,111 Given the success
of orbital-optimized methods (OO-MP214,21 and OO-CEPA112),
the implementation of OO-REMP looks promising. In particular,
we believe this to be fruitful for open shell systems. Moreover, yet
another improvement of the unperturbed Hamiltonian seems to be
possible by defining different mixings for the two doubly excited CSF
classes analogous to S2-PT.18 Work on these topics is in progress in
our laboratory.

SUPPLEMENTARY MATERIAL

See supplementary material for all structures used for the wave-
function analysis of Sec. III C and numerical data for all plots in this
paper.
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ABSTRACT: We present a perturbation theory (PT) providing second-order energies that
reproduce main group chemistry benchmark sets for reaction energies, barrier heights, and
atomization energies with mean absolute deviations below 1 kcal mol−1. The PT is defined as
a constrained mixture of the unperturbed Hamiltonians of the Retaining the Excitation
degree (RE) and the Møller−Plesset (MP) PTs. The orbitals of the reference wave function,
a single unrestricted Slater determinant, are iteratively optimized to minimize the total
energy. For all benchmark sets, good and near optimal performance of OO-REMP was
observed for an unperturbed Hamiltonian consisting of 25% MP and 75% RE contributions.

Peterson et al.1 pointed out that the computational chemistry
literature frequently identifies “chemical accuracy” with a

mean absolute deviation (MAD) error estimate below 1 kcal
mol−1, while an experimentalist’s definition would be typically a
95% confidence interval corresponding rather to a root-mean-
square deviation (RMSD) below 0.5 kcal mol−1. The only
quantum chemical methods which have been broadly shown to
meet this requirement for chemically relevant properties like
reaction and transition state energies are Coupled-Cluster (CC)
approaches explicitly including up to triple or higher
excitations.2,3 So far, perturbation theory (PT), the alternative
class of generally applicable wave function based methods, failed
to reach a comparable level of accuracy; however, very successful
and accurate combinations with CC methods have been
proposed4,5 −most notably the “Gold Standard” of quantum
chemistry, coupled-cluster with single, double, and perturbative
triple excitations [CCSD(T)].6 Nevertheless, the conceptually
simple and computationally efficient Møller−Plesset second-
and third-order approaches (MP2 and MP3) have been widely
applied and validated.7−9 Substantially better performance than
MP2 at the same computational cost was found by Grimme for
spin-component scaling (SCS)-MP210,11 where terms of the
correlation energy expression corresponding to same- and
opposite-spin double-excitations are scaled empirically. Grimme
achieved further improvements with SCS-MP312 by adding the
MP3 energy contribution with a prefactor of 0.25 to the SCS-
MP2 energy. Fractional perturbation theories like MP2.X−
which is the MP3 energy contribution multiplied by 0.X added
to the MP2 energy−have been proposed, and in particular,
MP2.5 proved very successful for nonbonded interaction
energies.13,14

One of the present authors identified that MP2 systematically
underestimates correlation effects of singlet coupled electron
pairs, while it overestimates those from triplet pairs.15 This work
also showed that the Retaining the Excitation degree (RE)
PT16,17 behaves essentially the other way around, while
providing more accurate first-order wave functions. In order to
balance these systematic errors of RE- and MP-PT, a hybrid
method where the unperturbed Hamiltonian is a linear
combination of the RE and MP ones was designed and
implemented by the present authors.18 This approach, named
REMP, was shown to provide more accurate first-order wave
functions and to outperform the MP2 and RE2 parent methods
for reaction energies and molecular properties.18

For open-shell cases, the definition of PT is straightforward
for unrestricted Hartree−Fock (UHF) reference wave func-
tions. However, the latter tend to become inaccurate due to spin-
contamination errors.19 Orbital-optimized (OO)-MP2 was
developed and shown to perform substantially better for these
cases.20−22 Similar observations were made for OO-MP2.X and
its SCS variants23 and for OCEPA.24,25 The latter is the OO
variant of coupled electron pair approximation zero with
doubles [CEPA(0)D] which is identical to RE2 for unrestricted
HF reference wave functions.16 The concept of orbital
optimization, i.e., minimizing the total energy with respect to
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orbitals and the CI-coefficients/amplitudes, has been developed
originally for multiconfiguration self-consistent field26,27 and for
coupled-cluster theory.28 Orbital optimization for spin-
opposite-scaled (SOS)-MP2 was introduced by Head-Gordon
et al.20 and generalized to SCS-MP2 by Neese et al.21 Later,
Bozkaya and Sherrill23,29,30 developed extensions to higher
orders in perturbation theory and analytic energy gradients.
To our knowledge, the best performing OO-PT methods are

the recently proposed OO-MP2.531,32 (also named OMP2.5)
and MP2.8:κ-OOMP233 approaches which reproduce reactions
and transition energies of the HTBH38 test set with root-mean-
square deviations (RMSDs) of about 1 kcal mol−1. MP2.8:κ-
OOMP2 is the MP2.8 energy obtained with the spin-
unrestricted determinant of the OO regularized MP2 approach.
In the latter, the MP2-correlation energy term is empirically
modified as to avoid failure of the PT if the energy denominator
approaches zero.
Inspired by the success of the orbital-optimized PTs, we

implemented an orbital-optimized variant of REMP2 termed
“OO-REMP”. In the following, we describe this approach and its
performance for the benchmark sets used in the recently
proposed OO-MP2.531,32 and MP2.8:κ-OOMP233 methods. As
in these works, results of OO-MP2, OCEPA, and CCSD are also
shown. The aim of the present work is to provide a realistic and
unbiased assessment of OO-REMP in the context of recent
developments of orbital-optimized PTs.
The prerequisite for applying (Rayleigh−Schrödinger) PT to

electronic wave functions and energies is the definition of an
unperturbed Hamiltonian, Ĥ(0), that fulfills the zeroth-order
perturbation equation

H E(0) (0) (0) (0)̂ |Φ ⟩ = |Φ ⟩ (1)

exactly. In this work, a single (spin-unrestricted) Slater
determinant is used for the unperturbed wave function, |Φ(0)⟩.
The unperturbed Hamiltonian for RE-PT is defined16 as a part
of the second quantization34 Hamiltonian

H h a a pq rs a a a a
1
2pq

n

pq p q
pqrs

n

p q s rRE
(0)

0 0ex ex∑ ∑̂ = ̂ ̂ + ⟨ | ⟩ ̂ ̂ ̂ ̂
Δ =

†
Δ =

† †
(2)

Here p, q, r, and s are spin−orbital indices, hpq is a matrix element
o f t h e o n e - e l e c t r o n H a m i l t o n i a n ,
pq rs (1) (2) (1) (2)dp q r r s

1

12
∫ ϕ ϕ ϕ ϕ τ⟨ | ⟩ = * * represents an electron

repulsion integral (ERI) in Dirac notation, and ap̂ (ap̂
†) is the

annihilation (creation) operator of the spin orbital p. The
excitation degree restriction (Δnex = 0) on the sums indicates
that only those terms are retained where the number of
annihilated and created electrons in the occupied spin orbitals in
|Φ(0)⟩ is identical. In other words, the creator-annihilator
combination does not change the excitation degree (number of
electrons in occupied spin orbitals) of any Slater determinant it
is applied to. With this definition, ĤRE

(0) fulfills eq 1 independent
of the choice of the occupied orbitals in |Φ(0)⟩.
The unperturbedMP-Hamiltonian is generally set to the Fock

operator F̂ = ĥ + J ̂− K̂ which means that eq 1 is only fulfilled if
|Φ(0)⟩ is a HF wave function. As the latter is not the case for OO-
MP, Ĥ(0) has to be modified either with a projector or in a form
resembling eq 2

H F a a
pq

n

pq p qMP
(0)

0ex∑̂ = ̂ ̂
Δ =

†
(3)

Using the above definitions, the orbital-independent unper-
turbed Hamiltonian of REMP-PT is given by18

H A H AH

h A J K a a

A pq rs a a a a

(1 ) (4)

( )

(1 )
1
2

(5)

pq

n

pq pq pq p q

pqrs

n

p q s r

REMP
(0)

RE
(0)

MP
(0)

0

0

ex

ex

∑

∑

̂ = − ̂ + ̂

= [ + − ] ̂ ̂

+ − ⟨ | ⟩ ̂ ̂ ̂ ̂

Δ =
†

Δ =
† †

whereA, theMP-amount in the unperturbedHamiltonian, is the
REMP parameter that was estimated to be about 0.1−0.2.18
Note that ĤREMP

(0) contains the complete one-electron Hamil-
tonian for any choice of A, as this is required to guarantee that
the perturbed wave functions fulfill Kato’s cusp conditions.35

The idea of REMP-PT is to tune A such that the first-order
perturbed wave function approximates the first-order interacting
part of the exact wave function as close as possible.18

For the description of the orbital optimization, we adopt a
Coupled-Cluster style notation. As the present approach can be
seen as a combination of MP2 with CEPA(0)D, orbital
optimization can and was implemented as described by Bozkaya
and Sherrill for these approaches.24,36 Briefly, the first-order
wave function is given by

T(1)
2
(1) (0)|Ψ ⟩ = ̂ |Φ ⟩ (6)

where |Φ(0)⟩ is the (single) reference Slater determinant, andT2̂
denotes the doubles cluster operator. Singly excited config-
urations are neglected as in all other OO-PTs known to the
authors.20,21,31,36

Using the concept of normal ordering,37 the total electronic
Hamiltonian in second quantization34 can be written as

H F F F W WN
d (0) d (0) o

N
(0) (0)̂ = ̂ + ⟨Φ | ̂ |Φ ⟩ + ̂ + ̂ + ⟨Φ | ̂ |Φ ⟩

(7)

where N indicates normal order with respect to the Fermi
vacuum,37 d designates the diagonal (occupied-occupied and
the virtual−virtual) parts of the respective operator, o is the off-
diagonal part (occupied-virtual/virtual-occupied), and Ŵ is that
part of the two-electron repulsion operator which is not included
in the Fockian (“fluctuation potential”).
Using the representation of eq 7, it is possible to rewrite the

unperturbed Hamiltonians and the perturbation of MP and RE
in a way suitable for diagrammatic evaluation

H F FMP
(0)

N
d (0) d (0)̂ = ̂ + ⟨Φ | ̂ |Φ ⟩ (8)

H F W WMP
(1) o

N
(0) (0)̂ = ̂ + ̂ + ⟨Φ | ̂ |Φ ⟩ (9)

H F W F W
R R

RE
(0)

N
d

N
0

(0) d (0) (0)

0

(0)̂ = ̂ + ̂ + ⟨Φ | ̂ |Φ ⟩ + ⟨Φ | ̂ |Φ ⟩
= =

(10)

H F W W
R R

RE
(1) o

N
0

(0)

0

(0)̂ = ̂ + ̂ + ⟨Φ | ̂ |Φ ⟩
≠ ≠ (11)

where R denotes the excitation degree of the terms/diagrams
included. Every diagram used in the context of electron
correlation can be assigned an excitation degree; there is thus
an intimate connection between the concept of excitation
degrees used in (single reference) RE and diagrammatic
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techniques. For single reference cases, the partitioning defined
by eqs 8 and 9 and eqs 10 and 11 is identical to the one defined
by eqs 2 and 3, respectively. If a canonical RHF or UHF
determinant is chosen as |Φ(0)⟩ and |Ψ(1)⟩ is expanded in the
respective doubly substituted determinants, one obtains REMP
and UREMP, respectively. A systematic assessment of the
canonical unrestricted REMP variant will be presented else-
where.38

The OO-REMP energy and wave function are obtained by
minimizing the second-order REMP energy functional

E H W T

W F T A W T(1 )

N c

N N N c c

REMP
(2) (0) (0) (0)

2
(1) (0)

(0)
2
(1)

2
(1)

2
(1) (0)

̃ = ⟨Φ | ̂ |Φ ⟩ + ⟨Φ |{ ̂ ̂ } |Φ ⟩
+ ⟨Φ |[Λ̂ { ̂ + ̂ ̂ + − ̂ ̂ } ] |Φ ⟩

(12)

with respect to the T̂2 amplitudes and the MO coefficients cμi of
the reference determinant |Φ(0)⟩.39 The derivation follows the
lines of OCEPA,24 and the actual working equations are very
similar to the OCEPA equations differing only by the insertion
of (1 − A) in front of those residuum contributions and density
matrix contributions which exclusively appear in OCEPA.
Using the energy representation in eq 12, orbital optimization

for REMP2 was implemented as described for the parent
methods OO-MP2 and OCEPA by Bozkaya et al.24,36 who use
an exponential unitary orbital rotation operator eK̂.40 More
details on the implementation and further results will be
presented in an upcoming publication.38 The expectation value
of the Ŝ2 operator which can be used as a measure for the quality
of the wave function was implemented according to eq 13 of ref
41.
All OO-REMP calculations have been performed using a

development version of our local ab initio suite of programs
(wavels). The OO-REMP implementation is an extension of the
MCCEPA program42 and is inspired by the matrix-driven CI
program of ORCA43,44 and the orbital-optimized coupled-
cluster code (OCC)24,25 of PSI4.45 All CCSD(T) calculations
were performed using ORCA 4.2.0.
Besides, the MAD and RMSD statistical error estimates

mentioned at the beginning, in the following, we also use Mean
Signed Deviation (MSD), the standard deviation (σ), and the
error spread (Δmin‑max) which is the largest positive minus the
largest negative error.
Table 1 showsOO-REMP error descriptors for a set of closed-

shell reactions used before by Soydas ̧ and Bozkaya.32 This set is
mostly a subset of the reactions employed by Grimme to
parametrize SCS-MP2.10 Precisely, the intersecting set of the
closed-shell reactions of refs 10, 21, 46, and 32 was used with
Grimme’s structures (see the Supporting Information for an
explicit list of the reactions considered, additional data on
reactions not contained in the test set of Soydas ̧ and Bozkaya,32
and evidence for the reliability of the employed basis sets).
Reference reaction energies were recomputed at the CCSD(T)/
def2-QZVP level of theory with all electrons being correlated.
Table 1 collects the resulting error descriptors as well as those
from REMP2/def2-QZVP results with a canonical RHF
reference wave function with respect to CCSD(T)/def2-
QZVP where core electrons had been frozen.
As has been found before,21 OO-MP2 (OO-REMP with A =

1) does not improve on MP2 (REMP2 with A = 1) for the
closed-shell reaction energies considered there. Furthermore, as
also observed before,24,25,47 OO-RE2 or OCEPA (OO-REMP
withA = 0) performs only slightly better than RE2 [CEPA(0)D]
for these closed-shell systems. However, OO-REMP does quite

significantly improve upon both OO-RE2 and OO-MP2 as well
as the respective REMP2 variants without orbital optimization.
For A ≈ 0.25, OO-REMP shows the lowest RMSD of 0.65 kcal
mol−1 indicating that the best OO-REMP parameter is slightly
larger than that for REMP2 (A ≈ 0.12−0.20).18 One
furthermore finds that the error spreadΔmin‑max and the standard
deviation decrease toward the optimal mixing parameter
indicating less serious outliers and an overall sharper-peaked
error distribution. As shown in Table 1 for these closed-shell
reaction energies, REMP2, OO-SCS-MP2, SCS-OMP3, and
OMP2.5 are outperformed by OO-REMP with A = 0.25. In the
remaining discussion, we will focus on the latter choice
[designated as OO-REMP(0.25)], as it turns out to be near to
optimal for all investigated benchmark sets. We note that OO-
REMP is a quantum chemical method containing a parameter.
General applicability of such an approach requires that a good
description of different properties is obtained for a single value of
this parameter. This is the case if error estimates of all properties
of particular interest are minimal or near to minimal for the
recommended parameter choice. We will show that this holds
for OO-REMP(0.25) by presenting results for OO-REMP with
A between 0.15 and 0.30.
As the next benchmark, we consider the BH76 set48 which

consists of 76 barrier heights for chemical reactions in the gas
phase involving neutral and ionic as well as closed- and open-
shell species. It is composed of the HTBH3849 and the
NHTBH3850 subsets which collect Barrier-Heights for Hydro-
gen-Transfer and Non-Hydrogen (larger atoms and functional
groups)-Transfer reactions. In all cases, the forward and
backward reactions are included.

Table 1. Error Descriptors of OO-REMP/def2-QZVP with
Respect to CCSD(T)/def2-QZVP (All Electrons Correlated)
as well as REMP2/def2-QZVP with an HF Reference Wave
Function with Respect to CCSD(T)/def2-QZVP (Frozen
Core) for the SCS-MP2 Calibration Setd

A MSD MAD Δmin‑max σ RMSD

OO-REMP/def2-QZVP
0.00 0.26 0.97 6.08 1.27 1.27
0.15 −0.06 0.56 3.45 0.76 0.75
0.20 −0.13 0.51 3.15 0.67 0.67
0.25 −0.18 0.48 3.02 0.63 0.65
0.30 −0.22 0.49 2.87 0.65 0.68
1.00 0.23 2.57 19.21 3.92 3.86

REMP2/def2-QZVP
0.00 0.04 1.36 8.57 1.92 1.89
0.15 −0.31 1.17 7.69 1.72 1.72
0.20 −0.39 1.20 7.53 1.68 1.70
0.25 −0.46 1.21 7.34 1.66 1.70
0.30 −0.52 1.23 7.10 1.65 1.70
1.00 −0.51 1.97 12.32 2.68 2.68

OO-SCS-MP2a −0.17 1.79 11.90 2.38 2.35
SCS-OMP3b 0.45 1.31 6.50 1.74 1.77
OMP2.5/CBSc 0.59 1.03 4.50 1.29 1.40

aTaken from ref 21. Errors are with respect to Grimme’s original
QCISD(T) reference reaction energies which do not include core
correlation. bTaken from ref 46. Reference: CCSD(T)/cc-pCVTZ.
cTaken from ref 32. Reference: CCSD(T)/CBS(cc-pV[T/Q]Z). dAll
values are in kcal mol−1. See Table S8 for a list of the reactions.
Statistics for OO-SCS-MP2, SCS-OMP3, and OMP2.5 were
recomputed for the subset of reactions considered here. The average
absolute reaction energy of this set amounts to 32.65 kcal mol−1.
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The nondegenerate reactions provide a set of reaction
energies, the BH76RC set, which is also discussed below. As
we wanted to make our results comparable to those of the
remarkably well performing MP2.8:κ-OOMP2 approach of
Bertels et al.,33 we used the same basis set (aug-cc-pVTZ) and
reference method [CCSD(T) with all electrons correlated] as in
their work.
Figure 1 shows the root-mean-square deviation of the

HTBH38 and the NHTBH38 subsets of BH76 if the full A

parameter range is sampled (see the Supporting Information for
the corresponding data).
Table 2 lists error descriptors for the HTBH38 subset

obtained with OO-REMP. It is clearly visible that REMP
hybridization leads to a significant improvement compared to
the parent methods OCEPA and OO-MP2. For A values

between 0 and 0.3, OO-REMP provides an RMSD clearly below
1 kcal mol−1. However, the barriers are systematically over-
estimated by ≈0.44 ± 0.04 kcal mol−1. For OO-REMP(0.25),
the largest error found (1.7 kcal mol−1) belongs to reaction 56
which is the abstraction of the hydrogen atom of HF by another
hydrogen atom. The canonical counterpart, UREMP(0.25),
performs much poorer overestimating this barrier by 3.9 kcal
mol−1. Moreover, while OO-REMP delivers practically spin-
pure wave functions41 (⟨Ŝ2⟩ = 0.752 for the transition state), the
first-order UREMP wave function of the transition state is
somewhat spin-contaminated (⟨Ŝ2⟩ = 0.757).
Table 2 also lists results for CCSD and MP2.8:κ-OOMP2

taken from ref 33. For A = 0.25, OO-REMP clearly outperforms
CCSD and OMP2.5. Furthermore, its RMSD (0.69 kcal mol−1)
is slightly smaller than that of MP2.8:κ-OOMP2 (0.71 kcal
mol−1).
Table 3 lists the results for the NHTBH38 subset. REMP

hybridization again provides a systematic improvement over the

parent methods. The MSD, MAD, and RMSD error measures
obtained for OO-REMP(0.25) are consistently below 1 kcal
mol−1.
The largest error belongs to the reaction “HF + F→HF···F‡”

(reaction 10) whose barrier is underestimated by 1.25 kcal
mol−1. UREMP(0.25) overestimates this barrier by as much as
23 kcal mol−1. Again, while the OO-REMP wave functions are
practically spin-pure (⟨Ŝ2⟩ = 0.750 for the HF···F transition
state), the first-order UREMP wave function of the transition
state is heavily spin-contaminated (⟨Ŝ2⟩ = 1.10). Bertels and
Head-Gordon33 report the MP2.8:κ-OOMP2 method to
reproduce the NHTBH38 set with RMSD and MAD values of
0.76 kcal mol−1 and 0.64 kcal mol−1 which are only marginally
lower than the OO-REMP(0.25) results (0.77 kcal mol−1 and
0.70 kcal mol−1). However, the error spread of OO-
REMP(0.25), indicated by the standard deviation of 0.57 kcal
mol−1, is clearly smaller than the MP2.8:κ-OOMP2 counterpart
(0.72 kcal mol−1). The opposite trend holds for the average error
indicated by the MSD value of OO-REMP(0.25) (0.53 kcal
mol−1) which is almost twice as large as that of MP2.8:κ-
OOMP2 (0.27 kcal mol−1).
Finally turning to the reaction energies of the BH76RC set

(Table 4), one finds a surprisingly accurate result with OO-
REMP. The MSD is close to zero, and the RMSD values for A
between 0.12 and 0.30 are all lower than 1 kcal mol−1 (see the
Supporting Information for an extended table). For A = 0.25,

Figure 1. Root-mean-square deviations of OO-REMP/aug-cc-pVTZ
with respect to CCSD(T)/aug-cc-pVTZ for the HTBH38 and the
NHTBH38 benchmark sets versus A, the MP fraction of the
unperturbed REMP-Hamiltonian.

Table 2. Error Descriptors in kcal mol−1 for the HTBH38
Subset of the BH76 Benchmark Setc

A MSD MAD min max σ RMSD

0.00 0.42 0.66 −1.47 1.29 0.61 0.73
0.15 0.48 0.51 −0.34 0.73 0.23 0.53
0.20 0.47 0.54 −0.70 1.16 0.37 0.59
0.25 0.44 0.56 −1.07 1.73 0.54 0.69
0.30 0.40 0.60 −1.44 2.28 0.73 0.82
1.00 −0.95 2.77 −7.15 8.57 3.39 3.48

CCSDa 1.88 1.92 −0.78 4.15 1.17 2.21
MP2.8:κ-OOMP2a −0.12 0.58 −1.42 1.30 0.71 0.71
OMP2.5b 1.30 −5.20 4.30. 1.80

aTaken from ref 33. bTaken from ref 32. Using the reference energies
of Zhao et al.,50 basis: CBS(cc-pV[T/Q]Z). cOO-REMP/aug-cc-
pVTZ, all electrons correlated. Reference reaction energies: CCSD-
(T)/aug-cc-pVTZ taken from ref 33. The average absolute reaction
energy amounts to 12.79 kcal mol−1.

Table 3. Error Descriptors in kcal mol−1 for the NHTBH38
Subset of the BH76 Benchmark Setb

A MSD MAD min max σ RMSD

0.00 0.24 1.30 −6.22 2.55 1.76 1.75
0.15 0.55 0.79 −2.18 1.75 0.78 0.94
0.20 0.55 0.72 −1.62 1.47 0.63 0.83
0.25 0.53 0.70 −1.25 1.17 0.57 0.77
0.30 0.48 0.69 −1.53 1.23 0.60 0.76
1.00 −1.64 2.62 −18.48 2.32 3.58 3.90

CCSDa 2.07 2.07 0.13 7.65 1.49 2.53
MP2.8:κ-OOMP2a 0.27 0.64 −0.95 1.58 0.72 0.76
aTaken from ref 33. bOO-REMP/aug-cc-pVTZ, all electrons
correlated. Reference reaction energies: CCSD(T)/aug-cc-pVTZ
taken from ref 33. The average absolute reaction energy amounts to
23.52 kcal mol−1.
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OO-REMP provides an RMSD of only 0.66 kcal mol−1, clearly
better than CCSD (1.91 kcal mol−1) and well below the
MP2.8:κOOMP2 value of 0.84 kcal mol−1.
As the BH76 test set has been intensively investigated as a

difficult case for DFT approaches,48,50 a comparison with OO-
REMP seems to be of interest. For the most demanding
NHTBH38 subset of the BH76 test set, Goerigk et al. report an
RMSD value of 6.23 kcal mol−1 for the frequently used B3LYP-
D3 hybrid functional, while 2.67 kcal mol−1 is obtained with the
best double-hybrid functional for this test set (DSD-BLYP-
D351).52

As an additional test for properties other than regular reaction
energies, the O23 set22,31,47,53 of Bozkaya is considered. This set
consists of 23 small open-shell noncovalent interactions.
Noncovalent interaction energies are BSSE corrected54 and
were calculated fromCBS-extrapolated total energies. The latter
follows the CBS(3/4,aug-CC) recipe which uses a two-point
Halkier procedure55 from aug-cc-pVTZ and aug-cc-pVQZ basis
sets with α = 1.6 and β = 3. As SCF energy, the UHF energy was
used, and as correlation energy, the difference betweenUHF and
the OO-REMP total energy was used.
Table 5 shows that OO-REMP also performs very well for

these open-shell noncovalent interactions. The ideal MP2

fraction for this set is 35%, but OO-REMP(0.25) performs only
slightly worse providing an RMSD of 0.19 kcal mol−1 which is
even slightly lower than for OMP2.5 (RMSD= 0.22 kcal mol−1).
This is particularly remarkable due to the excellent performance
of OMP2.5 for noncovalent interactions seen in the MAD of
0.12 kcal mol−1 which is a little bit lower than the OO-REMP
value (MAD = 0.13 kcal mol−1). However, OO-REMP(0.25) is
superior to OMP2.5 with respect to outliers.
As a final benchmark, we consider the non-multireference

subset of the W4-11 thermochemistry set that Bertels et al. used
to parametrize MP2.8:κ-OOMP2.33 Table 6 lists error estimates

for average electronic heats of formation (negative atomization
energies) for the 124 non-multireference cases of the W4-11
benchmark set56 (TAE140). For this rather demanding test set,
the RMSD of OO-REMP(0.25) (1.25 kcal mol−1) lies above 1
kcal mol−1, while the less stringent MAD (0.96 kcal mol−1) is
just below this threshold. As before, the performance of OO-
REMP(0.25) exceeds CCSD, OO-MP2, andOCEPA by far, and
outperforms even MP2.8:κ-OOMP2 which provides an RMSD
of only 1.59 kcal mol−1.
Table 7 summarizes results obtained for the full set of 746

non-multireference reactions from the W4-11-derived sets
TAE140, BDE99, HAT707, SN13, and ISOMERIZATION20

Table 4. Error Descriptors in kcal mol−1 for the BH76RC
Benchmark Setb

A MSD MAD min max σ RMSD

0.00 −0.01 0.93 −4.51 3.02 1.34 1.32
0.15 −0.01 0.31 −1.33 1.93 0.54 0.53
0.20 0.01 0.36 −0.83 1.78 0.51 0.51
0.25 0.03 0.52 −1.27 1.71 0.67 0.66
0.30 0.05 0.70 −1.88 1.88 0.91 0.90
1.00 0.83 3.96 −10.01 20.48 5.55 5.52

CCSDa −0.65 1.21 −7.18 1.98 1.82 1.91
MP2.8:κ-
OOMP2a

−0.14 0.65 −1.47 1.53 0.84 0.84

aTaken from ref 33. bOO-REMP/aug-cc-pVTZ, all electrons
correlated. Reference reaction energies: CCSD(T)/aug-cc-pVTZ
taken from ref 33. The average absolute reaction energy amounts to
21.40 kcal mol−1.

