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Zusammenfassung in deutscher Sprache

Die Beobachtung und Beschreibung von solitären Flachwasserwellen in einem Kanal
hat im 19. Jahrhundert zur Formulierung der räumlich eindimensionalen Korteweg-de-
Vries-Gleichung (KdV) geführt. Ihre Verallgemeinerung auf 2 räumliche Dimensionen ist
die Kadomtsev-Petviashvili-Gleichung (KP). Beide Gleichungen sind dispersive nichtline-
are partielle Differentialgleichungen. Besondere Aufmerksamkeit hat bei ihrem Studium
die Tatsache erfahren, dass sie jeweils unendlich viele Erhaltungsgrößen und zugehörige
Symmetrien besitzen, was es erlaubt, sie als Teil einer integrablen Hierarchie von kom-
patiblen Gleichungen zu verstehen. Mittels der inversen Streutheorie und der Finite-Gap-
Methode kann eine weite Klasse von Lösungen beschrieben werden, die auch die anfänglich
beobachteten Solitonenwellen beinhaltet. Es ist bemerkenswert, dass Lösungen mit der
Finite-Gap-Methode durch Riemannsche Flächen parametrisiert werden.

Die vorliegende Arbeit beschäftigt sich mit dispersionslosen Versionen der integrablen
KdV- und KP-Hierarchie, die auf dem Weg der Mittelung von dispersiven Lösungen er-
halten werden. Dies liefert Hierarchien die wiederum integrabel sind, allerdings in einem
allgemeineren Sinne. Während beispielsweise die Solitonenlösungen der dispersiven KdV-
Gleichung stabil sind, tritt für die dispersionslose KdV-Gleichung das Phänomen brechender
Wellen auf. Zu dem algebraisch-geometrischen Datum einer Riemannschen Fläche in der
Finite-Gap-Methode kommen auf der dispersionslosen Seite algebraisch-geometrische und
differential-geometrische Strukturen auf dem Modulraum Riemannscher Flächen. Diese
Strukturen bilden den Hauptgegenstand dieser Arbeit. Dabei liegt das Augenmerk auf
der einfacheren gemittelten Version der KdV-Hierarchie, der sogenannten KdV-Whitham-
Hierarchie. Ihre Verallgemeinerung auf den KP-Fall wird als vereinheitlichender Rahmen
benutzt. Die Mittelung, die den Übergang von der KdV-Hierarchie zur KdV-Whitham-
Hierarchie ermöglicht, wird hier auf eine neue Weise durchgeführt. Dies liefert den einfach-
sten Fall in einer Klasse von Lösungen, die über die verallgemeinerte Hodograph-Methode
zugänglich sind. Als Hauptresultat werden Lösungen dieser Klasse mittels Gleichungen
beschrieben, die aus der klassischen Differentialgeometrie bekannt sind.
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CHAPTER 1

Introduction

The observation and description of solitary shallow-water waves led to the formulation
of the famous Korteweg-de Vries equation (KdV) and its generalization, the Kadomtsev-
Petviashvili equation (KP). They are dispersive and non-linear partial differential equations
(PDEs) in 1 + 1 dimensions and 2 + 1 dimensions, respectively, where the first number
refers to the spatial dimension and the second number to time. An aspect that has drawn
a lot of attention is that the KdV and KP equations possess infinitely many conserved
quantities and corresponding symmetries – giving rise to the structure of integrable hier-
archies. The present thesis is about dispersionless versions of these integrable hierarchies
which are obtained by averaging. They are again integrable, but in a more general way.
While the dispersive equations admit stable solitary waves as solutions, on the dispersion-
less side breaking waves occur. The theoretical description of dispersionless hierarchies
yields algebraic-geometric and differential-geometric structures on the spaces of the con-
served quantities of the dispersive hierarchies. These structures are the main subject of
the thesis. Its focus is on the more elementary averaged versions of the KdV hierarchy, but
often the averaged versions of the KP hierarchy are considered since they provide a unifying
framework. A new independent approach to obtain averaged versions of the KdV hierarchy
is presented and used to describe a class of solutions that are accessible by the generalized
hodograph method.

From Dispersive Equations to Dispersionless Analogues. On the side of disper-
sive equations, the 2 + 1-dimensional KP equation can be expressed in the form

(1.0.1) ∂x
(
∂tu+ u∂xu+ ∂3

xu
)

+ λ∂2
yu = 0

with λ = ±1. When asking for solutions that are constant in the spatial coordinate y, the
(dispersive) KdV equation [35] appears as the 1 + 1-dimensional reduction

(1.0.2) ∂tu+ u∂xu+ ∂3
xu = 0 .

The KdV equation is an example of a soliton equation and admits a broad class of exact
solutions by the inverse scattering transform [49, 50, 26, 46] and the finite gap method [47,
18]. Consecutively, the theory was generalized to other soliton equations, including the KP
equation, which Krichever [36, 37] established as the natural framework for the algebraic-
geometric finite gap method. The algebraic geometric data involved is a Riemann surface
of finite genus, called spectral curve. It is a constant of motion for the dynamics that
takes linear form on its Jacobian variety. For the KdV equation the finite gap method
yields solutions described by ordinary differential equations (ODEs), i.e. 1 + 0-dimensional
equations. In more detail this important class of solutions will be explained in Chapter 3
in a classical, but not so well-known way.

Dispersionless versions of the KdV and KP equations can be obtained by several ap-
proaches. A simple method leading to the dispersionless KdV equation uses that by the

11



12 1. INTRODUCTION

reparameterization x → εx, t → εt for ε > 0, the KdV equation turns out to be equivalent
to ∂tu+ u∂xu+ ε2∂3

xu = 0. In the limit ε→ 0 the dispersionless KdV equation (or inviscid
Burgers’ equation)

(1.0.3) ∂tu+ u∂xu = 0

appears. It is related to the averaging of finite gap solutions with spectral genus 0, as
demonstrated in the introductory example of Chapter 2. Solutions of Burgers’ equation
share some features with those of the dispersive KdV equation, but also lead to new phe-
nomena like breaking waves. Away from breaking points the simple method described at
the beginning of Chapter 2 provides solutions of (1.0.3).

Geometric Structures on the Moduli Space of Finite Gap Solutions. Other
approaches to derive dispersionless equations make use of the Krylov-Bogoliubov averaging
method [43, 44, 62] and the Wentzel–Kramers–Brillouin method (WKB), which are estab-
lished ways to approximate dynamics with oscillatory behavior. In [69] Whitham applied
averaging to different types of non-linear dispersive waves. In particular, for finite gap KdV
solutions with spectral genus 1 he obtained a diagonal hydrodynamic system of PDEs on the
3-dimensional parameter space of elliptic Riemann surfaces, now referred to as Whitham’s
equations. Analogous Whitham equations for KdV solutions from higher genus hyperel-
liptic spectral curves were described by Flaschka, Forest and McLaughlin [25] within an
algebraic-geometric framework that uses meromorpic differential forms on varying spectral
curves Γ. When for each Γ in the space of hyperelliptic Riemann surfaces, meromorphic
differential forms dΩ0(Γ) and dΩ1(Γ) on Γ are uniquely chosen by a normalization, then
the Whitham equations take the form of a conservation equation

(1.0.4) ∂TdΩ0 (Γ(X,T )) = ∂XdΩ1 (Γ(X,T )) .

It is understood here that the space of Riemann surfaces Γ is parameterized in some way.
Hence, the Whitam equation in conservation form is an implicit PDE for a map (X,T ) 7→
Γ(X,T ) with values in the parameter space. Moreover, in order to compare holomorphic
objects on varying Riemann surfaces it will be essential throughout this thesis that all
Riemann surfaces are equipped with a fixed chart at the point at infinity.

A differential-geometric framework for the KdV Whitham equations and similar equa-
tions was developed by Dubrovin and Novikov [20]. Their Hamiltonian formalism relates
Whitham’s hydrodynamic system of PDEs in 1 + 1 dimensions to certain flat Riemannian
metrics on the parameter space of elliptic Riemann surfaces. An analogous relation exists
also for higher spectral genus. Generically, all solutions of diagonal Hamiltonian systems
of hydrodynamic type can be described by Tsarev’s generalized hodograph method [65]. In
subsequent work crucial features of the differential-geometric approach were generalized to
the wider class of semi -Hamiltonian systems of hydrodynamic type [66].

For the KP equation Krichever applied the averaging method to finite gap solutions [38]
and interpreted the resulting equations in the algebraic-geometric framework of the uni-
versal Whitham hierarchy as a dynamics on the moduli space of Riemann surfaces with
punctures and infinite jets of charts [40]. Due to the jets, this space is infinite dimensional
and the PDEs appearing are integrable in the 2 + 1-dimensional hydrodynamic sense. Con-
sidering finite dimensional subspaces described by algebraic orbits provides a reduction to
1+1-dimensional hydrodynamic systems and allows again to construct solutions by the gen-
eralized hodograph method. The KdV Whitham equations are an example of an algebraic
orbit. In Chapter 2 the universal Whitham hierarchy will be explained in more detail, with
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a focus on how a hydrodynamic reduction yields a transition to the differential-geometric
side of algebraic orbits.

Averaging Methods for Finite Gap Solutions of the KdV Hierarchy. The
averaging procedure used to derive Whitham equations in the context of finite gap theory
usually involves the analysis of a multiscale system that results from coupling the “fast”
KdV dynamics with a “slow” dynamics of the spectral curve. With the spectral curve as a
constant of motion, also the integrability of the coupled system by the finite gap method
is lost. Extracting the “slow” dynamics by averaging over the “fast” dynamics is rather
complicated or often used as a mere heuristic, e.g. [25] addresses this issue by “its formal
justification by ‘two-timing’ methods is too long to reproduce here, and we state the method
as a prescription.” On the other hand, Krichever’s derivation in [38] is rigorous, but quite
intricate.

One aim of the present thesis is to circumvent the explicit averaging procedure on the
way from the KdV equation (1.0.2) to KdV Whitham equations (1.0.4) by using ideas
from the theory of adiabatic invariants. This direction was already indicated by Whitham
in [69] and was mentioned later on, e.g. in [40]. The basic idea, detailed in the following, is
that when perturbing a classical Hamiltonian system “slowly,” then its action variables are
adiabatic invariants [45, 4, 48]. By definition, adiabatic invariants change very little under
the perturbation. Demanding a perturbation to even preserve the action variables leads to
the notion of KdV Whitham deformations. It turns out that KdV Whitham deformations
induce solutions of the KdV Whitham equations. This relates to Krichver’s “trivial but
very useful” observation in [39] (see also Theorem 2 in [38] and [40]): the conservation
form (1.0.4) of the Whitham equations is the compatibility condition for the system of
differential equations {

∂XdS = dΩ0 ,

∂TdS = dΩ1 .
(1.0.5)

The generating differential form dS is the complex derivative of a generating function S
whose domain as subsets of the spectral curves and whose properties are yet to be deter-
mined. Here and in the following, the notation d(−) represents the complex derivatives
on the spectral curves alone (derivatives in other directions are usually written as partial
derivatives). It turns out that Whitham deformations yield particular generating differ-
ential forms that are defined on the underlying Riemann surface. In general, generating
functions are a powerful tool for the analysis and construction of solutions of the Whitham
equations.

Finite Gap Solutions of the KdV Hierarchy as a Classical Hamiltonian Sys-
tem. The first step, in order to apply adiabatic theory to finite gap solutions of KdV is to
understand, how these solutions correspond to solutions of classical Hamiltonian systems.
Since the work of Miura et al. [49, 50] the KdV equation is known to possess infinitely many
constants of motion, corresponding to infinitely many symmetries and respective compatible
higher time flows that form the KdV hierarchy [46, 1]. Compatibility means that a solution
of the KdV hierarchy with times t1 = x, t3 = t, t5, . . . yields a solution u = u(x, t, t5, . . . ) to
the original KdV equation (1.0.2) for any choice of parameters t5, t7, . . . , which are called
higher times. A (2n+ 1)-stationary reduction of the KdV hierarchy contains solutions con-
stant in times t2n+1 and higher [35, 55, 47]. This reduction converts the KdV hierarchy
into a system of ODEs whose constants of motion are encoded in the spectral curve from
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the finite gap soliton theory. For (2n + 1)-stationary real solutions, the spectral curve is
given in the form

(1.0.6) Γ =
{

(E, y) ∈ C2 | y2 + g(E) = 0
}
∪ {∞}

for a polynomial g(E) =
∏2n+1
j=1 (E − γj) with real roots γ1 < · · · < γ2n+1. Moreover, the

KdV dynamics can be interpreted as a finite dimensional completely integrable Hamiltonian
system. Its Arnold-Liouville tori are given by real subsets of n-fold products of copies of
the hyperelliptic spectral curves [15, 51, 52, 2, 3, 53]. Action-angle variables of this
Hamiltonian system are available explicitly via Jacobi inversion. The actions Ij are the
a-periods of the meromorphic differential form ydE on Γ

(1.0.7) Ij(g) = 2

∫ γ2j+1

γ2j

ydE

for j = 1, . . . , n. In Chapter 3 the details of the Hamiltonian formulation of the stationary
KdV hierarchy will be explained based mostly on work by S. I. Alber [2].

Application of Adiabatic Theory. In the second step, we consider perturbations
of finite gap solutions in the Hamiltonian formulation of the stationary KdV hierarchy.
The adiabatic theorem [48] can be applied to the actions of this completely integrable
Hamiltonian system. Generally, for an integrable Hamiltonian system with parameters and
a Hamiltonian flow in time t, this theorem guarantees that for a “slow” perturbation of
the parameters (i.e. a modulation depending on the “slow” time T = εt), the actions
I = I(T, ε) of the system remain uniformly close to a constant as the rate ε > 0 of the
modulation becomes smaller. Uniformly close here means that for a given ε the deviation is
bound independently of T = εt ∈ [0, 1] by some value ρ(ε). For the Hamiltonian formulation
of the stationary KdV hierarchy, the parameters are the coefficients of the polynomial g0 in

g(E) = g0(E) +
n−1∑
k=0

hkE
n−1−k ,

while the coefficients hk are the energies of the Hamiltonian system. Once the parameters
are “slowly” perturbed in time, the dynamical system evolves in a non-integrable way. From
its trajectories, the energies can be computed at each given point in time by the formulas
of the integrable system at the same state. The uniform approximation of the actions Ij
in (1.0.7) by constants implies that the energies hk = hk(T, ε) of the modulated system
have to be uniformly close to a function in the modulation time T . Hence, the polynomial g
itself and thus ydE =

√
−gdE have to approximate a function in the modulation time. This

suggests to consider the approximating objects which depend on T . We call a modulation
KdV Whitham deformation, when the actions for g = g(T ) are constant in T . Equivalently,
this means

(1.0.8) 0 = ∂T Ij

for all j = 1, . . . , n. Completely integrable Hamiltonian systems possess multiple symmetries
and corresponding commuting flows in higher times. The perturbation of the system’s
parameters may also depend “slowly” on the higher times. For Whitham deformations the
actions have to be constant in all those times. As an Ansatz for a Whitham deformation in
the case n = 1 (i.e. 3-stationary KdV or 1-gap KdV) we take

(1.0.9) g = E3 + TE2 +XE + h(X,T ) = (E − γ1)(E − γ2)(E − γ3) .



1. INTRODUCTION 15

The system of equations for Whitham deformations (1.0.8) then reads

0 =∂XI1 = −
∫ γ3

γ2

(E + ∂Xh)
dE

y
,

0 =∂T I1 = −
∫ γ3

γ2

(E2 + ∂Th)
dE

y
.

These equations of elliptic integrals determine ∂Xh and ∂Th. From ∂T∂XI1 = 0 = ∂X∂T I1

we obtain the compatibility equations ∂T∂Xh = ∂X∂Th (see Example 4.2.4 for details).
Hence, there is an energy function h such that the deformation of parameters (1.0.9) becomes

a Whitham deformation. As a consequence dS := ydE =
√
−g(E)dE satisfies (1.0.5) for

differential forms

dΩ0 = (E + ∂Xh)
dE

y
and dΩ1 = (E2 + ∂Th)

dE

y

defined on the spectral curves Γ = Γ(X,T ) in (1.0.6) with n = 1. Note that these differen-
tial forms are not normalized yet, but a modification of the Ansatz (1.0.9) with polynomials
in (X,T ) as coefficients will allow this. In sum, the Whitham deformation of the spectral
curve Γ provides the generating differential form dS = ydE for the KdV Whitham hierar-
chy. When parameterizing the elliptic curves Γ by the roots of g, then (1.0.9) determines
a solution (X,T ) 7→ (γ1, γ2, γ3) (X,T ) of the Whitham equations in their form as a hydro-
dynamic system of PDEs. For the particular generating differential form dS = ydE this
corresponds to Krichever’s version of the generalized Hodograph method in [40].

Applying the adiabatic theorem to the stationary KdV hierarchy in its Hamiltonian
formulation is new. The necessary theory about adiabatic invariants is explained in Chap-
ter 4 mostly by referring to work by Arnold, Kasuga and Neistadt as presented in [48]. Of
course, multiscale analysis and averaging methods implicitly enter at this point again.

Generating Differential Forms and Euler-Poisson-Darboux Equations. Euler-
Poisson-Darboux equations (EPDs) appear in the classical differential geometry of surfaces,
see Chapter 3 in [8]. Solutions to particular EPDs, so called ε-systems [59], can be used
to characterize general generating differential forms dS for the KdV Whitham hierarchy.
Locally near a branch point (E, y) = (γj , 0) of the spectral curve Γ from (1.0.6), there is a
representation of generating differential forms by

dS =
∑
k≥0

ak(E)y2k−1dE

with coefficient polynomials ak of degree up to 2n in E. Under genericity assumptions,
it will turn out that the differential equations (1.0.5) required for a generating differential
form are satisfied if and only if a0 = 0 and one coefficient polynomial aj corresponds to
a solution of an ε-systems with ε = (2j − 1)/2. The other coefficient polynomials ak are
determined recursively. This will be shown in Chapter 5. A similar result was proved by
Ferapontov and Pavlov for the quasi-classical limit of the coupled KdV hierarchy in [24]. In
Sections 6 and 10 of [59] Pavlov seems to suggest this holds for the KdV Whitham hierarchy
as well, but remains very vague. The more special case, when the generating differential
form for the KdV Whitham hierarchy is defined on the spectral curve can be found in [64].
However, the general result and the proof given here are original.
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The Soliton Limit. The spectral curve Γ from (1.0.6) degenerates when roots γj and
γj+1 of g coincide. For technical reasons this case is often excluded in the finite gap theory
and Whitham theory. It is interesting nevertheless, since passing through such degeneracies
allows to change the genus of Γ. Wave breaking in the dispersionless KdV equation (1.0.3)
corresponds to changing genus, see [64]. The case when γ2j−1 → γ2j for all j = 1, . . . , n
leads to a genus 0 spectral curve. Corresponding finite gap solutions are called solitons.
These describe solitary waves after which the KdV equation (1.0.2) was modeled initially.
KdV solitons, their Whitham deformations and their Whitham equations are discussed in
Section 3.3, Section 4.3 and Section 5.2, respectively.



CHAPTER 2

Hydrodynamic Integrability and the Universal Whitham
Hierarchy

Whitham equations describe the modulation of integrable dispersive non-linear wave
equations like the KdV equation [69]. The purpose of this chapter is to explain the
basic differential-geometric structures and algebraic-geometric structures that emerged in
Whitham theory [40].

Example 2.0.1. For an instructive example (resumed later on in the context of Section 4.3)
let us start on the algebraic-geometric side. We are looking for a function (X,T ) 7→ u(X,T )
on a 2-dimensional real domain satisfying the conservation equation

(2.0.1) ∂TdΩ0 = ∂XdΩ1

for meromorphic differential forms

dΩ0 = −1

2

dE√
u− E

, dΩ1 = −1

2

E − 1
2u√

u− E
dE ,

on the double covering Γ0 = {(E, y) ∈ C2|y2 = u − E} ∪ {∞} → CP1, (E, y) 7→ E whose
finite branch value is u and thus depending on X and T . By using y as a chart at the
branch point (E, y) = (u, 0), and using κ with κ2 = E as a chart at the point at infinity,
the double covering yields a compact Riemann surface Γ0 of genus zero. From 2ydy = −dE
we see that dΩ0 and dΩ1 are holomorphic at the finite branch point. Note that the chart y
depends on u and therefore also on (X,T ). Hence, the conservation equation is equivalent
to

0 =

(
∂Tu−

1

2
u∂Xu

)
dy

y2
.