Table 5. Error Descriptors in kcal mol−1 for the O23
Benchmark Setd

A MSD MAD min max σ RMSD

0.00a 0.20 0.21 −0.15 1.04 0.29 0.34
0.15 0.14 0.14 −0.00 0.62 0.17 0.21
0.20 0.13 0.13 −0.01 0.55 0.15 0.20
0.25 0.12 0.12 −0.04 0.46 0.14 0.18
0.30 0.11 0.11 −0.06 0.51 0.14 0.17
1.00 −0.02 0.37 −1.93 1.56 0.65 0.64

CCSDb 0.36 0.38 −0.20 1.59 0.49 0.60
OMP3b 0.14 0.23 −0.50 1.61 0.41 0.43
SCS-OMP3-VDWb 0.34 0.34 0.00 1.41 0.44 0.55
OMP2.5c 0.07 0.12 −0.21 0.78 0.21 0.22

aExcluding reaction 12 as the orbital optimization did not converge
for A ≤ 5%. bTaken from ref 22. cTaken from ref 31. dOO-REMP/
CBS(3/4,aug-CC), all electrons correlated. Reference reaction
energies: CCSD(T)/CBS(3/4,aug-CC) taken from ref 53. The
average absolute reaction energy amounts to 8.60 kcal mol−1.

Table 6. Error Descriptors in kcal mol−1 for the 124 W4-11-
nonMR Heats of Formation (Negative Atomization
Energies)b

A MSD MAD min max σ RMSD

0.00 4.68 4.68 −2.15 13.44 3.24 5.69
0.15 1.95 1.95 −1.71 5.88 1.14 2.26
0.20 1.07 1.19 −1.81 4.24 0.92 1.41
0.25 0.20 0.96 −3.06 3.78 1.23 1.25
0.30 −0.67 1.49 −5.06 4.25 1.81 1.92
1.00 −13.31 14.49 −48.74 10.80 12.50 18.22

CCSDa 8.01 8.01 0.00 20.34 4.82 9.34
MP2.8:κ-
OOMP2a

−0.52 1.65 −5.83 5.24 2.03 2.09

aData taken from the SI of ref 33 for the first 124 reactions. bOO-
REMP/aug-cc-pVTZ, all electrons correlated. Reference reaction
energies: CCSD(T)/aug-cc-pVTZ taken from ref 33. The average
absolute reaction energy amounts to 326.68 kcal mol−1.

Table 7. Error Descriptors in kcal mol−1 for the 746 W4-11-
nonMR Reactionsb

A MSD MAD min max σ RMSD

0.00 1.38 2.50 −5.84 13.44 3.00 3.30
0.15 0.34 1.02 −3.61 5.88 1.30 1.34
0.20 0.05 0.72 −3.35 4.24 0.96 0.96
0.25 −0.22 0.74 −3.25 3.78 0.95 0.97
0.30 −0.48 1.02 −5.06 4.25 1.26 1.35
1.00 −3.50 7.98 −48.74 17.86 10.24 10.81

CCSDa 1.49 3.62 −8.60 20.34 4.71 4.94
MP2.8:κ-
OOMP2a

−0.45 1.25 −5.83 5.24 1.53 1.59

aData taken from the SI of ref 33. bOO-REMP/aug-cc-pVTZ, all
electrons correlated. Reference reaction energies: CCSD(T)/aug-cc-
pVTZ taken from ref 33. The average absolute reaction energy
amounts to 107.52 kcal mol−1.
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that were used to parametrize MP2.8:κ-OOMP2. Nevertheless,
its MAD and RMSD values (1.25 kcal mol−1 and 1.59 kcal
mol−1)57 are outperformed by the OO-REMP(0.25) counter-
parts (0.74 kcal mol−1 and 0.97 kcal mol−1).
According to the results presented above, orbital-optimized

REMP (OO-REMP) performs best with about 25% MP-
contribution in the unperturbed Hamiltonian (A = 0.25). OO-
REMP improves upon all parent methods MP2, OMP2,
CEPA(0)D, and OCEPA as well as on CCSD. Its performance
is better or at least on par with that of OO-MP2.5 and MP2.8:κ-
OOMP2 which are−to the best of our knowledge−the best
performing PT derived approaches proposed so far. As shown
for other PTs before, orbital optimization is a convenient way to
further improve the already fairly accurate results of the REMP
approach for closed-shell reference cases while it is crucial for
open-shell systems.20,21,24,25,31,32

OO-REMP(0.25) reproduces all considered test sets of
reaction energies and reaction barrier heights of closed- and
open-shell main-group systems with RMSD values below 1 kcal
mol−1. For the rather demanding atomization energies of the
W4-11-nonMR test set, this threshold is met for the less
stringent MAD error estimate. Very good performance is also
observed for the noncovalent interaction energies of the O23
test set. Thus, OO-REMP emerges as a quantum chemical
approach which solely includes the first-order interacting space
(i.e., no explicit triple or higher excitations) and meets the
challenging criterion of being chemically accurate for the
considered benchmark sets in its common definition in the
computational chemistry literature.1 We note, that the
experimentalist’s definition of chemical accuracy (RMSD = 0.5
kcal mol−1) is not but almost met by OO-REMP(0.25) for the
chemically relevant reaction energy and barrier height bench-
mark sets.
Considering the computational scaling, OO-REMP, OO-

MP2.5, MP2.8:κ-OO-MP2, and the related PT scale as n( )6

with the system size. OO-REMP is an iterative n( )6 procedure
requiring the same computational effort as OCEPA and about
the same as CCSD. The latter does not need orbital
macroiterations but requires evaluation of disconnected
diagrams (some characteristic wall clock timings are collected
in the Supporting Information). SCS-OMP3 and OMP2.5
exhibit iterative n( )6 steps in the determination of the first-
order wave function correction and some two-particle densities.
MP2.8:κ-OOMP2 scales as n( )5 during the orbital iterations,

and only a single energy evaluations scales as n( )6 . OO-(SCS)-
MP2, finally, only exhibits iterative n( )5 scaling.
As OO-REMP provides relaxed densities as a Hylleraas-like

energy functional is minimized with respect to the forms of the
orbitals, it allows for fast analytical property evaluation.24

Further improvement of the method seems possible by
modifying the unperturbed Hamiltonian, e.g., by spin-
component scaling35 or by moving to higher order or fractional
perturbation theories. Extensions to multireference cases are
also possible as multireference RE approaches have been
derived, implemented, and successfully applied.17,58−60 Combi-
nation of these methods with any of the Fock-type operators
commonly used in multireference PT58 should lead to
multireference REMP in a relatively straightforward manner.
While the results shown above are promising, further

validation is required to obtain a more complete picture of the
performance of OO-REMP. In particular, transition metal

system (e.g., TMC15161 or MOR4162) and larger molecule
benchmark sets as contained in the GMTKN5563 shall be
investigated. As these benchmark sets are not accessible with
conventional codes like ours, it seems worth implementing
(OO-)REMP variants with reduced prefactor or scaling as has
already been demonstrated for OCEPA.47

Further details about our OO-REMP implementation as well
as extensions of REMP to canonical open-shell reference wave
functions will be reported in an upcoming publication.38
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ABSTRACT

An accurate description of the electron correlation energy in closed- and open-shell molecules is shown to be obtained by a second-order
perturbation theory (PT) termed REMP. REMP is a hybrid of the Retaining the Excitation degree (RE) and the Møller–Plesset (MP) PTs. It
performs particularly encouragingly in an orbital-optimized variant (OO-REMP) where the reference wavefunction is given by an unrestricted
Slater determinant whose spin orbitals are varied such that the total energy becomes a minimum. While the approach generally behaves
less satisfactorily with unrestricted Hartree–Fock references, reasonable performance is observed for restricted Hartree–Fock and restricted
open-shell Hartree–Fock references. Inclusion of single excitations to OO-REMP is investigated and found—as in similar investigations—to
be dissatisfying as it deteriorates performance. For the non-multireference subset of the accurate W4-11 benchmark set of Karton et al.
[Chem. Phys. Lett. 510, 165–178 (2011)], OO-REMP predicts most atomization and reaction energies with chemical accuracy (1 kcal mol−1)
if complete-basis-set extrapolation with augmented and core-polarized basis sets is used. For the W4-11 related test-sets, the error estimates
obtained with the OO-REMP method approach those of coupled-cluster with singles, doubles and perturbative triples [CCSD(T)] within
20%–35 %. The best performance of OO-REMP is found for a mixing ratio of 20%:80% MP:RE, which is essentially independent of whether
radical stabilization energies, barrier heights, or reaction energies are investigated. Orbital optimization is shown to improve the REMP
approach for both closed and open shell cases and outperforms coupled-cluster theory with singles and doubles (CCSD), spin-component
scaled Møller-Plesset theory at second order (SCS-MP2), and density functionals, including double hybrids in all the cases considered.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0081285

I. INTRODUCTION

Rayleigh–Schrödinger perturbation theory1 is a standard
method for introducing electron correlation into the electronic
wavefunction.2–5 This requires to partition the Hamiltonian Ĥ
into an unperturbed Hamiltonian Ĥ(0) and a perturbation Ĥ(1)= Ĥ − Ĥ(0) and to identify an unperturbed (zeroth order) wave-
function Ψ(0), also termed reference wavefunction. The standard
approach is the Møller–Plesset2,4,6 (MP) method, which utilizes
the Hartree–Fock (HF) determinant as an unperturbed wavefunc-
tion and the corresponding Fockian as Ĥ(0). While MP fulfills
all criteria for generally applicable wavefunction theories, such as

size consistency, unitary invariance, systematic improvability, and
others, its predictional capacity for typical chemical problems is
unsatisfactory. Improved performance was achieved by (i) empir-
ically modifying the correlation energy expression as in spin-
component scaled (SCS)-MP2,7,8 SCS-MP3,9 or regularized MP
variants;10,11 (ii) introducing fractional order perturbed ener-
gies as in MP2.5,12 MP2.X,13 or MP3.5;14 (iii) choosing another
unperturbed Hamiltonian as the, however, generally unsatisfac-
tory Epstein–Nesbet (EN)15–18 one, Feenberg scaling,19–21 the Feen-
berg scaled SCS-MP2 variant,22 the S2-MP approach,23 or the
optimized perturbation theory (OPT-PT);18,24,25 and (iv) modify-
ing the reference wavefunction by orbital optimization, as has
been demonstrated for OO-MP2,26,27 OB-MP2,28 OO-MP3,29,30

J. Chem. Phys. 156, 124103 (2022); doi: 10.1063/5.0081285 156, 124103-1
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OCID,31,32 or OCCD.33–36 It was shown to be particularly effec-
tive to employ several of these improvements simultaneously, as in
OO-SOS-MP2,37,38 OMP2.5,39–41 OCEPA(0),42–44 and the orbital-
optimized and regularized MP-PT approaches κ- or σ-OOMP211

and MP2.8:κ-OOMP2.10

The “Retaining the Excitation Degree” (RE)45,46 method is an
alternative partitioning of the Hamiltonian proposed by one of the
present authors. The zeroth-order Hamiltonian contains all contri-
butions of the second-quantization Hamiltonian that do not change
the number of electrons in the occupied or virtual orbitals. It is
related to Dyall’s active space Hamiltonian.47 The general concept
behind RE is to maximize the number of terms in Ĥ(0) and minimize
the number of terms in Ĥ(1). The unperturbed Hamiltonian couples
all configurations of the same excitation degree, while the per-
turbation exclusively couples configurations of different excitation
degrees.

In the present work, we shall describe and validate several
implementations of the REMP hybrid perturbation theory for open-
shell systems. REMP is defined by setting Ĥ(0) to a weighted mixture
of the unperturbed Hamiltonians of the MP and RE methods.48

The idea to mix the perturbation methods RE and MP emerges
from a systematic investigation of the errors of the respective first-
order wavefunctions in terms of proper configuration state functions
(CSFs) by one of the authors.49 Accordingly, MP2 has a clear and
systematic tendency to strongly underestimate correlation energy
contributions of singlet-coupled doubly excited (SDE) CSFs, while
the corresponding triplet-coupled doubly excited (TDE) CSF contri-
butions are overestimated. To a lesser degree, RE behaves essentially
in the opposite way by overestimating SDE and underestimating
TDE contributions. The mixed approach REMP is designed as to
ameliorate these errors. In an earlier contribution,48 it was shown
that forming a mixed unperturbed Hamiltonian, indeed, leads to an
improved wavefunction itself. REMP, therefore, has the potential to
provide the right answer for the right reason albeit at the cost of one
empirical parameter.

While coupled-cluster with singles, doubles and perturbtive
triples [CCSD(T)]2,50 is still the de facto gold standard for cor-
related single reference calculations, in recent years, a number
of methods emerged that circumvent the necessity to explicitly
calculate triple excitations while exhibiting almost competitive
performance. Like PCPF-MI,51 pCCSD,52,53 or OS-CCSD-SP(2),54

these are mostly coupled pair or coupled cluster-type methods,
which either introduce some scaling in the amplitude expres-
sion or add perturbative corrections with n6 scaling to the CCSD
energy. Within the realm of perturbation theory, comparable per-
formance was demonstrated for some of the above-mentioned
Møller–Plesset variants, which combine orbital optimization with
empirical scaling of higher-order perturbative contributions while
preserving an n6 scaling. Examples for this class of methods are
OMP2.5,39–41 MP2.8:κ-OOMP2,10 and the orbital-optimized variant
of REMP (OO-REMP), which was recently presented in a letter by
the present authors.55 In the following, we provide a more com-
plete report on the latter methodology. Furthermore, we describe the
REMP approach for unrestricted and restricted open-shell reference
wavefunctions. We also consider the effect of adding single exci-
tations within the OO-REMP approach. The performance of these
methods is validated with reaction energy and activation barrier
benchmark sets.

II. THEORY
A. REMP perturbation theory

Throughout this work, the commonly used indexing scheme
for spin orbitals is used, i.e., i, j, k, l, m, n are used for occupied,
a, b, c, d, e, f are used for virtual, and p, q, r, s are used for arbitrary
spin-orbitals. âi denotes an annihilation operator from spin orbital
i, while â†

i denotes its adjoint creation operator.
For applying Rayleigh–Schrödinger perturbation theory to the

electron correlation problem,1,2,56 the electronic Hamiltonian Ĥ is
partitioned into a perturbation Ĥ(1) and an unperturbed part Ĥ(0)
for which the unperturbed (zeroth order) Schrödinger equation

Ĥ(0)∣Ψ(0)⟩ = E(0)∣Ψ(0)⟩ (1)

must be exactly fulfilled.
In the formalism of second quantization,2,57,58 the electronic

Hamiltonian reads

Ĥ =∑
p,q

hpqâ†
p âq + 1

2∑pqrs
⟨pq∣rs⟩â†

p â†
q âsâr , (2)

where hpq is a matrix element of the one-electron Hamiltonian and⟨pq∣rs⟩ = ∫ ϕ∗p (1)ϕ∗q (2) 1
r12

ϕr(1)ϕs(2)dτ is a two-electron repulsion
integral in the Dirac notation.

The MP partitioning uses the Fock operator as the unperturbed
zeroth-order Hamiltonian. Starting from Hartree–Fock theory, this
is the most natural choice,

Ĥ(0)MP = F̂ = ĥ + Ĵ − K̂ (3)

=∑
p,q

fpqâ†
p âq =∑

p,q
δpqεpâ†

p âq, (4)

where the last equality only holds in the case of canonical MOs. fpq
denotes a matrix element of the Fockian in the MO basis, εp denotes
an eigenvalue of the Fockian (“orbital energy”), and δpq is the
Kronecker delta. Within a matrix representation of the Hamiltonian
in a configuration interaction (CI) basis, Ĥ(0)MP contains only diagonal
matrix elements.59

The Fock operator does only fulfill Eq. (1) for Hartree–Fock
orbitals. For any other set of orbitals, the Fock operator is no more a
valid choice of the unperturbed Hamiltonian and must be amended
as, e.g.,

F̂d =∑
i,j

fija†
i âj +∑

a,b
fabâ†

a âb. (5)

The combination of an annihilation operator and a creation oper-
ator represents a single excitation, and the single excitations in
Eq. (5) do not change the excitation degree (the number of electrons
in the virtual orbitals). Thus, the diagonal Fock operator may be
written as

F̂d = ∑
p,q;

Δnex=0

fpqâ†
p âq, (6)

where Δnex designates the change in the excitation degree due to the
respective excitation operator.
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The RE perturbation theory45,46,60 is defined by applying such
an excitation degree restriction to the Hamiltonian in second
quantization, Eq. (2). The zeroth order Hamiltonian includes all
terms that do not change the excitation degree

Ĥ(0)RE = ∑
p,q;

Δnex=0

hpqâ†
p âq + 1

2 ∑p,q,r,s;
Δnex=0

⟨pq∣rs⟩â†
p â†

q âsâr . (7)

For RHF (closed-shell singlet) references, the RE second-order
energy correction coincides with the CEPA(0)61,62 correlation
energy, also known as linearized coupled cluster with doubles
(LCCD),63–65 linearized coupled-pair many-electron-theory
(L-CP-MET),66,67 all orders in double excitation diagrams
many-body perturbation theory [MBPT-D(∞)],68,69 or optimized
perturbation theory (OPT-PT).24,25

The REMP method is defined by setting the unperturbed
Hamiltonian to a constrained mixture of the Møller–Plesset- and the
RE-PTs,

Ĥ(0)REMP = (1 − A) ⋅ Ĥ(0)RE + A ⋅ Ĥ(0)MP . (8)

The mixing parameter A represents the Møller–Plesset amount of
the unperturbed Hamiltonian. Energies and wavefunctions obtained
with it are denoted as REMP(A). Further details on the motivation
of REMP and the closed shell implementation can be found in our
preceding publication.48

The focus of this work was to implement the OO-REMP
approach into an efficient code, which does not introduce approx-
imations beyond the basis set expansion and a threshold value for
two electron integrals. Thus, we limited ourselves to the second-
order energy and the first-order wavefunction, which allows for an
efficient implementation in a direct CI fashion. In the following, the
orbital optimization approach is described where we adopt a coupled
cluster style notation.3

The open-shell generalization uses plain excited Slater determi-
nants to express the first-order perturbed wavefunction as

∣Ψ(1)⟩ = (T̂(1)1 + T̂(1)2 )∣ϕ0⟩, (9)

where T̂ denotes the usual cluster operator and ∣ϕ0⟩ is the (single)
reference Slater determinant. Using the formalism of second quanti-
zation57 and the concept of normal order (with respect to the Fermi
vacuum),3,70–72 the total electronic Hamiltonian can be rewritten as

Ĥ = F̂ d
N + ⟨ϕ0∣F̂ d∣ϕ0⟩ + F̂ o + ŴN + ⟨ϕ0∣Ŵ∣ϕ0⟩, (10)

where N indicates normal order with respect to the Fermi
vacuum, d implies that only the block-diagonal part,73 i.e.,
only the occupied–occupied and the virtual–virtual part,
are included, o indicates that only the off-diagonal part
(occupied–virtual/virtual–occupied) is included, and Ŵ is that
part of the two-electron repulsion operator that is not included in
the Fockian (“fluctuation potential”).

Using the representation of Eq. (10), it is possible to rewrite the
unperturbed Hamiltonians and the perturbation of MP and RE in a
way suitable for diagrammatic evaluation,

Ĥ(0)MP = F̂d
N + ⟨ϕ0∣F̂d∣ϕ0⟩´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

E(0)
MP

, (11)

Ĥ(1)MP = F̂o + ŴN + ⟨ϕ0∣Ŵ∣ϕ0⟩´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
E(1)

MP

, (12)

Ĥ(0)RE = F̂d
N + ŴN

R=0
+ ⟨ϕ0∣F̂d∣ϕ0⟩ + ⟨ϕ0∣Ŵ

R=0
∣ϕ0⟩´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶=E(0)

RE =EHF

, (13)

Ĥ(1)RE = F̂o + ŴN
R≠0
+ ⟨ϕ0∣Ŵ

R≠0
∣ϕ0⟩´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶=E(1)

RE =0

, (14)

where R denotes the excitation degree of the terms/diagrams
included. Every diagram used in the context of electron correla-
tion can be assigned an excitation degree; there is thus an inti-
mate connection between the concept of excitation degrees used in
(single-reference) RE and diagrammatic techniques. The partition-
ing defined by Eqs. (11) and (12) for MP and Eqs. (13) and (14)
for RE is fully consistent with the partitioning used in the closed-
shell case, the MP partitioning for unrestricted Hartree–Fock (UHF)
references, and the so-called RMP (“Restricted Møller–Plesset”)
theory partitioning for ROHF references.71,72,74 The RE first-order
doubles residuum derived from this partitioning is again identical
to CEPA/0(D) for UHF references.75,76 If Eqs. (9) and (11)–(14)
are inserted into the equation determining the first-order perturbed
wavefunction and left-projected with ⟨ϕab

ij ∣ or ⟨ϕa
i ∣, one obtains

the following (spin-orbital) residuum equations for RE and MP,
respectively (assuming orthonormal orbitals):

σij
ab,RE1 = K ij

ab − K ij
ba +∑

c
(tij

ac fbc − tij
bc fac) +∑

k
(tjk

ab fik − tik
ab fjk)

+∑
kl

K ij
klt

kl
ab +∑

cd
Kcd

abtij
cd +∑

kc
(tik

ac(Kkj
cb − Jkj

cb)
− tjk

ac(Kki
cb − Jki

cb) − tik
bc(Kkj

ca − Jkj
ca) + tjk

bc(Kki
ca − Jki

ca)), (15)

σi
a,RE1 = fia +∑

b
fabti

b −∑
k

tk
a fki +∑

kc
tk
c(K ik

ac − Jik
ac), (16)

σij
ab,MP1 = K ij

ab − K ij
ba +∑

c
(tij

ac fbc − tij
bc fac) +∑

k
(tjk

ab fik − tik
ab fjk),

(17)

σi
a,MP1 = fia +∑

b
fabti

b −∑
k

fiktk
a . (18)
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As for the closed shell case,48 the MP1 residuum is completely
contained in the RE1 residuum. For obtaining spin-integrated
equations, the sums have to be expanded in terms of spin orbitals
and the spin has to be integrated out, which eliminates certain terms.
Note that Eqs. (15)–(18) do not assume canonical orbitals but are
valid for any set of orthonormal orbitals.

1. UREMP
The generalization to unrestricted reference determinants is

straightforward. Appropriate residuum equations for UREMP are
obtained from Eqs. (15)–(18) by simply keeping the parts that occur
in both the MP and the RE residuum and by scaling those parts
by 1 − A, which only occur in the RE residuum. If (canonical or
localized) UHF orbitals are used, the Brillouin theorem is fulfilled,
and consequently, the single excitations vanish exactly. In the case of
UHF references, the second order energy correction of RE is again
identical to CEPA/0(D). It will here be denoted as URE2.

2. RO-REMP
The extension of REMP to restricted open-shell reference

determinants is not as straightforward as in the UHF case. The
main obstacle is that there exist at least seven possibilities to formu-
late the MP2 energy for an ROHF reference.71 Furthermore, there
exist several parameterizations of ROHF, which lead to the same
wavefunction but to different orbitals and orbital energies.77 The
ROHF orbitals used in this work diagonalize the effective Fock
operator described by Jungen in Ref. 78. They correspond to the
scheme described by Fægri and Manne,79 which is also the ROHF
parameterization used in TURBOMOLE. Some of the ROMP2
variants proposed in the literature are not invariant with respect
to the choice of ROHF flavor80 or can only be applied for one
specific ROHF parameterization.71,77 To keep things as simple as
possible, we decided to use the RMP variant for Møller–Plesset
treatment. RMP has the advantage that the residuum equations for
the restricted open-shell case are the same as in the UHF case. On
the other hand, RMP has the disadvantage that effectively different
orbitals for different spins (DODS) are introduced, which ultimately
destroys the exact ⟨S2⟩ properties. When building operators from
integrals and orbitals, densities are formed with different numbers
of α and β spin electrons, resulting in different operators for α and
β spin orbitals. This becomes even more obvious if semicanonical
orbitals72 are constructed. Using semicanonical orbitals for RMP2
has the advantage that in this basis, the Fock operators become
block-diagonal again. Thus, energies and amplitudes can be com-
puted from a sum-over-states expression. For the RE partitioning,
on the other hand, semicanonical orbitals provide no advantage
as the scaling of the most expensive step (the external exchange
operator) is not affected by the choice of the canonicalization. Using
semicanonical orbitals, furthermore, introduces some ambiguity as
soon as core or high-lying virtual orbitals are excluded from the cor-
relation treatment: the usual procedure is to first block-diagonalize
the Fockians in the full MO basis, then to recalculate all necessary
operators, and then to freeze unwanted orbitals. However, original
ROHF orbitals with the same number of frozen core orbitals provide
results distinctly different from those obtained after semicanonical-
ization. The reason is that the semicanonicalization is not a unitary
transformation within the frozen or active space but is allowed to

mix frozen and active orbitals. Our program is able to use any
kind of orthonormal orbitals. As we do not see any benefit from
using semicanonical orbitals for REMP, we decided to directly use
the Fægri–Manne ROHF orbitals resulting from the ROHF-SCF
procedure for all RO-REMP calculations. It is important to note that
our results for 100% MP thus may slightly deviate from frozen core
RMP2 results obtained with other programs, such as ORCA,97,98

GAMESS-US,116 or PSI4,117 which use semicanonical orbitals by
default.

As the Brillouin theorem is generally not fulfilled for ROHF,
the first-order wavefunction correction will contain single excita-
tions. They are treated like the double excitations; residuum vector
elements occurring in Eq. (16) but not in Eq. (18) are scaled by
1 − A.

The similarity of RE to CEPA/0 partially breaks down for
ROHF. The equations that determine the first order singles and
doubles amplitudes are decoupled for RE, while they are coupled for
CEPA/0(SD).

The second-order RE energy with a restricted open-shell
reference will be denoted as RORE2, while the second-order REMP
energy will be denoted as RO-REMP(A) according to the chosen
value of the mixing parameter A.

B. Orbital-optimized REMP
The Orbital-Optimized REMP (OO-REMP) method is inspired

by its relative Orbital-Optimized MP2 (abbreviated as OO-MP227,81

or OMP235 by different authors) and Orbital Optimized CEPA
[OO-CEPA or OCEPA(0)44]. The concept of adjusting the orbitals
of the reference determinant such that the total energy of a cor-
related method becomes minimal with respect to all parameters
has been pioneered by Scuseria and Schaefer33 in the context of
coupled cluster theory. This has later been extended by Krylov
et al.82,83 Orbital optimization for SOS-MP2 was introduced by
Head-Gordon et al.37,84 and extended to SCS-MP2 by Neese et al.27,85

Later, Bozkaya and Sherrill26,29,30,39,86–88 introduced analytic gradi-
ents and extensions to higher orders in perturbation theory. The
same authors also developed the OCEPA(0)44 model, an orbital-
optimized variant of CEPA(0)/D and an approximation to full
OO-CCD. The orbital-optimized REMP model closely follows the
lines of OCEPA(0).

From a comparison of Eq. (68) of Ref. 35 and Eq. (7) of Ref. 44,
the second order REMP energy functional is given by

Ẽ(2)REMP = ⟨ϕ0∣Ĥ∣ϕ0⟩ + ⟨ϕ0∣{ŴNT̂(1)2 }c
∣ϕ0⟩

+ ⟨ϕ0[Λ̂(1)2 {ŴN + f̂ NT̂(1)2 + (1 − A)ŴNT̂(1)2 }c
]

c
ϕ0⟩,

(19)

where

T̂(1)2 = 1
4∑i,j ∑a,b

tij(1)
ab â†

a â†
b âjâi

is the first order doubles cluster operator and

Λ̂(1)2 = 1
4∑i,j ∑a,b

λab(1)
ij â†

i â†
j âbâa
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is the doubles deexcitation operator with the λ amplitudes serving
as Lagrangian multipliers. f̂ N and ŴN are the normal-ordered
Fockian and the two-electron component of the normal ordered
Hamiltonian, respectively.3,89

As in the case of OCEPA(0), this functional is made station-
ary with respect to all parameters, namely, the t2 amplitudes, the λ2
amplitudes, and the MO coefficients cμi. As usual, the λ amplitudes
serve as Lagrangian multipliers, enforcing the constraint that the
usual amplitude equations are still solved if the orbitals are modified.
The derivation of Eq. (19) for λab

ij thus yields the usual amplitude
equations,

∂Ẽ(2)REMP
∂λab

ij
= ⟨ϕab

ij ∣ŴN∣ϕ0⟩
+ ⟨ϕab

ij ∣{̂f NT̂(1)2 + (1 − A)ŴNT̂(1)2 }c
∣ϕ0⟩ != 0. (20)

The derivation of Eq. (19) with respect to tij
ab yields the lambda

amplitude equations,

∂Ẽ(2)REMP

∂tij
ab

= ⟨ϕ0∣ŴN∣ϕab
ij ⟩

+ ⟨ϕ0∣{Λ̂(1)2 (̂f N + (1 − A)ŴN)}
c
∣ϕab

ij ⟩ != 0. (21)

From a comparison of Eqs. (20) and (21), it is obvious that
Λ̂(1)2 = T̂(1)†2 and thus λab

ij = tij†
ab holds for REMP. This is also the

case for OCEPA(0) and OO-MP2 and in contrast to coupled
cluster theory. It is therefore not necessary to explicitly solve the Λ
equations.44,87,90

For the parameterization of the orbital change, we follow the
methodology of Bozkaya et al.26,29,30,35,42–44,88 who used an exponen-
tial unitary orbital rotation operator2 eK̂ . The orbitals and operators
can now be expressed as functions of orbital rotation parameters,

∣p̃⟩ = eK̂ ∣p⟩, (22)

̃̂a†
p = eK̂ â†

pe−K̂ , (23)

̃̂ap = eK̂ âpe−K̂ , (24)

Ĥκ = e−K̂ ĤeK̂ , (25)

Ĥκ
N = e−K̂ ĤNeK̂ , (26)

f̂ κ
N = e−K̂ f̂ NeK̂ , (27)

Ŵκ
N = e−K̂ ŴNeK̂ , (28)

with

K̂ =∑
p,q

κpqâ†
p âq, (29)

where K̂ is the orbital rotation operator and κpq is the orbital rota-
tion parameter for orbitals p and q, which is an antisymmetric
matrix (κpq = −κqp). If the second order energy functional Eq. (19)
is written as a function of the orbital rotation parameter κpq, it reads

Ẽ(2)REMP(κ) = ⟨ϕ0∣Ĥκ∣ϕ0⟩ + ⟨ϕ0∣{Ŵκ
NT̂(1)2 }c

∣ϕ0⟩
+ ⟨ϕ0[Λ̂(1)2 {Ŵκ

N + f̂ κ
NT̂(1)2 + (1 − A)Ŵκ

NT̂(1)2 }c
]

c
ϕ0⟩.

(30)

The orbital gradient is given by

wpq = ∂Ẽ(2)REMP(κ)
∂κpq

RRRRRRRRRRRκ=0

(31)

and has to be brought to zero during the orbital optimization.
As elaborated for OCEPA(0),44 the orbital gradient is computed

from the asymmetry of the generalized Fock matrix, which involves
sums over one- and two-particle density matrices. We adopted the
density matrices of Bozkaya and Sherrill44,88 and augmented them
with the REMP scaling factor as necessary. The one-particle reduced
density matrices γpq are given by

γpq = γref
pq + γcorr

pq , (32)

with γref
pq being the part originating from the reference and γcorr

pq being
the part originating from correlation. In detail,

γref
pq = δocc

pq , (33)

γcorr
pq = ⟨0∣{Λ̂(1)2 ({â†

p âq}T̂(1)2 )c
}

c
∣0⟩. (34)

The non-zero entries of γcorr
pq are

γcorr
ij = −1

2∑m ∑e, f
tim(1)
e f λe f (1)

jm (35)

and

γcorr
ab = 1

2∑m,n
∑

e
tmn(1)
be λae(1)

mn , (36)

where δocc
pr is the Kronecker delta with the additional restriction that

only orbitals that are occupied in the reference are considered. The
general expression for the two-particle reduced density matrix Γpqrs
reads
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Γpqrs = Γref
pqrs + Γcorr

pqrs + 1
4

δocc
pr γcorr

qs + 1
4

δocc
qs γcorr

pr

− 1
4

δocc
ps γcorr

qr − 1
4

δocc
qr γcorr

ps , (37)

Γref
pqrs = 1

4
(δocc

pr δocc
qs − δocc

ps δocc
qr ), (38)

Γcorr
pqrs = 1

4
⟨0∣({â†

p â†
q âsâr}T̂(1)2 )c

∣0⟩ + 1
4
⟨0∣(Λ̂(1)2 {â†

p â†
q âsâr})

c
∣0⟩

+ (1 − A)1
4
⟨0∣[Λ̂(1)2 ({â†

p â†
q âsâr}T̂(1)2 )c

]
c
∣0⟩, (39)

with the non-zero correlation contributions being

Γcorr
ijkl = (1 − A)1

8∑e, f
tij(1)
e f , λe f (1)

kl , (40)

Γcorr
ijab = tij(1)

ab , (41)

Γcorr
iajb = −(1 − A)1

4∑m ∑e tim(1)
be λae(1)

jm , (42)

Γcorr
abcd = (1 − A)1

8∑m,n
tmn(1)
cd λab(1)

mn . (43)

As the T̂(1)2 amplitudes solve the λ equations, the Λ̂(1)2 ampli-
tudes are replaced by the respective adjoint T̂(1)2 amplitudes when
forming density matrices. The correlated one-particle densities
[Eqs. (35) and (36)] are not scaled as they originate from the term
carrying the Fock operator in Eq. (30), which is equally contained
in MP and RE. The densities as defined by Eqs. (32)–(43) are used
to construct the generalized Fock matrix.35 Actually, as proposed
by Bozkaya and Sherrill in their seminal paper,44 we do not con-
struct the four-virtual two-particle density matrices if not needed
but instead form an intermediate, which speeds up the computation
drastically at no loss of accuracy.

Our generalized Fock matrix now has the same form as for
OCEPA(0),

Fpq =∑
r

hprγrq + 2∑
rst
⟨rs∥tp⟩Γrstq. (44)

From the asymmetry of the generalized Fock matrix, the MO
gradient wpq is computed as

wpq = 2(Fpq − Fqp). (45)

The MO gradient is monitored for convergence, and as long as no
sufficient convergence is achieved, orbital rotation parameters for

the n + 1st iteration are derived as a damped step into the opposite
direction of the orbital gradient of the nth iteration,

κ(n+1)
pq = − wn

pq

2( fpp − fqq) . (46)

Orbital convergence can be accelerated by the direct inversion of the
iterative subspace (DIIS) extrapolation118–120 using the orbital rota-
tion as the guess vector and the orbital gradient as the error vector.
In doing so, care has to be taken that the orbital rotations of different
iterations refer to a common basis, e.g., the initial orbitals. The total
orbital rotation parameters of the n + 1st iteration will then be the
sum of the individual rotations of all n preceding iterations.

Upon convergence of the orbital macroiterations, the MO basis
Fock matrix will not be diagonal anymore; especially, the Brillouin
theorem will not be fulfilled. As a consequence, the first-order
wavefunction should also contain single excitations and there is
also a correlation energy contribution by those single excitations.
Including a perturbative singles correction was already tested by
Neese et al.27 for OO-SCS-MP2 where it was found that OO-MP2
does not benefit from doing so. Here, we investigate an analogous
perturbative singles correction for OO-REMP. This correction is
defined by the correlation energy added by the singles amplitudes
that are obtained from solving the RO-REMP singles equations
Eqs. (16) and (18) using the optimized orbitals as input. This ansatz
will be denoted as OO-REMP+(S).

For UREMP and OO-REMP, an expression for the ⟨ Ŝ 2⟩ expec-
tation value according to Chen and Schlegel91 was implemented.
Specifically, Eq. (13) of Ref. 91 was used. Singles were ignored in all
cases. We like to note that this expression is only an approximation
and that one finds various expressions for the ⟨ Ŝ 2⟩ expectation value
of correlated wavefunctions in the literature, e.g., in Ref. 92.

III. RESULTS
A. Computational details

All REMP calculations have been performed using a devel-
opment version of the Bochum–Basel ab initio suite of programs
(waves).48,55,60,93–96 REMP, RO-REMP, UREMP, and OO-REMP
have been implemented as an extension of the MC-CEPA (multi-
configuration coupled electron pair approximation) program.60,96

The implementation is inspired by the matrix-driven CI pro-
gram of ORCA (mdci) and the orbital optimized coupled clus-
ter code (OCC) of PSI4. REMP/OO-REMP energies always cor-
respond to second order perturbation theory. All CCSD(T)
calculations have been performed using ORCA97,98,121 versions 4.2.0,
4.2.1, or 5.0.0. Basis sets have been used as stored in the TurboMole
6.599 basis set library or as deposited in ORCA.

The following abbreviations are used for statistical error
descriptors: MSD denotes the mean signed deviation, i.e., the arith-
metic mean of all deviations; MAD denotes the mean absolute
deviation, i.e., the average of all absolute deviations; Δmin-max denotes
the error spread, i.e., the largest positive minus the most nega-
tive error occurring; σ denotes the sample standard deviation; and
RMSD denotes the root mean square deviation, i.e., the square root
of the squared and averaged deviations.
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B. The W4-11 benchmark set and derived reactions

The W4-11 benchmark set100 is a collection of 140 very accu-
rate total atomization energies (TAE) of first- and second row
main group molecules (TAE140). From this set, we selected the
TAE_nonMR124 subset defined in the same paper as a primary
benchmark. This set contains those 124 atomization energies where
none of the reactants exhibits severe multireference character. The
reason for doing so is twofold: First of all, REMP and OO-REMP are
single reference theories; we, therefore, do not expect (and do not
obtain) reasonable performance for genuine multireference systems.
Second, we observed convergence difficulties during orbital opti-
mization with common multireference molecules, such as ozone
or C2. Furthermore, as only electronic energies were calculated,
results were compared against clamped-nuclei, nonrelativistic, zero-
point exclusive values (TAEe). The reference atomization energies
were taken from the supplementary material of Ref. 100 in Table
SI-V. These reference numbers were calculated at the W4 level of
theory or even better and were shown to be of excellent precision
and accuracy.101 In our previous study,55 we used the CCSD(T)
results of Bertels et al.10 as reference. In this publication, we aban-
don CCSD(T) as a reference method for the W4-11 set, as we
will show that plain CCSD(T) is not much more accurate than
OO-REMP.

From the W4-11 set, four further benchmark sets were derived,
the BDE99, HAT707, ISOMER20, and SN13 sets.100 From these
sets, we removed all reactions involving reactants not present in
the TAE_nonMR124 set, leaving 83 bond dissociation energies, 504
heavy atom transfers, 18 isomerizations, and 13 radicalic substitu-
tions. Again, reference reaction energies were taken from Tables
SI-VI to SI-XI from the columns marked as “TAEe” in Ref. 100.

Six different basis sets in conjunction with complete basis
set (CBS) extrapolation were tested, namely, def2-TZVPPD,
def2-QZVPPD, aug-cc-pVTZ, aug-cc-pVQZ, aug-cc-pwCVTZ, and
aug-cc-pwCVQZ. This allows us to check the sensitivity of certain
properties to the basis set size. It also allows us to identify Pauling
points, i.e., method/basis combinations where fortuitous error
cancellation of basis and method errors occurs. CBS extrapolation
was performed as simple two-point extrapolation for SCF102–104

and correlation energies.105 SCF energies were extrapolated with
an exponential function and an exponent106 of α = 1.6; correlation
energies were extrapolated with a polynomial function and an
exponent of β = 3. As SCF energy for orbital optimized methods,
the energy of the preceding RHF/ROHF/UHF calculation was used,
respectively, for closed- and open-shell systems. The difference
between the orbital optimized total energy and the respective
Hartree–Fock energy was used as correlation energy for the
extrapolation procedure. The extrapolation from def2-TZVPPD and
def2-QZVPPD will be denoted as “CBS(3/4,def2),” the extrapo-
lation from aug-cc-pVTZ and aug-cc-pVQZ will be denoted as
“CBS(3/4,aVXZ),” and the extrapolation from aug-cc-pwCVTZ and
aug-cc-pwCVQZ will be denoted as “CBS(3/4,awCVXZ).” Through-
out the whole benchmark set, no electrons were kept frozen; instead,
all electrons and all orbitals were always correlated.

The non-MR portion of the TAE140 set was already investi-
gated in our previous paper55 with CCSD(T)/aug-cc-pVTZ refer-
ence values where it showed error estimates of about 1 kcal mol−1.
In the present work, we investigate complete basis set extrapolated

values with respect to W4 benchmark results, aiming to investigate
the true accuracy of the REMP approaches themselves.

Figure 1 shows the root mean square deviation of the 124 total
atomization energies of the TAE_nonMR124 set when calculated
with UREMP, RO-REMP, and OO-REMP. The most striking result
is that every single curve exhibits a local minimum, indicating that
the REMP “recipe” also works in all open shell variants.

As expected, increasing the basis set size from triple-ζ to
quadruple-ζ leads to an improvement, except in the case of
aug-cc-pVTZ and aug-cc-pVQZ where the minimal RMSDs are
about equal but located at different A values. When only a single
basis set is considered, a bit surprisingly, the def2-QZVPPD basis
performs best for UREMP, RO-REMP, and OO-REMP. However, as
the minima are found at 4.2, 3.4, and 2.2 kcal mol−1, respectively, for
UREMP/RO-REMP/OO-REMP, none of these model chemistries is
of any practical use for calculating atomization energies. Reliable
results are only obtained if CBS extrapolation is used. One then
finds that the def2 basis sets and the aVXZ basis sets perform about
equally well, although with significantly different optimal RE/MP
mixing ratios. The best performance is always delivered by the
awCVXZ basis sets, which exhibit the lowest minima in all cases. The
respective minima are found at A = 0.35, i.e., 35% MP2 in the unper-
turbed Hamiltonian [UREMP, 3.54 kcal mol−1, Fig. 1(a)], 40% MP2
[RO-REMP, 2.59 kcal mol−1, Fig. 1(b)], and 23% MP2 [OO-REMP,
1.15 kcal mol−1, Fig. 1(c)]. OO-REMP thus is clearly the most
powerful of the three assessed methods. The performance of
OO-REMP is even more impressive if one considers that the
pure parent methods OO-RE and OO-MP2 exhibit RMSDs of
5.53 and 18.9 kcal mol−1, respectively. UCCSD(T)/CBS(3/4,aug-cc-
pwCVXZ) delivers a RMSD of 0.79 kcal mol−1 for the same set and
is thus not vastly more accurate. On the other hand, both UREMP
and RO-REMP can generally not be recommended for atomization
energies. The variant based on restricted orbitals performs slightly
better but not good enough. It should, however, be mentioned that
both perform still significantly better than UCCSD/CBS(3/4,aug-
cc-pwCVXZ), which provides an RMSD of 9.87 kcal mol−1. These
results can be compared to Karton’s results for the TAE_nonMR124
set (Table 6 in Ref. 100). The only methods that perform equally well
or even better are the W1, the ccCA, and the G4(MP2)-6X composite
methods. All of these employ CCSD(T) calculations as components
and exhibit, therefore, a less favorable computational scaling than
OO-REMP. None of the density functionals investigated in Ref. 100
comes even close to an RMSD of 1 kcal mol−1.

The first subsets of reactions that may be formed from the
W4-11 set are heavy-atom-transfer reactions (HAT_nonMR504,
Fig. 2). These are bimolecular reactions, such as C + CH3F → CF+ CH3, where one heavy atom formally changes to the other reac-
tant. Figure 2 depicts the RMSDs that can be achieved with UREMP,
RO-REMP, and OO-REMP, respectively. Compared to Fig. 1, one
finds some remarkable differences. The minima are less pronounced
or even not present at all, the dependency on the mixing ratio is
less pronounced, and the overall performance is poorer than before.
UREMP turns out to be not reliable at all for these kinds of reactions,
RO-REMP has a minimal RMSD of almost 5 kcal mol−1, and even
OO-REMP exhibits a minimum RMSD of 2.15 kcal mol−1 [A = 0.20,
CBS(3/4,awCVXZ)]. The benefit of performing a CBS extrapolation
is also smaller for this reaction set. It should, however, be mentioned
that this set turns out to be exceedingly difficult as shown by the
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FIG. 1. Graphical representation of the RMSD averaged over 124 total atomization
energies of the TAE_nonMR124 subset of the W4-11 benchmark set as a function
of the REMP mixing parameter A of Ĥ(0)

REMP. (a) UREMP, (b) RO-REMP, and (c)
OO-REMP. The up-pointing triangles indicate triple-ζ basis sets; the down-pointing
triangles indicate quadruple-ζ basis sets. The squares indicate results obtained via
CBS extrapolation from the aforementioned basis sets. Ahlrichs basis sets (def2-
XZVPPD) are shown in blue, Woon–Dunning basis sets (aug-cc-pVXZ) are shown
in green, and Peterson–Dunning basis sets (aug-cc-pwCVXZ) are shown in red.
See Tables S18–S44 for numerical values.

FIG. 2. Graphical representation of the RMSD averaged over 504 heavy atom
transfer reaction energies of the HAT_nonMR504 subset of the W4-11 benchmark
set as a function of the REMP mixing parameter A of Ĥ(0)

REMP. (a) UREMP, (b)
RO-REMP, and (c) OO-REMP. See Fig. 1 for further details and Tables S45–S71
for numerical values.
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RMSD of UCCSD(T)/CBS(3/4,awCVXZ), which is 1.81 kcal mol−1,
and, thus, only marginally smaller than that of OO-REMP. For
comparison, UCCSD/CBS(3/4,awCVXZ) performs relatively well
with a RMSD of 4.45 kcal mol−1.

The next subset that may be formed from the TAE_nonMR124
set concerns bond dissociation energies (BDE_nonMR83, Fig. 3).
Here, one bond in molecules with three or more atoms is cleaved
homolytically in various ways to form two fragments. Figure 3
shows the results obtained for this subset. As has been the case with
atomization energies and heavy-atom-transfer reactions, neither
UREMP nor RO-REMP is capable of describing these reactions
satisfactorily. The only model chemistry that is reaching an
RMSD below 1 kcal mol−1 is OO-REMP/CBS(3/4,awCVXZ).
The minimum is located at A = 0.20 with an RMSD of
0.85 kcal mol−1. UCCSD(T)/CBS(3/4,awCVXZ) achieves an
RMSD of 0.77 kcal mol−1 for the same set and is thus only slightly
better.

The third set that can be formed consists of 18 isomerization
energies (ISOMER_nonMR18, Fig. 4). A typical reaction of this
set would be propyne → allene. As most systems are closed shell
singlets, it is not surprising that UREMP and RO-REMP per-
form similar and that performance is already fairly good without
orbital optimization. The overall performance is again improved
by orbital optimization. Quite interestingly, now, the best per-
formance is not found when CBS extrapolation is done. Instead,
OO-REMP/aug-cc-pVQZ with A = 0.19 provides the lowest RMSD
(0.32 kcal mol−1), followed by OO-REMP(0.23)/aug-cc-pwCVQZ
(0.33 kcal mol−1) and OO-REMP(0.19)/CBS(3/4,awCVXZ) (0.37
kcal mol−1). A very similar behavior is found for CCSD(T),
which achieves 0.14/0.19/0.23 kcal mol−1 with aug-cc-pVQZ/aug-
cc-pwCVQZ/CBS(3/4,awCVXZ).

The last set of reactions consists of 13 radical substitution
reactions (SN13); a prototypical example would be CH3F + OH⋅→ F⋅ + CH3OH. The respective RMSDs are depicted in Fig. 5.
Although all reactions involve radicals as reactants, both UREMP
and RO-REMP perform remarkably well. Generally, the same
trends as before are observed, namely, that REMP hybridization
leads to a tremendous improvement over the parent methods.
The most striking example here is probably again OO-REMP.
While none of the parent methods regardless of the basis set comes
even close to 1 kcal mol−1, each of the curves in Fig. 5(c) shows
a minimum roughly between A = 0.20 and A = 0.40, and all of
these minima are located clearly below 1 kcal mol−1. It should be
stressed that this improvement comes at no extra cost compared
to OCEPA(0). The best overall performance is again achieved
with OO-REMP(0.19)/CBS(3/4,awCVXZ) with an RMSD of
0.37 kcal mol−1. CCSD(T)/CBS(3/4,awCVXZ) yields an RMSD of
0.22 kcal mol−1.

Summarizing the above results, one finds that OO-REMP
shows a performance that is qualitatively comparable to CCSD(T).
The best performance is always found with an MP:RE mixing ratio
of about 20:80. The only case where OO-REMP clearly misses the
1 kcal mol−1 criterion is the heavy atom transfer reaction set, where
even CCSD(T) exhibits substandard performance. The performance
of the variants building upon canonical UHF/ROHF determinants is
much poorer especially in difficult cases. The restricted variant gen-
erally performs better than the unrestricted variant, but in difficult
situations still not good enough.

FIG. 3. Graphical representation of the RMSD averaged over 83 bond dissociation
energies of the BDE_nonMR83 subset of the W4-11 benchmark set as a function
of the REMP mixing parameter A of Ĥ(0)

REMP. (a) UREMP, (b) RO-REMP, and (c)
OO-REMP. See Fig. 1 for further details and Tables S72–S98 for numerical values.
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FIG. 4. Graphical representation of the RMSD averaged over 18 isomerization
reaction energies of the ISOMER_nonMR18 subset of the W4-11 benchmark
set as a function of the REMP mixing parameter A of Ĥ(0)

REMP. (a) UREMP, (b)
RO-REMP, and (c) OO-REMP. See Fig. 1 for further details and Tables S99–S125
for numerical values.

FIG. 5. Graphical representation of the RMSD averaged over 13 radical sub-
stitution reaction energies of the SN13 subset of the W4-11 benchmark set
as a function of the REMP mixing parameter A of Ĥ(0)

REMP. (a) UREMP, (b)
RO-REMP, and (c) OO-REMP. See Fig. 1 for further details and Tables S126–S152
for numerical values.
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As the root mean square deviation is sensitive to outliers, the
mean absolute deviation is considered as figure of merit, too. The
corresponding graphs can be found in the supplementary material,
Figs. S1–S4. The mean absolute deviation graphs are very similar
to the RMSD graphs and fully support the finding regarding the
ordering of the REMP variants and the optimal mixing parameters.

Table I lists representative results for REMP variants and
coupled cluster methods. The RMSDs of OO-REMP and CCSD(T)
are correlated with each other, indicating that the success of
OO-REMP does not originate from a random error cancellation of
basis and method errors but can be attributed to the conceived inter-
nal error compensation. It can also be seen that OO-REMP is clearly
superior to CCSD at comparable computational cost.

Furthermore, one finds that both REMP variants based on
canonical orbitals (UREMP & RO-REMP) and CCSD show a strong
bias toward underestimating total atomization energies (TAEs).
OO-REMP and CCSD(T), on the other hand, exhibit no such trend;

TABLE I. Error measures obtained with the CBS(3/4,awCVXZ) extrapolation and var-
ious levels of theory on the non-multireference portion of the W4-11 set and its derived
reaction sets. For a complete data collection and for error data of the remaining basis
sets, see the supplementary material. All errors in kcal mol−1 relative to the electronic
contribution of the W4 composite method or better.

TAE HAT BDE ISOMER SUBST

Mean signed deviation (MSD)

UREMP(0.20) −3.19 3.25 1.52 0.06 −0.69
UREMP(0.25) −2.40 3.41 1.94 0.20 −0.37
RO-REMP(0.20) −4.86 0.63 −2.03 0.22 −0.84
RO-REMP(0.25) −3.92 0.78 −1.54 0.37 −0.51
OO-REMP(0.20) −0.83 0.85 0.11 0.14 0.05
OO-REMP(0.25) 0.06 0.96 0.53 0.29 0.41
CCSD −8.35 1.15 −3.30 0.32 −1.35
CCSD(T) 0.48 0.63 0.43 0.06 0.19

Mean absolute deviation (MAD)

UREMP(0.20) 3.35 4.95 3.69 0.76 0.76
UREMP(0.25) 2.75 4.98 3.64 0.82 0.63
RO-REMP(0.20) 4.93 3.81 2.89 0.66 0.85
RO-REMP(0.25) 4.04 3.71 2.52 0.68 0.55
OO-REMP(0.20) 1.08 1.21 0.61 0.29 0.30
OO-REMP(0.25) 0.92 1.21 0.76 0.41 0.49
CCSD 8.36 3.57 3.84 1.21 1.35
CCSD(T) 0.62 0.86 0.49 0.17 0.19

Root mean square deviation (RMSD)

UREMP(0.20) 4.58 7.89 7.41 1.03 1.04
UREMP(0.25) 4.01 7.95 7.52 1.08 0.85
RO-REMP(0.20) 5.65 4.92 3.86 0.86 1.09
RO-REMP(0.25) 4.63 4.88 3.52 0.87 0.75
OO-REMP(0.20) 1.31 2.15 0.85 0.37 0.37
OO-REMP(0.25) 1.26 2.19 1.05 0.50 0.59
CCSD 9.87 4.45 4.85 1.73 1.66
CCSD(T) 0.79 1.81 0.77 0.23 0.22

here, the sign of the mean error rather depends on the basis set com-
bination than on the method itself (see full tables in the supplemen-
tary material). The other class of reactions where an unambiguous
direction can be assigned are the bond dissociation energies (BDE).
Interestingly, UREMP and CCSD(T) now systematically overesti-
mate the BDEs, while RO-REMP and CCSD underestimate them.
In the HAT, ISOMER, and SUBST case, the sign is meaningless as it
depends on a randomly chosen direction.

The MAD also listed in Table I has the advantage of being
less susceptible to outliers than the RMSD. In general, one can
draw the same conclusions as from the RMSD. CCSD(T) is the best
performing method, but in difficult cases (TAE, HAT, and BDE),
even CCSD(T) struggles if not used in conjunction with well-
saturated basis sets.

C. Closed-shell main group reaction
energies—The SCS-MP2 calibration set

As in our previous publication,55 we use a subset of the
SCS-MP2 calibration set7 as a closed shell reaction benchmark
set. From Grimme’s original set, all ionic systems, all open shell
systems, the transition states, and the multireference systems were
removed. This has both theoretical and practical reasons: In the
case of ozone, e.g., the orbital optimization procedure did not con-
verge for A < 0.15. For A ≥ 0.15, the orbital optimization converged,
but the results were extremely poor. Such behavior was, however,
expected: orbital optimization is an extremely powerful tool as long
as the reference wavefunction can be described by a single Slater
determinant. It does not have to be a RHF/ROHF/UHF determi-
nant, but it should be a single determinant. As the ground state
of ozone is a genuine multireference case, it is almost certain that
OO-REMP will fail, too. We like to note that this finding is also
not an artifact of our implementation but fully reproducible with
the OCEPA(0) codes of ORCA and PSI4.

Previously, it was shown that OO-REMP substantially
improves upon REMP with canonical orbitals. The focus here is on
assessing the performance of adding the missing single excitations
in a perturbative fashion. The MSD, MAD, and RMSD upon
scanning the A range are plotted in Fig. 6, and Table II lists some
representative numbers.

As can be seen, both OO-REMP and OO-REMP+(S) lead to an
improvement upon the parent methods indicated by a decreasing
MAD and RMSD and an MSD close to zero with a small standard
deviation. The results, however, show that adding single excita-
tions in a perturbative fashion upon convergence does not lead to a
further improvement. The worsening in Fig. 6(b) compared to
Fig. 6(a) is not dramatic but noticeable. The minimal RMSD raises
from 0.65 kcal mol−1 (OO-REMP, A = 0.25) to 0.86 kcal mol−1

[OO-REMP+(S), A = 0.18]. This is in line with the findings of Neese
et al. for OO-MP2.27 At least for closed shell cases, the perturbative
singles according to Eqs. (16) and (18) thus do more harm than good
when they are added on top of optimized orbitals. In the following, it
will be investigated whether this conclusion also holds for open shell
systems.

D. The RSE43 set—Open shell reaction energies
The RSE43 benchmark set27,107 consists of 43 radical stabiliza-

tion energies. Those radical stabilization energies are defined as the
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FIG. 6. Mean signed deviation (MSD), mean absolute deviation (MAD), and root mean square deviation (RMSD) averaged over 30 reactions of the SCS-MP2 calibration
set as a function of the REMP mixing parameter A of Ĥ(0)

REMP. Error bars indicate one standard deviation. (a) MSD & MAD of OO-REMP, (b) MSD & MAD of OO-REMP+(S),
(c) RMSD of OO-REMP, and (d) RMSD of OO-REMP+(S). All in kcal mol−1. See Table S1 for numerical values.

reaction energy of the reaction of an organic radical with methane
forming the methyl radical and an organic molecule carrying a
hydrogen atom instead of the radical. Reaction 9, for example, fea-
tures the abstraction of a hydrogen atom from the terminal methyl
group of ethanol. This set or similar sets have already been used
for benchmarking various orbital optimized methods.10,11,27,30,43 As
reference energies, the W1-F12 energies by Goerigk et al.108 from the
GMTKN55 database were chosen.