This identity for a differential form with a double pole at the branch point (u, 0) is equivalent
to the quasi-linear equation

(2.0.2) ∂Tu =
1

2
u∂Xu ,

which is called a hydrodynamic reduction of (2.0.1), since there is no more dependence on
the parameter E. Moreover, (2.0.2) is a dispersionless KdV equation (or inviscid Burgers
equation) and can be locally solved by the method of characteristics, see Appendix 2 to
Chapter II in [7]. For some smooth function f consider the equation

0 = X +
1

2
uT + f(u) .

Let (X0, T0, u0) ∈ R3 be a solution. If 0 6= 1
2T0 + f ′(u0), then by the implicit function

theorem, there is a solution u = u(X,T ) locally near u0 = u(X0, T0). For such a solution u,

17



18 2. HYDRODYNAMIC INTEGRABILITY AND THE UNIVERSAL WHITHAM HIERARCHY

the derivatives can be found to by 0 = 1+
(

1
2T + f ′(u)

)
∂Xu and 0 = 1

2u+
(

1
2T + f ′(u)

)
∂Tu.

Hence,

0 =

(
1

2
T + f ′(u)

)(
∂Tu−

1

2
u∂Xu

)
which implies (2.0.2), since by assumption and continuity 0 6= 1

2T + f ′(u(X,T )) near
(X0, T0). Further away from (X0, T0) this inequality can become an equality. At such
a “breaking point” the solution becomes discontinuous and a so called shock wave forms.

In this chapter the features of the previous example will be generalized to moduli spaces
of Riemann surfaces of higher genus. As the central player we consider 1 + 1-dimensional
systems of hydrodynamic type (also called 1 + 1-dimensional hydrodynamic systems)

(2.0.3) ∂Tui =
m∑
j=1

vij(u)∂Xuj .

Like the dispersionless KdV equation in (2.0.2) these systems are quasi-linear systems of first
order PDEs, but for a vector-valued function (u1, . . . , um) = u = u(X,T ) ∈ Rm instead of
a scalar function. There is a rich theory of integrable quasi-linear first order PDEs related
to classical geometry of conjugate and orthogonal nets. The associated theory involving
linear PDEs goes back to Darboux [9], who adopted Riemann’s method for the shock wave
equation [60], see Chapter 4 in [8] and Chapter 22.3 in [28].

First, in Section 2.1 we discuss integrable and differential-geometric structures of 1 + 1-
dimensional hydrodynamic systems. Riemannian metrics in coordinates u ∈ Rm appear
to be associated to the hydrodynamic system and their curvature tensors mostly vanish.
Then we address solutions obtained by Tsarev’s generalized Hodograph method, which
generalizes the method of characteristics in the example above. As a second part of this
chapter the algebraic-geometric approach of Krichever’s universal Whitham hierarchy is
presented in Section 2.2. Here PDEs similar to the conservation equation (2.0.1) from the
example above, are set on the algebraic-geometric data of Riemann surfaces with a marked
point and a chart there. Initially, this configuration space is infinite dimensional. By
considering an algebraic orbit in this data, the configuration space reduces to finitely many
dimensions and a hydrodynamic reduction, similar to that in the example above, yields a
1 + 1-dimensional hydrodynamic system. The associated Riemannian metric is set on the
moduli space of Riemann surfaces with a marked point.

In the introductory example the moduli space is trivial, so the differential-geometric
structure does not play a role there. The KdV Whitham hierarchy provides an example of
the 1 + 1-dimensional algebraic orbit setup with a flat Riemannian metric on the hydrody-
namic side, see Example 2.2.4, Example 2.2.5 and for a more detailed treatment Chapter 5.

2.1. Semi-Hamiltonian Systems of Hydrodynamic Type

In the context of Whitham equations Dubrovin and Novikov established a Hamiltonian
formalism for systems of hydrodynamic type [20]. In interesting examples like the KdV
Whitham hierarchy, the tensor field v in (2.0.3) is diagonalizable with distinct eigenvalues
(hyperbolic case), called velocities. Here, we take this as the starting point for the study of
integrable hydrodynamic systems. A diagonal hyperbolic hydrodynamic system (2.0.3) is
called semi-Hamiltonian, if the velocities satisfy

(2.1.1) ∂uk

(
∂uivj
vi − vj

)
= ∂ui

(
∂ukvj
vk − vj

)
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for i 6= j 6= k 6= i. The tensor field v = (vi(u)δij) composed of the velocities is called
semi-Hamiltonian matrix. In the case m < 3 the semi-Hamiltonian condition is empty.
Note that the definition of semi-Hamiltonian hydrodynamic systems requires coordinates
u which diagonalize the hydrodynamic systems and it also requires all the eigenvalues to
be different. Let furthermore be assumed that no eigenvalue is zero, i.e. non-degeneracy.
These are mostly technical assumptions and meant to simplify the arguments and statements
below.

2.1.1. The Differential Geometry of Diagonal semi-Hamiltonian Systems.
Geometry comes into play, since the velocities of a semi-Hamiltonian system give rise to
a diagonal metric for which the Riemann curvature tensor (with respect to the induced

Levi-Civita connection) vanishes except for Rjkkj , compare to the first part of Theorem 3

in [66]. We see this as follows. The semi-Hamiltonian condition (2.1.1) is equivalent to the
compatibility condition of the system

(2.1.2) ∂uivj = Γjji(vi − vj)

for i 6= j. The coefficients Γjji then become Christoffel symbols of the diagonal metric

g =
∑m

j=1 gjj (duj)
2 obtained by integrating

(2.1.3) Γjji = ∂ui log
√
gjj .

For simplicity of notation we assume gjj > 0, the case of pseudo-Riemannian metrics works
in the same way, but the metric contains signs according to the signature. Since Γiii is
not determined here, the integration is only unique up to multiplication with functions
in one variable, that is gii and fi(ui)gii correspond to the same semi-Hamiltonian matrix.
Applying the Koszul formula we see that the Christoffel symbols Γijk vanish for i 6= j 6= k 6= i
since the metric is diagonal. Hence, the metric property of the Levi-Civita connection is
equivalent to gkkΓ

k
ii + giiΓ

i
ik = 0 for i 6= k, so in this case Γkii is determined by (2.1.2) as

well. The vanishing of torsion means Γiij = Γiji. Therefore, the Riemann curvature tensor
corresponding to a diagonal metric g is given by

Rjjki = ∂ukΓjji − ∂uiΓ
j
jk ,(2.1.4)

Rjkij = ∂uiΓ
j
jk − ΓjjkΓ

k
ki − ΓjjiΓ

i
ik + ΓjjiΓ

j
jk ,(2.1.5)

Rjkkj = ∂ukΓjjk − ∂ujΓ
j
kk + ΓjjkΓ

j
jk + ΓkkjΓ

j
kk −

m∑
r=1

ΓrkkΓ
j
jr(2.1.6)

for i 6= j 6= k 6= i. Immediately, the semi-Hamiltonian property is seen as equivalent
to the vanishing of (2.1.4). In the hyperbolic case, a short computation shows that this
is equivalent to (2.1.5) vanishing as well, see page 403 f. in [66] for details. Only the
expression (2.1.6) containing Γiii is not determined.

Conversely, if a diagonal metric on Rm (or equivalently an orthogonal coordinate system)
is given such that the curvature tensor in (2.1.4) vanishes, then there is a family of semi-
Hamiltonian matrices v, which satisfy (2.1.2) for the Christoffel symbols induced by the
metric, see second part of Theorem 3 in [66]. The proof relies on a result by Darboux that
the system (2.1.2) can be solved, if compatible, see pages 335-340 in [9]. Compatibility
however, follows here from the semi-Hamiltonian property. That the semi-Hamiltonian
matrices come in families originates from m functions in one variable used as “Cauchy
data” for (2.1.2).
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Remark 2.1.1. If the curvature in (2.1.6) vanishes as well, then the metric g is flat and the
system (2.0.3) is called a Hamiltonian system of hydrodynamic type. In this case there is a
density h inducing a functional H(u) =

∫
h(u(x))dx as a Hamiltonian of hydrodynamic type

and inducing the (semi-)Hamiltonian matrix by vij = gik∇k∇jh = ∇i∇jh (in coordinates,
which are not necessarily diagonal). Assuming v in general position (see Definition 3 in [66]),
the corresponding metric is unique up to a constant factor (see Theorem 2 there). The
existence of a two-parameter family of flat metrics for the 1-phase KdV Whitham equations
was shown in [20] in non-diagonal coordinates. For the n-phase KdV Whitham equations
there is a flat metric on R2n+1 with signature (+,−,+, . . . ,−,+), see [16] and Section 5.1
below.

For a diagonal metric the Christoffel symbols which are encoding the covariant derivative
are particularly simple, only Γiij has to be known. Alternatively, the covariant derivative

may be encoded in rotation coefficients. Let metric factors (Lamé coefficients) Hi be defined
by gii = H2

i . Then

(2.1.7) βij =
∂iHj

Hi

for i 6= j are called rotation coefficients. Here and in the following we often use ∂i = ∂ui
for notational convenience. According to (2.1.3) the rotation coefficients are related to the
Christoffel symbols by

Γiij =
∂iHj

Hj
=
Hi

Hj
βij .

Inserting this into the Riemann curvature tensor then gives that the vanishing of (2.1.4)
(and equivalently (2.1.5)) is equivalent to the Darboux system

(2.1.8) ∂kβij = βikβkj

for i 6= j 6= k 6= i. This equation provides the compatibility of (2.1.7) seen as an equation
for the metric factors (Hi)i. The metric is flat if and only if additionally (2.1.6) vanishes,
which becomes here

(2.1.9) 0 = ∂iβik + ∂kβki +
∑
s 6=i,k

βsiβsk

for i 6= k. If the rotation coefficients are symmetric, that is if βik = βki, then the condition
for flatness (2.1.9) becomes simply

(2.1.10)
m∑
s=1

∂sβik = 0

for i 6= k. Such metrics whose rotation coefficients are symmetric are said to have the Egorov
property. This is equivalent to ∂igjj = ∂jgii, which means that the metric is potential in the
sense that there is a function c = c(u) such that ∂ic = gii. The KdV Whitham hierarchy
provides an example of a flat Egorov metric, see [16] or Lemma 5.1.4 and Lemma 5.1.5
below. As a first example that can be treated directly, let us consider the following (for
more of its context see Section 4.3).

Example 2.1.2 (1-soliton Whitham equations). The Whitham equations of 1-solitons are
given by

(2.1.11) ∂Tγ3 =
1

2
γ3∂Xγ3 , ∂Tγ2 =

1

2
(2γ2 − γ3) ∂Xγ2
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as a semi-Hamiltonian hydrodynamic system. We read off the velocities v2 = (2γ2 − γ3) /2
and v3 = γ3/2 and find

(2.1.12)
∂γ3v2

v3 − v2
=

1

2(γ2 − γ3)
,

∂γ2v3

v2 − v3
= 0 .

Integrating (2.1.3) for uj = γj , the corresponding metric is given by

(2.1.13) g =

(
ef2(γ2)/(γ2 − γ3) 0

0 f3(γ3)

)
with constants of integration f2 and f3 6= 0. The resulting Gaussian curvature

−3f3 + (γ2 − γ3)∂γ3f3

4(γ2 − γ3)2f2
3

is non-zero. Hence, although the 1-soliton Whitham equations are a limiting case (γ1 → γ2,
see Section 4.3) of the 1-phase KdV Whitham hierarchy, the system of equations (2.1.11)
cannot be Hamiltonian, unlike the KdV Whitham hierarchy. Analogously, the cylinder
coordinates form an orthogonal coordinate system of the flat space R3, but when setting
the angle coordinate and the height coordinate as equal, the resulting surface is the helicoid,
which has non-zero Gaussian curvature.

2.1.2. Commuting Flows and Tsarev’s Generalized Hodograph Method. An
integrable feature of semi-Hamiltonian systems is that there are infinitely many flows com-
muting with (2.0.3). They originate from the infinitely many different solutions of (2.1.2)
(see Theorem 6 in [66]). In more detail, two coupled semi-Hamiltonian systems

(2.1.14) ∂Tui = vi(u)∂Xui and ∂Y ui = wi(u)∂Xui

commute, if and only if for all i = 1, . . . ,m we have

0 = ∂Y ∂Tui − ∂T∂Y ui =

m∑
j=1

[
∂ujvi(wj − wi)− ∂ujwi(vj − vi)

]
∂Xuj∂Xui .

Clearly, this equation is implied if (vi)i and (wi)i both satisfy (2.1.2) with the same Γjji,
that is to say, if

(2.1.15)
∂ujvi

vj − vi
=

∂ujwi

wj − wi
holds for i 6= j. The solutions of (2.1.2) are parameterized by m functions in one variable
(see Proposition 1 in [66] and [9]), so there are infinitely many independent commuting
flows (2.1.14). They induce infinitely many solutions u for (2.1.14), justifying that (2.1.15)
is also a necessary condition for the existence of commuting flows, see Section 2 in [58] and
for a detailed variational argument see Sections 4 and 5 in [66].

Tsarev’s remarkable result for semi-Hamiltonian diagonal systems is to establish a cor-
respondence between solutions u of the system of PDEs

(2.1.16) ∂Tuj = vj(u)∂Xuj

and solutions u of the transcendental (or algebraic) equations

(2.1.17) wi(u) = vi(u)T +X

for some coefficients (wi) satisfying (2.1.15), see [65]. This is called the generalized hodograph
method. Its precise formulations is given in the following.
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Theorem 2.1.3 (Generalized Hodograph Method, see Theorem 10 in [66]). A smooth
solution of (2.1.17) is a solution of (2.1.16). Conversely, for any solution of (2.1.16) near
a point (X0, T0) with ∂Xuj(X0, T0) 6= 0 for all j = 1, . . . ,m, there is a commuting flow with
coefficients (wj)j such that u can be locally represented as a solution of (2.1.17).

The genericity condition ∂Xuj 6= 0 for all j = 1, . . . ,m will be assumed throughout the
following.

Remark 2.1.4. For the “classical” hodograph method Tsarev [66] refers to [61], pointing
out that it allows to reduce any quasi-linear 1+1-dimensional system of hydrodynamic type
to a system of linear PDEs (2.1.15). The method is adopted from Riemann’s work on shock
waves, compare Equation (3) in [60] with Chap. 2, Sec. 9.1, Eq. (6) in [61]. However, the
name “hodograph method” does not appear in [60].

In [64] Tian notes that Tsarev’s hodograph method generalizes the method of charac-
teristics used for solving the dispersionless KdV equation in the introductory Example 2.0.1.

Next, we apply the generalized hodograph method to Example 2.1.2.

Example 2.1.5 (Solutions for the Whitham hierarchy of the 1-soliton). The velocities v2, v3

from Example 2.1.2 and

w2 = γ2
2 −

1

2
γ2γ3 −

1

8
γ2

3 , w3 =
3

8
γ2

3

satisfy (2.1.15). The generalized hodograph method then provides a solution for the 1-
soliton Whitham hierarchy (2.1.11) by solving (2.1.17)

γ2
2 −

1

2
γ2γ3 −

1

8
γ2

3 =
1

2
(2γ2 − γ3)T +X ,

3

8
γ2

3 =
1

2
γ3T +X .

With γ±3 = 2
3

(
T ±
√
T 2 + 6X

)
, the solutions to this algebraic system are given by

(γ2, γ3) ∈ {(γ+
3 , γ

+
3 ), (γ−3 , γ

−
3 ), (1

2γ
+
3 + 1

3T, γ
−
3 ), (1

2γ
−
3 + 1

3T, γ
+
3 )} .

In Example 4.3.4 we will arrive for the same equations at a solution which only differs by
constants.

2.1.3. Conserved Densities and Conjugate Nets. Let us consider the conservation
(or continuity) equation

(2.1.18) ∂TP (u(X,T )) = ∂XQ(u(X,T ))

for a conserved density P and a flux Q. Integration over the spatial domain (and, e.g.,
assuming the primitve function Q to vanish at the boundary) turns this into the usual form
of a conservation law ∂T

∫
P (u(X,T ))dX = 0.

Remark 2.1.6. In the setting of a Hamiltonian system of hydrodynamic type as in Re-
mark 2.1.1, P induces a conservation law if and only if wij := ∇i∇jP induces a commuting
flow for (2.1.16), see Lemma 3 in [66]. This amounts to a version of Noether’s theorem for
Hamiltonian systems of hydrodynamic type.

By using the diagonal hydrodynamic equation (2.1.16) and the chain rule, the continuity
equation (2.1.18) is equivalent to

0 =

m∑
i=1

(vi∂iP − ∂iQ) ∂Xui
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for all possible solutions u of the semi-Hamiltonian system. Certainly, this equation holds,
if we have

(2.1.19) vi∂iP = ∂iQ

for all i = 1, . . . ,m and considered for functions in u ∈ Rm (or some subdomain of Rm). On
the other hand, the necessity of this condition can be justified by the infinite number of solu-
tions for semi-Hamiltonian systems provided by commuting flows, see the similar argument
in section 2.1.2. Here we content ourselves with considering the system of equations (2.1.19)
in place of the continuity equation (2.1.18).

Taking into account how the semi-Hamiltonian matrix v is related to Christoffel symbols
in (2.1.2), compatibility for the flux Q requires

(2.1.20) ∂i∂jP = Γjji∂jP + Γiij∂iP

for all i 6= j. This is a Laplace equation. The semi-Hamiltonian property (2.1.1) yields its
compatibility. There are infinitely many linearly independent solutions of this equation, see
Theorem 5 in [66] and pages 335-340 in [9]. Hence, each semi-Hamiltonian matrix v comes
with infinitely many independent conserved densities and fluxes.

When considered for a vector P of N ≥ 1 conserved densities, equation (2.1.20) describes
a m-dimensional conjugate net in RN , i.e. ∂i∂jP is a linear combination of only ∂jP and
∂iP . In case P defines an immersion, the compatibility condition ∂i(∂j∂kP ) = ∂j(∂i∂kP )
is equivalent to the semi-Hamiltonian condition in the form that the curvature in (2.1.5)
vanishes. The corresponding vector of fluxes Q, is a Combescure transformation of P by
virtue of (2.1.19). In general, two conjugate nets P,Q : Rm → RN (or defined on some
subdomain of Rm) are said to be related by a Combescure transformation, if ∂iP and ∂iQ
are colinear for all i = 1, . . . ,m, i.e. ∂iP = ai∂iQ for some function ai : Rm → R. By the
conjugate net equations

∂i∂jP = cji∂iP + cij∂jP and ∂i∂jQ = ĉji∂iQ+ ĉij∂jQ

with functions cij , ĉij : Rm → R as linear coefficients, the factors ai have to satisfy

∂iaj = cij(ai − aj)(2.1.21)

aj ĉij = aicij .(2.1.22)

Conversely, let a conjugate net P with coefficients cij and, in addition, factors ai be given
such that (2.1.21) is satisfied. Then ĉij defined by (2.1.22) are compatible coefficients for
a conjugate net Q which is related to P by a Combescure transformation, see Assertion 2
in [66].

In sum, choosing cij = Γiij gives the conjugate net equation for conserved densities and

turns (2.1.21) into (2.1.2). Hence, for a semi-Hamiltonian matrix v with conserved density
P and flux Q each additional solution w = (wi)i of (2.1.2) induces

• a commuting flow in time Y by (2.1.14) and
• a vector of fluxes Qw related by a Combescure transformation to P .

In particular, P and Qw satisfy the continuity equation ∂Y P = ∂XQ
w, that is P is a

conserved density for all commuting flows.
A conjugate net is given uniquely by compatible coefficients cij = Γiij and its values on

the coordinate axes (Goursat problem, see page 3 in [5]). Explicitly the integration proce-
dure for the conjugate net equation (2.1.20) is the following. Due to the semi-Hamiltonian
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property

(2.1.23) Γkkj = ∂k logHj

can be integrated for k 6= j and with initial values of Hj on the coordinate axes. The rotation
coefficients for the metric factors Hj defined in (2.1.7) then turn the semi-Hamiltonian
property into the Darboux system (2.1.8). This provides compatibility for integrating the
systems ∂kXj = βjkXk and ∂jP = HjXj successively. The resulting function P is a
conjugate net satisfying (2.1.20). In particular, there is a solution P : Rm → Rm,u 7→ P (u)
which is an immersion near the origin. Locally this is a coordinate transformation. Note,
that in general, ∂jP and ∂iP will not be orthogonal in Rm, that is the metric g is not
diagonal in coordinates induced by P .

Figure 1. The conjugate net f(γ2, γ3) =
∫

1√
γ2−γ3

X(γ2)dγ2 for X(γ2) =

(sin(γ2), cos(γ2)) drawn with Mathematica.

Example 2.1.7 (Conjugate nets for the 1-soliton Whitham equations). For the semi-
Hamiltonian system from Example 2.1.2 the coefficients of the related conjugate net equa-
tion are

c23 =
1

2(γ2 − γ3)
and c32 = 0 .

By the integration procedure just described the Whitham equations of 1-solitons yield a
2-dimensional conjugate net

f =

∫
1√

γ2 − γ3
X(γ2)dγ2

for some arbitrary function X : R → R2 and integration constants that are also constant
in γ3. The function f is real-valued only on {(γ2, γ3) ∈ R2|γ2 ≥ γ3}. We end the example
with two illustrations of conjugate nets, see Figure 1 and Figure 2.
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Figure 2. The conjugate net f(γ2, γ3) =
∫

1√
γ2−γ3

X(γ2)dγ2 for X(γ2) = (1, γ2) drawn

with Mathematica.

If the metric g inducing a conjugate net equation (2.1.20) is flat, i.e. (2.1.9) holds, and
functions are prescribed on the coordinate axes such that they intersect perpendicularly
at the origin, then there is a conjugate net P whose coordinate lines are orthogonal to
each other, that is ∂iP ⊥ ∂jP for i 6= j. This is called an orthogonal net. Orthogonal
nets yield flat coordinates [41]. Their coordinate lines are curvature lines. The metric g
is transformed into a constant pseudo-Euclidean metric, which is however not necessarily
diagonal anymore, see [14] for an account on Frobenius structures.

Remark 2.1.8. As an outlook let us mention two occurrences of semi-Hamiltonian hydro-
dynamic systems with particular structures, characterized in terms of the metric g.

• For the multi-component KP hierarchy rotation coefficients appear in (and deter-
mine) the expansion of the Baker-Akhiezer function [11]. Generally they corre-
spond to a conjugate net. Flatness of the corresponding metric g yields BKP [41].
A metric which has the Egorov property gives CKP.
• The KdV Whitham hierarchy leads to a flat metric g with the Egorov property,

see [16] and Section 5.1. This allows for a Bihamiltonian structure [17].

Thereby, the differential geometry of conjugate nets, which was extensively studied in the
late 19th and early 20th century by Darboux, Eisenhart and others, appears in the center
of the more recent soliton theory.
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2.2. Krichever’s Universal Whitham Hierarchy

In [40] Krichever observes that “all the ‘integrable’ partial differential equations, that
are considered in the framework of the ‘soliton’ theory, are equivalent to compatibility
conditions of auxiliary linear problems.” This is the starting point for his general approach
to the universal Whitham hierarchy as “a certain ‘shape’ that has to be filled with a real
content.” In the following sections this shape will be explained with a focus on two particular
cases. In Section 2.2.1 algebraic-geometric data given by the infinite dimensional moduli
space of Riemann surfaces with one puncture and a chart centered there, will be discussed.
The theory with multiple marked points and charts centered at them looks very similar,
see [40]. However, the interesting case of the KP Whitham hierarchy only requires one
marked point. For simplicity we only discuss this situation. In Section 2.2.3 the algebraic
orbit will render the moduli space finite dimensional and 1 + 1-dimensional hydrodynamic
equations will appear. The Whitham hierarchy for stationary KdV is contained in this case.

2.2.1. Universal Whitham Equations on Moduli Spaces. As the domain of the
universal Whitham hierarchy we consider the moduli space M̂n of compact Riemann surfaces
Γn of genus n with one marked point P0 ∈ Γn and a chart κ in its neighborhood such that
1/κ(P0) = 0, all up to conformal equivalence. The conformal equivalence classes of compact
Riemann surfaces of genus n > 1 form a complex (3n − 3)-dimensional moduli space. For
n = 1 this moduli space has complex dimension 1. Choosing a marked point P0 adds another
dimension. Since any biholomorphic map κ on a neighborhood of P0 serves as a chart, the
moduli space M̂n is always infinite dimensional. It is referred to as the “universal” set of
algebraic-geometric data. “Forgetting” the chart κ gives a bundle projection M̂n →Mn to
the finite dimensional moduli space Mn of compact Riemann surfaces Γn of genus n with
one marked point P0 ∈ Γn.

Dynamical systems may be used to investigate the structure of the moduli space M̂n and
its boundary. For a heuristics let us assume smooth local coordinates I = [Γn, P0, κ] ∈ M̂n

of the infinite dimensional moduli space are given. Instead of vector fields to induce flows
in times Tα, the dynamics we consider, are implicitly given by differential forms dΩα =
dΩα(P, I) on Γn, which are holomorphic for P ∈ Γn \ {P0} and normalized with respect to
κ. Such differential forms will be chosen consistently on the moduli space in Section 2.2.2.
Due to the possible pole at P0 there will be infinitely many of them. Once they are given,
still the compatibility of the dynamics in multiple times Tα has to be ensured. The resulting
equations are known as Whitham equations and imply quasi-linear PDEs for the dynamics
of the coordinate I(T ) of the moduli space. Here, the notation T represents a finite or
infinite collection of compatible times Tα. Flaschka, Forest and McLaughlin [25] were the
first to formulate Whitham equations using differential forms. For them the KdV Whitham
equations take the form

(2.2.1) ∂TαdΩβ (P, I(T )) = ∂TβdΩα(P, I(T ))

with P0 and κ determined by Γn. Hence, this is a system of 2-dimensional equations on a
finite dimensional “slice” of M̂n or, more precisely, on Mn. It will be shown in Section 5.1
how it reduces to a 1 + 1-dimensional Hamiltonian hydrodynamic system for I(T ).

Provided that compatibility allows the dynamics to exhaust the entire moduli space
M̂n, that is T 7→ I(T ) is a submersion, then some collection of times can be used as local
coordinates. In this case it is equivalent to consider dΩα(P,T ) := dΩα(P, I(T )) instead of

dΩα(P, I). Likewise this can also be done on some “slice” of the moduli space M̂n. For
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example, when modulating a dynamical system with “fast” times t, then one obtains “slow”
times T as coordinates for some slice of the moduli space, rather than coordinates I of the
entire moduli space, see Chapter 4.

In order to compare differential forms dΩα(P, I) on varying Riemann surfaces Γn we
usually use the respective coordinates κ near P0 ∈ Γn and descend to dΩα(κ, I). This
local version of the meromorphic differential form determines it globally. From now on we
consider the differential forms dΩα(κ,T ) given with T as coordinates of the moduli space
and κ as the local variable on the Riemann surface.

In [38] Krichever generalized the KdV Whitham equations to the KP setting. There
Theorem 1 presents the KP Whitham equations in the form

(2.2.2) 0 = ∂κΩα

(
∂TγΩβ − ∂TβΩγ

)
− ∂κΩβ

(
∂TγΩα − ∂TαΩγ

)
+ ∂κΩγ

(
∂TβΩα − ∂TαΩβ

)
.

Here Ωα = Ωα(κ,T ) denotes a primitive function of dΩα. Locally, in the chart κ centered at
P0, each differential form dΩα that might have a pole at P0 can be integrated on the universal
covering of the punctured neighborhood. We assume all dΩα as residue-free such that their
Abelian integrals are defined locally on Γn. The dependence on the chart κ is a choice
corresponding to a section in the bundle M̂n →Mn. Therefore each of the equations (2.2.2)
is a 3-dimensional PDE set on the finite dimensional moduli space Mn with κ as a formal
variable. That is to say κ is not coupled to the moduli space Mn. Coordinates of Mn can be
determined by finitely many of these PDEs. In recent work Odesskii and Sokolov [58, 57]
started to understand them as a hydrodynamically integrable system of 2 + 1-dimensional
quasi-linear PDEs for coordinates of the moduli space. The integrability of the system here
means that it admits “sufficiently many” hydrodynamic reductions to 1 + 1-dimensional
hydrodynamic systems.

For the KP Whitham equations at hand, choosing the chart κ to depend on T in a certain
way, allows to split each 3-dimensional equation into coupled 2-dimensional equations – with
the trade-off that the dynamics take place on the infinite dimensional moduli space M̂n

instead of Mn and that there are infinitely many 2-dimensional equations to be considered.
This is done in the framework of the Whitham hierarchy as explained in [40, 21] and in the
following. Later on hydrodynamic reductions will occur in the context of algebraic orbits,
see Section 2.2.4. First let us consider the chart κ as an independent variable and define
the 1-form

(2.2.3) ω =
∑
α

Ωα(κ,T )dTα

on the space of variables (κ,T ). The exterior derivative (denoted by δ) of ω(κ,T ) is

δω =
∑
α

∂κΩαdκ ∧ dTα +
∑
α,β

∂TβΩαdTβ ∧ dTα .

Here the notation dTα refers to differential forms on the domain of coordinates T of the
moduli space.

Definition 2.2.1 ([40]). The family of Abelian integrals (Ωα)α forms a Whitham hierarchy,
if

(2.2.4) δω ∧ δω = 0 .

In this general “shape,” the Whitham hierarchy can be referred to as universal. As soon
as it is “filled with real content” by concrete functions Ωα the term “universal” is replaced
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by the context in which the Ωα emerged, e.g. the KP Whitham hierarchy, see Section 2.2.2
below, arises by perturbation and averaging of the KP equation [38].

There are several equivalent versions of the Whitham hierarchy as we will see in the
following. First note that the 2-form δω can be written as the exterior product of two 1-
forms exactly when (2.2.4) is satisfied. In tangential directions ∂κ and (∂Tα)α the Whitham
hierarchy (2.2.4) is equivalent to

0 =
∑

σ∈Sym({α,β,γ})

sign(σ)∂Tσ(α)Ωσ(β)∂κΩσ(γ)(2.2.5)

0 =
∑

σ∈Sym({α,β,γ,ε})

sign(σ)∂Tσ(α)Ωσ(β)∂Tσ(γ)Ωσ(ε) .(2.2.6)

Writing the sum over the permutations out, the first equation is exactly (2.2.2), which is
the form of the KP Whitham equations in [38]. So far the chart κ has been an independent
variable. Let us now consider T -dependent reparametrizations of this chart

(2.2.7) κ = κ(p,T )

where ∂pκ 6= 0. This reparametrization changes how Ωα depends on T in its second slot,
that is Ωα(p,T ) := Ωα(κ(p,T ),T ). Hence, the derivative with respect to Tα changes in the
following way

(2.2.8) ∂TαΩβ(p,T ) = ∂κΩβ(κ,T )∂Tακ+ ∂TαΩβ(κ,T ) .

An important aspect of the Whitham hierarchy (2.2.4) is its invariance under reparametriza-
tions (or gauges) (2.2.7). The individual terms in the sums (2.2.5) and (2.2.6) depend on the
parametrization, the sums do not. Here are two representations of the Whitham hierarchy
that correspond to particular parametrizations (or gauge fixings).

The zero curvature form. Fixing an index α0 induces a reparametrization by

p(κ,T ) = Ωα0(κ,T )

where ∂κp 6= 0. At the marked point P0 that means p needs to have a simple pole there. As
an Abelian integral p is defined on the universal covering of Γn \ {P0}. The corresponding
time Tα0 is usually renamed as X. Applying (2.2.8) for β = α0 gives 0 = ∂κp∂Tακ+ ∂Tαp.
For functions Ωp

β = Ωβ(p,T ) the first equation of the Whitham hierarchy (2.2.5) with indices

α0, α and β becomes a zero curvature equation

(2.2.9) 0 = ∂TαΩp
β − ∂TβΩp

α +
{

Ωp
α,Ω

p
β

}
where the Poisson bracket is introduced by {f, g} = ∂Xf∂pg−∂pf∂Xg. Conversely, if (2.2.9)
is satisfied for all indices α and β, then this implies (2.2.5), so both equations are equivalent.
By using the Jacobi identity, equation (2.2.9) can be seen as the compatibility equation for
the system

(2.2.10) ∂TαE = {E,Ωp
α} .

In [58] this system is called pseudopotential representation for the zero curvature represen-
tation 1. Note, if Ωp

α is stationary under some flow Tβ, that is to say ∂TβΩp
α = 0, then the

zero curvature equation (2.2.9) becomes (2.2.10) with E = Ωp
β. The KdV reduction of the

KP Whitham hierarchy arises in this way, see Example 2.2.4.

1For β = α0 equation (2.2.9) becomes 0 = ∂Tαp − ∂pΩα∂Xp, which is also a pseudopotential
representation.
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The conservation form. Let us consider a function E = E(p,T ) satisfying sys-
tem (2.2.10) locally. If ∂pE 6= 0, then this induces another reparametrization (p,T ) 7→
(E,T ). For ΩE

α = Ωp
α(E,T ) = Ωα(E(p,T ),T ) equation (2.2.10) takes the form

(2.2.11) ∂Tαp
E = ∂XΩE

α

and equations (2.2.9) from the Whitham hierarchy become its compatibility equations

(2.2.12) ∂TαΩE
β = ∂TβΩE

α .

Moreover, the second set of equations (2.2.6) in the Whitham hierarchy is trivial when
(E,T ) are used as coordinates. The Whitham equations (2.2.11) and (2.2.12) have the
same form as the hydrodynamic conservation equation (2.1.18). Therefore they are said
to be in conservation form. A difference is however, that (2.1.18) depends only on finitely
many state variables (u1(T ), . . . , um(T )), but solutions E of (2.2.10) come as infinite series

in p with functions of T as coefficients. In other words, the moduli space M̂n on which
the Whitham hierarchy in conservation form is set, is infinite dimensional. In summary the
Whitham hierarchy, which formed initially a system of 3-dimensional PDE on Mn with κ
as a parameter can be reparametrized such that it becomes an infinite dimensional system
of 2-dimensional PDE (2.2.11) and (2.2.12) on M̂n with E as a parameter.

The Whitham hierarchy in (E,T )-coordinates provides the compatibility conditions for
a generating function [40] (or prepotential [21]) S = S(E,T ) given by

(2.2.13) ∂TαS = ΩE
α .

In other words, the 1-form ω in (2.2.3) is closed for coordinates (E,T ). Assuming that func-
tions ΩE

α are provided, the equations for the prepotential form a generally infinite system of
ODEs (i.e. 1-dimensional equations) with E as a parameter. The question, how prepoten-
tials can be used to get solutions of the Whitham hierarchy leads to algebraic orbits, which
describe finite dimensional leafs in the moduli space M̂n [40], or leads to horizontal families
of Abelian differential forms [17], see Section 2.2.3. In both settings the Whitham hierarchy
in 2-dimensional conservation form (2.2.11) will take the form (2.2.1) of the KdV Whitham
equations given in [25]. A hydrodynamic reduction will allow then to understand each
equation in (2.2.11) as a 1 + 1-dimensional semi-Hamiltonian hydrodynamic system [58].
By (2.2.12) the other equations in (2.2.11) will correspond to commuting hydrodynamic
flows (2.1.14) and, what is the same, to additional hydrodynamic conservation laws, see
Section 2.1.3. This method for solving the Whitham hierarchy is also known as Krichever’s
version of Tsarev’s generalized hodograph method, see Theorem 5 in [17].

Remark 2.2.2. Replacing the commutator in the isospectral theory of the KP equation
(see Introduction in [30]) by a Poisson bracket produces the zero-curvature form and the
prepotential form of the Whitham hierarchy for genus zero [39]. This is referred to as the
dispersionless limit of the Lax hierarchy. In this limit the Lax equation becomes (2.2.10),
the Zakharov-Shabat equation gives (2.2.9) and the Sato-Wilson equation gives (2.2.13).

2.2.2. The Whitham Hierarchy for KP. This section is meant to describe the KP
and KdV Whitham hierarchy and thus providing “real content” for the “shape” of the
Whitham hierarchy in Definition 2.2.1. In order to consistently provide differential forms
on different Riemann surfaces, i.e. for different elements of the moduli space M̂n, let a basis
of the first homology group H1(Γn,Z) be fixed on each Riemann surface Γn by

(2.2.14) B = {a1, . . . , an, b1, . . . , bn|ai, bj ∈ H1(Γn,Z), ai · bj = δij , ai · aj = 0 = bi · bj} .
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This adds an extra set of data to the moduli space M̂n making it a manifold M̂∗n. For

[Γn, P0, κ,B] ∈ M̂∗n Riemann’s theorem (see Chapter 11, Theorem 3 in [33]) provides mero-
morphic differential forms dΩ = dΩ(κ, P0,Γn) on Γn characterized uniquely by

• dΩh
α for α = 1, . . . , n is holomorphic on Γn and normalized by

∫
aj

dΩh
α = δjα, hence

forming a basis of the holomorphic differential forms on Γn, and
• dΩα for α ≥ 1 is holomorphic on Γn \ {P0} with vanishing a-periods

∫
aj

dΩα = 0

and a pole at P0 of the form

(2.2.15) dΩα =
(
κα−1 +O(κ−2)

)
dκ .2

Note that dκ has a pole at P0, since 1/κ(P0) = 0. The index α = 0 is omitted,
since the Abelian integral of (2.2.15) would not be single-valued near P0.

The Whitham equations (2.2.5) and (2.2.6) consider κ as an independent variable and
induce dynamics on the finite dimensional moduli space Mn of Riemann surfaces Γn with
one marked point P0. That means, P0 and Γn become dependent on the times T and, by
using some local parametrization of Mn, we may write

dΩα(κ,T ) = dΩα (κ, P0(T ),Γn(T ))

and the same for dΩh
α. The differential forms assumed for the Whitham hierarchy in Defini-

tion 2.2.1 are of this form. Note however, that Riemann’s theorem as used above only pro-
vides that unique differential forms with the desired normalization do exist on Γn. Whether
the differential forms depend smoothly on the underlying data [Γn, P0, κ,B] ∈ M̂∗n is an
additional question which is usually omitted. In the KdV case a direct reasoning for the
smooth dependence will be presented in Remark 5.0.2.

Since the differential forms dΩα correspond to isospectral flows of the KP hierarchy, the
resulting KP Whitham hierarchy is called basic, see Chapter 7.1 in [40]. There are further
extensions by particular holomorphic differential forms defined on the universal covering of
Γn\{P0}, e.g. dΩh

α provide extensions. How to obtain such differential forms more generally
will be explained in Section 5.3 in the setting of the KdV Whitham hierarchy.

The basic KP Whitham hierarchy may be represented in zero curvature form and pre-
potential form. Due to the normalization of the differential forms dΩα at the marked point
P0 the representation (2.2.12) is attained in coordinates (κ,T ) (instead of (E,T )) 3.

Lemma 2.2.3. The basic KP Whitham hierarchy is equivalent to ∂TαΩβ = ∂TβΩα for all
α, β ≥ 1.

Proof. If the formula in the lemma holds, then clearly the equations of the Whitham
hierarchy (2.2.5) (or equivalently (2.2.2)) and (2.2.6) also hold. Conversely, setting the
index γ = 1 in (2.2.2), i.e. Ωγ = p and Tγ = X, gives in coordinates (κ,T )

(2.2.16) 0 = ∂κΩα

(
∂XΩβ − ∂Tβp

)
− ∂κΩβ (∂XΩα − ∂Tαp) + ∂κp

(
∂TβΩα − ∂TαΩβ

)
.

Asymptotically near P0 the Abelian integral Ωα is given by κα/α + O(κ−1) due to the
normalization. Hence, we have ∂κΩα = κα−1 + O(κ−2) and ∂TβΩα = O(κ−1) near P0.

2Alternatively, the real normalization =(
∫
c

dΩα) = 0 for all c ∈ H1(Γn,Z) could be used here. But
meromorphic differential forms normalized by their a-periods as done above, appear when modulating the
KdV hierarchy (see [25] and Chapter 5 below) and KP hierarchy (see [38]). In [40] and related publications
the principal parts are normalized by dΩα = d

(
κα +O(κ−1)

)
instead.