The strategy employed for the validation of the RSE43 set
differs from that presented above for the W4-11 set. The focus
here lies on testing a model chemistry, i.e., REMP/OO-REMP com-
bined with a fixed basis set instead of employing a complete basis
set extrapolation. As the reactions of the RSE43 set are loosely
related to those of the SN subset of W4-11, the use of a valence
quadruple zeta basis seems reasonable. Moreover, due to the size of
the molecules involved, employing an even bigger basis set would
not have been possible with our computational resources. The
def2-QZVP basis set has thus been chosen as a reasonable compro-
mise.

Figure 7 shows the MSD, MAD, and RMSD of the four tested
REMP flavors. The outcome for the RSE43 set is distinctly dif-
ferent from the one of the W4-11 set. Considering UREMP first
[Tables III and Fig. 7(a)], there is no minimum upon hybridization
of the two different unperturbed Hamiltonians and the best result is
delivered by pure RE. The systematic overestimation amounts to 2.7

kcal mol−1, and all radical stabilization energies are systematically
overestimated.

While investigating the same set, Neese et al.27 found a sig-
nificant correlation between the spin contamination of the UHF
reference determinant and the error of the reaction energy com-
puted by MP2. A similar correlation is also found for RE. Figure 8
shows a graphical representation of the absolute errors of URE2
and UMP2 as a function of the largest occurring spin contamina-
tion in each reaction. It can be deduced that as soon as the spin
contamination of the UHF reference of the open shell species rises
above ≈0.05, results at second order perturbation theory become
completely unreliable. One thus either needs a method, which can
cope with the spin contamination of a given reference, or one has to
switch to another reference wavefunction. As both RE and MP are
suffering from a poor reference in the same way, one cannot expect
that REMP hybridization compensates for this error. Apparently,
UREMP does not solve the issues arising from poor zeroth order
wavefunctions.

Moving on to RO-REMP [Table IV and Fig. 7(b)], one already
finds a tremendous improvement compared to UREMP. The mean
deviation is in all cases well below 1 kcal mol−1; the standard devi-
ation and the RMSD are smaller than in the UHF case, and for
A > 0.1, the mean absolute deviation is below 1 kcal mol−1, further
dropping slowly to 0.7 kcal mol−1 for 100% MP. As an ROHF refer-
ence is always a pure ⟨ Ŝ 2⟩ eigenfunction, the natural explanation
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TABLE II. Representative error descriptors for the SCS-MP2 calibration set
[OO-REMP/def2-QZVP, all electrons correlated; reference: CCSD(T)/def2-QZVP,
all electrons correlated]. All in kcal mol−1. The full table can be found in the
supplementary material file (Table S1).

A MSD MAD Δmin-max σ RMSD

OO-REMP

0.00 0.26 0.97 6.08 1.27 1.27
0.12 −0.01 0.63 3.95 0.83 0.82
0.15 −0.06 0.56 3.45 0.76 0.75
0.18 −0.10 0.53 3.20 0.70 0.69
0.19 −0.12 0.52 3.19 0.68 0.68
0.20 −0.13 0.51 3.15 0.67 0.67
0.25 −0.18 0.48 3.02 0.63 0.65
0.30 −0.22 0.49 2.87 0.65 0.68
0.40 −0.27 0.65 3.55 0.85 0.88
1.00 0.23 2.57 19.21 3.92 3.86

OO-REMP+(S)

0.00 0.50 1.04 7.03 1.43 1.49
0.12 0.24 0.59 4.88 0.92 0.94
0.15 0.19 0.55 4.62 0.87 0.88
0.18 0.15 0.52 4.44 0.86 0.86
0.19 0.14 0.52 4.40 0.87 0.87
0.20 0.13 0.53 4.52 0.88 0.87
0.25 0.09 0.60 5.21 0.97 0.96
0.30 0.06 0.69 6.00 1.13 1.11
0.40 0.04 0.95 7.89 1.55 1.53
1.00 0.84 3.84 31.11 6.27 6.22

for the improvement lies within the improved reference determi-
nant, which is not suffering from spin contamination anymore. The
overall shape of the RO-REMP MAD is rather unprecedented for
REMP. There is no obvious minimum; instead, plain ROMP2 per-
forms best. Yet, those mixing ratios performing best for the W4-11
set (30%–60% MP) also produce quite acceptable results on average
for the RSE43 set with MADs consistently below 1 kcal mol−1.

Orbital optimized REMP has also been tested against the RSE43
benchmark set, and as shown in Fig. 7(c) and Table V, it delivers
excellent performance. The smallest mean absolute deviation and
RMSD are found for A ≈ 0.35. The best REMP mixing ratio has
a mean absolute deviation of merely ≈0.12 kcal mol−1 from the

TABLE III. UREMP: Representative error descriptors for the RSE43 benchmark set
(UREMP/def2-QZVP, frozen core; reference: W1-F12). All in kcal mol−1. The full table
can be found in Table S2.

A MSD MAD Δmin-max σ RMSD

0.00 2.69 2.69 19.41 3.88 4.69
0.12 2.76 2.74 20.09 4.06 4.86
0.15 2.75 2.75 20.25 4.10 4.90
0.20 2.76 2.76 20.56 4.18 4.97
1.00 3.27 3.27 27.08 5.77 6.57

TABLE IV. RO-REMP: Representative error descriptors for the RSE43 benchmark
set (REMP/def2-QZVP, frozen core; reference: W1-F12). All in kcal mol−1. The full
table can be found in Table S3.

A MSD MAD Δmin-max σ RMSD

0.00 0.64 1.05 8.70 1.34 1.47
0.12 0.76 0.98 6.65 1.01 1.25
0.15 0.77 0.97 6.29 0.95 1.22
0.30 0.79 0.94 5.00 0.77 1.09
0.40 0.77 0.90 4.55 0.70 1.03
0.90 0.59 0.71 3.86 0.60 0.83
1.00 0.54 0.69 3.82 0.61 0.81

W2-F12 reference. OO-REMP is thus probably within the error
bar of the reference method. The parent methods OCEPA(0) and
OO-MP2 already perform remarkably well with RMSDs of 0.40 and
0.73 kcal mol−1, but hybridizing both methods brings the RMSD
down to 0.17 kcal mol−1. Table V also features results for some
popular density functionals obtained with the same basis set taken
from the GMTKN55 database.108 Although the RSE43 set is not
very challenging, none of the functionals listed comes even close to
OO-REMP.

The perturbative singles correction of OO-REMP+(S) [see
Table VI and Fig. 7(d)] again provides no improvement but dete-
riorates the extremely accurate OO-REMP results. Actually, OO-
REMP+(S) is not more accurate than RO-REMP for the RSE43
set.

Figures 7(e)–7(h) show the RMSDs obtained from the four dif-
ferent REMP variants. In general, the conclusions that can be drawn
are the same as before. UREMP is unreliable, RO-REMP performs
best with 100% MP but is not very accurate, OO-REMP is very accu-
rate over a wide parameter range yielding best results with A ≈ 35%,
and OO-REMP+(S) exhibits a minimum but is by far not as reli-
able as OO-REMP. As the RMSD is especially prone to outliers, it
relentlessly exposes the weaknesses of methods.

E. The BH76 benchmark set
The performance of the four REMP variants was, further-

more, assessed with the BH76 benchmark set. BH76107 is mostly
a union of the HTBH38110 and the NHTBH38111 sets by Truhlar.
The set consists of 76 reaction barrier heights for hydrogen and
heavy atom transfer reactions. Reactions 1 and 2, for example, are
H⋅ +N2O→ [N2OH]⋅‡ → N2 +OH⋅. During the reaction, an oxy-
gen atom is transferred from N2O to a hydrogen atom. Reactions
55 and 56 are the barriers for the abstraction of a hydrogen atom
from H2 by a fluorine atom. Goerigk et al.108 computed new refer-
ence energies at the W2-F12112 level of theory for this set, which are
used in the following.

The BH76 set was already used in our previous publication55

but with a different basis set and with different reference energies.
Previously, we compared OO-REMP/aug-cc-pVTZ against
CCSD(T)/aug-cc-pVTZ results by Bertels et al.10 Here, we now
compare REMP/def2-QZVP against W2-F12. Like with the RSE43
set, the focus now lies on comparing model chemistry to the best
estimate instead of comparing two model chemistries.
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FIG. 7. Graphical representation of the MSD, MAD, and RMSD of four REMP variants for the RSE43 set as a function of the REMP mixing parameter A of Ĥ(0)
REMP. (a)–(d)

MSD and MAD of UREMP/RO-REMP/OO-REMP/OO-REMP+(S). (e)–(h) RMSD of UREMP/RO-REMP/OO-REMP/OO-REMP+(S). All calculations use the def2-QZVP
basis set. UREMP and RO-REMP make use of standard frozen cores, while OO-REMP and OO-REMP+(S) correlate all electrons. All errors with respect to the W2-F12
reference. See Tables S2–S5 for numerical values.

Figure 9 shows a graphical representation of the MSD and the
MAD achieved with the different REMP variants for the BH76 set.
Concentrating on UREMP first, Table VII collects some represen-
tative statistical descriptors. Especially those REMP mixing ratios

FIG. 8. Dependence of the absolute reaction energy errors of the RSE43 set on
the spin contamination of the UHF reference of the radical species for pure RE and
pure MP. See Table S6 for numerical values.

have been selected, which have been shown to deliver the best per-
formance in the closed shell case. For all mixing ratios, all barriers
are systematically overestimated by about 4 kcal mol−1, and it is
evident that variation of the REMP mixing parameter A leads to
no improvement. In contrast, the mean signed deviation even has
a shallow maximum between 0% and 100% MP. On average, the
best performance is delivered by pure RE, but even pure RE over-
estimates the barriers by 3.8 kcal mol−1 and has error bars of the
same size. The overall outcome here is the same as has been for the
RSE43 set, namely, that UREMP is of no practical use for real-world
open shell systems. The most probable explanation for the disastrous
performance is again the large spin contamination of some of the
employed UHF reference determinants.

Again, the spin contamination problem is most easily allevi-
ated by using a restricted open shell HF (ROHF) determinant as
the zeroth order wavefunction. RO-REMP results for the BH76 set
are listed in Table VIII and Fig. 9(b). Indeed, as before, there is a
substantial overall reduction of errors when a ROHF determinant
instead of a UHF determinant is employed as the zeroth order wave-
function. Additionally, one finds a minimum in the mean absolute
deviation curve at A ≈ 0.30, which shows that REMP improves upon
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TABLE V. Representative error descriptors for the RSE43 benchmark set
(OO-REMP/def2-QZVP, all electrons correlated; reference: W1-F12). All in
kcal mol−1. The full table can be found in Table S4.

A MSD MAD Δmin-max σ RMSD

0.00 0.24 0.314 1.62 0.32 0.40
0.12 0.22 0.22 0.67 0.16 0.27
0.15 0.21 0.21 0.58 0.14 0.25
0.20 0.19 0.19 0.50 0.16 0.22
0.25 0.16 0.16 0.56 0.11 0.19
0.30 0.13 0.14 0.62 0.12 0.18
0.35 0.10 0.12 0.76 0.14 0.17
0.40 0.06 0.13 0.89 0.17 0.18
0.45 0.03 0.15 1.01 0.20 0.20
1.00 −0.42 0.56 2.31 0.60 0.73

BP86-D3(0)a −2.46 2.46 5.96 1.27 2.76
B3LYP-B3(0)a −1.55 1.55 3.73 0.93 1.81
M062X-D3(0)a −0.51 0.63 2.49 0.55 0.75
B2PLYP-D3(BJ)a −0.51 0.57 3.31 0.54 0.73
PWPB95-D3(BJ)a −0.97 0.97 2.57 0.60 1.14
DSD-PBEB95-D3(BJ)a 0.04 0.45 3.93 0.74 0.74
r2SCAN-3ca −1.10 1.15 4.54 0.95 1.45
aTaken from Ref. 109.

pure RE and pure MP. Along with the MAD, the standard deviation
also decreases. Nevertheless, the errors are still too large to satisfy
the criterion of chemical accuracy. On the other hand, it should be
mentioned that the reactions of this set are fairly difficult: commonly
used DFT methods produce quite large mean absolute deviations113

(see the lower part of Table IX).
Regarding the spin contamination problem, the BH76 set con-

tains two rather delicate systems, namely, the reactants of reactions
75/76. Those reactions consist of the (degenerate) forth- and back

TABLE VI. Representative error descriptors for the RSE43 benchmark set
[OO-REMP+(S)/def2-QZVP, all electrons correlated; reference: W1-F12]. All in
kcal mol−1. The full table can be found in Table S5.

A MSD MAD Δmin-max σ RMSD

0.00 −0.95 0.96 5.49 1.24 1.55
0.12 −0.81 0.81 3.30 0.80 1.13
0.15 −0.80 0.80 3.04 0.74 1.08
0.16 −0.79 0.79 2.96 0.72 1.07
0.17 −0.79 0.79 2.89 0.71 1.06
0.18 −0.79 0.79 2.82 0.69 1.05
0.19 −0.79 0.79 2.75 0.68 1.04
0.20 −0.79 0.79 2.69 0.67 1.03
0.25 −0.79 0.79 2.49 0.61 1.00
0.30 −0.77 0.83 3.77 0.65 1.00
1.00 −1.41 1.42 4.50 0.95 1.69

reaction C5H8 → RKT22, which is the sigmatropic shift of one
hydrogen atom from the methyl group of (Z)-pentadiene to the
diene end. Both the reactant and the transition state are formal spin
singlets, but the corresponding RHF determinants exhibit triplet
instabilities and lead to UHF determinants of broken symmetry
character. The corresponding ⟨̂S2⟩ expectation values of the UHF
determinants of “C5H8”/“RKT22” are 0.358/0.543 (0.354/0.539)
when calculated with the def2-QZVP (aug-cc-pVTZ) basis. At the
ROHF level, such an open shell singlet cannot be represented by
a single Slater determinant. Entries “C5H8” and “RKT22” have
been treated as closed shell singlets at the RO-REMP level, whereas
at the UREMP level, broken symmetry determinants obtained by
a stability analysis were used. This is justified by an interesting
observation that is made as soon as orbital optimization is opera-
tive. If the ⟨̂S2⟩ expectation value is calculated from the converged
OO-REMP/aug-cc-pVTZ wavefunction, one finds that the initial
UHF broken symmetry solution collapses back to a proper singlet

FIG. 9. Graphical representation of the MSD and the MAD of four REMP variants for the BH76 set as a function of the REMP mixing parameter A of Ĥ(0)
REMP. (a) UREMP,

(b) RO-REMP, (c) OO-REMP, and (d) OO-REMP+(S). Error bars indicate one standard deviation. All calculations use the def2-QZVP basis set. UREMP and RO-REMP
make use of standard frozen cores, while OO-REMP and OO-REMP+(S) correlate all electrons. All errors with respect to the W2-F12 reference. See Tables S7–S10 for
numerical values.
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TABLE VII. Representative error descriptors for the BH76 benchmark set
(UREMP/def2-QZVP, frozen core; Reference: W2-F12). All values in kcal mol−1. The
full table can be found in Table S7.

A MSD MAD Δmin-max σ RMSD

0.00 3.93 3.93 21.73 3.92 5.53
0.01 3.95 3.95 21.97 3.94 5.56
0.12 4.09 4.10 23.84 4.11 5.78
0.15 4.12 4.13 24.19 4.15 5.83
0.20 4.15 4.16 24.70 4.21 5.89
1.00 3.97 4.37 31.06 5.57 6.81

determinant, and the resulting wavefunction is that of an exact spin
singlet. This holds for both “C5H8” and “RKT22” and was found
regardless of the mixing ratio.

Inspection of Fig. 9(c) and Table IX shows a significant
improvement of OO-REMP upon the UREMP and RO-REMP
results. As soon as orbital optimization is applied, the hybridiza-
tion of the two perturbation theories again leads to a tremen-
dous improvement as known from the W4-11 and the RSE43
set. For A ≈ 0.14, the MAD becomes minimal and amounts to
0.76 kcal mol−1, well within the limit of chemical accuracy. Further-
more, the minimum in the MAD curve is rather flat, indicating that
any mixture between A = 0.15 and A = 0.30 will suffice. The same
holds for the RMSD, which becomes minimal for A ≈ 0.16. Table IX
also contains selected DFT results obtained with the same basis
set. Assuming that the W2-F12 reference numbers are sufficiently
accurate, none of the listed functionals reaches chemical accuracy
on this set and one needs highly parameterized double hybrids to
come close to an MAD of 1 kcal mol−1.

It should be noted that the def2-QZVP basis set as such is not
adequate for all reactions of the BH76 set. When the whole set is fur-
ther broken down into different reaction categories, one finds that
especially the nucleophilic substitutions involving anions exhibit
remarkably large errors. The reference method W2-F12112 among
others employs the cc-pVTZ-F12 and the cc-pVQZ-F12 basis sets.
These possess more diffuse s, p, and d functions than def2-QZVP

TABLE VIII. RO-REMP: Representative error descriptors for the BH76 benchmark set
(REMP/def2-QZVP, frozen core; reference: W2-F12). All in kcal mol−1. The full table
can be found in Table S8.

A MSD MAD Δmin-max σ RMSD

0.00 0.86 2.33 15.83 3.033 3.14
0.12 1.30 2.20 14.18 2.67 2.96
0.15 1.37 2.19 13.82 2.61 2.94
0.20 1.47 2.17 13.25 2.53 2.91
0.27 1.56 2.15 12.53 2.45 2.89
0.28 1.57 2.15 12.43 2.44 2.89
0.29 1.58 2.15 12.34 2.44 2.89
0.30 1.58 2.15 12.25 2.43 2.89
1.00 1.08 2.69 19.32 3.47 3.62

TABLE IX. Representative error descriptors for the BH76 benchmark set
(OO-REMP/def2-QZVP, all electrons correlated; reference: W2-F12). All in
kcal mol−1. The full table can be found in Table S9. DFT results were taken from
the GMTKN55 homepage.113

A MSD MAD Δmin-max σ RMSD

0.00 0.46 0.93 7.33 1.18 1.26
0.12 0.62 0.76 4.40 0.74 0.96
0.13 0.62 0.76 4.40 0.73 0.95
0.14 0.62 0.76 4.40 0.72 0.95
0.15 0.62 0.76 4.42 0.72 0.95
0.20 0.61 0.78 4.52 0.74 0.95
0.25 0.58 0.80 4.61 0.81 0.99
1.00 −1.34 2.87 26.39 3.57 3.81

BP86(noD) −9.10 9.15 10.19
BP86(D3(BJ)) −9.81 9.86 10.82
B3LYP(noD) −4.02 4.94 5.90
B3LYP(D3(BJ)) −4.81 5.70 6.45
M062X(noD) 0.70 2.33 7.29
BMK(noD) −0.51 1.22 1.57
B2PLYP(noD) −2.17 2.28 2.65
DSD-PBEB95(D3(BJ)) 0.11 1.03 1.65

and are thus better suited for the description of anions in the gas
phase. Our errors significantly decrease when the aug-cc-pVQZ
basis set is used for these reactions. An example would be reac-
tion 21 (F− + CH3Cl → fch3clts). With the def2-QZVP basis,
OO-REMP(0.20) is off by−1.71 kcal mol−1, while the error decreases
to 0.46 kcal mol−1 with the aug-cc-pVQZ basis set. Furthermore,
when considering the whole subset of reactions 13–28 from the
BH76 set, the RMSD drops from 1.33 to 0.98 kcal mol−1 when
changing the basis from def2-QZVP to aug-cc-pVQZ. A com-
parison between def2-QZVP and aug-cc-pVQZ for the subset of
reactions 13–28 can be found in Table S11 in the supplementary
material. The def2-QZVP basis set thus is not flexible enough for
small anions. This assumption is supported by the fact that also
the overall best DFT results for this set listed in the GMTKN55114

show outliers for these reactions, indicating that DFT suffers
from basis incompleteness exactly as REMP does. We, neverthe-
less, used this basis set for consistency reasons and for allowing
a direct comparison of our numbers to the GMTKN55 results.
Basis set incompleteness has not been an issue in our previous
investigation55 as the OO-REMP values and the CCSD(T) reference
data were obtained with the same augmented basis set (aug-cc-
pVTZ) such that ionic species are treated reasonably and on an equal
footing.

It was again investigated whether OO-REMP is actually able to
remove spin contamination from the reference determinant. One
rather extreme example taken from the BH76 set is the transition
state termed “ch3fclts,” which is formally a spin doublet but has a
UHF ⟨̂S2⟩ expectation value of 1.027. In the unrestricted case, the
errors of reactions involving this transition state are always larger
than 10 kcal mol−1 regardless of the REMP mixing ratio. In the
restricted open shell case, the largest occurring errors already drop
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to 2.2 and 4.7 kcal mol−1 for reactions 11 and 12, respectively (at
A = 0.40). As soon as orbital optimization is operative, the largest
occurring absolute errors drop to 2.2 kcal mol−1 (A = 1.00, i.e., pure
OO-MP2) and the better mixing ratios reach sub-kcal mol−1 accu-
racy. This improvement is again connected with an almost entire
elimination of the spin contamination by orbital optimization: For
all the tested REMP mixtures, OO-REMP calculations for “ch3fclts”
have been performed using the def2-TZVP basis and ⟨̂S2⟩ was
calculated upon convergence for both the reference and the total
first order wavefunction. ⟨̂S2⟩ΦUHF was again 1.027. In the case of
pure OO-RE, the ⟨̂S2⟩ expectation value of the optimized reference
determinant ∣ϕ0⟩ is 0.7661 and the ⟨̂S2⟩ expectation value of the com-
plete correlated wavefunction is 0.7499 [calculated with Eq. (13) of
Ref. 91]. A graphical representation of ⟨̂S2⟩ as a function of A is
shown in Fig. 10.

In this case, pure RE is most efficient in removing spin con-
tamination from the reference during orbital optimization, resulting
in an essentially spin-pure wavefunction. It is also interesting to
note that MP2 delivers a better reference judged by ⟨̂S2⟩ but a
worse total wavefunction as compared to RE2. The ⟨̂S2⟩ expec-
tation values of both the reference and the total wavefunction,
furthermore, show local maxima, which are not easily explicable.
However, given that the spin contamination is always smaller than
0.005, all OO-REMP wavefunctions are of outstanding quality in this
regard.

Inclusion of perturbative singles on top of OO-REMP was
assessed for the BH76 test set; see Fig. 9(d) and Table X. As before,
the perturbative singles do not improve the overall performance of
the method. All error measures are worse than before, giving rise

FIG. 10. ⟨Ŝ2⟩ of the optimized reference determinant (blue) and of the total first
order OO-REMP wavefunction (green) as a function of the REMP mixing para-
meter A. Molecule: “ch3fclts” from the BH76 benchmark set, basis: def2-TZVP.
See Table S17 for numerical values.

TABLE X. Representative error descriptors for the BH76 benchmark set
[OO-REMP+(S)/def2-QZVP, all electrons correlated; reference: W2-F12]. All in
kcal mol−1. The full table can be found in Table S10.

A MSD MAD Δmin-max σ RMSD

0.00 −2.04 2.23 22.21 3.15 3.73
0.12 −1.48 1.60 11.25 1.69 2.23
0.13 −1.46 1.58 10.76 1.64 2.18
0.14 −1.44 1.56 10.30 1.59 2.14
0.15 −1.42 1.54 9.89 1.56 2.10
0.20 −1.37 1.46 8.58 1.44 1.98
0.23 −1.35 1.45 8.07 1.42 1.95
1.00 −4.13 5.13 36.34 6.42 7.60

to numbers not sufficient for chemical accuracy anymore. The error
spread is more than three times larger than without perturbative sin-
gles. All findings are again confirmed by the RMSD (Fig. 11), which
is more sensitive to outliers. OO-REMP is the only method capa-
ble of achieving an RMSD below 1 kcal mol−1 and, thus, the only
method that provides sufficient accuracy for this set.

Along with the BH76 set, the set of reaction energies accessible
from the same data (BH76RC107) was also analyzed. In contrast to
the activation barriers, one also finds that UREMP improves upon
its parent methods (see Figs. 12 and 13). The smallest MAD is found
for 25% MP (cf. Table XI), in reasonable qualitative agreement with
the closed shell cases investigated. Unfortunately, even the best mix-
ture exhibits errors that disqualify the method. Especially the error
spread of 12 kcal mol−1 is rather dissatisfying.

The restricted open-shell variant (cf. Table XII) provides a sub-
stantial improvement upon hybridization and also improves upon
the unrestricted variant, although now the minimum seems to be
located somewhere between 30% and 40% MP. The mean absolute
error of the best mixture is slightly smaller compared to the unre-
stricted case but still larger than 1 kcal mol−1. The same holds for the
RMSD.

After the inclusion of orbital optimization (see Table XIII), the
mean absolute error drops to 0.67 kcal mol−1 with 18% MP, and the
RMSD is 1.10 kcal mol−1 in this case. The reaction that exhibits by
far the largest error (≈4 kcal mol−1) is F− + CH3Cl → Cl− + CH3F.
This can again be attributed to the insufficiency of the def2-QZVP
basis set for the involved ions as the error dramatically decreases as
soon as the aug-cc-pVQZ basis is used: With the def2-QZVP basis
set and A = 0.18, reactions 5–8 show absolute errors between 1.2 and
4.0 kcal mol−1. These errors drop to at most 0.85 kcal mol−1 with the
aug-cc-pVQZ basis set. A comparison of the results for reactions 5–8
can be found in Table S16.

If OO-REMP is compared to commonly used density func-
tionals, one again finds that OO-REMP clearly outperforms these
methods. As before, even the double-hybrid functional that per-
forms best for this set gives slightly larger errors. Further-
more, it is interesting to note that in the case of that reaction
where OO-REMP has the largest error, DSD-BLYP is also off by−2.87 kcal mol−1.

In the case of the BH76RC set, inclusion of perturbative sin-
gles has only a minor influence (cf. Table XIV). The smallest error
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FIG. 11. Graphical representation of the RMSD of four REMP variants for the BH76 set as a function of the REMP mixing parameter A of Ĥ(0)
REMP. (a) UREMP, (b) RO-REMP,

(c) OO-REMP, and (d) OO-REMP+(S). All calculations use the def2-QZVP basis set. UREMP and RO-REMP make use of standard frozen cores, while OO-REMP and
OO-REMP+(S) correlate all electrons. All errors with respect to the W2-F12 reference. See Tables S7–S10 for numerical values.

FIG. 12. Graphical representation of the MSD and the MAD of the four REMP variants for the BH76RC set as a function of the REMP mixing parameter A of Ĥ(0)
REMP. (a)

UREMP, (b) RO-REMP, (c) OO-REMP, and (d) OO-REMP+(S). Error bars indicate one standard deviation. All calculations use the def2-QZVP basis set. UREMP and
RO-REMP make use of standard frozen cores, while OO-REMP and OO-REMP+(S) correlate all electrons. All errors with respect to the W2-F12 reference. See Tables
S12–S15 for numerical values.

FIG. 13. Graphical representation of the RMSD of the four REMP variants for the BH76RC set as a function of the REMP mixing parameter A of Ĥ(0)
REMP. (a) UREMP,

(b) RO-REMP, (c) OO-REMP, and (d) OO-REMP+(S). All calculations use the def2-QZVP basis set. UREMP and RO-REMP make use of standard frozen cores, while
OO-REMP and OO-REMP+(S) correlate all electrons. All errors with respect to the W2-F12 reference. See Tables S12–S15 for numerical values.
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TABLE XI. UREMP: Representative error descriptors for the BH76RC benchmark set
(UREMP/def2-QZVP, frozen core; reference: W2-F12). All in kcal mol−1. The full table
can be found in Table S12.