3This is analogous to the zero genus case of the Whitham hierarchy described in Section 2 of [40].
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Analogous formulas hold for p = Ω1 and Ωβ. In (2.2.16) this yields near P0

0 = κα−1
(
∂XΩβ − ∂Tβp

)
− κβ−1 (∂XΩα − ∂Tαp) + κ0

(
∂TβΩα − ∂TαΩβ

)
+O(κ−3)

since the terms in brackets are in O(κ−1). For fixed α the order of the first and third term in
the sum is bound from above independently of the value of β. The limit β →∞ then shows
that all negative orders of ∂XΩα − ∂Tαp have to vanish, which implies that the expression
has to be zero already. Using this in (2.2.16) shows the formula in the lemma. �

The argument in the proof is similar to that for showing the equivalence of the Zakharov-
Shabat equation and the Lax equation in KP theory (see, e.g. Lemma 4.3 in [30]). In
Theorem 2.1 and Theorem 7.7 in [40] Krichever derives the zero curvature form of the KP
Whitham hierarchy in this way. The reparametrization (κ,T )→ (p,T ) applied to

(2.2.17) ∂Tαp = ∂XΩα

works as follows.

• Where p is a coordinate, i.e. dp = ∂κpdκ 6= 0, we may write κ = κ(p,T ) with p
considered as a parameter and Ωα(κ,T ) = Ωp

α(p(κ,T ),T ) as in Section 2.2.1. The
coordinate change implies 0 = ∂Tαp(κ(p,T ),T ) = ∂κp(κ,T )∂Tακ+ ∂Tαp(κ,T ) and
∂XΩα(κ,T ) = ∂pΩ

p
α∂Xp+ ∂XΩp

α. Hence, equation (2.2.17) gives

(2.2.18) ∂Tακ = −∂pκ∂XΩα = ∂Xκ∂pΩ
p
α − ∂pκ∂XΩp

α = {κ,Ωp
α} ,

which is already the pseudopotential equation (2.2.10).
• At points κi where p = p(κ,T ) is not a coordinate, i.e. dp|κi = ∂κp|κidκ = 0 there

is an expansion p(κ,T ) = pi+(κ−κi)li (ui +O(κ− κi)) with pi := p(κi,T ), li ≥ 2
and ui = ui(T ) 6= 0. Using equation (2.2.17) gives

(2.2.19) ∂Tαpi = ∂XΩα|κi .

• At last, equation (2.2.17) implies for all b-periods along b-cycles bi in the basis of
the first homology group (2.2.14)

(2.2.20) ∂Tα

∫
bi

dp = ∂X

∫
bi

dΩα .

Since a-periods of the differential forms dp and dΩα vanish, stating (2.2.20) for
b-cycles is equivalent to stating it for all elements of the first homology group.

Conversely, the equations (2.2.18), (2.2.19) and (2.2.20) also imply equation (2.2.17). In
sum, this is the content of Theorem 7.7 in [40] in the case with one marked point P0.

Let us point out again that (2.2.19) and (2.2.20) have the same form as a hydrodynamic
conservation law in (2.1.18). However, the latter depends only on finitely many state vari-
ables (u1(T ), . . . , um(T )), whereas solutions κ of (2.2.18) are set on the infinite dimensional

moduli space M̂∗n. Choosing one chart κ suitably to reduce the moduli space to finitely
many dimensions, will allow to reduce (2.2.17) to a diagonal semi-Hamiltonian hydrody-
namic system in the sense of Section 2.1. How to get to such a reduction will be discussed
in the following reduction and more generally in Section 2.2.3.

Example 2.2.4 (KdV reduction I). The KdV equation and hierarchy are obtained from
the KP equation and hierarchy by requiring the second spatial flow in y = t2 (and thereby
all even flows) to be trivial. Likewise, assuming the corresponding modulation in T2 to be
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trivial, gives the KdV reduction of the basic KP Whitham hierarchy. In the representation
of Lemma 2.2.3 this reduction means

∂TαΩ2 = ∂T2Ωα = 0

for all α ≥ 1. That is to say, the Abelian integral Ω2 is constant in all modulation times. In
particular all b-periods of the differential form dΩ2 are constant. So if they vanish at one
point in time, they vanish at all times. By construction the a-periods of dΩ2 are already
zero. For a meromorphic differential form without residues, vanishing a-periods and b-
periods imply that its Abelian integral defines a meromorphic function on the Riemann
surface. If at some point in time this holds for Ω2, then Ω2 is a 2 : 1-covering Γn → CP1

for all times. This means Γn has to be a hyperelliptic curve at all times. Altogether, in
the KdV reduction Γn stays a hyperelliptic curve under Whitham flows, if it has been one
initially.

On varying hyperelliptic curves Γn with E := Ω2 : Γn → CP1 as time-independent
covering maps, each marked point P0 corresponds to E =∞ and the chart κ is given there
by

(2.2.21) κ2 = 2E ,

since dΩ2 = dE = κdκ has the required normalization and is unique with that property.
In particular, P0 is a branch point of E with value infinity. Away form branch points of E,
there is a reparametrization (κ,T ) 7→ (E,T ) for the Whitham hierarchy in Lemma 2.2.3,
giving

(2.2.22) ∂TαdΩβ(E,T ) = ∂TβdΩα(E,T )

for all α, β ≥ 1. In [25] both parametrizations of the KdV Whitham hierarchy are used 4.
By their normalization all the even differential forms are determined as dΩ2α = Eα−1dE

for α ≥ 1 and thus time-independent. As a consequence, the flows in the corresponding
times T2α are trivial. This is the same for isospectral flows of KdV. Altogether, the KdV
reduction of the KP Whitham hierarchy is constant in all times T2α and set on the finite

dimensional moduli space Mhyp
n ⊆Mn of hyperelliptic curves of genus n with marked point

E =∞ and fixed chart (2.2.21). A model for hyperelliptic curves of genus n is given by

(2.2.23) Γn =
{

(E, y) ∈ C2 | y2 + g(E) = 0
}
∪ {∞}

with g a complex monic polynomial of degree 2n + 1 with distinct roots. By an affine
transformation two of the roots of g can be mapped to 0 and 1, leaving the remaining roots
to parametrize the moduli space of compact hyperelliptic Riemann surfaces of genus n. The
point at infinity is a ramification point of the hyperelliptic covering Γn 3 (E, y) 7→ E ∈ CP1

and (2.2.21) gives a chart there. In the bundle M̂hyp
n →Mhyp

n this corresponds to a constant
section

Mhyp
n 3 [Γn,∞] 7→

[
Γn,∞,

√
2E
]
∈ M̂hyp

n .

For a detailed discussion of the KdV reduction of the KP Whitham hierarchy see Chapter 5.
More generally, the case when the chart κ of the KP Whitham hierarchy is some root of an
Abelian integral leads to algebraic orbits as discussed in the next section.

4More precisely, ξ = 1/κ instead of κ is used as a variable in [25].
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2.2.3. The KP Whitham Hierarchy on the Algebraic Orbit. The KP Whitham
hierarchy in conservation form is an infinite system of PDEs set on the infinite dimensional
moduli space M̂∗n, see Lemma 2.2.3. Trivially, it admits solutions T 7→ I(T ) ∈ M̂∗n which
are constant maps. A richer class of solutions comes from algebraic orbits [40]. As it will be
defined below, an algebraic orbit is a finite dimensional subspace of the moduli space that is
additionally invariant under the dynamics of the KP Whitham hierarchy. In Example 2.2.4
we have already seen that the KdV reduction of the KP Whitham hierarchy is set on the
finite dimensional invariant subspace of hyperelliptic Riemann surfaces and thus forms an
algebraic orbit.

Before developing the general framework of algebraic orbits, let us see in the following
example, how the KdV reduction allows to make a connection between the KP Whitham
hierarchy and the semi-Hamiltonian systems of hydrodynamic type from Section 2.1. As a
consequence, solutions of the KP Whitham hierarchy which are constant in all even times
T2α, are accessible by Tsarev’s hodograph method.

Example 2.2.5 (KdV reduction II). In Example 2.2.4 the chart κ at the marked point
can be extended holomorphically to the universal covering of the hyperelliptic curve Γn by
the algebraic relation κ2 = 2E with the Abelian integral E. Additionally, the Whitham
hierarchy takes prepotential form (2.2.12) in coordinates (κ,T ) and due to the algebraic
relation also in coordinates (E,T ), see (2.2.22). The Abelian integral E provides a 2 : 1-
covering E : Γn → CP1 with 2n + 2 branch points P0, P1, . . . , P2n+1 for which dE|Pj = 0
and with branch values ∞, γ1, . . . , γ2n+1, respectively. The ramification index at all Pi is 2,
so locally in a chart zi of Γn near Pi we have

E − γi = z2
i ,

dE = 2zidzi .

Note that while E is time-independent, the charts zi depend on time, since the branch
values γi = γi(T ) do. In the chart zi the differential forms of the KdV Whitham hierarchy
take the form dΩα = Ciα(zi,γ)dzi for some functions Ciα that are holomorphic in the first
argument and smooth in γ = (γ1, . . . , γ2n+1). Expressed in E this gives

dΩα(E,γ) =
Ciα((E − γi)1/2,γ)

2(E − γi)1/2
dE .

Hence, near a branch value γi the KdV Whitham hierarchy (2.2.22) implies[
Ciβ(0,γ)

4(E − γi)3/2
∂Tαγi −

Ciα(0,γ)

4(E − γi)3/2
∂Tβγi

]
dE = O

(
(E − γi)−1/2

)
dE

for all odd α, β ≥ 1. The equations for even indices are trivial. At branch values γi this
means

(2.2.24) dΩβ|E=γi∂Tαγi = dΩα|E=γi∂Tβγi .

Assuming that generically dΩβ is not zero at branch values of E, we get that vαβ :=
dΩα/dΩβ can be evaluated at all these branch values γi. Therefore for each pair α and β

(2.2.25) ∂Tαγi = vαβ(γi)∂Tβγi

is a diagonal hydrodynamic system of the form (2.0.3). It is worth to note that the velocities
vαβ(γi) all come by evaluation of the function vαβ at different branch values γ1, . . . , γ2n+1.
From Lemma 2.2.8 below it will follow that the hydrodynamic systems determine the KdV
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Whitham hierarchy entirely. Furthermore, Corollary 2.2.10 will show that vα1 induces a
semi-Hamiltonian system and vβ1 for α 6= β induces a commuting system. In Section 5.1
in the more concrete setup where the hyperelliptic curve is given by (2.2.23), the semi-
Hamitonian system will appear as even a Hamiltonian system of hydrodynamic type.

More generally, algebraic orbits in the moduli space M̂∗n of the universal KP hierarchy
are described as follows (see Section 7.2 in [40] as well). For a point [Γn, P0, κ,B] in the
moduli space let dE be a holomorphic differential form on Γn \ {P0}, with vanishing a-
periods and a pole of order n0 + 1 at P0 without residue. We assume dE to be a section in
the bundle of meromorphic differential forms over the moduli space. This means that dE
is a linear combination of dΩ1, . . . ,dΩn0 with n0 coefficients that may depend smoothly on
times T . The Abelian integral E of dE includes a constant of integration and is defined on
the universal covering of Γn and has a pole of order n0 at P0.

Definition 2.2.6. The submanifold Nn(n0) := {[Γn, P0, κ,B] | κn0 = E} ⊆ M̂∗n is called
algebraic orbit.

In other words, for a moduli space that is given with a fixed Abelian integral E (and

without charts κ), the relation κn0 = E induces an embedding into M̂∗n, thus turning the
initial moduli space into an algebraic orbit. The complex dimension of Nn(n0) is 3n−1+n0

if n > 1 and 3 +n0 if n = 1, since E has n0 + 1 parameters that depend on times T . There
are parametrizations of an algebraic orbit that correspond to the parameters in the zero
curvature form and the conservation form of the Whitham hierarchy, see Section 2.2.1.

Parametrization by the Abelian integral p. At P0 the Abelian integral Ω1 has a
simple pole, so p = Ω1 defines a chart there. Hence, we may write

E = pn0 + un0−2p
n0−2 + · · ·+ u1p+ u0 +O(p−1)

for some coefficients ui. It is assumed here that by a Möbius transformation p(P0) is nor-
malized to ∞ and the leading coefficients un0 and un0−1 are 1 and 0, respectively. By the
Riemann-Roch theorem dp has 2n zeros which give generically 2n critical values of p. To-
gether with u0, . . . , un0−2, and the n b-periods of dp those critical values locally parametrize
Nn(n0). All this assumes that generically the chosen parameters are independent.

From equation (2.2.18) and κn0 = E follows immediately the pseudopotential represen-
tation (2.2.10)

∂TαE = {E,Ωp
α} .

Conversely, this equation ensures that the algebraic orbit Nn(n0) is invariant under flows
of the KP Whitham hierarchy. It describes the KP Whitham hierarchy entirely, see The-
orem 7.9 in [40]. Using (E,T ) as coordinates (that is E is considered as a parameter
independent of T ) allows to represent the basic Whitham hierarchy from Lemma 2.2.3 by

∂TαdΩβ(E,T ) = ∂TβdΩα(E,T ) .

Hence, like in Example 2.2.5, there is a hydrodynamic reduction for the KP Whitham
hierarchy in terms of the branch values of E with additional equations for the b-periods of
dE.

Parametrization by the Abelian integral E. Let us parametrize Nn(n0) directly
by characterizing the differential form dE uniquely by its zeros and its b-periods. The
parameters are the b-periods

UE,j := UEbj =

∫
bj

dE
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for j = 1, . . . , n and the branch values Ej of E, with j = 1, . . . , 2n− 1 + n0 since again by
Riemann-Roch dE has generically 2n−1 +n0 zeros. The chosen parameters are generically
independent. Then consider the normalized differential forms of the KP Whitham hierarchy
on the algebraic orbit Nn(n0) locally in these coordinates, that is

dΩα = dΩα(E;E, UE)

for E = (E1, . . . , E2n−1+n0) and UE = (UE,1, . . . , UE,n). As a consequence the basic
Whitham hierarchy from Lemma 2.2.3 turns into a system of PDEs for the function T 7→
(E(T ), UE(T )) such that

(2.2.26) ∂TαdΩβ (E;E(T ), UE(T )) = ∂TβdΩα (E;E(T ), UE(T )) .

For the KdV reduction of the KP Whitham hierarchy, a hydrodynamic reduction is given
in (2.2.24). Similar to the argument there, in coordinates (E, UE) of the algebraic orbit
Nn(n0), the following property allows a hydrodynamic reduction.

Proposition 2.2.7. Let Nn(n0) be an algebraic orbit with Abelian integral E that only has
branch points of index 2. For the normalized differential forms of the basic KP Whitham
hierarchy holds

dΩα|Ei∂EidΩβ = dΩβ|Ei∂EidΩα ,(2.2.27)

∂UE,jdΩα = 0(2.2.28)

for all i = 1, . . . , 2n− 1 + n0 and j = 1, . . . , n

Proof. Aside from its branch points, E can be used as a chart and dΩα as well as
its derivatives ∂EidΩα and ∂UE,jdΩα are holomorphic away from branch points. Since all
branch points Pi are assumed to be of index 2, there is a chart κi near Pi such that

E − Ei = κ2
i ,

dE = 2κidκi .

Note that κi depends on the branch values E here. In this chart dΩα takes the form
Ciα(κi;E, UE)dκi for some function Ciα which is holomorphic in the first argument and
smooth in the second and third argument. Therefore we have near Ei

(2.2.29) dΩα =
Ciα((E − Ei)1/2;E, UE)dE

2(E − Ei)1/2
.

Taking the derivative with respect to UE,j shows that ∂UE,jdΩα is holomorphic at all branch
values Ei. Due to the normalization of the differential form dΩα, both the principal part at
P0 and the a-periods of ∂UE,jdΩα vanish. Altogether ∂UE,jdΩα is a holomorphic differential
form on a compact Riemann surface without a-periods and therefore zero. Taking the
derivative with respect to Ej shows that ∂EjdΩα is holomorphic near Ei if i 6= j and if i = j
we have

(2.2.30) ∂EidΩα =

(
1

2
− ∂1C

i
α

2Ciα
(E − Ei)1/2 +O(E − Ei)

)
dΩα

E − Ei
,

where ∂1C
i
α stands for the derivative with respect to the first argument of the function.

Expressing ∂EidΩα again in the chart κi shows a pole of order up to 2 at κi = 0. The
normalization of dΩα implies that both, the a-periods of ∂EidΩα and its principal part
at P0 vanish. By Riemann’s theorem two differential forms on Γn with these properties
coincide, if their principal parts at E = Ei coincide. There is no residue present at E = Ei,
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since ∂EidΩα is holomorphic everywhere else. From (2.2.30) it follows that both sides
of (2.2.27) have the same principal part at E = Ei. �

The proof of Proposition 2.2.7 generalizes without any extra arguments to the case of
normalized holomorphic differential forms dΩh

α for α = 1, . . . , n. More generally, in [17]
horizontal families of multivalued Abelian differential forms contain differential forms dΩ
on the universal covering of Γn such that ∂EidΩ is a meromorphic differential form on Γn
(i.e. not multivalued) without residues and holomorphic outside the branch points of E,
where it has at most a pole of order 2. By (2.2.30), the differential forms dΩα of the KP
Whitham hierarchy obviously have this property.

2.2.4. Hydrodynamic Reduction of the Basic KP Whitham Hierarchy on an
Algebraic Orbit. As a consequence of Proposition 2.2.7 we obtain the following form of
the KP Whitham hierarchy on algebraic orbits.

Lemma 2.2.8 (Hydrodynamic Reduction). Consider an algebraic orbit whose Abelian in-
tegral E has only branch points of index 2. Then the basic KP Whitham equations (2.2.26)
are equivalent to the diagonal hydrodynamic system

(2.2.31) dΩβ|Ei∂TαEi = dΩα|Ei∂TβEi
for all i = 1, . . . , 2n− 1 + n0.

Proof. Fron Proposition 2.2.7 we have that dΩα does not depend on the b-periods
UE,j of dE. Hence, the basic KP Whitham equations are equivalent to

(2.2.32) 0 =

2n−1+n0∑
l=1

∂EldΩβ∂TαEl − ∂EldΩα∂TβEl .

Since E has only branch points of index 2, the principal part of this formula at Ei gives
equation (2.2.31) by the help of (2.2.27). Conversely, the differential form on the right hand
side of (2.2.32) has vanishing a-periods, is holomorphic on Γn \ {E1, . . . , E2n−1+n0} and its
principal parts at points E = Ei vanish due to the hydrodynamic reduction (2.2.31). By
Riemann’s theorem this differential form has to be zero, which is equivalent to the basic
KP Whitham equations. �

Note that if dΩ1|Ei 6= 0 for all i = 1, . . . , 2n−1+n0, then the equations (2.2.31) for α = 1
and β ≥ 1 imply the equations for all α, β ≥ 1. A convenient version of the compatibility
equations (2.2.31) is their Riemann invariant form

(2.2.33) ∂TβEi = v(β)(Ei)∂T1Ei

with meromorphic functions v(β)(E) = dΩβ/dΩ1 on C. The ramification values Ei of
the Abelian integral E are the Riemann invariants here. In particular, the system of
equations (2.2.33) forms a diagonal system of hydrodynamic type.

Corollary 2.2.9. Let J ⊆ N≥1 with |J | = 2n − 1 + n0 and 1 ∈ J and assume there is a
solution

(2.2.34) TJ := (Tj)j∈J 7→ E(TJ)

of (2.2.31) on some open domain in R|J | such that at some point τJ in the domain we have
dΩ1|Ej(τJ ) 6= 0 and ∂T1Ej(τJ) 6= 0 for all j = 1, . . . , 2n− 1 + n0. Then the map (2.2.34) is
a submersion and an immersion at τJ , i.e. it is invertible locally near τJ .
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Proof. By assumption the equations (2.2.33) hold in a neighborhood of τJ . Therefore

the Jacobian matrix JE given by (JE)β,i = ∂TβEi is invertible if (v(β)(Ei))β,i is invertible
and none of the ∂T1Ei is zero. The latter holds at τJ by assumption. Furthermore, the
differential forms (dΩβ)β∈J are linearly independent, due to their different pole order at the
marked point P0. If a linear combination dΩ =

∑
β∈J kβdΩβ with kβ ∈ C vanishes at all

branch values Ei, then Proposition 2.2.7 implies

∂EidΩ =
∑
β∈J

kβ
dΩβ

dΩ1

∣∣∣∣
Ei

∂EidΩ1 = 0 .

Hence, dΩ is constant in E and therefore also constant on Γn. An evaluation at Ei
shows that this constant is zero, i.e. dΩ = 0. Altogether we get that (v(β)(Ei))β,i =
(dΩβ/dΩ1|Ei)β,i is invertible. The inverse function theorem then yields the statement. �

The previous lemma and corollary are still valid, when times corresponding to the
normalized holomorphic differential forms dΩh

β are taken into consideration 5. As a second
consequence of Proposition 2.2.7 and the hydrodynamic reduction in Lemma 2.2.8, the basic
KP Whitham hierarchy on the algebraic orbit appears as a semi-Hamiltonian hydrodynamic
system.

Corollary 2.2.10. For an algebraic orbit with Abelian integral E that only has branch

values Ei of index 2, let v
(α)
i := v(α)(Ei) be defined as in (2.2.33). Then for α ≥ 1 and

i = 1, . . . , 2n− 1 + n0 holds

(2.2.35) ∂Eiv
(α) =

∂EidΩ1

dΩ1

(
v

(α)
i − v(α)

)
.

In particular, by evaluation at Ej with j 6= i follows the semi-Hamiltonian property (2.1.1)
(in state variables E instead of u) for the hydrodynamic system in (2.2.33).

After setting Γjji = (∂EidΩ1/dΩ1) |Ej for i 6= j as Christoffel symbols, a compar-

ison with (2.1.3) yields a candidate for a corresponding diagonal Riemann metric g =∑2n−1+n0
j=1 gjj(E)(dEj)

2 by

(2.2.36) gjj =
(
dΩ1(∂κj )|Ej

)2
= 2 res

E=Ej

(dΩ1)2

dE
,

where κ2
j = E − Ej induces a local coordinate κj of Γn near Pj and the second equality

follows from 2κjdκj = dE and the representation (2.2.29) of dΩ1 near branch points. In [16]
Dubrovin showed for the KdV reduction that this metric has the Egorov property and is flat,
see also Lemma 5.1.4 and Lemma 5.1.5 in Chapter 5. The more general case of algebraic
orbits is treated in [40], see also Remark 2.2.15 below.

Example 2.2.11 (KdV Reduction III). For the KdV Whitham hierarchy the velocities
vα,i(γ) := vα1(γi) (for i = 1, . . . , 2n + 1) corresponding to the flow in time Tα are given
in (2.2.25), which is a special form of (2.2.33). Also velocities corresponding to normalized
holomorphic differential forms dΩh

α may be allowed here. Due to (2.2.35) any two different
velocities (vα,i)i and (vβ,i)i satisfy the equation for commuting flows (2.1.15). Therefore,
these velocities can be used in Tsarev’s generalized hodograph method for multiple com-
muting flows (see Theorem 2.1.3 and [34] for a version with more than two times). That is,

5In the proof of Corollary 2.2.9 the argument for the linear independence of the differential forms is
provided by their different pole order at P0 or their different a-periods.
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in order to solve the KdV Whitham equations in the form of (2.2.25), we look for solutions
γ = γ(TJ) (with TJ := (Tα)α∈J and J ⊂ 1 + 2N finite) of

(2.2.37) wj(γ) =
∑
α∈J

vα,j(γ)Tα

for some wj satisfying (2.1.15). Since (2.1.15) (with fixed vj = v1,j) is C-linear in wj , some
wj may be given by a convergent linear combination of velocities vα,j with constant complex
coefficients hα

wj(γ) =
∑
α≥1

hαvα,j(γ) .

Whether all possible solutions (wj)j of (2.1.15) are of this form will be discussed in Sec-
tion 5.3.

2.2.5. Krichever’s Hodograph method. On algebraic orbits Krichever’s hodograph
method gives solutions of the KP Whitham hierarchy. Let us consider the Ansatz

(2.2.38) dS(E;E(T ), UE(T )) =
∑
β∈J

TβdΩβ(E;E(T ), UE(T ))

for a generating function. Here also normalized holomorphic differential forms dΩh
α may

be included, but for simplicity of notation they are not explicitly mentioned. Furthermore,
let us first assume the sum to be finite, but large enough for T := (Tα)α∈J to provide
a submersion to the algebraic orbit, i.e. |J | ≥ dimNn(n0). Some subset of those times
then yields a local parametrization. Inserting the Ansatz (2.2.38) into the characterizing
equation for generating functions (2.2.13)

(2.2.39) ∂TαdS = dΩα

gives the following result which is a special case of Theorem 7.10 in [40].

Proposition 2.2.12. Let Nn(n0) be an algebraic orbit with Abelian integral E that only
has branch points of index 2. If

(2.2.40) dS|E=Ei = 0

for all branch values Ei of E, then T 7→ (E(T ), UE(T )) with arbitrary smooth UE(T ) is a
solution for the basic KP Whitham hierarchy.

Proof. Let us begin with the hodograph Ansatz (2.2.38) for finding a generating func-
tion in (2.2.39). For α ∈ J the characterizing equation for generating functions demands

(2.2.41) dΩα = ∂Tα
∑
β∈J

TβdΩβ = dΩα +
∑
β∈J

Tβ∂TαdΩβ .

Applying the chain rule for dΩα = dΩα(E;E, UE) gives

∂TαdΩβ =

2n−1+n0∑
i=1

∂EidΩβ∂TαEi +

n∑
j=1

∂UE,jdΩβ∂TαUE,j .

Therefore (2.2.41) is equivalent to

(2.2.42) 0 =

2n−1+n0∑
i=1

∑
β∈J

Tβ∂EidΩβ

 ∂TαEi +
n∑
j=1

∑
β∈J

Tβ∂UE,jdΩβ

 ∂TαUE,j .
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Clearly, this equation is satisfied, if each term in the brackets vanishes, that is

(2.2.43) 0 =
∑
β∈J

Tβ∂EidΩβ and 0 =
∑
β∈J

Tβ∂UE,jdΩβ

for all i = 1, . . . , 2n − 1 + n0 and j = 1, . . . , n. In order to convert (2.2.43) into an
equation for the zeros of the generating differential form dS, we use Proposition 2.2.7. As a
consequence, the second equation in (2.2.43) is automatically satisfied and the first equation
becomes equivalent to

(2.2.44) 0 =
∑
β∈J

Tβ
dΩβ

dΩ1

∣∣∣∣
Ei

,

where without loss of generality it is assumed that 1 ∈ J and dΩ1 has the lowest vanishing
order at Ei among all dΩβ with β ∈ J . Krichever’s Hodograph formula (2.2.40) for the
Ansatz (2.2.38) then implies (2.2.44) and the claim of the proposition. �

By a more general hodoraph Ansatz than (2.2.38), Theorem 7.10 in [40] provides all
possible solutions of the KP Whitham hierarchy on an algebraic orbit Nn(n0). Let us make
a remark on extensions and assumptions that allow a generalization of Proposition 2.2.12
in this direction.

Remark 2.2.13. The Ansatz (2.2.38) only includes differential forms from the basic KP
Whitham hierarchy for which we have ∂UE,idΩβ = 0. Therefore the b-periods UE of dE are
undetermined by the hodograph formula (2.2.40) in Proposition 2.2.12. As a consequence,
the times of the basic KP Whitham hierarchy generally cannot even locally parametrize the
algebraic orbit Nn(n0). In order to mend this, the b-periods UE can be taken as additional
deformation times, corresponding to meromorphic differential forms dΩE

i on the universal
covering of Γn such that

∂UE,idS = dΩE
i

for i = 1, . . . , n, see Theorem 7.11 in [40]. In the KdV reduction all b-periods UE are
trivial. Horizontal families of multivalued Abelian differential forms provide a framework
which allows to apply Krichever’s hodograph Ansatz (2.2.38) more generally, see [17].

Conversely, let a generating differential form dS be given from some general hodo-
graph Ansatz that satisfies (2.2.39). In order to show that dS satisfies the hodograph for-
mula (2.2.40), we need in the proof of Proposition 2.2.12 that (2.2.42) implies (2.2.43). This
implication holds under the assumption that (∂Tα (E, UE))α∈J has full rank dimNn(n0) =
(2n − 1 + n0) + n. A generalization of Corollary 2.2.9 to a map TJ 7→ (E(TJ), UE(TJ))
provides this assumption. As before in Section 2.1.3 also consult Section 2 in [58] on this
issue.

By the hodograph formula (2.2.40) all zeros of the differential form dE are also zeros of
the generating differential form dS. Therefore we conclude the following (see again Theorem
7.10 in [40]).

Corollary 2.2.14. If Krichver’s hodograph formula (2.2.40) holds, then there is a holo-
morphic function Q = Q (E;E(T ), UE(T )) on Γn \ {P0} such that dS = QdE.

Conversely, when Q = Q (E;E, UE) is considered as given on an algebraic orbit, then
the differential equations (2.2.39) induce flows in times Tα. Krichever’s hodograph Ansatz
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in the form (2.2.38) poses constraints on the possible functions Q. Each time Tα for α ∈ J
can be extracted by

(2.2.45) res
1/κ=0

κ−αQdE =
∑
β∈J

Tβ res
1/κ=0

(
κ−α+β−1 +O(κ0)

)
dκ = Tα .

This means that the times Tα become functions in the parameters E of the moduli space
Nn(n0), defining a map (E, UE) 7→ T (E, UE). If this map is invertible, then its inverse
gives a solution for the KP Whitham hierarchy. As a necessary condition for invertibility,
there need to be more times than parameters of the moduli space, i.e. |J | ≥ dimNn(n0).
Using more general functions Q than those originating form Ansatz (2.2.38) (with finite
index set) as the starting point for finding solutions of the KP Whitham hierarchy, leads to
the universal configuration space [40, 42, 21].

Remark 2.2.15. In the universal configuration space Q = p = Ω1 can be chosen. This
function is defined on the universal covering of Γn. Flat coordinates for the metric (2.2.36)
come from the times defined by (2.2.45) (and similar formulas), see Theorem 7.14 and the
following page in [40].

Example 2.2.16 (KdV reduction IV). Let us consider the hyperelliptic curve Γn rep-
resented by the algebraic equation y2 + g(E) = 0 for some monic polynomial g of de-
gree 2n + 1 with only simple zeros, see (2.2.23). Due to 2ydy + ∂Eg(E)dE = 0, the
roots γ = (γ1, . . . , γ2n+1) of g are the critical values of the hyperelliptic covering map
Γn 3 (E, y) 7→ E ∈ CP1 here. According to Proposition 2.2.12, Krichever’s hodograph
Ansatz (2.2.38) provides a function T = (T1, T3, . . . , T2n+1) 7→ γ(T ) such that dS =∑n+1

β=1 T2β−1dΩ2β−1(E,γ(T )) satisfies (2.2.39). This means γ(T ) is a solution for the KdV
Whitham hierarchy.

Conversely, for Q(E,γ) =
√
−g(E) equation (2.2.45) defines a map γ 7→ T (γ). How-

ever, this map is not invertible and we cannot just add higher order times, since the pole
order of QdE at 1/κ = 0 is 2n + 4 with leading coefficient 4, so in (2.2.45) T2n+3 = 4 and
T2j+1 = 0 for all j ≥ n + 2. Considering the n normalized holomorphic differential forms

dΩh
α and corresponding times T hα =

∫
aα
QdE in Chapter 5 will provide enough times for the

invertibility, see Example 5.3.3.

In summary, given two out of the three objects: normalized differential forms (dΩα)α, a
generating differential form dS = QdE and times T , the third one follows from Krichever’s
hodograph Ansatz.

• Given (dΩα)α and T , then Q follows by Corollary 2.2.14.
• Given a function Q on Γn and T , then differential forms dΩj with the correct

normalization are determined by (2.2.38).
• Given (dΩα)α and a function Q on Γn, then times T are found by

Tα = res
1/κ=0

κ−αQdE , for α ≥ 1 ,

T hα =

∫
aα

QdE , for α = 1, . . . , n .

In (2.2.38) these times correspond to the coefficients of the normalized differential
forms dΩα and dΩh

α, respectively.

Either of the three cases allows for a generalization to the universal covering of Γn. In the
first one this is quite implicit, though. The generating differential is given by a system of
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differential equations (2.2.39) depending holomorphically on the parameter E. Heuristically,
holomorphic continuation yields dS = QdE on the universal covering of the Riemann surface
Γn with possible singularities at the points covering P0 ∈ Γn. In the third case times
are redefined that have some meaning as a “slow” version of times in the KP hierarchy.
Furthermore, times

TEi = UE,i =

∫
bα

dE and TQα =

∫
bα

dQ

for i, α = 1, . . . , n appear, when E and Q are multivalued on Γn, respectively. Similar to
the second case, the general characterization of generating differential forms we aim at, will
start with some power series expansion of Q and respect the originally given times. For the
KdV Whitham equations this is going to be explained in Section 5.3.





CHAPTER 3

The KdV Hierarchy and Stationary Solutions

The Korteweg-de Vries equation is a non-linear PDE in one spatial variable x and one
time t. It admits solutions u by the inverse scattering transform [49, 50, 26]. This works
by interpreting the KdV equation ∂tu = −∂3

xu+ 6u∂xu as the compatibility condition of an
auxiliary linear problem 1. Here the initial data for t = 0 is described by the family of 2nd
order linear ODEs

∂2
xφ = (u− E)φ

with parameter E, see (3.1.1) below. Its solutions are deformed by the linear evolution in
time t

∂tφ =
(
−4∂3

x + 6u∂x + 3∂xu
)
φ

while preserving E, compare with (3.1.2) below. By using the framework of Lax pairs,
compatible linear evolutions in higher times appear in a natural way at this point, leading
to the KdV hierarchy.

One approach to studying solutions of the linear ODE in x with parameter E is to apply
Floquet theory, another approach, employed by J. Drach in [12], uses resolvents, as will be
explained in Section 3.1. On both ways a spectral curve covering the complex E-plane
appears to parameterize solutions. Demanding the spectral curve to be a compact Riemann
surface of finite genus provides finite gap solutions or stationary solutions, respectively.
In the following both terms will be used synonymously and will be also applied to the
corresponding time-dependent solutions of the KdV equation and the KdV hierarchy. This
allows to study special solutions of the KdV hierarchy in the algebro-geometric setting [46,
47, 18], see Section 3.2. Extracting a solution of the KdV equation from a resolvent is
straight forward, see Section 3.2.1. Explicit formulas for solutions are obtained by using
separation of variables for the ODE in x and the Abel-Jacobi map on the spectral curve, see
Section 3.2.3. This method was employed by Drach in [13] to solve his resolvent equation.
From a limiting case of the spectral curve, soliton solutions of the KdV hierarchy are
obtained in terms of trigonometric functions, see Section 3.3.

Following S. I. Alber [1, 2, 3] and J. Moser [52] there are interpretations of the station-
ary KdV hierarchy as completely integrable classical Hamiltonian systems, see Section 3.4
and Section 3.2.2, respectively. Real reductions of the Hamiltonian systems allow to identify
their Arnold-Liouville torus with the real part of the Jacobi torus of the spectral curve.

3.1. Resolvent Formulation of the KdV Hierarchy

Hill’s operator L = −∂2
x + u with a suitable C∞-function u as the potential has a

square root in the algebra of pseudo-differential operators. Let Pj = [(−L)j/2]+ denote the

1The transformation u 7→ −u/6 converts solutions of this form of the KdV equation into solutions of its
form in (1.0.2).

43
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differential operator part of the j/2-th power of −L [30]. For example we have P1 = ∂x,
P2 = −L and P3 = ∂3

x − 3
2u∂x −

3
4∂xu. Then the Lax equation

∂tjL = [Pj , L]

gives rise to the KdV equation for j = 3 2. Note, for j an even number Pj = (−L)j/2

implies the j-th flow to be trivial, i.e. ∂tjL = 0. The system of equations that is induced
by the Lax equations (including higher times t2j+1 with j ≥ 1) forms the KdV hierarchy.
Equivalently to the Lax equations the Zakharov-Shabat equations hold

∂tiPj − ∂tjPi + [Pi, Pj ] = 0 .

The Lax equations are the compatibility equations for the (auxiliary) linear problem

Lφ =Eφ ,(3.1.1)

∂tjφ =Pjφ(3.1.2)

where the spectral parameter E is assumed independent of x (i.e. ∂xE = 0) and a solution
φ is called wave function. It follows immediately that E does not change under higher flows
(i.e. ∂tjE = 0), in other words the deformations of φ by the higher flows are isospectral.
Due to ∂t1φ = P1φ = ∂xφ, we may consider φ as dependent on x + t1 instead of x and t1
separately and thus identify both times. In the following we always have t1 = x.

The spectral equation (3.1.1) is a linear ODE of order two and has henceforth a solution
space of dimension 2 spanned by linearly independent wave functions φ±. A resolvent (or
Green’s function) for (3.1.1) is given as

G =
φ+φ−

W (φ+, φ−)

where dividing by the Wronskian W (φ+, φ−) = φ′+φ− − φ+φ
′
− mods out the multiplicative

gauge freedom of φ±, see Section 4 in [52]. Still the resolvent G depends on the choice
of a basis {φ+, φ−} for the solution space of the spectral equation. However, G satisfies a
system of differential equations that does not depend on this choice.

Lemma 3.1.1 ([12, 2, 52, 31]). For the resolvent G the KdV hierarchy becomes

G′′G− 1

2
(G′)2 − 2G2(u− E) +

1

2
= 0 ,(3.1.3)

∂t2i+1G
−1 = (−1)i

(
BiG

−1
)′

(3.1.4)

where (−)′ = ∂x(−), G−1 = 1/G and Bi is defined by P2i+1φ± = (−1)i(−1
2B
′
i +Bi∂x)φ± as

a polynomial in E of degree i.

Proof. In order to derive equation (3.1.3) from the auxiliary linear problem we intro-

duce G̃ = G ·W (φ+, φ−) = φ+φ−. Its first and second derivatives are G̃′ = φ′+φ− + φ+φ
′
−

and G̃′′ = 2(u− E)G̃+ 2φ′+φ
′
−. Therefore we have

G̃′′G̃− 1

2
(G̃′)2 = 2(u− E)G̃2 + 2G̃φ′+φ

′
− −

1

2

(
(φ′+φ−)2 + 2G̃φ′+φ

′
− + (φ+φ

′
−)2
)

= 2(u− E)G̃2 − 1

2
W (φ+, φ−)2 .

2This form of the KdV equation differs in its constant coefficients from the form in the introduction.
Both forms are equivalent by rescaling u, x and t.
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Dividing by the square of the Wronskian which is constant in x yields (3.1.3). For obtain-
ing equation (3.1.4) we represent the operator P2i+1 by a polynomial Bi as follows. Due
to (3.1.1) we can substitute ∂2

x by the multiplication with u−E (when applied to the wave
function). This transforms P2i+1φ± into the above form with Bi a polynomial in E and
coefficients depending on u and its derivatives, see [1]. As a consequence we get

∂t2i+1G̃ =
(
∂t2i+1φ+

)
φ− + φ+∂t2i+1φ−

= (−1)i
(
−1

2
B′iφ+ +Biφ

′
+

)
φ− + (−1)iφ+

(
−1

2
B′iφ− +Biφ

′
−

)
= (−1)i

(
−B′iG̃+BiG̃

′
)
.

Since the Wronskian does not depend on t2i+1 (as follows form a straight forward compu-
tation) we arrive at (3.1.4) by using the quotient rule. �

Conversely, from a solution of the resolvent equation in (3.1.3) solutions of the auxiliary
linear problem (3.1.1) are recovered by

φ± =
√
Ge±

1
2

∫
1
G

dx .

Using the dynamics in the higher times (3.1.4) and the definition of Bi, these functions
φ± also satisfy (3.1.2) and thus they are wave functions. From now on we consider (3.1.3)
and (3.1.4) as the equations of the KdV hierarchy.

Remark 3.1.2. The alternating sign in equation (3.1.4) originates from ∂2
x and E having

opposite signs in the eigenvalue equation (3.1.1). This is due to the common definition of
Hill’s operator. For convenience of the following display, we reorient the higher flows of the

KdV hieararchy by t2i+1 → (−1)it2i+1. Hence, (3.1.4) becomes ∂t2i+1G
−1 =

(
BiG

−1
)′

.