A MSD MAD Δmin-max σ RMSD

0.00 −0.27 1.86 13.52 2.53 2.50
0.12 −0.29 1.49 12.43 2.23 2.21
0.15 −0.29 1.41 12.20 2.18 2.17
0.20 −0.28 1.30 12.52 2.14 2.12
0.24 −0.27 1.26 12.76 2.13 2.11
0.25 −0.26 1.26 12.82 2.13 2.11
1.00 0.23 3.18 23.98 4.76 4.69

TABLE XII. RO-REMP: Representative error descriptors for the BH76RC benchmark
set (RO-REMP/def2-QZVP, frozen core; reference: W2-F12). All in kcal mol−1. The
full table can be found in Table S13.

A MSD MAD Δmin-max σ RMSD

0.00 −0.96 2.10 12.71 2.61 2.74
0.12 −0.92 1.58 8.68 1.94 2.12
0.15 −0.90 1.47 7.70 1.80 1.98
0.20 −0.88 1.30 6.09 1.58 1.79
0.30 −0.81 1.02 6.07 1.29 1.51
0.40 −0.75 1.01 6.59 1.24 1.43
0.50 −0.67 1.20 7.07 1.45 1.57
1.00 −0.22 2.77 19.11 3.85 3.79

is now found for 17% MP, and the error spread is larger; all other
error measures are rather similar. Most importantly, also in this case,
no improvement upon OO-REMP is found by adding perturbative
singles.

TABLE XIII. Representative error descriptors for the BH76RC benchmark set
(OO-REMP/def2-QZVP, all electrons correlated; reference: W2-F12). All in
kcal mol−1. The full table can be found in Table S14. DFT data for comparison have
been retrieved from the GMTKN55 homepage.

A MSD MAD Δmin-max σ RMSD

0.00 −0.40 1.26 7.10 1.68 1.70
0.01 −0.41 1.22 6.75 1.63 1.65
0.12 −0.42 0.76 5.09 1.17 1.22
0.15 −0.42 0.69 4.95 1.09 1.16
0.18 −0.42 0.67 4.81 1.05 1.11
0.20 −0.41 0.68 4.72 1.04 1.10
1.00 0.29 3.51 29.97 5.33 5.24

BP86 [D3(BJ)] −0.04 3.48 5.08
B3LYP [D3(BJ)] −0.38 2.25 2.79
M06-2X [D3(0)] −0.48 1.18 1.71
DSD-BLYP [D3(BJ)] −0.21 0.81 1.21

TABLE XIV. Representative error descriptors for the BH76RC benchmark set
[OO-REMP+(S)/def2-QZVP, all electrons correlated; reference: W2-F12]. All in
kcal mol−1. The full table can be found in Table S15.

A MSD MAD Δmin-max σ RMSD

0.00 −0.29 1.35 8.30 1.71 1.71
0.12 −0.30 0.77 6.84 1.20 1.21
0.15 −0.29 0.69 6.59 1.15 1.17
0.17 −0.28 0.70 6.45 1.15 1.16
0.20 −0.27 0.76 6.26 1.17 1.18
1.00 0.71 4.13 39.38 6.77 6.69

IV. SUMMARY AND OUTLOOK

We have investigated open-shell generalizations of the REMP
hybrid perturbation theory and an orbital-optimized variant thereof.
Opposite to the closed-shell counterpart, REMP with unrestricted
reference determinants (UREMP) shows no systematic improve-
ment upon the parent perturbation theories RE and MP. REMP
based on restricted open-shell determinants (RO-REMP) improves
upon its parent methods but does not fulfill the criteria for chemi-
cal accuracy. Orbital-optimized REMP (OO-REMP) improves upon
both parent methods and systematically outperforms the non-
orbital-optimized methods. It provides energies that are sufficiently
accurate to reach chemical accuracy for both reaction energies and
reaction barrier heights. Furthermore, it generates variationally opti-
mized wavefunctions with small spin-contamination errors and
approximately correct spin and spatial degeneracy. The perturba-
tive inclusion of formally missing single excitations into OO-REMP
leads to no improvement but worsens all considered results, similar
to what has been found for OO-MP2.27

It was found that the choice of the mixing parameter A is
robust over a wide range of investigated reaction types, especially
in the case of OO-REMP. If the basis set is saturated enough for
the problem under investigation, it was found that a mixing ratio
of 20% MP:80% RE is always a good choice, performing similar to
the individually best mixing ratio. With insufficient basis sets, one
may observe error compensation by choosing significantly larger
MP fractions, e.g., in the case of the atomization energies, but the
results obtained that way are usually of no practical use. RO-REMP
requires significantly larger MP fractions with the optimal mix-
ing being about 40% MP:60% RE. UREMP shows no systematic
behavior with pure unrestricted RE often being the best performing
method.

There are several further developments that suggest themselves:
First, orbital-optimized REMP delivers fully relaxed density matri-
ces, which allows for the fast evaluation of first-order properties,
such as electrical multipole moments or nuclear gradients. Analyt-
ical nuclear gradients were implemented as an extension in the PSI4
program package and successfully tested on a set of small molecules
for which high-quality experimental data are available. Details will
be presented in an upcoming publication.115 The second extension
is to modify the unperturbed Hamiltonian, e.g., by incorporating
spin-dependent terms as in the S2-PT approach.23 Using different
mixings for the two CSF classes can be expected to give even better
results. The third evident extension would be a multireference
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generalization of the REMP partitioning. Work on all topics is in
progress in our laboratory.

SUPPLEMENTARY MATERIAL

See the supplementary material for all total energies that are
provided as spreadsheets (.ods) or .csv files and complete versions of
all tables and raw data for all graphs.
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ABSTRACT

The prediction of molecular properties such as equilibrium structures or vibrational wavenumbers is a routine task in computational chem-
istry. If very high accuracy is required, however, the use of computationally demanding ab initio wavefunction methods is mandatory. We
present property calculations utilizing Retaining the Excitation Degree – Møller–Plesset (REMP) and Orbital Optimized REMP (OO-REMP)
hybrid perturbation theories, showing that with the latter approach, very accurate results are obtained at second order in perturbation theory.
Specifically, equilibrium structures and harmonic vibrational wavenumbers and dipole moments of closed and open shell molecules were
calculated and compared to the best available experimental results or very accurate calculations. OO-REMP is capable of predicting bond
lengths of small closed and open shell molecules with an accuracy of 0.2 and 0.5 pm, respectively, often within the range of experimental
uncertainty. Equilibrium harmonic vibrational wavenumbers are predicted with an accuracy better than 20 cm−1. Dipole moments of small
closed and open shell molecules are reproduced with a relative error of less than 3%. Across all investigated properties, it turns out that a
20%:80% Møller–Plesset:Retaining the Excitation Degree mixing ratio consistently provides the best results. This is in line with our previous
findings, featuring closed and open shell reaction energies.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0105628

I. INTRODUCTION

Making accurate predictions for properties of unknown com-
pounds is one of the main tasks of modern quantum chemical work.
This requires methods with general applicability and high accuracy
for a variety of properties.

While density functional theory in its various flavors is cur-
rently the method of choice for routine calculations, the situation
was totally different only 30 years ago. Prior to the advent of
hybrid functionals, most routine calculations were performed with
wavefunction-based methods, especially configuration interaction
(CI) and Møller–Plesset1–3 (MP) perturbation theory. Due to its sim-
plicity and favorable computational scaling, the second order MP
(MP2) was for a long time the method of choice and often the

only affordable one with a predicational capacity better than the
Hartree–Fock method. The Møller–Plesset partitioning utilizes the
Hartree–Fock determinant as the unperturbed wavefunction and
the diagonal blocks of the corresponding Fockian as the unper-
turbed Hamiltonian Ĥ (0). Several attempts were made to improve
the performance of the method while preserving the general struc-
ture of the working equations. The most notable modifications are
(i) spin-component scaled (SCS)-MP2,4,5 SCS-MP3,6 or regularized
MP variants,7,8 which use empirically modified correlation energy
expressions; (ii) fractional order perturbed energies as in MP2.5,9
MP2.X,10 or MP3.5;11 (iii) orbital-optimized methods, which
employ an iteratively optimized reference wavefunction, such as
OO-MP2,12,13 OB-MP2,14 or OO-MP3.15 Simultaneously apply-
ing several improvements as in OO-SOS-MP2,16,17 OMP2.5,18–20
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or the orbital-optimized and regularized MP-PT approaches κ- or
σ-OOMP28 and MP2.8:κ-OOMP27 turned out to be especially suc-
cessful. Nevertheless, many of these methods suffer from the draw-
back that they are just recipes for obtaining energies so that there is
no associated wavefunction or that there is a wavefunction, but the
derivation of working equations for analytical derivatives becomes a
major endeavor.

A completely different approach consists in abandoning the
Møller–Plesset partitioning completely. Early approaches such as
the Epstein–Nesbet (EN)21–24 partitioning, however, turned out to
be unsuccessful. The “Retaining the Excitation Degree” (RE)25,26

method is an alternative partitioning of the Hamiltonian proposed
by one of the present authors (R.F.F). The zeroth order Hamilto-
nian contains all contributions of the second quantized Hamiltonian
that do not change the number of electrons in occupied or virtual
orbitals. It is related to Dyall’s active space Hamiltonian27 and prob-
ably the most systematic definition of CEPA(0)/D [coupled electron
pair approximation variant zero with doubles only] as it does not
rely on arbitrary truncations of excitation operators or similar.

Based on a systematic investigation of the errors of the respec-
tive first order wavefunctions,28 the present authors recently pro-
posed the REMP hybrid perturbation theory scheme. REMP is
defined by setting Ĥ (0) to a weighted mixture of the unperturbed
Hamiltonians of MP and RE.29 The hybridization of the two meth-
ods already at the wavefunction level allows us to alleviate systematic
errors and provides better wavefunctions than each of the parent
methods alone. Combining iterative orbital optimization and REMP
mixing leads to a method termed OO-REMP, which was shown
to systematically improve over the parent methods OCEPA and
OO-MP2 as well as the corresponding canonical REMP variants
using canonical Hartree–Fock reference wavefunctions, especially in
open-shell cases.30,31

For the calculation of geometrical gradients, the availability
of analytical gradients is always advantageous. Especially for larger
molecules, the calculation of numerical gradients quickly becomes
very tedious, requiring up to 6N energy single point calculations
on distorted geometries when two-sided numerical differentiation
is used. Additionally, numerical gradients are noisy and depend on
the chosen distortion. Analytical gradients, on the other hand, are
often computationally efficient and free from artifacts of numerical
differentiation. Analytical derivatives for MP2 were initially derived
and implemented by Pople et al.32 The working equations were later
improved by various authors in several aspects.33–36 Analytical gra-
dients for CEPA(0)/D and OCEPA(0) were derived by Bozkaya and
Sherrill.37

In contrast to thermochemical properties, there are still rather
limited systematic data on the performance of commonly used
methods for the prediction of equilibrium structures. There is also
no equivalent to the GMTKN database38 for molecular structures.
Whenever there are performance benchmarks, the reference data
seem to be arbitrarily selected, making the comparison of differ-
ent methods cumbersome or impossible. Only recently, Brémond
et al.39 have published an assessment of a large number of den-
sity functionals for the prediction of equilibrium structures. They
defined two benchmark sets consisting of small- and medium-sized
organic molecules based on the work of Barone and co-workers.40,41

It was found that the xDH-PBE0 functional exhibits the smallest
mean absolute deviation (about 0.2 pm), closely followed by the

B2-PLYP family of functionals with mean absolute errors of around
0.3 pm. Interestingly, one of the results also was that full MP2
is more accurate than SCS-MP2 and SOS-MP2, indicating that
the performance gain for thermochemical applications of spin
component scaled methods seems to be traded off by perfor-
mance losses for molecular structures, at least with the basis set
used.

In the present work, we shall describe implementations of
analytical first derivatives of the OO-REMP hybrid perturbation the-
ory. Furthermore, we will assess the performance of REMP and
OO-REMP for the prediction of equilibrium structures, harmonic
vibrational frequencies, and static dipole moments. It will be shown
that the performance of OO-REMP almost reaches that of the best
widely applicable single reference method [coupled cluster with sin-
gles, doubles, and perturbative triples, CCSD(T)] while exhibiting a
more favorable computational scaling.

II. THEORY
A. REMP perturbation theory

The general theory of REMP29 and OO-REMP30 has already
been published, which is why we here only present those equations
that are necessary for obtaining properties from REMP/OO-REMP
wavefunctions.

Throughout this work, the commonly used indexing scheme
for spin orbitals is used, i.e., i, j, k, l are used for occupied, a, b, c, d
are used for virtual, and p, q, r, s are used for arbitrary spin orbitals.
âi denotes an annihilation operator from spin orbital i, while â†

i
denotes its adjoint creation operator.

In a nutshell, the unperturbed Hamiltonian of REMP (Ĥ(0)REMP)
is a constrained linear combination of the unperturbed Hamiltoni-
ans of the Møller–Plesset perturbation theory and of the retaining
the excitation degree perturbation theory,

Ĥ(0)REMP = (1 − A) ⋅ Ĥ(0)RE + A ⋅ Ĥ(0)MP. (1)

The mixing parameter A is the central parameter of the REMP
approach; it specifies the Møller–Plesset fraction of Ĥ (0) and is the
only empirical parameter involved. While Ĥ(0)MP uses the Fockian as
the unperturbed Hamiltonian, Ĥ(0)RE keeps all contributions of the
second quantized Hamiltonian, which preserve the excitation rank,
i.e., it also contains terms that enter the fluctuating potential in MP-
PT. A damps the contribution of the fluctuating potential to Ĥ (0),
which corresponds to a manipulation of perturbation-theoretical
energy denominators associated with perturber functions.28,29 In
previous work, we provided numerical and analytical evidence that
a choice of A between 0.1 and about 0.3 generally provides the
best possible first order wavefunctions for the REMP partitioning.
Roughly speaking, the large amount of Ĥ(0)RE improves the interac-
tions within double excitations, while the MP contribution of Ĥ (0)
corrects for their interaction with singly, triply, and higher excited
configurations. Further details can be found in Refs. 28–31.

The OO-REMP energy, first-order wavefunction, and relaxed
one and two particle density matrices are obtained by minimizing
the OO-REMP energy functional,
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Ẽ(2)REMP = ⟨ϕ0∣Ĥ∣ϕ0⟩ + ⟨ϕ0∣{ŴN T̂(1)2 }c
∣ϕ0⟩

+ ⟨ϕ0∣[Λ̂(1)2 {ŴN + f̂ N T̂(1)2 + (1 − A)ŴN T̂(1)2 }c
]

c
∣ϕ0⟩,

(2)

where T̂(1)2 are the first-order double excitations, Λ̂(1)2 represents
the adjoint deexcitations (Lagrangian multipliers), and f̂ N and ŴN
are the one- and two-electron contributions of the normal-ordered
Hamiltonian (normal order with respect to the Fermi vacuum). ϕ0 is
the single determinantal reference wavefunction whose orbitals are
iteratively optimized, and c indicates that only fully connected terms
are considered. After convergence of the optimization procedure,
one directly obtains relaxed reduced one- and two-particle density
matrices γpq and Γpqrs without the need to solve an additional set of
Z vector equations. These densities can directly be used for property
evaluations.

The evaluation of one-electron properties, such as the perma-
nent dipole moment, is straightforward. The one-particle density
matrices γpq are transformed to the AO basis,

γα
λσ =∑

p,q
Cα

λpγpqCα
σq = CαγCα†. (3)

Analogously for γβ
λσ , the alpha and beta densities are added up,

γλσ = γα
λσ + γβ

λσ , (4)

and the total density is contracted with the matrix elements of the
requested operator to obtain the expectation value. For example, we
obtain

μx,el = −Tr(γ ⋅ ⟨x⟩) = −∑
λ,σ

γλσ ⋅ ⟨x⟩λσ , (5)

with μx,el being the x, component of the electronic contribution
to the dipole moment, while ⟨x⟩λσ is the matrixelement of the x
operator in the AO basis functions λ and σ.

In combination with the nuclear contribution to the dipole
moment (μ⃗nuc = ∑IZI r⃗I), the total dipole moment is obtained. Care
has to be taken if dipole moments of charged species (“electric
monopoles”) are to be calculated. Whenever any of the multipole
components below the one calculated is nonzero, it will become
gauge dependent, i.e., it will depend on the choice of the origin. This
is not an issue in this publication as only dipole moments of neutral
species are investigated.

Calculating nuclear gradients is more involved, but the theory
has been worked out by Bozkaya and Sherrill for OCEPA earlier.37

The general expression for the nuclear gradient is given by

d E
d x
=∑

pq
γpqhx

pq +∑
pqrs

Γpqgsgx
pqrs −∑

pq
FpqSx

pq, (6)

where hx
pq is the derivative of a one-electron integral for coordinate x,

gx
pq is the derivative of an antisymmetrized two-electron integral, and

Sx
pq is the derivative of an overlap matrix element. Fpq is the general-

ized Fock matrix constructed during the orbital optimization, whose
antisymmetry determines the MO gradient. Equation (6) is usually
evaluated in the AO basis. As the REMP scaling is already included

in the densities, Eq. (6) can be used without further modifications
for OO-REMP. Analytical OO-REMP gradients were implemented
as a fork in the OCEPA code of PSI4. It makes use of the very same
gradient machinery as OCEPA by just passing OO-REMP densities
to the gradient engine instead. The correctness of the implementa-
tion was verified by comparing analytical OO-REMP gradients to the
numerical ones. For canonical REMP, no analytical gradients were
implemented. All REMP gradients were calculated numerically (see
details below).

Regarding the computational scaling, the most expensive part
of the REMP amplitude equations is the external exchange opera-
tor, which scales as o2v4, where o and v are the number of correlated
occupied and virtual orbitals, respectively. The one-particle density
matrix scales as n5 and is, thus, negligibly expensive. The two-
particle density matrices Γijkl, Γiajb, and Γabcd scale as o4v2, o3v3, and
o2v4, respectively, but the formation of the latter one can be avoided
during orbital iterations37 and is only needed for the structural gra-
dient. The calculation of the gradient integrals and their contraction
with densities scales with Natomn4 and is, thus, inexpensive, and
the same holds for the transformation of densities to the AO basis,
which scales as n5. The total computational cost of OREMP and
its gradient, thus, scales with n6 (o2v4) and is identical to that of
OCEPA.37

III. RESULTS

This paper is organized as follows: Sec. III B presents a detailed
assessment of the predictional power for equilibrium structures of
small main group single reference molecules. Section III C shows
results for harmonic vibrations for a subset of the previously inves-
tigated molecules. Section III D finally provides results for static
electric dipole moments of main-group molecules. Short summaries
will be given at the end of each subsection, highlighting the most
important results and take-home messages. As we shall show, REMP
and OO-REMP with A = 0.20 consistently provide very good results.
Thus, these results will be singled out and compared with the
performance of other quantum chemical methods.

A. Computational details
REMP, RO-REMP, UREMP, and OO-REMP have been imple-

mented as an extension of the MC-CEPA program42,43 and also as
a modification of the PSI4 program package.44 The implementation
is inspired by the matrix-driven CI program of ORCA (mdci) and
the orbital optimized coupled cluster code (OCC) of PSI4. The
REMP/OO-REMP energies considered here always correspond to
second-order perturbation theory, while analytical properties are
calculated from the first-order wavefunction. REMP and OO-REMP
dipole moment calculations have been performed using a devel-
opment version of the Bochum-Basel ab initio suite of programs
(wavels).29,30,42,43,45–47 REMP dipole moments were obtained by
numerical differentiation of energies calculated with finite exter-
nal electrical fields, while OO-REMP dipole moments were cal-
culated fully analytically from relaxed density matrices. REMP
and OO-REMP analytical and numerical gradients and vibrational
wavenumbers were calculated using a local fork of the PSI4 quan-
tum chemistry program package. The modified PSI4 version was
made publicly available on GitHub48 as the source code, and
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the proposed changes were filed as a pull request to the official
repository. CCSD(T) numerical gradients were calculated using
ORCA49,50 5.0.2.

Basis sets have been used as stored in the TurboMole 6.551 basis
set library (wavels) or as deposited in ORCA or PSI4.

The following abbreviations are used for statistical error
descriptors: MSD denotes the Mean Signed Deviation, i.e., the
arithmetic mean of all deviations; MAD denotes the Mean Abso-
lute Deviation, i.e., the average of all absolute deviations; Δmin−max
denotes the error spread, i.e., the largest positive minus the largest
negative error occurring; σ denotes the sample standard deviation;
and RMSD denotes the Root Mean Square Deviation, i.e., the square
root of the squared and averaged deviations.

B. Equilibrium structures of small molecules
To assess the performance for the prediction of equilibrium

structures, a benchmark set consisting of small closed and open
shell molecules was assembled. As REMP and especially OO-REMP
are highly accurate methods, we tried to gather the most recent
and accurate results for each molecule. When comparing experi-
mental structures to the calculated ones, great caution has to be
taken to avoid systematical errors. Experimental methods such as x-
ray or electron diffraction provide r0 values, i.e., the bond lengths
corresponding to the average bond length of the zeroth vibra-
tional level. Quantum chemical methods, on the other hand, provide
re, corresponding to the minimum of the potential energy sur-
face. For low-level methods, it might be acceptable to mix these
up but not for methods, which systematically provides sub-pm
accuracy. There exist a number of protocols for determining re val-
ues from experimentally determined quantities. A very advanced
procedure was described by Pawłowski et al.,52 who combined
experimental rotational constants B0 of different isotopologues and
calculated rotation–vibration interaction constants αB

r in a fitting
procedure to finally arrive at equilibrium bond lengths with sta-
tistical errors less than 0.1 pm and bond angles with errors less
than 0.5○.

For reaching the basis set limit, normally complete basis set
(CBS) extrapolation is the method of choice. It is usually straight-
forward to combine CBS extrapolation and numerical gradient cal-
culations. CBS extrapolation of analytical gradients,53 on the other
hand, is still not well-established and not prominently available in
major quantum chemistry packages. As analytical gradients are very
often computationally much more efficient than the numerical ones,
we assessed the performance of several basis set/method combina-
tions (“model chemistries”) instead of trying to reach the basis set
limit.

Table I collects experimental equilibrium bond lengths re with
high accuracy. The set consists of 61 bond lengths and covers single,
double, and triple bonds of neutral and ionic molecules. All mem-
bers of this benchmark set were chosen by the requirement that
the experimental uncertainty is significantly smaller than 0.1 pm
and that the extrapolation to the minimum of the PES was done
at a high level of sophistication. This ensures that the comparison
of experimental and computed values is meaningful and that we
are not just comparing one type of noise to the other. Given that
the smallest occurring MAD [CCSD(T)/aug-cc-pwCVQZ] is actu-
ally smaller than 0.1 pm, our uncertainty choice is not an overly strict

criterion. A similar collection was compiled by Coriani et al.61 but
without a strict requirement for the uncertainty of the experimental
data.

For the set of molecules in Table I, structural optimizations
were performed with REMP, OO-REMP, and CCSD(T) for nine dif-
ferent basis sets. All electrons were always correlated, and no occu-
pied or virtual orbitals were kept frozen. Convergence criteria were
selected rather conservatively (REMP/OO-REMP: single point
energy convergence: 1.0 ⋅ 10−9 Eh, residuum convergence: 1.0 ⋅ 10−8,
max. orbital gradient: 1.0 ⋅ 10−7, rms orbital gradient: 1.0 ⋅ 10−8,
energy convergence for structural optimization: 1.0 ⋅ 10−7 Eh,
largest displacement: 1.0 ⋅ 10−6 a0, rms displacement: 1.0 ⋅ 10−7 a0,
largest gradient: 1.0 ⋅ 10−7 Eh/a0, and rms gradient: 1.0 ⋅ 10−8

Eh/a0. CCSD(T) calculations employed the ORCA keywords
verytightightscf verytightightopt corresponding to an
energy convergence criterion of 1.0⋅10−9 Eh for the SCF and a
residuum convergence criterion of 1.0 ⋅ 10−6 for CCSD(T) calcu-
lations. Convergence criteria for the geometry optimization were
2.0 ⋅ 10−7 Eh for the energy, 3.0 ⋅ 10−5 Eh/a0 for the largest gradient,
8.0 ⋅ 10−6 Eh/a0 for the rms gradient, 2.0 ⋅ 10−4 a0 for the largest dis-
placement, and 1.0 ⋅ 10−4 a0 for the rms displacement. This ensures
that all structures were converged to 0.01 pm, which is one order
of magnitude smaller than the required precision of the experimen-
tal data. For singlet states, an RHF reference was chosen and the
spin symmetry was also conserved during the orbital optimization
procedure. Broken symmetry UHF singlets (given that the reference
is unstable) were not considered as they usually lead to conver-
gence problems. Moreover, they result in ill-defined multiplicities
and lowered symmetries, thus spoiling comparability to the experi-
ment. Doublet and triplet states used UHF references with one/two
excess alpha spin electrons.

Figure 1 shows several error measures for bond lengths as a
function of the mixing parameter A; a relevant subset is collected
in Table II. Complete tables for all other basis sets may also be found
in the supplementary material. Not shown in Fig. 1 are results for
double-ζ basis sets. The mean absolute deviations calculated with
DZ basis sets were always larger than 1 pm regardless of A and the
specific basis set, thus rendering such a level of theory useless for all
but preoptimizations or very crude surveys.

Examining the mean signed deviation first, one common fea-
ture of REMP and OO-REMP is that starting from A = 0.0 bonds
are first getting shorter with the increasing MP fraction, reaching
a minimum between 0.2 ≤ A ≤ 0.4, and then start to increase
again [Figs. 1(a) and 1(b)]. Bonds also systematically shorten by≈0.2–0.3 pm when going from a TZ to a QZ basis set. Inclusion of
core polarization functions alone only has a small effect, while the
addition of diffuse basis functions leads to a systematic bond length
increase of 0.1–0.2 pm. Bond lengths predicted by canonical REMP
tend to be systematically too short, while those predicted by OO-
REMP tend to be on spot or slightly too short at the basis size limit.
All in all, this confirms the trends already found by Helgaker et al.69

25 years ago. Said authors also found that an improved description
of correlation [HF → MP2 → CCSD(T)] leads on average to elon-
gation of bonds, and this is also found when going from canonical
REMP to orbital-optimized REMP.

Considering the MAD next, one finds no sizable improvement
by hybridization in the case of canonical REMP [Fig. 1(c)]. Pure
RE [i.e., CEPA(0)/D] performs best with most basis sets. The best
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TABLE I. High-confidence experimental equilibrium bond lengths re. Uncertainties are as given in the literature and refer to one
standard deviation.

Electronic Value Uncertainty
Molecule state Bond (pm) (pm) Source Comment

BF 1Σ+ r(B–F) 126.686 5 0.000 2 54 10B19F
BO 2Σ+ r(B–O) 120.475 0.002 55
C−2 2Σ+ r(C–C) 126.829 0.023 55
C2H2 (ethyne) 1Σ+g r(C–H) 106.166 0.05 52

r(C–C) 120.356 0.057 52
C2H4 (ethene) 1Ag r(C–H) 108.068 0.06 52

r(C–C) 133.074 0.08 52
CF 2Π r(C–F) 127.217 0.043 55
CH 2Π r(C–H) 111.791 0.002 55
1CH2

1A1 r(C–H) 110.632 0.059 52
3CH2

3B1 r(C–H) 107.530 0.011 56
CH2O (formaldehyde) 1A1 r(C–H) 110.072 0.06 52

r(C–O) 120.465 0.07 52
CH4

1A1 r(C–H) 108.588 0.06 52
CN 2Σ+ r(C–N) 117.180 74 0.000 04 57
CNC 2Π r(C–N) 124.45 0.05 55 Linear structure
CO 1Σ+ r(C–O) 112.836 0.004 52
CO+ 2Σ+ r(C–O) 111.522 0.002 55
CO2

1Σ+g r(C–O) 116.006 0.006 52
CS 1Σ+ r(C–S) 153.481 75 0.000 27 58
H2

1Σ+g r(H–H) 74.149 1 0.013 52
H2O 1A1 r(O–H) 95.790 2 0.028 52
H2O+ 2B1 r(O–H) 99.92 0.06 55
H2O2

1A r(O–H) 96.17 0.02 59
r(O–O) 145.24 0.03 59

HBS 1Σ+ r(H–B) 116.98 0.04 60
r(B–S) 159.78 0.01 60

HCl 1Σ+ r(H–Cl) 127.455 2 0.0006 54 H35Cl
HCN 1Σ+ r(C–H) 106.528 0.012 52

r(C–N) 115.336 0.014 52
HCP 1Σ+ r(C–H) 107.02 0.1 61

r(C–P) 153.99 0.02 61
HF 1Σ+ r(H–F) 91.687 9 0.012 52
HF+ 2Π r(H–F) 100.105 0.014 57
HNC 1Σ+ r(N–H) 99.489 0.008 52

r(C–N) 116.875 0.01 52
HNO 1A′ r(N–H) 105.199 0.06 52

r(N–O) 120.859 0.069 52
HOF 1A′ r(O–H) 96.861 9 0.008 52

r(O–F) 143.447 0.011 52
LiF 1Σ+ r(Li–F) 156.386 424 0.000 006 2 62
LiH 1Σ+ r(Li–H) 159.491 31 0.000 08 54
N2

1Σ+g r(N–N) 109.773 0.005 52
N+2 2Σ+g r(N–N) 111.641 0.005 57
(E)-N2H2

1Ag r(N–H) 102.883 0.06 52 C2h
r(N–N) 124.575 0.07 52

NF 3Σ− r(N–F) 131.697 9 0.008 8 63
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TABLE I. (Continued.)