3.2. Stationary Solutions of the KdV Hierarchy

As an ODE with values in the formal Laurent series in E, the resolvent equation (3.1.3)
is an infinite dimensional system of scalar ODEs. We are now looking for solutions which
are already described by finitely many equations.

Definition 3.2.1 ([55, 47]). A resolvent G is called m-stationary if the m-th flow is a
linear combination of the lower order flows. The corresponding system of equations in
Lemma 3.1.1 forms the m-stationary KdV hierarchy.

This means a resolvent is (2n+ 1)-stationary if there are constants ki such that

(3.2.1) ∂t2n+1G+

n−1∑
i=0

ki∂t2i+1G = 0 .

Using equation (3.1.4) (with the modification from Remark 3.1.2) for the dynamics of G,
this is equivalent to (

∑n
i=0 kiBi)G

′ − (
∑n

i=0 kiB
′
i)G = 0 where kn is set to be 1. Here we

see logarithmic derivatives, so integration yields for B̂ =
∑n

i=0 kiBi

(3.2.2) G = B̂eP

where the constant of integration P is independent of x and B̂ is a polynomial of order n
since the Bi are polynomials. Substituting this form of G into (3.1.3) we obtain

(3.2.3) B̂′′B̂ − 1

2
(B̂′)2 − 2B̂2(u− E) +

1

2
e−2P = 0 .
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In particular, since B̂ is a polynomial also e−2P has to be polynomial in E. More precisely,
g = −1

4e
−2P is a monic polynomial of degree 2n+ 1. For genericity we assume all the zeros

γ1, . . . , γ2n+1 of g to be simple.

Proposition 3.2.2. The polynomial g is invariant under the higher KdV flows (3.1.4).

Proof. Substituting (3.2.2) into (3.1.4) (with the modification from Remark 3.1.2) and

using that P does not depend on x gives after multiplying by eP B̂2

(3.2.4) B′iB̂ −BiB̂′ = −∂t2i+1B̂ − B̂∂t2i+1P .

About the first three terms in this equation we know that they are of order up to n+ i− 1
in E. The last term we rewrite by using ∂t2i+1g = −2g∂t2i+1P . Multiplying (3.2.4) by g we
arrive at

g(B′iB̂ −BiB̂′ + ∂t2i+1B̂) =
1

2
B̂∂t2i+1g .

At the zeros γ1, . . . , γ2n+1 of g, the left hand side of this equation vanishes. Since B̂|E=γj 6= 0
generically (otherwise, following from (3.2.3) and ∂xγj = 0 we would have γj as a double
zero of g) we obtain ∂t2i+1g|E=γj = 0. However, ∂t2i+1g is a polynomial in E of degree at
most 2n and therefore it must be zero, i.e. ∂t2i+1g = 0. �

Linear combinations of higher flows are again of the form in Lemma 3.1.1 for different
polynomials Bi. For simplicity we assume now that the flow which becomes stationary
is given such that the coefficients ki of the linear combination in (3.2.1) are trivial, i.e.
∂t2n+1G = 0. However, this changes the polynomial g which will play a role later on in
the study of non-isospectral deformations in Chapter 4. As a result Lemma 3.1.1 (with the
modification from Remark 3.1.2) takes the following form.

Lemma 3.2.3. For the (2n + 1)-stationary KdV hierarchy the flows of the times x =
t1, t3, . . . , t2n−1 are given by

B̂′′B̂ − 1

2
(B̂′)2 − 2B̂2(u− E) = 2g ,(3.2.5)

∂t2i+1B̂
−1 =

(
BiB̂

−1
)′

(3.2.6)

where (−)′ = ∂x(−) and Bi = [Ei−nB̂]≥0 is the polynomial part of Ei−nB̂. The higher flows
are trivial.

This is to say that finding (2n+ 1)-stationary solutions of the KdV hierarchy amounts

to determining B̂. The polynomial B̂ and thereby the resolvent equation (3.2.5) can be
parameterized in different ways:

• Parameterization by the monomial coefficients leads to a recursive system of second
order non-linear ODEs as is presented in [1].
• A less obvious parameterization will allow to identify (3.2.5) with the finite dimen-

sional integrable Hamiltonian system of the C. Neumann problem [2].

• Using the roots of B̂ as parameters leads to the definition of the spectral curve
and the Drach-Dubrovin equations [13, 18, 6] which may also be understood as a
finite dimensional integrable Hamiltonian system [3].

The following sections will explain these three parameterizations of B̂ in more detail.
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3.2.1. The Recursive System. When sorted by powers of E the resolvent equa-
tion (3.2.5) forms a system of recursively related equations. Likewise, the dynamics in higher

times can be determined recursively from (3.2.6) in its equivalent form ∂t2i+1B̂ = BiB̂
′−B′iB̂.

Let

(3.2.7) B̂ =
n∑
j=0

b̂jE
n−j and g =

2n+1∑
i=0

c2n+1−iE
i

where b̂0 = 1 and c0 = 1. Then from (3.2.5) the potential u of Hill’s operator can be read
off as

(3.2.8) u = 2b̂1 − c1 .

Taking the derivative of the resolvent equation (3.2.5) with respect to x and dividing by B̂
we obtain due to Proposition 3.2.2

(3.2.9) B̂′′′ − 4B̂′(u− E)− 2B̂u′ = 0 .

This equation is linear in B̂ and yields the recursion

(3.2.10) 4b̂′j+1 = −b̂′′′j + 4b̂′ju+ 2b̂ju
′

for j = 0, . . . , n and b̂n+1 = 0 representing the (2n + 1)-stationarity. Note however,

that (3.2.9) determines B̂ only up to a constant of integration which is included in (3.2.5).
In [1] the recursion including the constants of integration is described.

The dynamics in higher times ∂t2i+1B̂ = BiB̂
′−B′iB̂, i.e. (3.2.6), yields for the monomial

En−1 the coefficient equation

∂t2i+1 b̂1 = b̂′i+1 .

In the case i = 1 we may express this equation in terms of Hill’s potential u. By us-
ing (3.2.10) and substituting (3.2.8) we arrive at

(3.2.11) ∂t3u =
1

4
u′′′ +

3

2
u′
(
u− c1

6

)
.

After the transformations u 7→ 1
6 (u+ c1) and t3 7→ −4t we find the KdV equation in

the form (1.0.2). So in particular, each solution of the stationary KdV hierarchy yields a
solution of the KdV equation.

3.2.2. The C. Neumann Problem. In the stationary case the resolvent equation
in (3.2.5) forms a finite dimensional (classical) completely integrable Hamiltonian system
with phase space coordinates (q, p) defined (up to sign) by

B̂(E) =
n+1∑
j=1

∏
i 6=j

(E − ei)

 q2
j ,(3.2.12)

p =q′(3.2.13)

and Hamiltonian H = 1
2

∑n+1
i=1 eiq

2
i + 1

4

∑n+1
i,j=1(qipj − qjpi)2. Here the ei are any n + 1 of

the 2n + 1 roots of g [2]. In order to get real solutions, the roots of g are chosen real and

alternating in the following sense [53]: If g(E) =
∏n+1
i=1 (E − ei)

∏n
j=1(E − êj), then

(3.2.14) e1 < ê1 < e2 < ê2 < e3 · · · < ên < en+1 .
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Since B̂ is also a monic polynomial we have
∑n+1

j=1 q
2
j = 1, that is to say the Hamiltonian

system describes a particle on the n-sphere (in a quadratic potential). This is the C.
Neumann Problem [52]. Its integrals of motion

Fj = q2
j +

∑
i 6=j

(qipj − qjpi)2

ej − ei

are obtained as the residues at ej of the resolvent equation (3.2.5) divided by
∏n+1
i=1 (E−ei)2,

see [2]. In particular we have H = 1
2

∑n+1
j=1 ejFj . Since F1, . . . , Fn are independent and

Poisson commuting, we see that the C. Neumann Problem is completely integrable. A
direct inspection shows

(3.2.15) Fj =

∏n
k=1(ej − êk)∏
i 6=j(ej − ei)

.

Therefore the spectral curve Γ encodes the integrals of motion. The higher order flows (3.2.6)
also become Hamiltonian with Hamiltonians that are linear combinations of F1, . . . , Fn.

In Section 3.4 a more direct way will be explained how to interpret the (2n+1)-stationary
KdV hierarchy as a Hamiltonian system that can be integrated by separation of variables.

3.2.3. The Spectral Curve and Integration by Separation of Variables. Let
η1, . . . , ηn denote the roots of B̂, that means B̂(E) =

∏n
l=1(E−ηl). Evaluating the resolvent

equation (3.2.5) at these roots gives

(3.2.16) −(yi)
2 = g(ηi)

for yi = 1
2B̂
′(ηi). Therefore (ηi, yi) can be interpreted as points on the complex curve

Γ = {(E, y) | 0 = y2 + g(E)} ⊆ C2 which is called spectral curve. The isospectral flows from
Lemma 3.2.3 preserve Γ due to Proposition 3.2.2. Hence, the dynamics (3.2.6) takes place
on the n-fold product of the spectral curve Γ. Evaluated at E = ηi equation (3.2.6) has the
form

∂t2j+1B̂|E=ηi = B̂′(ηi)Bj(ηi) = 2yiBj(ηi) .

Then by writing ∂tB̂|E=ηi = −
∏
k 6=i(ηi − ηk)∂tηi and using 0 = 2yi∂tyi + ∂Eg|E=ηi∂tηi on

the spectral curve (3.2.16), an equivalent form of the equations in Lemma 3.2.3 are the
Drach-Dubrovin equations [13, 18]∂t2j+1ηi = −2yi∏

k 6=i(ηi−ηk)Bj(ηi)

∂t2j+1yi =
∂Eg|E=ηi∏
k 6=i(ηi−ηk)Bj(ηi) .

(3.2.17)

Note that introducing yi as a coordinate avoids sign ambiguity when taking the square
root of −g(ηi). From a solution of (3.2.17) we can obtain by (3.2.8) a solution of the KdV
equation u = −2

∑n
l=1 ηl − c1.

Remark 3.2.4. The Drach-Dubrovin equations for any two times, say t2j+1 and t2k+1, give
rise to a 1 + 1-dimensional system of hydrodynamic type by

∂t2j+1ηi =
Bj(ηi)

Bk(ηi)
∂t2k+1

ηi .

Considering this system of PDEs amounts to “forgetting” the resolvent equation (3.2.5).
The case j = 1 and k = 0 has been discussed in [23] as an example of a semi-Hamiltonian sys-
tem of hydrodynamic type that is additionally weakly non-linear, i.e. ∂ηi(Bj(ηi)/Bk(ηi)) = 0
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for all i = 1, . . . , n. Such systems allow to apply the methods explained in Section 2.1,
notably Tsarev’s generalized hodograph method. Moreover, the structure as a weakly non-
linear system provides exactly n− 2 linearly independent additional commuting flows that
are weakly non-linear, see [23]. In the case of the KdV hierarchy these are the higher KdV
flows in times t2l+1 for l = 2, . . . , n − 1. As a consequence, solutions of weakly non-linear
systems of PDEs can be found by separation of variables and the inversion of integrals.
Including the resolvent equation (3.2.5) again, turns this into the Jacobi inversion, as will
be explained in the following.

Let us assume that the roots γ1, . . . , γ2n+1 of g are simple, real and ordered increasingly.
Consequently, −g is non-negative on [γ2i, γ2i+1], so if ηi is in this interval, then yj is real.
This gives:

Proposition 3.2.5. For γ2i ≤ ηi ≤ γ2i+1 at the initial time, the Drach-Dubrovin equa-
tions (3.2.17) have a real solution. In particular, each ηi stays in its interval [γ2i, γ2i+1].

The combined Drach-Dubrovin equations read ∂tη = Jη for t = (t2i+1)n−1
i=0 and η =

(η1, . . . , ηn) and

(Jη)i,j = −2

√
−g(ηj)Bi(ηj)∏
l 6=j (ηj − ηl)

for i = 0, . . . , n− 1. In other words

(3.2.18) dt = dη · J−1
η .

In this form, the Drach-Dubrovin equations can be integrated by separation of variables, and
the integration necessary can be expressed by Abelian integrals of holomorphic differential
forms on the spectral curve.

Lemma 3.2.6 ([13]). The solution B̂ =
∏n
r=1(E − ηr) of the system in Lemma 3.2.3 is

implicitly given by

(3.2.19) t+ b = −1

2

(
n∑
r=1

∫ ηr ηn−1−ldη√
−g(η)

)n−1

l=0

for some constant vector b.

Proof. Integrating (3.2.18) yields

(3.2.20) (t+ b)t =

∫ (
J−1
η

)t
dηt

for some constant b. We are left with finding the inverse matrix of Jη which is the product
of (Bi(ηj))i,j with the diagonal matrix

diag

(
−2
√
−g(ηj)∏

l 6=j (ηj − ηl)

)n
j=1

.

In order to invert the matrix (Bi(ηj))i,j , note that by (3.2.7) and Bn−l = [E−lB̂]≥0 we have

(Bn−l(E))nl=1 = H · (E0, . . . , En−1)
t

for the Hankel matrix

H =


b̂n−1 . . . b̂1 1

...
...

...

b̂1 1
1 0

 .
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Therefore (Bn−l(ηj))l,j = H · V t for the Vandermonde matrix

V =

1 η1 . . . ηn−1
1

...
...

...
1 ηn . . . ηn−1

n

 .

Since V diagonalizes H by V HV t = diag(∂EB̂|E=ηi)
n
i=1 we arrive at

(Bn−l(ηj))l,j = V −1 diag
(
∂EB̂|E=ηi

)n
i=1

.

The inverse of this matrix can be obtained explicitly by using ∂EB̂|E=ηi =
∏
l 6=i(ηi −

ηl). Note furthermore that reversing the order of rows in (Bn−l(ηj))l,j yields (Bi(ηj))i,j .
Altogether we have now

(3.2.21) J−1
η = diag

(
−1/2√
−g(ηj)

)n
j=1

·

η
n−1
1 . . . η1 1
...

...
...

ηn−1
n . . . ηn 1

 .

Inserted into (3.2.20) this gives (3.2.19). �

Inverting the primitive function in (3.2.19) such that we have a function η = η(t), yields
solutions of the (2n+1)-stationary KdV hierarchy. If the zeros of g are simple, the inversion
appears to be the inverse Abel map (also called Jacobi inversion). In the case where all
roots of g but one are double, the separation of variables leads to explicit solutions of the
KdV hierarchy in terms of trigonometric functions. They are called solitons, see Section 3.3.

3.3. Soliton Solutions of Stationary KdV

The equations of the stationary KdV hierarchy in Lemma 3.2.3 with reality condition

γ1 < · · · < γ2k−1 < γ2k < γ2k+1 < · · · < γ2n+1

(see Proposition 3.2.5) allow to consider limits γ2k−1 → γ2k (and γ2k+1 → γ2k). When two
branch points are joined, the hyperelliptic spectral curve degenerates and for its normalized
version the genus drops by one. For a corresponding Hamiltonian system (see Section 3.2.2
or Section 3.4 below), the compact Arnold-Liouville torus has to be replaced by a cylinder
(or a pinched torus) on which the Hamiltonian flows are linear again.

If the limit γ2k−1 → γ2k is taken for all k = 1, . . . , n, the solution to the (2n + 1)-
stationary KdV equation is called a n-soliton. The corresponding normalized spectral curve
has genus zero, i.e. it is equivalent to CP1. Accordingly, when solving the Drach-Dubrovin
equations by separation of variables (see Lemma 3.2.6) the hyperelliptic integrals become
solvable by trigonometric functions as we will see in the following.

By Lemma 3.2.6 solving the (2n+ 1)-stationary KdV equation amounts to integrating

(3.3.1) dt2(n−j)+1 = −1

2

n∑
l=1

ηj−1
l dηl√
−g(ηl)

for j = 1, . . . , n. In the case of n-solitons we have
√
−g(E) =

∏n
l=1(E − γ2l)

√
γ2n+1 − E.

Using linear combinations of times, we can achieve some cancellation in the denominator
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and numerator of (3.3.1). There is a matrix (Ωj,r)
n
j,r=1 such that for all r = 1, . . . , n

n∑
j=1

ηj−1Ωj,r =
n∏

l=1,l 6=r
(η − γ2l) =: br(η)

and 3 hence,

−2

n∑
j=1

dt2(n−j)+1Ωj,r =

n∑
l=1

 n∑
j=1

ηj−1
l Ωj,r

 dηl√
−g(ηl)

=

n∑
l=1

br(ηl)dηl√
−g(ηl)

=
n∑
l=1

dηl
(ηl − γ2r)

√
γ2n+1 − ηl

.

In coordinates u2
l = γ2n+1 − ηl each summand has a primitive function∫

dηl
(ηl − γ2r)

√
γ2n+1 − ηl

=
2

vr
arctanh

(
ul
vr

)
where v2

r = γ2n+1 − γ2r. Altogether this gives

(3.3.2) Φr := −vr
n∑
j=1

t2(n−j)+1Ωj,r + φ0,r =
n∑
l=1

arctanh

(
ul
vr

)
where φ0,r ∈ R is the constant of integration. Therefore we are left with the task to solve for
u1, . . . , un or some other expression that allows for extracting a solution u = −2

∑n
l=1 ηl−c1

of the KdV equation in (3.2.11). Here the fact that all arctanh summands in (3.3.2) have
the same factor becomes helpful, since we can now use the trigonometric identity

tanh

(
n∑
l=1

arctanh (zl)

)
=

∏n
l=1(1 + zl)−

∏n
l=1(1− zl)∏n

l=1(1 + zl) +
∏n
l=1(1− zl)

=

∑
S⊆{1,...,n},|S| odd z(S)∑
S⊆{1,...,n},|S| even z(S)

where z(S) =
∏
j∈S zj . Applied to (3.3.2) we obtain for all r = 1, . . . , n

ar := tanh (Φr) =

∑
S⊆{1,...,n},|S| odd u(S)v

n−|S|
r∑

S⊆{1,...,n},|S| even u(S)v
n−|S|
r

.

This in turn is equivalent to

0 = Λ · σ
where σ = (σ0(u), . . . , σn(u)) for σm(u) =

∑
S⊆{1,...,n},|S|=m u(S) the elementary symmetric

polynomial in u = (uj)
n
j=1 of degree m and

Λr,m =

{
arv

n−m
r if m is even

−vn−mr if m is odd

for r = 1, . . . , n and m = 0, . . . , n. With that we have:

Lemma 3.3.1. The n-soliton solutions of the Drach-Dubrovin equations (3.2.18) in param-
eters σj(u) for j = 0, . . . , n are

(3.3.3) σj(u) = (−1)j det(Λj)/ det(Λ0) ,

3In more detail Ω = V −1 · diag(br(γ2r)) with V = (γj−1
2l )nl,j=1 denoting a Vandermonde matrix.
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where Λj is the n× n-matrix obtained from Λ by deleting the j-th column. In particular, a
solution of the KdV equation in (3.2.11) is given by

(3.3.4) u = 2(σ1(u)2 − 2σ2(u))− (2n− 1)γ2n+1 + 2

n∑
l=1

γ2l .

Example 3.3.2 (1-solitons and 2-solitons). In the case n = 1 we have Λ = (a1v1,−1) and
thus from (3.3.3) σ1(u) = −a1v1 and σ2(u) = 0. Therefore the KdV 1-soliton solution is

u = 2(a1v1)2 − γ3 + 2γ2 = 2(γ3 − γ2) tanh2 Φ1 − γ3 + 2γ2 = γ3 −
2(γ3 − γ2)

cosh2 Φ1

.

In the case n = 2 we have

Λ =

(
a1v

2
1 −v1 a1

a2v
2
2 −v2 a2

)
with aj = tanh(Φj) and vj =

√
γ5 − γ2j . By Lemma 3.3.1 we get σ1(u) = (a1a2(v2

2 −
v2

1))/(a1v2 − a2v1) and σ2(u) = v1v2(a2v2 − a1v1)/(a1v2 − a2v1) and the KdV 2-soliton
solution is

u = 2 (γ2 + γ4)− 3γ5 + 2

(
v2

1 − v2
2

)2
tanh2 Φ1 tanh2 Φ2

(v1 tanh Φ2 − v2 tanh Φ1)2 + 4
v1v2 (v2 tanh Φ2 − v1 tanh Φ1)

v1 tanh Φ2 − v2 tanh Φ1
.

Choosing the phase (φ0,1, φ0,2) = (0, iπ/2) (and real times tj) gives a bounded solution.
Asymptotically for Φ1,Φ2 → −∞ we have u→ γ5.

Which choice of phases φ0 gives bounded n-soliton solutions involves the question where
tanh Φr has zeros and poles (which occur in case of complex arguments) and also the
question of zeros and poles of det(Λ0). This problem is not dealt with here, but in numerical
experiments it looks like the phase (φ0,r)

n
r=0 = (0, iπ/2, 0, iπ/2, 0, . . . ) provides bounded n-

soliton solutions u.
Asymptotically for large time |t2(n−r)+1| → ∞ a n-soliton decomposes into the sum of

n 1-solitons as was shown in [54]. Here we have the following result.

Lemma 3.3.3. For each r ∈ {1, . . . , n} the limit of n-solitons for large time |t2(n−r)+1| → ∞
is

(3.3.5) B̂(E)→
n∏
k=1

(E − γ2k) and u→ γ2n+1 .

This means in particular that ηj → γ2l for some l ∈ {1, . . . , n}. The limit of ηj may
differ for t2(n−r)+1 →∞ and t2(n−r)+1 → −∞.

Proof. For t2(n−r)+1 → ∞ we have ar → −1 and therefore Λ → −(vn−mr )nr=1,m=0,
which is the negative of a Vandermonde matrix with reverse column order and an extra
column (−vnr )r. For the determinant of Λj we obtain

det Λj → σj(v)
∏
i<j

(vi − vj)

where v = (v1, . . . , vn). Hence, in (3.3.3) we get

(3.3.6) σj(u)→ (−1)jσj(v) .
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For t2(n−r)+1 → −∞ the same limit holds up to sign. The next step of the proof is to

expand B̂ in symmetric polynomials:

B̂(E) =

n∏
i=1

(E − ηi) =

n∑
i=0

(−1)iσi(η1, . . . , ηn)En−i .

By definition we have ηl = γ2n+1 − u2
l and thus σi(η1, . . . , ηn) = σi((γ2n+1 − u2

l )
n
l=1), which

in turn is a symmetric polynomial in u and henceforth can be written as a polynomial in
(σ1(u), . . . , σn(u)). Since the whole expression is even in u1, . . . , un the sign of σj(u) when
j is odd does not matter. For σj(u) we know the limit is (−1)jσj(v) with γ2l = γ2n+1 − v2

l
by definition. Putting everything together again, we obtain

σi(η1, . . . , ηn)→ σi((γ2l)
n
l=1)

which implies the first part of (3.3.5). Concluding the proof we get

u→ 2(σ1(v)2 − 2σ2(v))− (2n− 1)γ2n+1 + 2
n∑
l=1

γ2l = γ2n+1

from (3.3.4) and (3.3.6). �

Remark 3.3.4. Alternatively, from the decomposition of an n-soliton into n 1-solitons it
follows that the n-soliton KdV solution u is asymptotically constant and all its derivatives
are asymptotically zero. By the recursion relation (3.2.10) then also B̂ is asymptotically

constant (in t1 = x). From the resolvent equation (3.2.5) which determines B̂ including
constants of integration g(E) = (E − γ2n+1)

∏n
k=1(E − γ2k)

2, we then get again (3.3.5).

3.4. Hamiltonian Formulation of the Stationary KdV Hierarchy

Following S. I. Alber [2, 3] and Novikov and Veselov [67, 68] we want to reinterpret
the Drach-Dubrovin equations (3.2.17) as Hamiltonian flows. Generally, the Hamiltonian
system will be complex-valued, but we are mainly interested in the real restriction that
appeared for the Drach-Dubrovin equations in Proposition 3.2.5 before.

First let us consider (y,η) as coordinates of the complex phase space Cn × Cn and
Hamiltonians

Hl(y,η) = −
n∑
j=1

y2
j + g(ηj)∏
k 6=j(ηj − ηk)

Bl(ηj)

for l = 0, . . . , n − 1 and g, Bl as defined in Section 3.2. The corresponding Hamiltonian
flows are given by {

∂t2l+1
η = ∂yHl

∂t2l+1
y = −∂ηHl .

(3.4.1)

They are tangential to the n-fold product of the spectral curve Γ

Mg = {(y,η)|y2
i + g(ηi) = 0, i = 1, . . . , n} = Γn ⊆ Cn × Cn

and therefore leave Mg invariant. Restricted to Mg the Hamilton equations become the
Drach-Dubrovin equations (3.2.17). Hence, the Hamiltonian system can be integrated by
separation of variables as explained in Lemma 3.2.6. In particular, it is completely inte-
grable. On Mg the Hamiltonians Hl are constantly zero. We decompose the polynomial g



54 3. THE KDV HIERARCHY AND STATIONARY SOLUTIONS

from the hyperelliptic spectral curve into scalar energies hk and a fixed polynomial g0 of
constant parameters by

(3.4.2) g(E) = g0(E) +

n−1∑
k=0

hkE
n−1−k .

Here g0 has to be a monic polynomial of degree 2n+ 1. The decomposition is not unique,
since g0 might also contain powers of E less than n. With the vector of energies defined by
h = (h0, . . . , hn−1), then

(3.4.3) Sg0(η, h) =

n∑
l=1

∫ ηl

ydη

is a complete solution 4 of each Hamilton-Jacobi equation

0 = Hl (∂ηSg0 ,η) .

The complete solution at hand is a sum in which the l-th term only depends on the l-th posi-
tion ηl, so the mechanical description of the (2n+1)-stationary KdV hierarchy is completely
separable in an additive way. This corresponds to solving the Drach-Dubrovin equations
by separation of variables, see Section 3.2.3 above.

For the complex manifold Mg there is a real submanifold preserved under Hamiltonian
flows [68]. Let αj ⊆ Γ (for j = 1, . . . , n) denote the cycle in Γ covering the gap [γ2j , γ2j+1]
and oriented clockwise. The polynomial −g takes non-negative values on gaps, so y =
(−g(η))1/2 is real and so are the cycles αj . For (yj , ηj) ∈ αj initially, we obtain from
Proposition 3.2.5 that the Hamiltonian dynamics takes place on the compact and real phase
torus α1 × · · · × αn ⊆ Γn. The actions of the system are

(3.4.4) Ij(h, g0) =

∫
αj

ydE

where y2 + g(E) = 0. By construction the actions are constants of motion for the Hamil-
tonian dynamics. The real vectors I = (I1, . . . , In) are called the action variables of the
Hamiltonian system.

Proposition 3.4.1. Let g0 be as in (3.4.2) and fixed. Then the map I : Rn → Rn, h =
(h0, . . . , hn−1) 7→ I(h, g0) is locally a diffeomorphism.

Proof. The claim follows by the inverse function theorem, if the Jacobian matrix
of h 7→ I(h, g0) is invertible at each point h and depends continuously on h. For the
decomposition of g in (3.4.2) we compute

(3.4.5) ∂hI
t =

(
−1

2

∫
αj

ηn−1−ldη

y

)n−1,n

l=0,j=1

.

To see that this matrix is invertible at h, we assume a row vector v = (v0, . . . , vn−1) to be
in the cokernel of the Jacobian matrix, that is v∂hI

t = 0. Equivalently, all a-periods of the

4Note that Sg0 is only locally a function, but globally multivalued. Related to the complete solution
are Hamilton’s principal function and Hamilton’s characteristic function. Due to independence of time and
Hl = 0 on Mg, the latter two coincide here.
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holomorphic differential form
n−1∑
l=0

vlη
n−1−ldη

y

vanish. This means that the differential form has to be zero. Hence, the vector v is zero and
the Jacobian matrix is invertible. When taking higher derivatives, the integrand of (3.4.5)
produces poles, without residues on Γ, however. Therefore higher derivatives exist and the
map h 7→ I(h, g0) is smooth. �

With the local parametrization h 7→ I(h, g0), the complete solution Sg0(η, h(I)) locally
generates a canonical transformation to coordinates (I,Φ) with conjugate phases Φ = ∂ISg0 ,
see [4]. In the following lemma the coordinates (I,Φ) turn out to be defined globally in the
angle variables Φ. These coordinates are called action-angle variables.

Lemma 3.4.2. The angle variables Φ are the real part of the Abel map on Mg thus they
are defined on the real part of the Jacobi torus Tn = Rn/Zn. More explicitly, dΦj(η) =∑n

k=1 dωj(ηk) for differential forms

(3.4.6) dωj(η) := ∂Ijydη = −1

2

n−1∑
l=0

∂Ijhl
ηn−1−ldη

y

which are holomorphic on Γ and satisfy
∫
αk

dωj = δkj.

Proof. Using that the actions are constants of motion, we have for j = 1, . . . , n

dΦj = d
(
∂IjSg0

)
= ∂IjdSg0 =

n∑
k=1

∂Ijykdηk =
n∑
k=1

dωj(ηk) .

It is left to be shown that ∂Ijydη is the holomorphic differential form in (3.4.6). By con-

struction ∂Ijg = ∂Ij
∑n−1

l=0 hlη
n−1−l and therefore we get

∂Ijydη = −1

2
∂Ijg

dη

y
= −1

2

n−1∑
l=0

∂Ijhl
ηn−1−ldη

y
.

The representation (3.4.4) of the actions and the definition of a-cycles yield

Ij(h, g0) = 2

∫ γ2j+1

γ2j

ydη .

Since each γl is a zero of y this implies

δjk = ∂IjIk = 2y|γ2k+1
∂Ijγ2k+1 − 2y|γ2k∂Ijγ2k +

∫
αk

∂Ijydη =

∫
αk

dωj

thus the a-periods of dΦj are in Z. �

In action-angle variables the Hamiltonian flows become linear.

Corollary 3.4.3. On Tn the Hamiltonian flows starting at Φ0
j are given by

(3.4.7) Φj = Φ0
j +

n−1∑
l=0

t2l+1∂Ijhl mod Z .

Note, (∂I1hl, . . . , ∂Inhl) are called the frequencies of the conditionally periodic motion in
time t2l+1.
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Proof. Let us begin with the Hamiltonian dynamics in the form of solutions of the
Drach-Dubrovin equations in Lemma 3.2.6

t2l+1 + b2l+1 = −1

2

n∑
k=1

∫ ηk(t)

ηk(0)

ηn−1−ldη

y

for l = 0, . . . , n − 1. On the other hand, by integrating the differential form dΦ in
Lemma 3.4.2 we arrive at

Φj =
n∑
k=1

∫ ηk(t)

ηk(0)
dωj(ηk) = −1

2

n−1∑
l=0

∂Ijhl

n∑
k=1

∫ ηk(t)

ηk(0)

ηn−1−ldη

y
.

Combined, the previous two equations yield (3.4.7) on the phase torus Tn. The starting

point of the flow is given by Φ0
j =

∑n−1
l=0 b2l+1∂Ijhl. �

As a consequence, η = (η1, . . . , ηn) (or equivalently the coefficients of the resolvent B̂)
may be written as functions on the torus Tn composed with the angle variables Φ. This was
first observed by Its and Matveev [29] for the potential of Hill’s operator (see (3.2.8)) and
later extended to the wave function in (3.1.1). The functions on the torus can be expressed
in terms of the Riemann theta function.

Periodic functions composed with a linear function are the setting to apply the Krylov-
Bogoliubov averaging method [43, 44, 62]. For the KdV hierarchy this was done in [10].
In [38] Krichever applied averaging techniques to the more general KP hierarchy. The
equations obtained that way are called Whitham equations. However, in the following we
are going to obtain the KdV Whitham equations in a different way by applying adiabatic
theory to the stationary KdV hierarchy in its formulation as a Hamiltonian system.



CHAPTER 4

Whitham Deformations of Stationary KdV

A classical application of perturbation theory is the study of a non-integrable n-body
system as the perturbation of several uncoupled integrable(!) two-body systems where the
parameter of the perturbation controls the coupling. The perturbation parameter itself
might also depend on time, e.g. imagine that the rope length of a simple gravity pendulum
changes in time, see Section 52 in [4] and Example 4.1.1. This yields a time-dependent
Hamiltonian system. An interesting question is, how the trajectories and integrals of motion
of such a system behave.

Let us consider a completely integrable Hamiltonian system with dynamics in time t
and parameters. Then assume these parameters become dependent on time by making
them functions of T := εt, with a “small” rate ε > 0. The trajectories of the resulting time-
dependent Hamiltonian system then depend on t and ε or, what is the same, t and T . For
an approximate description we use the representation of the time-independent completely
integrable Hamiltonian system in action-angle variables. This provides a decoupling of the
dynamics into a “slow” modulation of the actions and a “fast” dynamics of the angles 1. In
order to extract the slow modulation, usually the fast dynamics is averaged out, see for ex-
ample [38]. This works generally for coordinates of the phase space that consist of integrals
of motion and their conjugates. When taking the action variables as integrals of motion,
the adiabatic theorem, explained in Section 4.1, allows to bypass explicit averaging and to
obtain directly that the actions vary only “little” under time-dependent perturbation with
rate ε. What is meant here by little, is quantified in the definition of adiabatic invariance
formulated in Section 4.1.

In the following Section 4.2 the adiabatic theorem is applied to the Hamiltonian formu-
lation of the stationary KdV hierarchy from Section 3.4, resulting in the observation that
under the described perturbation the spectral curve Γ = {(E, y) | 0 = y2 + g(E)} ⊆ C2

modulates “slowly” up to small “fast” oscillations.
We call a “slow” perturbation in time T a Whitham deformation, if it results in constant

actions Ij =
∫
αj

√
−gdE (for j = 1, . . . , n). They can be found by demanding

(4.0.1) ∂T Ij = 0 .

It is worth to point out here that in the case n = 1 (1-gap) the action function I1 was
already used by Whitham in [69]. See also [31] for this observation.

When considering multiple integrable flows in times t2k+1 and their perturbed non-
integrable counterparts, the previous equation has to hold for several “slow” times T2k+1.

Consequently, in the sense of Section 2.2.5 the differential form dS :=
√
−g(E)dE on the

spectral curves appears as a generating differential form for the system

(4.0.2) ∂T2j+1dΩi = ∂T2i+1dΩj

1Only variations on the “slow” time scale are called modulations, or redundantly slow modulations
sometimes.

57
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with dΩk := ∂T2k+1
dS. In order to meet the usual normalization of the differential forms

in the Whitham hierarchy, particular Whitham deformations can be found. In [25] such
differential forms are postulated as the starting point for the study of Whitham equations
in the form (4.0.2). There are more general solutions to these equations than those given
by the generating differential form here. In Section 5.3 an Ansatz will be presented that
generalizes the above form of dS.

Finally, in Section 4.3 the Whitham deformations are customized to modulate soliton
solutions of the KdV hierarchy.

4.1. Perturbations and Adiabatic Invariants

Averaging of perturbed integrable Hamiltonian systems is a key method in perturbation
theory. It allows to identify adiabatic invariants. For systems with one phase (i.e. one degree
of freedom) this was explained by Arnold in [4]. In the higher dimensional multiphase case
not all initial conditions are admissible any more, but the measure of the exceptional set can
be controlled. This and the question of optimal results was developed by Neistadt, based
upon ideas by Kasuga, see [48]. Without giving details, the present section follows Arnold’s
description in order to motivate Neistadt’s more general result on adiabatic invariants which
is applicable to the Hamiltonian system of the stationary KdV hierarchy from Section 3.4.

Given a completely integrable Hamiltonian H(p, q) with action variables I(p, q), then
locally there is a canonical transformation (p, q) 7→ (I,Φ) such that Hamilton’s equations
are transformed in the following way{

p′ = −∂qH
q′ = ∂pH

7→

{
I ′ = 0

Φ′ = ω(I)

where the frequencies are given as ω = ∂IH0 for the transformed Hamiltonian H0(I). In
coordinates (p, q) of the 2n-dimensional phase space Rn ×Rn Lagrangian submanifolds are
described by n constant energies. Expressed in local coordinates (I,Φ) a Lagrangian sub-
manifold becomes a subset of {I} × Rn and is called a phase torus. The moduli space of
phase tori is parameterized by I. If angle variables Φ exist globally and the phase torus is
compact, then they are defined on the torus Tn = Rn/Zn.

Provided a completely integrable Hamiltonian system is already given globally in action-
angle variables, then perturbations of the following form can be considered{

I ′ = εf1(I,Φ)

Φ′ = ω(I) + εf2(I,Φ)

with smooth functions f1 and f2 and small ε ≥ 0. By the averaging principle (see Section
52B in [4]) we are led to the differential equation

(4.1.1) J ′ = 〈f1〉(J)

with 〈f1〉(−) =
∫
Tn f1(−,Φ) dvolΦ. An averaging-type theorem is a theorem stating that for

all initial conditions outside a (small) set, the solution I for the perturbed system stays close
to the solution J for the averaged system for all times in the interval [0, 1/ε]. Section 52C
in [4] is about an averaging theorem for systems with one phase. Under which assumptions
such a theorem holds more generally is presented in detail in Chapter 6 in [48].

Given a family of completely integrable Hamiltonians H(p, q|g0) with parameter g0, then
a canonical transformation to action-angle variables will also depend on the parameter. Such
a transformation is generated by a (multivalued) function S = S(I, q|g0). Here we assume
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the map (I, g0) 7→ ω(I, g0) to the frequencies to have full rank, which is Kolmogorov’s non-
degeneracy condition. When the parameter changes “slowly” over time, i.e. g0 = g0(εt),
then the transformed Hamiltonian is K(I,Φ|g0) = H(p, q|g0) + ∂tS with H independent of
Φ and we arrive at the perturbed system 2{

I ′ = −∂ΦK = −εg′0∂Φ∂g0S

Φ′ = ∂IK = ω + εg′0∂I∂g0S
.

Applying an averaging-type theorem to this system (and Stokes’ theorem on Tn) gives

J ′ = −g′0〈∂Φ∂g0S〉(J) = 0

and results in the following adiabatic theorem (see Chapter 9.2 in [48]): Let V be the set of
non-degenerate phase tori (parameterized by I) and respective initial values Φ0 for the phase
flow; let furthermore ρ be a continuous function satisfying

√
ε ≤ ρ(ε). Then for all ε > 0

sufficiently small, there is a partition V = V ′∪V ′′ such that (a) for each initial condition in
V ′ we have for the action Iε(t) along trajectories of the time-dependent Hamiltonian system

(4.1.2) sup
t∈[0,1/ε]

‖Iε(t)− Iε(0)‖ ≤ ρ(ε)

and (b) the measure of V ′′ is of order
√
ε/ρ(ε). A quantity with property (a) is called

adiabatic invariant.
Typically the function ρ is chosen such that limε→0 ρ(ε) = 0 and limε→0

√
ε/ρ(ε) = 0,

e.g. ρ(ε) = ε1/3. Hence, the smaller the perturbation rate ε, (a) the less an adiabatic
invariant varies along a trajectory of the time-dependent Hamiltonian, and (b) the smaller
the exceptional set V ′′ becomes. Roughly speaking, the perturbed system is a mix between
the “fast” oscillations on the phase torus (Arnold-Liouville torus) of the integrable system
and the “slow” modulation/deformation of this torus. The “slow” modulations are obtained
by averaging over the “fast” oscillations. In other contexts this operation can appear as a
projection, e.g. the semi-classical limit or the dispersionless limit in [63].

We end this section by discussing the aforementioned pendulum with slowly changing
rope length.

Example 4.1.1 (see Section 52 in [4]). We describe the motion of a simple gravity pendu-
lum by the angle between the rope and the vertical axis as position variable q and use the
usual small angle approximation. So the Hamiltonian is given by

H =
1

l2
p2

2
+ lg

q2

2
,

where l is the rope length and g is the gravitational constant. At energy h > 0, the action
I of this system is the area of the ellipse E : {H ≤ h} in the phase space, that is

I =

∫
∂E
pdq =

∫
E

dp ∧ dq = area(E) = 2πh

√
l

g
.