Electronic Value Uncertainty
Molecule state Bond (pm) (pm) Source Comment

NH 3Σ− r(N–H) 103.606 721 0.000 013 64 rBO
e

NH+ 2Π r(N–H) 106.898 0.006 55
NH3

1A1 r(N–H) 101.139 0.06 52
NO 2Π r(N–O) 115.078 4 0.001 4 55
NO2 2A1 r(N–O) 119.389 0.004 65
O2

3Σ−g r(O–O) 120.752 66
O+2 2Πg r(O–O) 111.687 0.006 55
OCS 1Σ+ r(C–O) 115.617 0.014 67

r(C–S) 156.140 0.014 67
OF 2Π r(O–F) 135.410 78 0.000 001 55
OH 2Π r(O–H) 96.966 0.009 55
PH3

1A1 r(P–H) 141.16 0.06 68
PN 1Σ+ r(P–N) 149.086 6 0.000 05 54
SiO 1Σ+ r(Si–O) 150.973 75 0.000 02 54

FIG. 1. Graphical representation of the bond length errors of REMP and OO-REMP for the high-confidence bond length set. Average over 61 equilibrium bond lengths.
Reference: best available experimental/semi-experimental estimate. The dots indicate TZ basis sets; the triangles indicate QZ basis sets. The results for the cc-pVXZ family
are shown in red, those for cc-pwCVXZ are shown in green, and those for aug-cc-pwCVXZ are shown in blue. (a), (c), and (e) REMP. (b), (d), and (f) OO-REMP.
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TABLE II. Statistics for the high confidence bond length benchmark set, aug-cc-pwCVXZ basis set family. Average over the
61 bonds listed in Table I. All error measures are in pm. The complete tables can be found in the supplementary material.

Method A MSD MAD σ RMSD Median ∣Δmax∣
aug-cc-pwCVTZ

REMP

0.00 −0.230 0.359 0.722 0.753 −0.027 4.396
0.15 −0.354 0.377 0.714 0.792 −0.170 4.543
0.20 −0.373 0.388 0.717 0.803 −0.169 4.574
0.25 −0.383 0.396 0.721 0.811 −0.190 4.602
0.30 −0.387 0.401 0.726 0.818 −0.196 4.627
1.00 0.023 0.692 1.102 1.094 −0.081 4.834

OO-REMP

0.00 0.240 0.285 0.441 0.499 0.151 2.504
0.15 0.096 0.143 0.200 0.221 0.075 1.035
0.20 0.084 0.127 0.169 0.187 0.068 0.799
0.25 0.083 0.126 0.160 0.179 0.066 0.628
0.30 0.093 0.146 0.172 0.194 0.068 0.513
1.00 1.147 1.281 1.592 1.952 0.691 8.294

CCSD(T) 0.263 0.271 0.161 0.308 0.248 0.615

aug-cc-pwCVQZ

REMP

0.00 −0.498 0.513 0.749 0.894 −0.315 4.646
0.15 −0.614 0.614 0.754 0.967 −0.406 4.788
0.20 −0.631 0.631 0.757 0.980 −0.410 4.818
0.25 −0.640 0.640 0.760 0.989 −0.413 4.845
0.30 −0.643 0.643 0.764 0.994 −0.439 4.868
1.00 −0.227 0.699 1.074 1.089 −0.230 5.062

OO-REMP

0.00 −0.042 0.239 0.356 0.356 −0.060 1.721
0.15 −0.173 0.189 0.167 0.239 −0.135 0.592
0.20 −0.182 0.189 0.139 0.229 −0.146 0.616
0.25 −0.181 0.183 0.127 0.221 −0.166 0.629
0.30 −0.170 0.179 0.132 0.215 −0.164 0.632
1.00 0.871 1.091 1.446 1.678 0.467 7.214

CCSD(T) −0.016 0.081 0.121 0.121 0.025 0.441

results are obtained with the aug-cc-pwCVTZ basis, where all mix-
tures up to A = 0.5 perform equally well with an MAD of 0.4 pm, but
for A > 0.5, the performance significantly degrades. The finding that
the aug-cc-pwCVTZ and over a wide range even the cc-pwCVTZ
basis outperform the aug-cc-pwCVQZ basis suggests error cancella-
tion of basis and method errors. In general, one finds that TZ basis
sets deliver seemingly better results than the QZ basis sets. This is in
line with the finding of Coriani et al.61 where it was shown that MP2
and CCSD benefit from basis and method error cancellation if all
electrons are correlated. With an MAD of ≈0.5 pm, REMP is about
as accurate as CCSD for bond lengths.

In the case of OO-REMP, in contrast, one finds a sig-
nificant improvement over the parent methods by hybridiza-
tion [Fig. 1(d)]. Again, DZ basis sets deliver significantly larger
errors than other basis sets and are not considered further. The
best results are obtained with OO-REMP(0.25)/cc-pwCVTZ and
OO-REMP(0.25)/aug-cc-pwCVTZ, which have MADs of merely

0.13 pm. This can be compared to OO-REMP(0.00)/aug-cc-
pwCVTZ, i.e., OCEPA with an MAD of 0.29 pm and OO-
REMP(1.00)/aug-cc-pwCVTZ, i.e., OO-MP2 with an MAD of
1.28 pm. Compared to the pure methods, the hybrid method, thus,
improves by a factor of two or ten, respectively. Interestingly, when
the results obtained with the cc-pwCVTZ and the aug-cc-pwCVTZ
basis—which essentially yield the same MAD—around the mini-
mum of the MAD are examined closer, one finds that the augmented
basis leads to an overestimation that equals the underestimation of
the non-augmented basis. OO-REMP/aug-cc-pwCVQZ exhibits a
rather flat curve with a minimum at A = 0.30 (MAD = 0.18 pm).
The differences between TZ and QZ bases are smaller than in the
canonical REMP case. While REMP(0.00)/aug-cc-pwCVTZ clearly
seems to be just a Pauling point, it is less clear after orbital opti-
mization is included. With the aug-cc-pwCVTZ basis, one rather
reaches a saturation with respect to the basis size than a min-
imum. The largest error of OO-REMP(0.25)/aug-cc-pwCVTZ is

J. Chem. Phys. 157, 104111 (2022); doi: 10.1063/5.0105628 157, 104111-7

Published under an exclusive license by AIP Publishing



The Journal
of Chemical Physics ARTICLE scitation.org/journal/jcp

encountered for the O–F bond of HOF, which is overestimated by
0.63 pm. The RMSD [Figs. 1(e) and 1(f)] leads essentially to the same
conclusions regarding the optimal choice of A and regarding the
behavior with respect to basis set modifications. The smallest over-
all RMSD is found in the case of OO-REMP(0.25)/aug-cc-pwCVTZ
(0.179 pm), but OO-REMP(0.25)/cc-pwCVTZ (0.182 pm), OO-
REMP(0.20)/aug-cc-pwCVTZ (0.187 pm), and OO-REMP(0.20)/cc-
pwCVTZ (0.186 pm) are virtually indistinguishable. One might
conclude that the overall best mixture is located somewhere between
an MP fraction of 20% and 25%, which is perfectly in accordance
with our previous results. The RMSD obtained with the aug-cc-
pwCVQZ basis is again rather flat and has a minimum at A = 0.30
(0.215 pm) with A = 0.25 and A = 0.20 performing not much worse.
Figure S1 in the supplementary material contains box plots for all
basis sets. These plots independently corroborate our conclusions
from a robust statistical point of view.

It is, furthermore, interesting to note that the optimal A value
in the case of OO-REMP is much less basis set dependent than it
was in our previous investigation featuring atomization energies.30

Figures 1(d) and 1(f) show that regardless of the basis set, an A value
in the range of 0.15–0.25 leads to the best results. It is, thus, not
necessary to fine-tune this parameter for every basis set. Moreover,
even a comparatively cheap model chemistry such as cc-pVTZ/OO-
REMP(0.20) is able to provide equilibrium structures with mean
absolute errors of 0.26 pm.

The REMP and OO-REMP results can be compared to
CCSD(T) results listed in Table II. Again, the errors obtained with
DZ basis sets are unacceptably large, as expected. In contrast to
OO-REMP, one finds that systematically improving the basis set
(TZ → QZ; addition of core polarization functions; addition of dif-
fuse basis functions) always leads to a systematic improvement of
the results. In agreement with the REMP and OO-REMP results and
with literature data, one finds that increasing the cardinal number of
the basis leads to shorter bonds, while adding core polarization and
diffuse basis functions provides longer bonds. The smallest MAD of
0.081 pm is found in conjunction with the aug-cc-pwCVQZ basis
set. Coriani et al.61 found an MAD of 0.069 pm for CCSD(T)/cc-
pwCVQZ, but for a different benchmark set. Nevertheless, this
shows that CCSD(T) in combination with large enough basis sets
is capable of predicting bond lengths with an error of less than
1 pm, on average even less than 0.1 pm. The largest error encoun-
tered belongs to the CN radical whose bond length is underestimated
by 0.44 pm.

The residual error may be attributed to the basis set
incompleteness, the neglect of higher excitations, and the neglect
of relativistic corrections. It should, however, be mentioned that
even without these corrections, the systematic and statistical errors
of CCSD(T) and OO-REMP are smaller than the experimental
accuracy typically achieved for larger molecules (cf. Table V).

It is further instructive to break down the dataset into spin sin-
glets (41 entries) and systems with higher multiplicity (20 entries).
As in earlier investigations, one finds that canonical REMP per-
forms poor for open shell systems, while it delivers reasonable
performance for closed shell systems. Considering only the aug-
cc-pwCVTZ basis, one finds that REMP(0.05) delivers an MAD of
0.15 pm for closed shell systems, while REMP(0.00) achieves an
MAD of 0.73 pm for open shell systems (the best results in each
case). OO-REMP(0.25), on the other hand, achieves 0.14 pm for the

TABLE III. High-confidence experimental equilibrium bond angles αe. Uncertainties
are as given in the literature and refer to one standard deviation.

Value Uncertainty Source
Molecule Angle (deg) (deg) Comment

C2H4 a(H–C–C) 121.4 0.24 52
1CH2 a(H–C–H) 102.44 0.15 52
3CH2 a(H–C–H) 133.090 8 0.0021 56
CH2O a(H–C–O) 121.63 0.24 52
H2O a(H–O–H) 104.4 0.09 52
H2O2 a(H–O–O) 99.76 0.06 59

d(H–O–O–H) 113.6 0.3 59
HNO a(H–N–O) 108.26 0.18 52
HOF a(H–O–F) 97.86 0.02 52
E-N2H2 a(H–N–N) 106.34 0.18 52
NH3 a(H–N–H) 107.17 0.18 52
NO2 a(O–N–O) 133.856 67 0.0033 65
PH3 a(H–P–H) 93.328 0.02 68

closed shell systems and even 0.09 pm for the open shell systems
(the complete data can be found in the supplementary material).
The excellent performance for open shell systems underlines the
high quality of the OO-REMP approach, which was shown to avoid
spin contamination errors. We note that the fortuitous error com-
pensation of basis and method errors cannot be excluded for this
small sample size. Furthermore, the systems included are rather
well-behaved single reference cases. Nevertheless, for this set, OO-
REMP(0.25)/aug-cc-pwCVTZ even outperforms CCSD(T)/aug-cc-
pwCVQZ (MAD = 0.12 pm). As in our earlier investigation,31

we conclude that performing an orbital optimization is manda-
tory for REMP in the case of the open shell systems, while the
performance gain is less pronounced for closed shell systems. More-
over, in the case of OO-REMP, the minimum of the MAD is
located at almost the same A value for closed (0.20) and open shell
molecules (0.25). The proposed mixing ratio, thus, seems to be uni-
versal and applicable to single reference determinants of arbitrary
multiplicity.

Along with the bond lengths, a set of 12 proper bond angles and
one proper dihedral angle (see Table III) was evaluated. All angles
listed in Table III belong to molecules in Table I, but not for all of
these molecules highly accurate angles were available.

The behavior of REMP and OO-REMP for bond angles
(cf. Fig. 2) is quite interesting and unprecedented. The only system-
atic trend is that RE [i.e., CEPA/0(D)] systematically overestimates
bond angles, while MP2 underestimates them [see Fig. 2(a)]. In
between, there is a smooth and flat transition. This trend is pre-
served upon activation of orbital optimization [see Fig. 2(b)], but
additionally, all angles become smaller such that OO-REMP tends
to underestimate bond angles, while canonical REMP is close on
spot. The MAD of REMP [Fig. 2(c)] exhibits unprecedented dou-
ble minima with a sharp dip at A = 0.05 and rather flat minima
toward A = 0.8 . . . 1.0. The flat minima at large A values are, how-
ever, not of interest as in this range, the bond length errors become
unacceptably large. In the case of OO-REMP [Fig. 2(d)], no dou-
ble minima occur, but the strong dip at A = 0.05 mostly persists. In
almost all cases, this can be attributed to singlet methylene, whose
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FIG. 2. Graphical representation of bond angle errors of REMP and OO-REMP for the high-confidence bond angle set. Average over 12 equilibrium bond angles. Reference:
best available experimental/semi-experimental estimate. The dots indicate TZ basis sets; the triangles indicate QZ basis sets. The results for the cc-pVXZ family are shown
in red, those for cc-pwCVXZ are shown in green, and those for aug-cc-pwCVXZ are shown in blue. (a), (c), and (e) REMP. (b), (d), and (f) OO-REMP.

bond angle is mispredicted at A = 0.0 by about 1○ with most basis
sets, but already small Møller-Plesset fractions lead to great improve-
ment. All in all, REMP is rather insensitive to both A and the basis
set, with bond angle errors that amount to about 0.4○ on aver-
age. Given that an uncertainty of 0.5○ was allowed to enter the
high confidence bond angle set, this is a pretty decent performance.
It should be mentioned that the canonical method with the sec-
ond smallest bond length error (REMP(0.05)/aug-cc-pwCVTZ) also
delivers a bond angle MAD of only 0.26○, independently confirm-
ing the impressive performance of this Pauling point. The MAD
of OO-REMP does not show pronounced double minima but flat
minima around A = 0.35 in the case of the cc-pVXZ bases and the
mentioned sharp minimum at A = 0.05 in all other cases. Addi-
tionally, one finds an almost textbook-like behavior with respect
to improvements of the basis set [Fig. 2(d)]. The non-augmented
valence basis sets perform worst; increasing the basis set cardinal
number—which adds higher angular momentum functions—always
leads to an improvement, and adding diffuse basis functions leads
to a further improvement. The best results are now obtained with
the aug-cc-pwCVQZ basis. This shows that an accurate prediction
of bond angles seems to be crucially dependent on basis sets with

high angular momentum functions and augmented basis sets, which
provide the necessary flexibility. Additionally, as changes in bond
angles alter the distance between adjacent bonding electron pairs or
lone pairs, bond angles are dependent on a balanced description of
inter- and intra-pair correlation, which, in turn, requires complete
enough basis sets. OO-REMP(0.05)/aug-cc-pwCVQZ has actually
even significantly smaller errors than CCSD(T)/aug-cc-pwCVQZ,
but its performance for bond lengths is inferior. It is a bit dis-
satisfying that in the case of OO-REMP, the minima with respect
to A for bond lengths and bond angles do not coincide. On the
other hand, one finds that OO-REMP(0.25)/aug-cc-pwCVTZ has an
MAD of just 0.23○. Given that the average uncertainty in Table III
amounts to 0.13○, this is an impressive performance sufficient for
most routine calculations. Analyzing the CCSD(T) results for bond
angles (cf. Table IV) shows that CCSD(T) is even slightly less accu-
rate than OO-REMP: As in the case of the bond lengths, the lowest
MAD is obtained with the aug-cc-pwCVQZ basis set, which is in
line with the bond length results of CCSD(T) and the bond angle
results of (OO)-REMP. The MAD of 0.23○ is similar to that of OO-
REMP(0.25)/aug-cc-pwCVTZ; only the MSD is smaller, indicating
that CCSD(T) has a smaller systematic error, but the same statistical
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TABLE IV. Statistics for the high-confidence bond angle benchmark set, aug-cc-pwCVXZ basis set family. Average over the
13 angles listed in Table III. All error measures are in degrees. The complete tables can be found in the supplementary
material.

Method A MSD MAD σ RMSD Median ∣Δmax∣
aug-cc-pwCVTZ

REMP

0.00 0.157 0.292 0.397 0.412 0.103 1.051
0.05 0.058 0.257 0.339 0.331 0.087 0.694
0.20 −0.010 0.355 0.464 0.446 0.066 0.949
0.25 −0.018 0.365 0.482 0.464 0.057 1.032
0.30 −0.025 0.368 0.493 0.474 0.049 1.093
1.00 −0.176 0.276 0.332 0.365 −0.143 0.833

OO-REMP

0.00 0.073 0.279 0.438 0.427 −0.018 1.122
0.05 −0.042 0.161 0.231 0.226 −0.014 0.521
0.20 −0.118 0.220 0.287 0.300 −0.011 0.627
0.25 −0.129 0.232 0.300 0.315 −0.017 0.635
0.30 −0.139 0.239 0.306 0.325 −0.025 0.664
1.00 −0.412 0.469 0.415 0.573 −0.370 1.119

CCSD(T) −0.138 0.241 0.342 0.356 −0.062 0.999

aug-cc-pwCVQZ

REMP

0.00 0.244 0.348 0.413 0.466 0.224 1.214
0.05 0.142 0.293 0.346 0.361 0.152 0.661
0.20 0.072 0.369 0.472 0.459 0.057 0.914
0.25 0.063 0.378 0.490 0.474 0.048 0.995
0.30 0.055 0.381 0.500 0.484 0.040 1.054
1.00 −0.101 0.240 0.320 0.323 −0.066 0.713

OO-REMP

0.00 0.165 0.275 0.418 0.434 0.082 1.288
0.05 0.047 0.144 0.187 0.185 0.074 0.397
0.20 −0.032 0.212 0.271 0.263 0.030 0.523
0.25 −0.032 0.212 0.271 0.263 0.030 0.523
0.30 −0.044 0.221 0.286 0.278 0.039 0.543
1.00 −0.329 0.402 0.375 0.487 −0.248 0.980

CCSD(T) −0.052 0.227 0.340 0.331 0.044 0.935

error. On the other hand, OO-REMP has a smaller largest absolute
error than CCSD(T). Interestingly, the largest error of CCSD(T) of≈−0.9○ belongs to the dihedral angle of H2O2, a closed shell molecule
with no distinct multireference character.

All conclusions regarding basis sets drawn above equally
apply to CCSD(T). Moreover, one can probably conclude that the
CCSD(T) results are not yet converged with respect to the basis
set and that even more accurate results may be obtained with 5Z
basis sets.

All bond angle results should, however, be considered with a
bit of caution. The statistical population is rather small, and the rela-
tive accuracy of the reference data is not as good as in the case of the
bond length. If one has to choose a compromise for structural opti-
mization, i.e., an A value that serves both bond lengths and bond
angles, it is probably advantageous to select a value that primarily
leads to minimal bond length errors. The variation of the error with

respect to a change in A is larger for the bond lengths, and an A value
that produces good bond lengths still produces acceptable bond
angles, while values that lead to minimal bond angle errors result
in large bond length errors. Additionally, the evidence collected
for lengths is much more robust than that for bond angles. Further
breaking down the bond angle set into closed- and open-shell sys-
tems does make no sense in view of the already small sample
size.

The second set consists of 28 bond lengths of small molecules
where no experimental uncertainty was found or where the exper-
imental uncertainty was clearly above 0.1 pm (see Table V). Fur-
thermore, this set also features molecules for which only experi-
mental structures averaged over the vibrational ground state were
available (r0).

A graphical representation of the results for the low-confidence
bond length set can be found in Fig. 3. Again, DZ basis sets were

J. Chem. Phys. 157, 104111 (2022); doi: 10.1063/5.0105628 157, 104111-10

Published under an exclusive license by AIP Publishing



The Journal
of Chemical Physics ARTICLE scitation.org/journal/jcp

TABLE V. Low-confidence experimental bond lengths re or r0. Uncertainties are as given in the literature and refer to one
standard deviation.

Molecule Electronic state Bond Value (pm)
Uncertainty

(pm) Source Comment

AlH 1Σ+ r(Al–H) 164.8 70
BH 1σ+ r(B–H) 123.24 70
BH+ 2Σ+ r(B–H) 120.329 0.133 55
BH2

2A1 r(B–H) 118.1 57
CH3

2A′′2 r(C–H) 107.6 0.1 55
Cl2 1Σ+g r(Cl–Cl) 198.7 0.9 66 35Cl2
ClOH 1A′ r(O–H) 96.36 0.25 71

r(Cl–O) 169.08 0.10 71
CO+2 2Πg r(C–O) 117.68 0.74 55 r0
CS2 1Σ+g r(C–S) 155.259 61
H2S 1A1 r(S–H) 133.56 72
HC2

2Σ+ r(C–H) 106.51 73
r(C–C) 120.75 73

HCO 2A′ r(C–H) 111.91 0.5 55
r(C–O) 117.54 0.15 55

HNF 2A
′′

r(N–H) 103.5 0.3 74
r(N–F) 137.3 1 74

HO2
2A

′′
r(O–H) 97.07 0.2 55
r(O–O) 133.054 0.085 55

HSiCl 1A′ r(H–Si) 151.40 75
r(Si–Cl) 207.24 75

Li2 1Σ+g r(Li–Li) 267.29 70
LiO 2Π r(Li–O) 169.449 54 r0

N3
2Πg r(N–N) 118.115 55

NH2
2B1 r(N–H) 102.39 76

SiH2
1A1 r(Si–H) 151.40 77

SiH4
1A1 r(Si–H) 147.418 61

SO3
1A1g r(S–O) 141.75 78

omitted as they lead to a systematic overestimation of more than
1 pm (see the respective tables in the supplementary material).
Compared to the high-confidence bond lengths, the general trends
concerning basis sets are preserved. One also finds that orbital opti-
mization leads to longer bonds on average. In contrast to the high-
confidence bond lengths, the MAD of REMP now shows some more
distinct minima, which are located around A ≈ 0.10 [cf. Fig. 3(c)].
The best performance is again obtained with REMP(0.05)/aug-cc-
pwCVTZ where the MAD amounts to 0.61 pm, which is almost
twice as large as in the high-confidence case. The same general trends
are also found in the RMSD [Fig. 3(e)].

OO-REMP again performs significantly better than canonical
REMP. The smallest MAD is obtained with OO-REMP(0.10)/aug-
cc-pwCVTZ and amounts to 0.29 pm [cf. Fig. 3(d)]. The previ-
ously best model chemistry—OO-REMP(0.25)/aug-cc-pwCVTZ—
achieves an MAD of 0.35 pm. It should, however, be mentioned that
the statistics for this set are mainly dominated by the results of the
Li2 molecule. The results are strongly dependent on the basis set and
the A value. DZ basis sets lead to an overestimation of the bond
length by up to 10 pm, and even with large augmented basis sets,

RE and OO-RE tend to underestimate the bond length by 1–2 pm,
while MP2 and OO-MP2 tend to overestimate it by up to 5 pm (see
the supplementary material for details). In between, there is only a
small range around A = 0.05 . . . 0.15 where the error is smaller than
1 pm. Although the reference value is of questionable quality, the
molecule was retained in the set as CCSD(T) performed reasonably
well with large basis sets. If the Li2 molecule is removed from the set,
essentially a very similar behavior as in the high-confidence case is
recovered but with all curves shifted up to higher errors. The smallest
errors are actually very similar to the ones when Li2 is included.
Given that the set contains data, which were presented with 0.1 pm
accuracy or have uncertainties of 0.9 pm such as in the case of the
Cl2 molecule, the results should not be over-interpreted. In addi-
tion, as also CCSD(T)/aug-cc-pwCVQZ now produces an MAD of
0.19 pm (cf. Table VI)—i.e., twice as large as with high-confidence
reference data—the take-away message is rather that for bench-
marking very precise methods, the reference data should be selected
scrupulously.

Associated with the low-confidence bond length set, one can
form a set of low-confidence bond angles (cf. Table VII). This set
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FIG. 3. Graphical representation of the bond length errors of REMP and OO-REMP for the low-confidence bond length set. Average over 28 bond lengths. Reference: best
available experimental/semi-experimental estimate. The dots indicate TZ basis sets; the triangles indicate QZ basis sets. The results for the cc-pVXZ family are shown in
red, those for cc-pwCVXZ are shown in green, and those for aug-cc-pwCVXZ are shown in blue. (a), (c), and (e) REMP. (b), (d), and (f) OO-REMP.

consists of bond angles for which either no uncertainty was given,
the uncertainty was larger than 0.5○, or which were only provided as
α0, i.e., angles of the vibrational ground state.

Figure 4 shows a graphical representation of the bond angle
deviations for the low-confidence set. Numerical results are listed in
Table VIII. As can be seen, neither REMP nor OO-REMP seems to
deliver a satisfactory performance for this set. The bond angles pre-
dicted by OO-REMP are again systematically smaller than those pre-
dicted by REMP. In the case of canonical REMP, there is almost no
dependence on the mixing parameter A, and on average, the bond
angles are off by about 0.5○ at least. There is also almost no basis
set dependence judged by the MAD [Fig. 4(c)] and the RMSD
[Fig. 4(e)]. The curves belonging to OO-REMP, on the other hand,
exhibit minima, which are located between A = 0.20 and A = 0.40.
Nevertheless, even the smallest average errors are larger than 0.4○
and the RMSD of OO-REMP is mostly even larger than the RMSD
of REMP. There is a moderate basis dependency insofar as QZ basis
sets deliver better results than TZ basis sets. The results obtained
with CCSD(T) are seemingly similarly devastating: CCSD(T)/aug-
cc-pwCVQZ achieves an MSD of −0.17○, an MAD of 0.56○, and
an RMSD of 0.81○. There is, however, a big caveat related to this
analysis: The set is rather small, and the reference numbers are all

somehow flawed, either by the absence of error bars or by hav-
ing α0 values or by exceedingly large associated uncertainties. The
bond angle of HNF, e.g., has an experimental uncertainty of 1○.
Indeed, CCSD(T)/aug-cc-pwCVQZ predicts this angle to be 1.85○
smaller. Given that this level of theory had an MAD of 0.23○ against
high-confidence reference data, it seems possible to improve this
experimental value. Again, the take-home message is that a care-
ful selection of the reference data is absolutely mandatory and not
“cherry-picking.”

In addition to the systems listed in Table V, calculations for
the Ar dimer have been performed. The data gathered, thus, have,
however, been excluded from the statistical averaging. All basis sets
except aug-cc-pwCVTZ and aug-cc-pwCVQZ almost always lead
to errors larger than 10 pm, sometimes almost 40 pm. As these
errors are 10–100 times larger than those encountered for all other
cases, they would have dominated the statistics as dramatic outliers.
Moreover, as even CCSD(T)/aug-cc-pwCVQZ is off by 3.5 pm, this
system needs either even larger basis sets and/or more sophisticated
correlation treatment or the available reference re is inaccurate. The
respective data may be found in the supplementary material.

To summarize, it was found that with large enough basis sets,
REMP(0.20) yields an MAD of 0.4–0.5 pm, while OO-REMP(0.20)
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TABLE VI. Statistics for the low-confidence bond length benchmark set, aug-cc-pwCVXZ basis set family. Average over the
28 bonds listed in Table V. All error measures are in pm. The complete tables can be found in the supplementary material.

Method A MSD MAD σ RMSD Median ∣Δmax∣
aug-cc-pwCVTZ

REMP

0.00 −0.186 0.658 1.019 1.017 −0.083 3.237
0.05 −0.218 0.606 0.958 0.966 −0.117 3.300
0.10 −0.249 0.625 0.944 0.959 −0.138 3.345
0.20 −0.301 0.677 0.974 1.002 −0.228 3.412
0.25 −0.322 0.702 1.000 1.033 −0.239 3.439
1.00 −0.330 0.866 1.375 1.390 −0.481 5.100

OO-REMP

0.00 0.186 0.416 0.740 0.750 0.085 2.772
0.05 0.151 0.322 0.571 0.581 0.056 2.414
0.10 0.125 0.288 0.501 0.508 0.033 2.116
0.20 0.089 0.331 0.523 0.521 −0.047 1.645
0.25 0.080 0.353 0.566 0.561 −0.069 2.114
1.00 0.573 1.044 1.431 1.518 0.240 5.141

CCSD(T) 0.216 0.281 0.393 0.442 0.108 1.641

aug-cc-pwCVQZ

REMP

0.00 −0.568 0.674 0.868 1.024 −0.278 3.516
0.05 −0.594 0.669 0.834 1.012 −0.307 3.581
0.10 −0.620 0.704 0.844 1.036 −0.335 3.625
0.20 −0.666 0.796 0.912 1.116 −0.444 3.691
0.25 −0.684 0.836 0.952 1.158 −0.492 3.718
1.00 −0.674 1.068 1.370 1.504 −0.630 4.642

OO-REMP

0.00 −0.148 0.393 0.586 0.594 −0.144 2.124
0.05 −0.176 0.320 0.401 0.432 −0.172 1.087
0.10 −0.199 0.300 0.336 0.385 −0.199 0.855
0.20 −0.228 0.369 0.405 0.459 −0.256 1.321
0.25 −0.235 0.394 0.467 0.516 −0.266 1.779
1.00 0.260 0.954 1.337 1.339 −0.204 4.637

CCSD(T) −0.109 0.189 0.227 0.248 −0.121 0.570

achieves an MAD of 0.1–0.2 pm. CCSD(T) was found to yield
an MAD slightly below 0.1 pm with very large basis sets. Bond
angles are predicted with an MAD of 0.2○ by OO-REMP(0.20) and
CCSD(T), while REMP(0.20) exhibits average errors of 0.4○.

TABLE VII. Low-confidence experimental equilibrium bond angles αe. Uncertainties
are as given in the literature and refer to one standard deviation.

Value Uncertainty
Molecule Angle (deg) (deg) Source Comment

ClOH a(Cl–O–H) 102.45 71
H2O+ a(H–O–H) 110.5 79
H2S a(H–S–H) 92.11 72
HCO a(H–C–O) 124.95 0.25 80 α0
HNF a(H–N–F) 102 1 74
HO2 a(H–O–O) 104.1 2 81
HSiCl a(H–Si–Cl) 94.66 75
NH2 a(H–N–H) 103.105 76
SiH2 a(H–Si–H) 92.08 77

C. Harmonic vibrational wavenumbers
of small molecules

For a subset of the molecules for which structural optimizations
have been performed, harmonic vibrational wavenumbers were also
calculated. The Hessian matrix was constructed by numerical dif-
ferentiation of energies in the case of canonical REMP and by
numerical differentiation of gradients in the case of OO-REMP. In
both cases, a five-point formula was used as implemented in the
FINDIF module of PSI4. If not mentioned otherwise, a geometri-
cal distortion of 5 ⋅ 10−3 a0 was used. In each case, the structure
optimized at exactly the same level of theory (method, basis, A
parameter) was used as the unperturbed geometry.

In total, 81 normal modes of 43 molecules including some iso-
topologues were considered. Usually, the most abundant isotope was
used for mass-weighting the Hessian prior to diagonalization. Iso-
topic masses were taken from the NIST database82 and are tabulated
in the supplementary material. A full list of molecules together with
the reference harmonic vibrational wavenumbers can be found in
Table IX.
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FIG. 4. Graphical representation of the bond angle errors of REMP and OO-REMP for the low-confidence bond angle set. Average over nine bond angles from Table VII.
Reference: best available experimental/semi-experimental estimate. The dots indicate TZ basis sets; the triangles indicate QZ basis sets. The results for the cc-pVXZ family
are shown in red, those for cc-pwCVXZ are shown in green, and those for aug-cc-pwCVXZ are shown in blue. (a), (c), and (e) REMP. (b), (d), and (f) OO-REMP.

From the available dataset, two outliers were removed, namely,
the CN radical and the CO+ radical. Both molecules were sufficiently
well described by OO-REMP [OO-REMP(0.20)/aug-cc-pwCVTZ is
off by 9 and 33 cm−1 for CN and CO+, respectively], but dramatically
overestimated by 600–700 cm−1 by REMP.

Statistical descriptors for a selection of A values are presented
in Table X; the complete table and tables for all smaller basis sets
can be found in the supplementary material. Figure 5 shows statisti-
cal averages for the harmonic vibrational wavenumber benchmark
set. The results for double zeta basis sets were again omitted but
can be found in the supplementary material. The general trends
with respect to basis set modifications are that increments of the
basis set cardinal number from TZ to QZ generally lead to larger
vibrational frequencies, while both the addition of core polarization
functions and diffuse basis functions lead to a decrease of vibrational
frequencies. One finds that the performance for harmonic vibra-
tions closely resembles the one for the high-confidence bond length
benchmark set (cf. Figs. 1 and 5). Looking at canonical REMP first
[Fig. 5(a)], one finds that an increasing underestimation of bond
lengths is correlated with an increasing overestimation of vibra-
tional wavenumbers. Both errors can be traced back to bonds being
too stiff. The mean absolute deviation [Fig. 5(a)] has no apparent

minimum for any basis set, instead, pure RE, i.e., CEPA/0(D) per-
forms best. As in the case of bond lengths, the best results are
obtained with the aug-cc-pwCVTZ basis set where one finds an
MAD of 17 cm−1. Quite interestingly, REMP(0.00)/cc-pVTZ also
delivers acceptable results with an MAD of 24 cm−1. The RMSD
behaves similar to the only exception that REMP(0.00)/aug-cc-
pwCVQZ is superior to REMP(0.00)/aug-cc-pwCVTZ by 1 cm−1.
The correlation between bond length errors and wavenumber errors
carries over to OO-REMP. Consequently, as OO-REMP leads to
longer and weaker bonds, the associated force constants are smaller,
leading to more accurate vibrations [cf. Fig. 5(b)]. The MAD
exhibits minima for all basis sets [Fig. 5(d)], but compared to the
bond lengths, these are shifted toward lower A values. The over-
all best results are obtained with OO-REMP(0.10)/aug-cc-pwCVTZ
(MAD = 12 cm−1), but OO-REMP(0.20)/aug-cc-pwCVTZ with an
MAD of 13 cm−1 is only slightly less accurate. The RMSD of OO-
REMP(0.10)/aug-cc-pwCVTZ amounts to only 15 cm−1 and is, thus,
only half as large as that of the best canonical method. The superi-
ority of the orbital-optimized method is also reflected by the largest
outliers of the respective best canonical and orbital-optimized meth-
ods. One finds that REMP(0.00)/aug-cc-pwCVTZ overestimates the
OF stretch by 292 cm−1, while OO-REMP(0.10)/aug-cc-pwCVTZ
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TABLE VIII. Statistics for the low-confidence bond angle benchmark set, aug-cc-pwCVXZ basis set family. Average over the
nine angles listed in Table VII. All error measures are in degrees. The complete tables can be found in the supplementary
material.

Method A MSD MAD σ RMSD Median ∣Δmax∣
aug-cc-pwCVTZ

REMP

0.00 −0.099 0.630 0.831 0.789 0.182 1.644
0.05 −0.102 0.604 0.809 0.769 0.185 1.620
0.20 −0.098 0.579 0.788 0.749 0.103 1.583
0.25 −0.097 0.581 0.785 0.747 0.123 1.578
0.30 −0.097 0.583 0.784 0.745 0.140 1.577
1.00 −0.233 0.586 0.792 0.783 0.017 1.777

OO-REMP

0.00 −0.249 0.600 0.847 0.837 0.121 1.900
0.05 −0.260 0.559 0.809 0.806 0.134 1.877
0.20 −0.275 0.507 0.765 0.772 −0.023 1.856
0.25 −0.282 0.500 0.758 0.768 −0.005 1.861
0.30 −0.290 0.494 0.753 0.767 0.010 1.871
1.00 −0.679 0.732 0.868 1.064 −0.280 2.454

CCSD(T) −0.286 0.559 0.835 0.837 0.052 2.013

aug-cc-pwCVQZ

REMP

0.00 0.026 0.659 0.816 0.769 0.276 1.493
0.05 0.020 0.634 0.797 0.751 0.235 1.470
0.20 0.020 0.600 0.780 0.735 0.219 1.436
0.25 0.019 0.596 0.778 0.734 0.237 1.433
0.30 0.018 0.596 0.776 0.732 0.243 1.432
1.00 −0.129 0.590 0.785 0.751 0.054 1.638

OO-REMP

0.00 −0.120 0.606 0.820 0.782 0.236 1.736
0.05 −0.134 0.569 0.785 0.752 0.218 1.715
0.20 −0.154 0.520 0.744 0.718 0.089 1.700
0.25 −0.162 0.516 0.737 0.713 0.106 1.707
0.30 −0.171 0.511 0.732 0.711 0.120 1.717
1.00 −0.565 0.654 0.819 0.957 −0.169 2.304

CCSD(T) −0.168 0.560 0.808 0.780 0.079 1.852

overestimates the antisymmetric HSiCl stretching vibration by only
45 cm−1. Further comparing orbital-optimized methods to their
non-orbital-optimized counterparts, one finds that MP2 actually
does not benefit from orbital optimization at all. Depending on
the basis set, the largest outliers of OO-MP2 amount to almost−1100 cm−1 in the case of the O+2 cation and the aug-cc-pwCVDZ
basis set. This large error cannot only be attributed to the basis set
as also the aug-cc-pwCVQZ basis leads to an underestimation of
876 cm−1. Canonical MP2 exhibits an error of “only” ≈−400 cm−1.
OO-REMP(0.10)/aug-cc-pwCVTZ, on the other hand, is off by only
15 cm−1, showing that the huge deviation can be attributed nei-
ther to a bad literature value nor to a general inapplicability of
single reference methods. In a set of 81 entries, a single entry also
does not have enough weight to completely distort the statistics and
there are actually several cases where MP2 outperforms OO-MP2.
That being said, one should keep in mind that canonical MP2 still

exhibits mean absolute errors of more than 40 cm−1. Pure RE [i.e.,
CEPA/0(D)], on the other hand, does benefit from orbital optimiza-
tion. In the case of the aug-cc-pwCVTZ basis, the MAD is virtually
the same (17 cm−1 in both cases), but the RMSD and the largest
outlier decrease significantly upon orbital optimization: While
REMP(0.0)/aug-cc-pwCVTZ overestimates the stretching vibration
of the OF radical by 292 cm−1, OO-REMP(0.0)/aug-cc-pwCVTZ
underestimates the same vibration by only 88 cm−1. For A > 0,
the statistical descriptors of OO-REMP, furthermore, improve,
while they deteriorate for canonical REMP, and up to A ≈ 0.50,
there is always a benefit associated with performing an orbital
optimization.

To summarize the results, one finds that—depending on the
required accuracy—both REMP and OO-REMP may be used for
predicting harmonic vibrational frequencies but that OO-REMP
delivers significantly better results. The optimal REMP mixture is
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TABLE IX. Experimental reference data for the harmonic vibrational wavenumber benchmark set. If not mentioned otherwise,
elemental symbols indicate the isotope with the highest natural abundance. Degenerate normal modes are given only once.
The atomic masses used by us are given in the supplementary material.

Molecule ω (cm−1) Source Molecule ω (cm−1) Source

AlD 1211.774 02(15) 83 D2 3115.50(9) 83
AlH 1682.374 74(3)1 83 H2O 1648.47 84
Ar2 30.68(8) 85 3832.17 84
BF 1402.158 65(26) 83 3942.53 84
BH 2366.7296(16) 83 H2S 1214.5 86
C2H2 624.02 87 2721.9 86

746.70 87 2733.4 86
2010.70 87 DCl 2145.1326(11) 83
3415.35 87 HCl 2990.9248(15) 83
3496.91 87 HCN 727.24 88

C2H4 842.9 89 2128.18 88
958.8 89 3440.05 88
968.7 89 DF 3000.3 90

1043.9 89 HF 4138.3850(7) 83
1244.9 89 HSiCl 525.0 75
1369.6 89 807.9 75
1473.0 89 2004.3 75
1654.9 89 Li2 351.4066(10) 83
3146.9 89 LiF 910.572 72(10) 83
3152.5 89 LiD 1054.939 73(32) 83
3231.9 89 LiH 1405.498 05(7)6 83
3234.3 89 LiO 814.62(15) 83

CF 1307.93(37) 83 N2 2358.57(9) 83
CH 2860.7508(98) 83 N+2 2207.0115(60) 83
CD 2101.051 93(55) 83 NF 1141.37(9) 83
CH2O 1190.9 91 ND 2399.126(30) 83

1287.7 91 NH 3282.72(10) 83
1562.6 91 NH3 1022 92
1763.7 91 1691 92
2944.3 91 3506 92
3008.7 91 3577 92

CH4 1367.4 93 NO 1904.1346(18) 83
1582.7 93 O2 1580.161(9) 83
3025.5 93 O+2 1905.892(82) 83
3156.8 93 OF 1053.0138(12) 83

Cl2 559.751(20) 83 OH 3737.76(18) 83
CN 2068.648(11) 83 PN 1336.948(20) 83
CO 2169.755 89(8) 83 SiH2 1020.49 94
CO+ 2214.127(35) 83 2065.65 94
CS 1285.154 64(10) 83 2076.55 94
H2 4401.213(18) 83 SiO 1241.543 88(7) 83
HD 3813.15(18) 83

in close agreement with the result for the structure benchmark, but
poorer agreement with the thermochemistry benchmarks performed
earlier. In contrast, the best mixture for thermochemistry [OO-
REMP(0.20)] also delivers quite accurate vibrational frequencies in
conjunction with sufficiently large basis sets.

A comparison to other methods and literature results is difficult
as the current set has not been investigated previously. Byrd et al.57

defined a subset of their radical set, which contains only harmonic
vibrational frequencies. For this set, they find that UMP2/cc-pVTZ
delivers an MAD of 337 cm−1, while UB3LYP/cc-pVTZ achieves
71 cm−1, UCCSD(T)/cc-pVTZ yields 64 cm−1, and ROCCSD(T)/cc-
pVTZ achieves 27 cm−1. Pawłowski et al.,95 on the other hand, found
that for a small set of small closed shell molecules, CCSD(T)/cc-
pCVTZ reaches an MAD of 13.7 cm−1, while CCSD(T)/cc-pCVQZ
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TABLE X. Statistics for the harmonic vibrational frequency benchmark set, aug-cc-pwCVXZ basis set family. Average over
81 of the 83 vibrations in Table IX (CN and CO+ excluded). All error measures are in cm−1. The complete tables can be
found in the supplementary material.

Method A MSD MAD σ RMSD Median ∣Δmax∣
aug-cc-pwCVTZ

REMP

0.00 7.7 17.3 36.9 37.4 1.7 320.0
0.05 12.8 18.1 35.5 37.5 5.9 307.1
0.10 16.6 20.4 34.7 38.3 13.0 298.6
0.15 19.6 22.4 34.3 39.3 15.4 295.7
0.20 22.1 24.2 34.2 40.5 18.6 294.3
1.00 13.3 47.8 78.0 78.6 13.0 731.8

OO-REMP

0.00 −9.6 17.2 20.9 22.9 −9.4 131.8
0.05 −3.3 13.1 16.9 17.2 −3.1 97.2
0.10 1.3 11.8 15.3 15.3 2.2 77.2
0.15 4.6 12.0 14.8 15.5 3.7 77.3
0.20 7.0 13.1 15.3 16.7 6.4 79.9
1.00 −23.6 64.7 135.4 136.6 5.7 1097.7

aug-cc-pwCVQZ

REMP

0.00 14.7 19.6 33.6 36.5 6.3 267.7
0.05 19.6 22.0 32.9 38.1 11.1 264.1
0.10 23.7 25.4 33.1 40.6 17.4 262.5
0.15 26.2 27.6 32.2 41.3 21.1 262.0
0.20 28.4 29.7 32.0 42.6 24.8 262.5
1.00 18.5 47.5 72.6 74.4 21.2 659.4

OO-REMP

0.00 −1.5 14.9 20.0 19.9 −4.5 141.9
0.05 4.4 12.5 17.1 17.5 1.4 110.3
0.10 8.8 13.2 15.8 18.0 6.8 88.9
0.15 11.9 15.1 15.3 19.3 11.5 83.7
0.20 14.3 16.9 15.4 20.9 15.4 86.2
1.00 −16.2 62.1 124.8 125.1 7.6 987.4

even achieves 9.4 cm−1. Our results are similar to those of Bozkaya
and Sherrill37 who found slightly smaller mean absolute errors for
CEPA/0(D) and OCEPA/0(D), but their set only comprised closed-
shell molecules. They, furthermore, found an MAD of 8 cm−1

for CCSD(T)/cc-pCVQZ on their benchmark set, which is only
marginally better than the 12 cm−1 of OO-REMP(0.10)/aug-cc-
pwCVTZ on our probably more difficult benchmark set. Tentscher
and Arey55 calculated harmonic vibrational wavenumbers for a set
of small radical species. The only method providing an MAD below
10 cm−1 was an additive scheme termed CCSDTQex. They, further-
more, found that coupled cluster methods with perturbative triples
based on ROHF of Brueckner orbitals provide significantly better
results (MAD < 20 cm−1) than those employing UHF references
(MAD > 40 cm−1). Coupled cluster methods with up to doubles
and MP2 derivatives lead to MADs of at least 40 cm−1, and DFT
with the exception of B2PLYPD performs even worse. Wennmohs
and Neese96 assessed the performance of a variety of coupled-pair
type methods in conjunction with the QZVP basis on the basis of

small main-group diatomics. With the exception of CCSD(T), none
of the tested methods was able to achieve an MAD below 20 cm−1.
Bozkaya,97 furthermore, benchmarked MP2, MP3, OMP3, CCSD,
and CCSD(T) together with the cc-pCVQZ basis for a set of 17
open shell diatomics. For this rather difficult set, he found that
even CCSD(T) yields an MAD of 52 cm−1 and all other methods
perform significantly worse. While these sets comprise harmonic
vibrational frequencies of different molecules, the respective per-
formance of canonical MP2 can be used for roughly standardizing
the difficulty in the sets. It is fair to say that OO-REMP belongs to
the top-performing methods with n6 scaling behavior for predicting
harmonic vibrational frequencies.

No attempts were made to determine empirical scaling fac-
tors, which align calculated harmonic frequencies to experimental
fundamental frequencies.

In short, it was found that REMP(0.20) provides an MAD of≈30 cm−1, while OO-REMP(0.20) yields ≈15 cm−1 depending on the
basis set.
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FIG. 5. Graphical representation of the harmonic vibrational wavenumber errors of REMP and OO-REMP for the vibrational frequency set. Average over 80 normal modes
from Table IX excluding CN and CO+. Reference: best available experimental/semi-experimental estimate. The dots indicate TZ basis sets; the triangles indicate QZ basis
sets. The results for the cc-pVXZ family are shown in red, those for cc-pwCVXZ are shown in green, and those for aug-cc-pwCVXZ are shown in blue. (a), (c), and (e)
REMP. (b), (d), and (f) OO-REMP.

D. Dipole moments
If one is interested in the quality of an approximate wave-

function, the best reference would, of course, be a wavefunction
computed by a high-level method, ideally full configuration inter-
action (FCI). We initially performed such a comparison for REMP
wavefunctions and a set of small molecules.29 The obvious drawback
is that FCI and close-enough approximations are only in range for
very small molecules. Moreover, it is not completely straightforward
to directly compare two wavefunctions with each other.

It is, thus, convenient to analyze some substitute for the wave-
function. For the present purpose, the one-particle density and
observable properties calculated thereof like the dipole moment rep-
resent an obvious choice. The molecular dipole moment can, thus,
be used as a proxy measure to judge the quality of a wavefunction,
as has been done before; see, e.g., Ref. 98. Note that for the refer-
ence data used in the following, we compare the absolute value of
the dipole moment vector to its reference value.

The statistical analysis of the dipole moment error makes use
of some additional relative measures: mean signed relative error
(MSRE), mean absolute relative error (MARE), root mean square
relative error (RMSRE), mean signed regularized relative error

(MSRRE), mean absolute regularized relative error (MARRE), and
root mean square regularized relative error (RMSRRE). While the
plain relative errors are always with respect to the reference value,
the regularized errors are defined as μ−μref

max(μref ,1 D) × 100 %, as proposed
by Hait and Head-Gordon.99

The performance of REMP and OO-REMP to predict dipole
moments was evaluated with two different benchmark sets. The first
(and smaller) set is the S20 set by Bozkaya et al.100 The set consists
of 20 small and rather rigid closed shell molecules for which highly
accurate experimental dipole moments are available. Bozkaya et al.
computed CCSD(T)/CBS dipole moments from aug-cc-pVQZ and
aug-cc-pV5Z results, showing that CCSD(T) is capable of reaching
a mean absolute error as low as 0.016 D for this set, translat-
ing to a mean absolute relative error of 1.95%. We used their
DF-CCSD(T)/aug-cc-pV5Z structures to compute REMP/aug-cc-
pV5Z(-h) and OO-REMP/aug-cc-pV5Z(-h) dipole moments. REMP
dipole moments were evaluated by numerical differentiation (three-
point central differences) of the total energy with respect to an exter-
nal electrical field using field increments of 1.0 ⋅ 10−4 a.u (=̂5.142⋅ 107 V m−1), while OO-REMP dipole moments were evaluated
fully analytically from the converged one-particle density matrix.

J. Chem. Phys. 157, 104111 (2022); doi: 10.1063/5.0105628 157, 104111-18

Published under an exclusive license by AIP Publishing



The Journal
of Chemical Physics ARTICLE scitation.org/journal/jcp

TABLE XI. Errors for the S20 dipole moment benchmark set. All absolute errors are in debye relative to the experimental data given in Ref. 100; all relative errors are in %.
The basis set for REMP/OO-REMP: aug-cc-pV5Z(-h). Complete tables and original data may be found in the supplementary material. The average dipole moment in this set is
1.63 D, and six values are below and 14 above the regularization threshold of 1 D.

A MSD (D) MAD (D) RMSD (D) MSRE (%) MARE (%) RMSRE (%) MSRRE (%) MARRE (%) RMSRRE (%)

REMP

0.00 0.018 0.032 0.053 4.68 9.34 26.93 1.62 2.56 4.75
0.20 0.028 0.032 0.042 4.44 5.34 14.58 1.89 2.14 3.17
0.25 0.029 0.031 0.041 4.36 4.49 12.09 1.90 2.03 2.90
0.30 0.029 0.031 0.041 4.28 4.38 9.98 1.89 1.99 2.70
0.35 0.030 0.031 0.041 4.18 4.27 8.51 1.87 1.96 2.57
0.40 0.030 0.031 0.042 4.08 4.17 8.03 1.84 1.93 2.52
0.60 0.028 0.034 0.051 3.58 6.04 15.17 1.60 2.14 3.18
0.80 0.023 0.044 0.069 2.93 10.61 27.52 1.22 3.03 4.78
1.00 0.018 0.055 0.087 3.94 14.00 37.17 0.99 3.90 6.15

OO-REMP

0.00 0.010 0.027 0.041 3.63 6.65 18.96 1.10 2.04 3.56
0.20 0.017 0.023 0.027 2.70 3.02 5.93 1.15 1.47 1.86
0.25 0.017 0.022 0.027 2.43 2.72 4.84 1.10 1.38 1.71
0.30 0.016 0.022 0.028 2.14 2.84 6.21 1.02 1.35 1.75
0.35 0.015 0.023 0.030 1.83 3.93 9.03 0.92 1.47 1.97
0.40 0.014 0.024 0.034 1.50 5.08 12.43 0.81 1.62 2.34
0.60 0.005 0.038 0.056 −0.14 10.52 28.42 0.17 2.69 4.58
0.80 0.003 0.045 0.068 4.83 9.82 28.89 0.39 2.94 4.57
1.00 −0.001 0.066 0.104 11.46 15.65 42.88 0.64 4.44 7.00
HFa 0.132 0.177 0.226 22.24 26.99 73.63 7.54 11.12 15.75
B3-LYPa 0.016 0.050 0.068 −2.41 6.16 13.66 0.21 3.09 4.41
CCSDa 0.028 0.042 0.061 4.39 9.21 24.21 1.69 2.97 4.69
CCSD(T)a 0.000 0.016 0.020 −0.70 1.95 3.68 0.00 1.01 1.39
aData taken from Table 2 of Ref. 100.

Canonical REMP calculations employ standard frozen core set-
tings, while OO-REMP calculations correlate all electrons. We also
evaluated analytical dipole moments from unrelaxed REMP one-
particle densities but found the errors to be almost as large as the
Hartree–Fock ones, which is unacceptable. No result will, thus, be
presented for this approach.

An overview of the results for REMP and OO-REMP and other
methods is presented in Table XI.

Figure 6 shows a graphical representation of the performance
of REMP and OO-REMP for the S20 benchmark set. Turning to
canonical REMP first [Fig. 6(a)], one finds a very shallow minimum
in the MAD spreading from A = 0 to A = 0.6 with a tiny maximum
at A = 0.1 and a very flat minimum at A = 0.5. On average, the
REMP/aug-cc-pV5Z(-h) dipole moments in this range are off by≈0.03 D. Compared to the results of Bozkaya et al.,100 this is already
better than all tested density functionals and CCSD (see Table XI).
Interestingly, our MP2 results (A = 1.0) almost coincide with those
of Bozkaya et al. (0.055 vs 0.054 D) although we used CCSD(T)
geometries for REMP, while they used MP2 geometries for MP2. The
RMSD exhibits a more pronounced minimum located at A = 0.3.
As the RMSD is usually dominated by outliers, it is interesting to
identify these: Up to A = 0.25, it is N2O that dominates the statistics

with errors of up to 0.18 D (at A = 0.00). Above A = 0.25, it is the CS
molecule whose error steadily increases up to 0.30 D at A = 1.00. At
A = 0.25, the errors of both molecules are moderate (0.09 D for N2O
and 0.08 D for CS).

The optimal mixing ratio for canonical REMP (A = 0.30) is
not completely in line with what we found earlier29,30 for the wave-
function itself, reaction energies, and transition barriers, where the
optimal A rather turned out to be ≈0.15 with some scatter. If the
dipole moment is considered as a proxy for the quality of the
wavefunction itself, there is some discrepancy between our prior
results29 and the data presented herein, concerning the question
of which choice of A leads to the smallest wavefunction error. On
the other hand, does the S20 set feature quite some molecules that
can be considered to be multireference species, thus distorting the
analysis.

In contrast for OO-REMP [Fig. 6(b)], one finds that the mini-
mum of the flat mean absolute deviation is located at A ≈ 0.30 and,
thus, in rather close agreement with the best performing mixing ratio
of our previous investigations. The MAD amounts to 0.022 D, which
is better than the parent methods OCEPA (0.027 D) and OMP2
(0.066 D), better than any canonical REMP mixture, and close to
CCSD(T)/CBS (0.016 D). Additionally, the previously best mixture
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FIG. 6. Deviation of the calculated
dipole moments of the S20 set from the
experimental reference, absolute errors.
The mean signed deviation is depicted
by blue circles with the error bars indi-
cating one standard deviation; the mean
absolute deviation is depicted as green
squares. The mean absolute deviation
of CCSD(T)/CBS is indicated as the
red solid line. (a) Canonical REMP/
aug-cc-pV5Z(-h). (b) OO-REMP/aug-
cc-pV5Z(-h). All errors are in debye.
Numerical values can be found in the
supplementary material. Experimental
and CCSD(T)/CBS dipole moments
were taken from Ref. 100.

(A = 0.20) performs only insignificantly worse with an MAD of
0.023 D. Moreover, one finds that the RMSD has its minimum at
A = 0.25. The RMSD is again mainly dominated by CS and N2O.
All in all, one finds that the findings of the previous investiga-
tions are confirmed regarding the optimal mixing and the overall
accuracy.

The experimental dipole moments span almost two orders of
magnitude, reaching from 0.11 D (CO) to 3.03 D (CH3CN). It is,
thus, also crucial to investigate relative errors. Figure 7 depicts the
relative signed (MSRE) and unsigned (MARE) errors of REMP and
OO-REMP. Analyzing the relative errors leads to the same con-
clusions as before. Canonical REMP [Fig. 7(a)] exhibits again a
flat minimum in the MARE curve reaching from A = 0.20–0.50.
The absolute relative error in this range amounts to 4%–5%, which
is already fairly accurate. Orbital optimization [Fig. 7(b)] again
improves on this by pushing the relative error down to 2.72% at
A = 0.25. Quite satisfactorily, one finds that the regions where the
absolute and relative errors become minimal coincide, showing that
OO-REMP with appropriate mixing correctly predicts both small

and large dipole moments. For comparison, the mean absolute rela-
tive error of CCSD(T)/CBS amounts to 1.95%. Reanalyzing the data
of Bozkaya et al.,100 one finds that on a relative scale, CCSD and MP2
are off by at least 9% and that B3LYP is still the best-performing
functional with a mean absolute relative error of 6.2%.

Hait and Head-Gordon99 proposed to use regularized relative
errors for assessing dipole moments to attenuate the influence of
data points with small reference values. In addition to the plain rel-
ative errors, we computed regularized errors for both REMP and
OO-REMP (cf. Fig. 8). As proposed in Ref. 99, a regularization
parameter of 1 D was used. Regularization does not significantly
change the general outcome. The mean absolute regularized relative
error (MARRE) of REMP becomes minimal at A ≈ 0.50, amounting
to 1.88%, whereas the root mean square regularized relative error
(RMSRRE) reaches its minimum of 2.52% at A = 0.40. OO-REMP
achieves a MARRE of 1.35% at A = 0.30 and a RMSRRE of 1.71%
at A = 0.25. For comparison, CCSD(T)/CBS reaches an MARRE of
1.01% and an RMSRRE of 1.39%. The conclusions that can be drawn,
thus, do not crucially depend on the weighting (by regularization)

FIG. 7. Deviation of the calculated dipole
moments of the S20 set from the exper-
imental reference, relative errors. The
mean signed relative error is depicted
by blue circles with the error bars indi-
cating one standard deviation; the mean
absolute relative error is depicted as
green squares. The mean absolute rel-
ative error of CCSD(T)/CBS is indi-
cated as the red solid line. (a) Canon-
ical REMP/aug-cc-pV5Z(-h). (b) OO-
REMP/aug-cc-pV5Z(-h). All errors are
in percent. Numerical values can be
found in the supplementary material.
Experimental and CCSD(T)/CBS dipole
moments were taken from Ref. 100.
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FIG. 8. Deviation of the calculated dipole
moments of the S20 set from the exper-
imental reference, regularized relative
errors. The mean signed regularized rel-
ative error is depicted by blue circles
with the error bars indicating one stan-
dard deviation; the mean absolute reg-
ularized relative error is depicted as
green squares. The mean absolute reg-
ularized relative error of CCSD(T)/CBS
is indicated as the red solid line. (a)
Canonical REMP/aug-cc-pV5Z(-h). (b)
OO-REMP/aug-cc-pV5Z(-h). All errors
are in percent. Numerical values can
be found in the supplementary material.
Experimental and CCSD(T)/CBS dipole
moments were taken from Ref. 100.

of specific data points. The minima with respect to a change in the
REMP mixing parameter A are found at essentially the same location
regardless of whether regularized or “pure” relative errors are con-
sidered, but upon regularization, the performance of CCSD(T)/CBS
and OO-REMP is even more similar. Compared to CCSD, the per-
formance of OO-REMP is really impressive. Both methods do have
a formal n6 scaling and require a similar number of FLOPs, but
OO-REMP(0.25) is superior to CCSD in every single figure of merit
shown in Table XI.

Analyzing the sign of the errors, one finds that especially canon-
ical REMP on average slightly overestimates dipole moments. This
implies that REMP describes bonds on average as too ionic, implying
that the too ionic Hartree–Fock reference is not corrected com-
pletely. Orbital optimization does a decent job here; at the mixing
ratio where the MAD becomes minimal, the mean signed deviation
of OO-REMP is significantly smaller than its canonical counter-
part corresponding to a smaller systematic error. OO-REMP still
overestimates the dipole moment but to a smaller extent than canon-
ical REMP. Orbital optimization, thus, corrects the too ionic HF
reference toward a more covalent picture.

All in all, one finds that CCSD(T) is still a little bit more accu-
rate than OO-REMP regarding dipole moments although at the
price of a higher computational cost. It, thus, seems to be legitimate
to use CCSD(T) as a reference method for benchmarking OO-REMP
when no experimental data are available although care has to be
taken to not over-interpret the results.

The second test set investigated in this section is a large bench-
mark set by Hait and Head-Gordon, which previously was used
to assess various density functionals.99 It consists of 152 small
closed and open shell molecules for which accurate reference dipole
moments were calculated at the CCSD(T)/CBS level of theory. Given
that orbital optimized REMP performed much better than canonical
REMP for dipole moments, it was decided to only test the former
with the larger benchmark set.

OO-REMP/aug-cc-pCVQZ dipole moments were calcu-
lated and compared to CCSD(T)/aug-cc-pCVQZ results [termed
CCSD(T)/4Z] provided in Ref. 99. All structures and reference
dipole moments were taken from Ref. 99. From the original set, two
molecules had to be excluded. The first one is the ozone molecule,

which was excluded due to the known problem that the orbital
optimization does not converge for A < 0.15. Ozone is a genuine
multireference case, and it should be treated as such. The second
molecule that was excluded is singlet methylene (1CH2). There
exists a broken symmetry determinant with mz = 0 originating from
a stability analysis, which reproduces the UHF/aug-cc-pCVQZ
dipole moment given by Hait and Head-Gordon. The α and β spin
HOMOs are roughly + and − linear combinations of the 3a1 and 1b1
orbitals, thus resembling the open shell singlet. This determinant,
however, has an Ŝ 2 expectation value of 0.72 and is, thus, all but a
pure spin singlet. It is questionable whether even CCSD(T) is able to
cope with such an amount of spin contamination, thus questioning
the validity of this dipole moment as a proper reference value for
the dipole moment of singlet methylene. OO-REMP behaves non-
deterministic as depending on the orbitals used to seed the orbital
optimization (either said UHF orbitals or orbitals preoptimized with
another A value), it fails to converge around A = 0.05, converges
to a state that has still some spin contamination, or collapses to a
pure closed-shell spin singlet with vastly too large dipole moment.
For larger A values and if the orbitals stay spin-contaminated,
the OO-REMP results coincide reasonably well with CCSD(T)
(numbers are provided in the supplementary material). The whole
set of (now) 150 molecules can be broken down into a subset
consisting of proper closed shell singlet [molecules where a RHF
determinant is stable, non-spin-polarized (NSP), 81 molecules] and
molecules that possess an open shell ground state Hartree–Fock
wavefunction, either due to having a higher multiplicity than singlet
or because an RHF determinant exhibits a triplet instability, leading
to a spin-contaminated open shell singlet [spin-polarized, (SP), 69
molecules].

The analysis was now focused around A = 0.20 as the previous
results have shown that this range provides the best results.

OO-REMP results for the complete set for a selection of mixing
ratios are shown in Table XII, Tables XIII and XIV list results for the
NSP and SP subset, respectively.

Figure 9 shows the average signed and absolute deviations
of the OO-REMP/aug-cc-pCVQZ dipole moments from their
CCSD(T)/aug-cc-pCVQZ counterparts. As can be seen, there is
again a substantial improvement by hybridization compared to the
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TABLE XII. Errors for the HHG152 dipole moment benchmark set. All absolute errors are in debye relative to the CCSD(T)/aug-cc-pCVQZ data given in Ref. 99; all relative errors
are in %. The basis set for REMP/OO-REMP: aug-cc-pCVQZ. Complete tables and original data may be found in the supplementary material. Average over 150 molecules. The
average reference dipole moment amounts to 2.06 D; 51 values are below and 99 above the regularization threshold of 1 D.

A MSD (D) MAD (D) RMSD (D) MSRE (%) MARE (%) RMSRE (%) MSRRE (%) MARRE (%) RMSRRE (%)

OO-REMP

0.00 −0.005 0.031 0.054 −0.31 3.87 8.94 −0.33 1.96 3.39
0.20 0.004 0.021 0.035 −0.39 2.71 8.63 0.12 1.22 2.10
0.25 0.004 0.021 0.035 −0.26 2.66 8.29 0.16 1.23 2.17
0.30 0.004 0.021 0.036 0.13 2.47 6.26 0.17 1.27 2.31
0.35 0.004 0.022 0.039 0.52 2.59 6.59 0.17 1.34 2.51
0.40 0.003 0.024 0.042 0.93 3.19 9.49 0.15 1.45 2.75
0.60 −0.002 0.035 0.062 2.68 6.84 30.05 −0.07 2.27 4.06
0.80 −0.012 0.055 0.091 4.73 11.61 57.90 −0.51 3.52 5.85
1.00 −0.027 0.082 0.132 7.75 16.98 92.48 −1.20 5.11 8.22

MP2a 0.155 0.207 0.688 17.43 27.50 109.71 8.22 11.96 36.54
CCSDa 0.035 0.045 0.062 4.47 7.47 28.88 1.93 2.71 3.83
aData taken from the supplementary material of Ref. 99.

parent methods. Judged by the mean absolute deviation [Fig. 9(a)],
OO-REMP(0.20) again delivers the best performance with an MAD
of 0.021 D located in a shallow minimum ranging from A ≈ 0.10
–0.30. The MAD is improved by almost a factor of two compared
to OO-RE (0.034 D) and by a factor of four compared to OO-
MP2 (0.082 D). The same conclusions hold if the set is decomposed
into its subsets of 81 closed-shell and 69 spin-polarized systems.
For the closed-shell molecules, the best performance is again pro-
vided by A = 0.24 with an MAD of 0.012 D. The performance for
spin-polarized molecules is significantly worse; the MAD becomes
minimal at A = 0.19 (0.030 D), but the minimum is extremely flat
and the MAD is essentially the same up to A ≈ 0.35. It is, further-
more, interesting to note that—analogously to the S20 set—dipole

moments of closed shell molecules are systematically overestimated,
while dipole moments of open shell molecules are systematically
underestimated.

Analyzing the root mean square deviation (which is more
sensitive to outliers than the MAD) leads to essentially the same
conclusions. The overall smallest RMSD is found at A = 0.22, while
the individually smallest RMSDs for the two subsets are found at
A = 0.22 and A = 0.23. Judged by the RMSD, the closed-shell and the
spin-polarized subsets do not demand a different treatment and the
globally optimal mixing parameter works for both closed and open
shell molecules.

Sarkar et al.101 analyzed the performance of several
wavefunction-based methods to predict ground state dipole

TABLE XIII. Errors for the closed shell (non-spin-polarized) molecules of the HHG152 dipole moment benchmark set (81 molecules). All absolute errors are in debye relative to
the CCSD(T)/aug-cc-pCVQZ data given in Ref. 99; all relative errors are in %. The basis set for REMP/OO-REMP: aug-cc-pCVQZ. Complete tables and original data may be
found in the supplementary material.

A MSD (D) MAD (D) RMSD (D) MSRE (%) MARE (%) RMSRE (%) MSRRE (%) MARRE (%) RMSRRE (%)

OO-REMP

0.00 0.004 0.022 0.032 −0.07 1.65 3.45 0.14 1.20 1.86
0.20 0.010 0.013 0.018 0.58 0.75 1.14 0.47 0.61 0.83
0.25 0.010 0.013 0.018 0.68 0.82 1.75 0.48 0.61 0.84
0.30 0.010 0.013 0.020 0.75 0.93 2.56 0.48 0.64 0.94
0.35 0.010 0.014 0.023 0.81 1.04 3.44 0.47 0.66 1.11
0.40 0.009 0.014 0.027 0.86 1.19 4.35 0.43 0.71 1.31
0.60 0.002 0.024 0.046 0.91 2.17 8.31 0.17 1.23 2.34
0.80 −0.009 0.039 0.074 0.78 3.49 12.81 −0.30 2.02 3.65
1.00 −0.025 0.060 0.111 0.46 5.14 18.01 −1.00 3.07 5.35

MP2a 0.026 0.041 0.080 2.72 3.69 14.67 1.24 2.06 3.97
CCSDa 0.034 0.040 0.056 1.46 3.04 6.65 1.69 2.12 2.99
aData taken from the supplementary material of Ref. 99.
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TABLE XIV. Errors for the open shell (spin-polarized) molecules of the HHG152 dipole moment benchmark set (69 molecules). All absolute errors are in debye relative to the
CCSD(T)/aug-cc-pCVQZ data given in Ref. 99; all relative errors are in %. The basis set for REMP/OO-REMP: aug-cc-pCVQZ. Complete tables and original data may be found
in the supplementary material.

A MSD (D) MAD (D) RMSD (D) MSRE (%) MARE (%) RMSRE (%) MSRRE (%) MARRE (%) RMSRRE (%)

OO-REMP

0.00 −0.015 0.042 0.072 −0.58 6.48 12.64 −0.88 2.88 4.57
0.20 −0.004 0.030 0.048 −1.54 5.02 12.66 −0.28 1.93 2.97
0.25 −0.003 0.030 0.048 −1.36 4.82 12.07 −0.23 1.95 3.06
0.30 −0.003 0.031 0.049 −0.61 4.28 8.81 −0.19 2.01 3.25
0.35 −0.003 0.032 0.051 0.18 4.40 8.97 −0.17 2.14 3.50
0.40 −0.003 0.035 0.055 1.01 5.54 13.17 −0.17 2.32 3.80
0.60 −0.007 0.049 0.076 4.75 12.32 43.39 −0.34 3.49 5.43
0.80 −0.016 0.074 0.108 9.37 21.15 84.23 −0.76 5.27 7.67
1.00 −0.031 0.107 0.153 16.31 30.89 134.95 −1.44 7.52 10.65

MP2a 0.306 0.401 1.011 34.69 55.45 160.97 16.41 23.59 53.71
CCSDa 0.036 0.050 0.068 8.01 12.67 41.97 2.21 3.39 4.62
aData taken from the supplementary material of Ref. 99.

FIG. 9. Deviation of the calculated dipole
moments of the Hait–Head-Gordon set
from the CCSD(T)/aug-cc-pCVQZ refer-
ence, absolute errors. The mean signed
deviation is depicted by blue circles with
the error bars indicating one standard
deviation; the mean absolute deviation
is depicted as red squares. (a) Com-
plete set of 151 molecules. (b) Closed
shell molecules only. (c) Spin polar-
ized/broken symmetry systems only. All
errors are in debye. Numerical val-
ues can be found in the supplementary
material.

moments on a set of 16 small molecules. They found that CCSD/aug
-cc-pVTZ (the best method with N6 scaling behavior investigated
in this contribution) yields an MAD of 0.025 D against FCI/CBS.
These results are qualitatively in line with the results from Table XII,
given that the two sets are completely different, and with Bozkaya’s
results for the S2 benchmark set. As OO-REMP clearly outperforms
CCSD in our investigations, it would also be interesting to assess its
performance on the set of Sarkar et al.101

Again, relative errors were calculated and are depicted in
Fig. 10. In the case of the relative errors, one finds a distinctly dif-
ferent behavior of the closed shell and the spin-polarized systems.
While the closed-shell systems exhibit minimal MAREs of less than
1% (0.74% at A = 0.19), the MARE of the spin-polarized systems
does not drop below 4.37% at A = 0.11; then, it raises again and
exhibits again a minimum at A = 0.30 (4.26%) after which it sharply
raises. The reason for the double minimum is discussed below. This
somewhat erratic behavior is caused by systems with small dipole

moment where small deviations lead to large relative errors. Nev-
ertheless, the overall MARE stays constantly below 3% over a wide
range of A values. For comparison, if the CCSD/aug-cc-pCVQZ
and MP2/aug-cc-pCVQZ results provided with Ref. 99 are used to
recalculate unregularized relative errors for the same selection of
molecules, one finds relative errors of 7.5% and 27.5%, respectively.
OO-REMP, thus, turns out to be robust for predicting small dipole
moments.

Again, regularized relative errors were also computed to ame-
liorate the influence of small reference dipole moments (see Fig. 11).
As a regularization parameter, again, 1 D was used. In contrast
to the unregularized relative errors, the curves visualizing the A
dependence are again completely smooth, showing that the some-
what erratic behavior of the raw relative errors can, indeed, be
attributed to systems with small reference dipole moments. The
regularized errors fully support the previous findings. The over-
all smallest mean absolute regularized relative error (MARRE) is
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FIG. 10. Deviation of the calculated
dipole moments of the Hait–Head-
Gordon set from the CCSD(T)/aug-cc-
pCVQZ reference, relative errors. The
mean signed relative error is depicted
by blue circles with the error bars indi-
cating one standard deviation; the mean
absolute relative error is depicted as
red squares. (a) Complete set of 151
molecules. (b) Closed shell molecules
only. (c) Spin polarized/broken symmetry
systems only. All errors are in percent.
Numerical values can be found in the
supplementary material.

found for A = 0.20 (1.22%). Limited to the closed shell molecules,
the smallest MARRE occurs at A = 0.25 (0.58%), while the MARRE
of the spin-polarized systems becomes minimal at A = 0.14 (1.91%).
This apparent discrepancy can be resolved by considering that the
minima are very flat in both cases and essentially show the same
behavior. Again, the root mean square regularized relative errors
(RMSRREs) do not lead to very different conclusions. Overall,
the minimum is found at A = 0.20 (2.10%), while the best perfor-
mance for the two subsets is obtained with A = 0.23 (0.79%) and
A = 0.18 (2.96%).

In summary, one finds that OO-REMP is capable of predict-
ing dipole moments for both non-spin-polarized and spin-polarized
systems although not at the same accuracy. The optimal choice of
the mixing parameter is essentially the same for both closed- and
open-shell molecules and coincides with the range that has been
shown to provide the best performance for other properties, namely,
0.20 ≤ A ≤ 0.25. While—depending on the error measure—dipole
moments of closed shell systems are predicted with an average error

of clearly less than 1%, the accuracy for open shell systems is about
2%. With respect to dipole moments, OO-REMP is, thus, clearly
superior to even the best tested density functionals in Ref. 99, as well
as MP2 and CCSD. So far, the only restriction is that it may only be
applied to proper single reference cases.

When looking for outliers, there is only a handful of molecules
where OO-REMP predicts dipole moments that are significantly
off. In the case of OO-REMP(0.20), outliers with deviations larger
than 0.05 D are BH (0.06), ClO2 (−0.06), CN (−0.10), H2O–Li
(0.07), HCHS (−0.05), HCP (0.05), HNO2 (−0.07), HPO (−0.20),
NaLi (−0.06), NO (0.06), NOCl (−0.15), NP (−0.09), PPO (0.15),
PS (−0.11), and SiO (0.08). Outliers where the regularized relative
error exceeds 5% are CN (−6.8%), HCP (5.4%), HPO (−7.5%), NaLi
(−6.2%), NO (5.5%), NOCl (−7.5%), PPO (7.9%), and PS (−11.0%).
Almost all of these are broken-symmetry cases where the success
of the UCCSD(T) reference cannot be guaranteed. A closer inspec-
tion and comparison to experimental data provided by Hait and
Head-Gordon in the supplementary material of Ref. 99 shows that

FIG. 11. Deviation of the calculated
dipole moments of the Hait–Head-
Gordon set from the CCSD(T)/aug-cc-
pCVQZ reference, regularized relative
errors. The mean signed regularized rel-
ative error is depicted by blue circles
with the error bars indicating one stan-
dard deviation; the mean absolute reg-
ularized relative error is depicted as
red squares. (a) Complete set of 151
molecules. (b) Closed shell molecules
only. (c) Spin polarized/broken symmetry
systems only. All errors are in percent.
Numerical values can be found in the
supplementary material.
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in some cases, there is no experimental value available to verify
the UCCSD(T) result. In certain cases, the OO-REMP(0.20)/aug-
cc-pCVQZ result is actually closer to the experimental value than
CCSD(T)/CBS (HCHS, NaLi, NOCl, NP). It can also not be excluded
completely that our initial Hartree–Fock calculations converged
to the wrong state especially in broken symmetry cases although
stability analyses was performed in doubt.

Both benchmark sets analyzed above do have a common weak
point: The sets list only the absolute values of the dipole moment
but not the components of the dipole vector. It is, thus, possible
that in cases where the direction of the dipole moment is not com-
pletely determined by symmetry such as for CH3OH or CH3SH, a
method may predict wrong components or the wrong direction of
the dipole moment but the correct absolute value. This is all but
unprecedented and, in fact, also happened in our investigation: for
example, the dipole moment of the N2O molecule calculated with
OO-REMP changed its sign while scanning through the A range,
leading to a double minimum when only the length of the dipole
vector is compared (A = 0.30 and A = 0.85). Given that A = 0.85
gives rather substandard performance in other cases, we assume
that A = 0.30 here provides the right answer for the right rea-
son. The ambiguity introduced by the loss of the sign/direction
of the dipole vector manifests as kinks in the curves of Figs. 6
and 7 or as double minima. The error seemingly decreases, but
the results are actually worse than indicated by the error measure
as the dipole moment now has the right length but the wrong
direction.

Broken down to the most important results, it was found that
REMP(0.20) has a relative error of ≈5%, while OREMP(0.20) and
CCSD(T) achieve 3% and 2%, respectively.

IV. SUMMARY AND OUTLOOK

We have investigated the capabilities of REMP and OO-REMP
to predict first-order properties of small closed- and open-shell
main-group molecules. It was found that, in principle, both REMP
and OO-REMP are capable of accurately predicting equilibrium
structures of these molecules. In the case of canonical REMP, the
best results are obtained with pure RE, but small admixtures of MP
do not lead to much worse results. Depending on the basis set, the
smallest achieved MAD was ≈0.3 pm. In the case of OO-REMP,
one finds significant improvements by hybridization and the small-
est MAD—obtained with a 80:20 mixture of RE:MP—amounts to
0.13 pm. It was found that CCSD(T) is only slightly more accu-
rate. For bond angles, one finds a somewhat erratic behavior, which
can partly be attributed to the lower reliability of the reference
data. Again, one finds that the orbital-optimized variant outper-
forms the canonical variant, leading to mean absolute deviations
of 0.2○.

In the case of harmonic vibrational frequencies, one again finds
no improvement by hybridization in the canonical case, but in the
orbital-optimized case, although the optimal mixture has a slightly
different composition. Both REMP and OO-REMP lead to minimal
MADs of less than 20 cm−1 with OO-REMP reaching an MAD as
low as 12 cm−1.

In the case of static dipole moments, both REMP and OO-
REMP benefit from hybridization with the latter being again

superior. It is shown that OO-REMP clearly outperforms B3LYP
and CCSD for dipole moments, yielding relative errors as low as 3%,
which is again almost as accurate as CCSD(T).

Although the optimal mixing ratio varies from property to
property, it is possible to identify a parameter range, which leads
to the best result. As the error curves as functions of the mix-
ing parameter A exhibit different slopes, it is possible to come up
with a globally optimal compromise. In the case of OO-REMP,
such a compromise would be A = 0.20 as it leads to optimal bond
lengths and dipole moments without sacrificing much accuracy for
bond angles. This choice also turned out to be essentially opti-
mal for thermochemistry30,31 and has, therefore, the potential to be
universally applicable.

During the course of this work, we found it difficult to com-
pile a set of molecules with high-quality experimental equilibrium
bond lengths and, especially, bond angles. Many structures that
one finds on the first attempt, e.g., in the NIST Computational
Chemistry Comparison and Benchmark DataBase (CCCBDB) do
not have a sufficient number of decimal places, are not given with an
experimental uncertainty, are of dubious provenance, or represent
averages of the vibrational ground state. The situation is especially
poor for bond angles. As they are naturally more flexible than bonds,
the respective errors are usually larger. Nevertheless, some authors
only publish bond lengths even if all necessary data for bond angles
would be available, too. We think that it is overdue to augment
the existing databases with high-quality (semiempirical) equilibrium
structures and their assigned errors if available.

In this and the preceding works, we have demonstrated that
OO-REMP has a predictional capacity nearly approaching that of
the gold standard of quantum chemistry [CCSD(T)]. This may
be of particular interest for the predictions of accurate molecu-
lar structures and properties as the relaxed densities determined in
OO-REMP allow for an efficient evaluation of gradients and other
first order properties, where the computational demand for these
properties is typically only a small fraction of the time required for
the energy evaluation. As a characteristic example, an OO-REMP
energy calculation of the ethene molecule in C1 symmetry with
the cc-pVTZ basis set required 121 s of CPU time, while the gra-
dient took only 20 s additionally [timings obtained on a single
core of an Intel Xeon E6252 Gold (Cascade Lake) processor of the
JUSTUS2 high-performance compute cluster]. The computationally
most dominant steps for the gradient evaluation are the formation of
the two-particle density matrix with four external indices, its trans-
formation to the AO basis, and sorting of the density matrix in the
AO basis.

Additionally, the REMP and OO-REMP approaches have clear
potential for further improvement. As before and in line with the
present observations, REMP tends to underestimate the absolute
correlation energy by 2%–5%.29 Thus, a modification of the unper-
turbed Hamiltonian that overcomes this small but systematic defi-
ciency, e.g., by incorporating spin-dependent terms as in the S2-PT
approach,102 seems to be an interesting research topic. Even more,
due to the success of the RE partitioning in multireference pertur-
bation theory,25,103–106 a multireference OO-REMP approach has a
high potential for becoming a very accurate and broadly applica-
ble quantum chemical approach. Ultimately, the implementation
of analytical derivatives107–110 for such an approach seems to be
promising. Work on these topics is in progress in our laboratory.
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A third extension would be second-order properties, such as NMR
shieldings, or frequency-dependent properties, such as excitation
energies or frequency-dependent polarizabilities. Last but not least,
higher orders in perturbation theory (REMP3 and OO-REMP3)
are viable as long as the perturbed wavefunction is restricted to
double excitations at most and might lead to even more accurate
results.

The REMP and OO-REMP implementation based on the PSI4
program package was made publicly available on GitHub48 as the
source code for everyone able to compile PSI4 from the source.

Note added in proof: The implementation of REMP and OO-
REMP in PSI4 without density fitting was meanwhile merged into
the master branch of PSI4 and will be availabe with the 1.7 release.
The implementation which makes use of density fitting for the two-
electron integrals was not yet merged but is also scheduled for the
1.7 release version.

SUPPLEMENTARY MATERIAL

See the supplementary material for the complete versions of
all tables and raw data for all graphs and further box plots for the
bond length, bond angle, and harmonic vibration sets. All optimized
structures for all methods are available as XMol .xyz files. Raw data
are available as .ods spreadsheets. Further raw data (output files, etc.)
are available upon request from the authors.
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12E. Soydaş and U. Bozkaya, “Accurate open-shell noncovalent interaction ener-
gies from the orbital-optimized Møller–Plesset perturbation theory: Achieving
CCSD quality at the MP2 level by orbital optimization,” J. Chem. Theory Comput.
9, 4679–4683 (2013).
13F. Neese, T. Schwabe, S. Kossmann, B. Schirmer, and S. Grimme, “Assessment of
orbital-optimized, spin-component scaled second-order many-body perturbation
theory for thermochemistry and kinetics,” J. Chem. Theory Comput. 5, 3060–3073
(2009).
14T. N. Lan and T. Yanai, “Correlated one-body potential from second-
order Møller-Plesset perturbation theory: Alternative to orbital-optimized MP2
method,” J. Chem. Phys. 138, 224108 (2013).
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