Clearly, the frequency ∂Ih = 1
2π

√
g/l has full rank as a map in either l or g. Now, let the

length of rope double over time, i.e. g0 := l(εt) = l0(1 + εt) with ε > 0 and t ∈ [0, 1/ε].
When we start the time-dependent Hamiltonian system with an initial action I0, then as
an adiabatic invariant the action varies only little while we change the rope length at small
speed εl0 over the time interval t ∈ [0, 1/ε]. Asymptotically for ε→ 0 the action is constant.

2It has to be checked that the derivative ∂g0S is single-valued.
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However, what happens to the energy h meanwhile? From its relation to the action we get
asymptotically for ε→ 0 and T := εt ∈ [0, 1] fixed

(4.1.3) hε(t) =

√
g

l(T )

Iε(t)

2π
→
√

g

l(T )

I0

2π
.

Hence, while l doubles (i.e. l(1) = 2l(0)), asymptotically the energy decreases slowly by a
factor of

√
2. By putting the pendulum in an elevator slowly accelerating downwards (that

is g declines slowly) the energy decreases as well.

4.2. Adiabatic Invariants and Whitham Deformations of Stationary KdV

In this section we consider “slow” perturbations of the stationary KdV hierarchy under-
stood as the completely integrable Hamiltonian system (3.4.1) with energies in the vector
h = (h0, . . . , hn−1) and parameter g0 (see (3.4.2))

(4.2.1) g(E) = g0(E) +
n−1∑
k=0

hkE
n−1−k .

The monic polynomial g0 of degree 2n+1 is given by 2n+1 coefficients which we consider as
parameters. Out of the n commuting Hamiltonian flows of the system, at first we consider
only perturbations in a single one. Let t denote the time of this flow. Modulating the
parameters g0 in time t with rate ε ≥ 0, that is t 7→ g0(εt), means to modulate the spectral
curve Γ : {y2 + g(E) = 0}. As a result of the perturbation, the dynamical system becomes
non-integrable. However, each state of the system in space and time can be seen as the
initial state of an integrable system with the current parameters. Hence, along a trajectory
of the non-integrable system its current energies and actions can be obtained by the formulas
for the integrable system at the corresponding point in phase space and parameter space.
Thereby the energies and actions depend on ε and t, i.e. h = hε(t) and I = Iε(t).

In Corollary 3.4.3 the frequencies of the l-th Hamiltonian flow are given by ∂Ihl. For
each l ∈ {0, . . . , n − 1} Kolmogorov’s non-degeneracy condition requires the frequencies
to have full rank as a function in (g0, I). In Proposition 3.4.1 however, the actions I
are rather described as a function in (g0, h), which makes it complicated to compute the
Hessian ∂2

Ihl. The order 3 tensor ∂2
hI is more accessible. It can be shown by counting

the dimension of the space of certain meromorpic differential forms on Γ (as done in the
proof of Proposition 3.4.1) that its hyperdeterminant does not vanish. Equivalently, the
hyperdeterminant of ∂2

Ih does not vanish either (see Chapter 14 in [27] 3). This implies
for ∂2

Ihl to have full matrix-rank, yielding Kolmogorov’s non-degeneracy. Hence, the action
along trajectories of the time-dependent Hamiltonian system is an adiabatic invariant: for
ρ(ε) ≥

√
ε with ρ(ε)→ 0 and

√
ε/ρ(ε)→ 0 as ε→ 0 we have

(4.2.2) sup
T∈[0,1]

‖Iε (T/ε)− Iε(0)‖ ≤ ρ(ε)

for initial conditions outside a set with measure of order
√
ε/ρ(ε), see (4.1.2). Here, the

adiabatic invariance is expressed in the “slow” version T = εt ∈ [0, 1] of the time t. As a
consequence we have for initial conditions with action I0 independent of ε that generically
the ε-family of functions T 7→ Iε(T/ε) approximates the constant I0 uniformly on [0, 1] as ε
goes to zero.

3See also https://math.stackexchange.com/questions/4401956/on-hessians-of-inverse-vector-functions
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For the modulated pendulum in Example 4.1.1 we found in (4.1.3) that asymptotically
the energy hε(t) changes at the rate of the modulation, that is, asymptotically a function
h = h(T ) approximates hε(t). In order to get an analogous result for the modulations of
the stationary KdV hierarchy, we study the relation between the actions

Ij =

∫
αj

√
−gdE

(for j = 1, . . . , n) and the energies h in more detail.

Proposition 4.2.1. Let g0 be a monic polynomial of degree 2n+1 and h ∈ Rn (see (4.2.1)).
Then the map

Ξ : (g0, h) 7→ (g0, I)

is smooth and a local diffeomorphism outside the set of lower dimension where g0(E) +∑n−1
k=0 hkE

n−1−k has multiple zeros. In particular, for a smooth modulation T 7→ g0(T ),
(generically) the map

(T, I) 7→ h(T, I) = projh
[
Ξ−1(g0(T ), I)

]
is locally defined and smooth.

Proof. The Jacobian matrix of Ξ is given by

∂g0,hΞ =

(
1 0
? ∂hI

)
.

By Proposition 3.4.1 the matrix ∂hI is invertible, under the condition that g(E) = g0(E) +∑n−1
k=0 hkE

n−1−k has no multiple zeros and therefore defines a hyperelliptic surface. Hence,
∂g0,hΞ is invertible and the inverse function theorem yields the statement. �

Now we can compare the energies h(T ) := h(T, I0) and hε(T/ε) = h(T, Iε(T/ε)) by using
the mean value inequality.

Lemma 4.2.2. Let r > 0 and T 7→ g0(T ) be a modulation such that Ξ−1 is defined on an
open set including g0([0, 1])× Br(I0). Then we have supT∈[0,1]‖hε(T/ε)− h(T )‖ ∈ O(ρ(ε))

outside the exception sets of (4.2.2).

Proof. By hypothesis, the energies h in Proposition 4.2.1 depend smoothly on (T, I) ∈
[0, 1]×Br(I0). Hence, for T ∈ [0, 1] and I1, I2 ∈ Br(I0) we have

‖h(T, I2))− h(T, I1)‖ ≤ sup
(T,I)∈(T,I2)(T,I1)

‖D(T,I)h|(T,I)‖‖I2 − I1‖ ,

where the matrix norm is induced by the norm on Rn+1 and (T, I2)(T, I1) denotes the
straight line between the two points. Since [0, 1] × Br(I0) is compact and the derivative
D(T,I)h is continuous, we have

M := sup
(T,I)∈[0,1]×Br(I0)

‖D(T,I)h|(T,I)‖ <∞ .

Using the adiabatic invariance of the action, we find ε > 0 small enough such that I1 =
Iε(T/ε) and I2 = I0 have distance less than r for all T ∈ [0, 1]. Then for all T ∈ [0, 1] we
have

‖hε(T/ε)− h(T )‖ ≤M sup
T∈[0,1]

‖Iε (T/ε)− I0‖ ≤Mρ(ε) ,

where the second estimate follows again from the adiabatic invariance of the action. �
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This lemma implies that h(T ) approximates hε(T/ε) uniformly (outside some small
exception sets of initial values), which is what we found before for the modulated pendulum
in Example 4.1.1.

In summary, we consider the Hamiltonian system (3.4.1) that becomes time-dependent
by modulating its parameters g0 by [0, 1] 3 T = εt 7→ g0(T ). For initial values of this system
that lie outside small exception sets, we have that the actions and energies remain close to
a constant vector I0 and a function h(T ), respectively. This approximation is uniform on
[0, 1]. The approximate values hk(T ) correspond to constant a-periods I0 of

√
−gdE where

g(T ) = g0(T ) +
n−1∑
k=0

hk(T )En−1−k ,

see Proposition 4.2.1. Conversely, given a function h(T ) and a modulation of g0 such that the
resulting a-periods I are constant in T , then for any generic initial value of the Hamiltonian
system with energies h(0), we get that its actions and energies converge uniformly to I and
h(T ), respectively.

In order to avoid the implicit genericity assumption on g0 and h to yield a polynomial
g with only simple zeros, it is convenient to directly consider deformations of g which avoid
multiple zeros of g as a polynomial in E.

Definition 4.2.3. For the completely integrable Hamiltonian system of stationary KdV a
deformation T := εt 7→ g(T ) is called Whitham deformation, if the resulting variation of the
action T 7→ I(T ) is constant.

Equivalently, the condition when a smooth deformation of g yields a Whitham defor-
mation is given by the Whitham deformation equation

0 = ∂T I .

Whitham deformations can also be considered when modulating g in all times (t2l+1)n−1
l=0

corresponding to Hamiltonian flows. Note here that the time t2n+1 and thereby all higher
times were assumed trivial in the (2n+1)-stationary case, however, the way in which ∂t2n+1G
in (3.2.1) is a linear combination of lower times can be modulated over time. Hence, we
include perturbations in time t2n+1, that is altogether

T := ε(t2l+1)nl=0 7→ g(T ) .

Now Whitham deformations are obtained, if the a-periods of ydE (with y2 = −g(E)) are
constant, or equivalently if the deformation equations

(4.2.3) 0 = ∂T2l+1
Ij = ∂T2l+1

∫
αj

√
−g(E)dE

are satisfied for all l = 0, . . . , n and j = 1, . . . , n. In the following example (mentioned
before in the introduction in Chapter 1) we discuss how to find Whitham deformations by
using Whitham deformation equations.

Example 4.2.4 (Whitham deformation of 1-gap KdV solutions). In the case n = 1 we take
as an Ansatz for the deformation

(4.2.4) g = E3 + TE2 +XE + h(X,T )
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where we write T1 = X and T3 = T for convenience. The system of equations for Whitham
deformations (4.2.3) then reads

0 =∂XI1 = −1

2

∫
α1

(E + ∂Xh)
dE

y
,

0 =∂T I1 = −1

2

∫
α1

(E2 + ∂Th)
dE

y
.

These equations of elliptic integrals determine ∂Xh and ∂Th. In order to see that a function
h with these derivatives exists at least locally, we have to show ∂T∂Xh = ∂X∂Th. From
∂T∂XI1 = 0 = ∂X∂T I1 and

0 = ∂X∂T I1 = −1

2

∫
α1

∂X∂Th
dE

y
+

1

4

∫
α1

∂Xg∂T g

g

dE

y

we get (since the second term of the sum is symmetric in X and T )∫
α1

∂T∂Xh
dE

y
=

∫
α1

∂X∂Th
dE

y
.

This implies compatibility of the equations for h. Hence, there is an energy function h such
that the deformation of parameters (4.2.4) becomes a Whitham deformation.

Given a modulation of g0, the general system of Whitham deformation equations (4.2.3)
for the Ansatz

(4.2.5) T 7→ g = g0(E,T ) +
n−1∑
k=0

hk(T )En−1−k

consists of the n(n + 1) equations (4.2.3) for the n unknown energies h0, . . . , hn−1. Their
solvability follows in the same way as in Example 4.2.4. By the Whitham deformation
equations (4.2.3) we are naturally led to consider meromorphic differential forms on the
spectral curve

(4.2.6) dΩi := ∂T2i+1 (ydE) = −1

2
∂T2i+1g

dE

y

with vanishing a-periods. Flaschka, Forest and McLaughlin [25] formulated the Whitham
equations in the framework of differential forms with vanishing a-periods and normalized
principal parts at E =∞ as

(4.2.7) ∂T2j+1dΩi = ∂T2i+1dΩj .

for all i, j = 0, . . . n. Due to the generating differential form
√
−gdE that originates from

Whitham deformations, the differential forms dΩi in (4.2.6) are compatible, so (4.2.7) is
satisfied automatically. On the other hand, for the equations (4.2.7) there are more general
generating differential forms dS (i.e. ∂T2i+1dS = dΩi) that may have higher order poles
at infinity and do not have to be defined on the spectral curve. This will be discussed
in Section 5.3 for the KdV Whitham hierarchy.

Remark 4.2.5. Let us sketch a more common approach to the KdV Whitham equations
that uses averaging more directly and point out some differences to the approach using adi-
abatic theory. A more general comparison of averaging methods can be found in Paragraph
5 in [19].

For the direct approach to averaging, two properties of the stationary KdV hierarchy
as formulated in Lemma 3.2.3 are crucial.
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• Separation of variables allows to linearize the KdV dynamics, so after Jacobi in-
version the resolvent becomes a function B̂ = B̂(Φ; Γ) with Φ = ωt + Φ0 on the
real part of the Jacobi torus Tn of the spectral curve Γ, see Lemma 3.2.6. This
matches how action-angle variables of the Hamiltonian formulation of the station-
ary KdV hierarchy are used to obtain Whitham deformations. Considering the
spectral curve as dependent on time in a “slow” way, that is Γ = Γ(T ) for T := εt,
leads to a dynamics on two time scales. Averaging out the “fast” dynamics in t
can be replaced by an average over the real part of the Jacobi torus, that is

〈f(Φ; Γ)〉 :=

∫
Tn
f(Φ; Γ) dvolΦ .

However, the arguments to justify this are rather involved, see Lemma 3 in [38].
• The equations for the higher KdV flows (3.2.6) are in conservation form. Hence,

exchanging time derivatives with the average over the real part of the Jacobi torus
gives

(4.2.8) ∂T2i+1

〈√
−g
B̂

〉
= ∂X

〈√
−gBi
B̂

〉
,

where X = T1, B̂ is a monic polynomial of degree n in E and Bi = [Ei−nB̂]≥0

(in particular B0 = 1). It can be shown that Ωi := 〈
√
−gBi/B̂〉 is multivalued

on the spectral curve Γ, but taking the derivative on Γ yields dΩi as a meromor-
phic differential form on Γ with constant a-periods and a single pole at E = ∞.
Therefore, (4.2.8) implies that dΩi satisfies the KdV Whitham equations (4.2.7) 4.

The ODE for the resolvent (3.2.5) is not in the form of a conservation equation, thus
averaging does not directly apply as in (4.2.8). In contrast, adiabatic theory applies to the
entire stationary KdV hierarchy in its Hamiltonian description in Section 3.4. As a result
we rather arrive at the more particular equations (4.2.6) for a generating differential form√
−g(E)dE than at their compatibility equations (4.2.7).

To conclude this section, we prove that Whitham deformations in the form (4.2.5) exist
such that the principal parts of the differential forms dΩi in (4.2.6) are normalized in a way
similar to the normalization in Section 2.2.2 (and exactly as in Chapter 5 below) by

dΩi = (Ei+1 +O(E0))dξ

for the chart ξ2 = −1/E at the point at infinity E =∞. If the principal part of
√
−gdE is

given by

(4.2.9)

(
2En+2 +

n∑
l=0

T2l+1E
l+1

)
dξ ,

then by the definition in (4.2.6) the differential form dΩi = ∂T2i+1 (
√
−gdE) has the desired

normalized principal part. That (4.2.9) can be realized as a principal part of
√
−gdE by a

modulation of g0 in the Ansatz (4.2.5) is a consequence of the following result.

Proposition 4.2.6. The principal part of
√
−gdE at E =∞ is determined by the parameter

g0 in a polynomial way. Conversely, if P (E)dξ denotes the principal part we have

(4.2.10) 4E3g0(E) = P (E)2 +O(En+2) .

4We are going to see in Section 5.1 that the system of Whitham equations (4.2.7) with one time fixed
to be X (i.e. j = 0), implies the equations for all combinations of times.
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That is, P determines the parameter g0 up to terms of order n− 1.

Proof. The differential form dE becomes 2ξ−3dξ in the coordinate ξ. Hence, for ξ
near 0 (that is for large E), we have√

−g(E)dE = 2En+2
√
E−2n−1g(E)dξ

with the term under the second square root of the form E−2n−1g(E) = 1 +
∑2n+1

k=1 ckE
−k.

Using the binomial formula then gives

√
−g(E)dE = 2En+2

∑
l≥0

(
1/2

l

)(2n+1∑
k=1

ckE
−k

)l
dξ

=

2En+2
n+1∑
l=0

(
1/2

l

)(n+1∑
k=1

ckE
−k

)l
+O(E0)

 dξ

for large E. Therefore the principal part of this meromorphic form is a polynomial in
E of degree n + 2, whose coefficients depend on c1, . . . , cn+1 in a polynomial way. Since
g(E) − g0(E) ∈ O(En−1), the coefficients c1, . . . , cn+1 and therefore the principal part
depend only on g0 up to order n− 1.

Conversely, if P is given such that
√
−g(E)dE =

(
P (E) +O(E0)

)
dξ, then taking

squares and using (dE)2 = −4E3(dξ)2 gives (4.2.10). �

4.3. Whitham Deformations of Solitons

The soliton limit of (2n+ 1)-stationary KdV from Section 3.3 turns the spectral curve
into a genus zero surface and therefore the action variables

Ij =

∫
αj

ydE

of the Hamiltonian system in Section 3.4 are trivial. Keeping them trivial under a de-
formation T 7→ g(T ) of the spectral curve Γ = {(E, y)|0 = y2 + g(E)} means that the
double order of zeros of g has to be preserved. Hence, Whitham deformations of solitons
are those deformations that preserve the multiplicity of roots of g. Among the correspond-
ing Whitham equations we are going to find the dispersionless KdV equation (1.0.3) from
the introduction and the introductory example of Chapter 2.

Remark 4.3.1. The stationary KdV hierarchy is a dynamical system on polynomials B̂,
see Lemma 3.2.3. Its constants of motion g can be used to form the spectral curve. In
the case of solitons, the roots of the polynomial g are directly encoded in the asymptotic
behavior of B̂ and u by Lemma 3.3.3. Hence, the Whitham deformations of solitons may
be understood as deformations of their asymptotic behavior (including B̂).

In (4.2.5) we prescribed the higher terms of g and then the preservation of the actions
determined the lower order terms. Here, in the soliton case, preservation of the multiplicity
of roots can be used in an analogous way.

Proposition 4.3.2. Let g be a polynomial of the form g(E) = R(E)2(E − γ) for some
monic polynomial R of degree n and some γ ∈ C. Then the map

(4.3.1) (R, γ) 7→ P =
[
E−ng

]
≥0
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to the monic polynomials of degree n+ 1 is bijective. Furthermore, the coefficients of P are
real if and only if those of R and γ are real.

Proof. Let R =
∑n

j=0 rjE
n−j with r0 = 1. Then writing g ordered by the powers of

E gives

(E − γ)R2 = c0E
2n+1 − γc2nE0 +

2n∑
l=1

(cl − γcl−1)E2n+1−l

for cl :=
∑

i+j=l rirj and rm := 0 if m /∈ {0, . . . , n}. Given P =
∑n+1

l=0 plE
n+1−l with p0 = 1

we then have
P =

[
E−ng

]
≥0

if and only if pl = cl− γcl−1 for l = 0, . . . , n+ 1. For l = 0 this is trivial and for l = 1, . . . , n
the equation means

(4.3.2) pl = 2rl − γrl−1 +

l−1∑
i=1

ri (rl−i − γrl−1−i) .

Hence, rl is determined uniquely by pl and r0, . . . , rl−1. The equation for l = n + 1, i.e.
pn+1 = cn+1− γcn then determines γ uniquely, if cn 6= 0. Otherwise, the equation for l = n
reads pn = −γcn−1 which determines γ, if cn−1 6= 0. Otherwise, we consider pn−1 = −γcn−2.
Going through the equations like that, we will arrive at some cm 6= 0 at least when m = 0.
This determines γ ∈ C uniquely. Altogether, given P there is a (γ,R) that is mapped to
P , which proves the surjectivity of (4.3.1). Since (γ,R) is unique we also get injectivity of
this map. From (4.3.2) we see that reality of P implies reality of (γ,R) and vice versa. �

This proposition can be understood in the following way: Given a real and monic
polynomial P of degree n+ 1, then there exists a generically unique polynomial Q of degree
up to n − 1 such that g := EnP (E) + Q(E) has n double zeros and one simple zero.
When prescribing a deformation T 7→ P (T ) Proposition 4.3.2 can be applied pointwise. In
analogy to the deformation (4.2.5), we prescribe in a neighborhood of some initial time τ
the deformation

T = (T2j+1)nj=0 7→ P (T ) = En+1 +
n∑
j=0

T2j+1E
j .

The initial time τ is chosen such that locally near τ the real polynomial Q, which exists
due to Proposition 4.3.2, induces a polynomial g = EnP +Q with n real double roots and
one real simple root which is the largest one 5. This means that the deformation T 7→ g(T )
preserves the multiplicity of the roots of g, hence, it is a Whitham deformation of solitons. In
this sense Proposition 4.3.2 provides for solitons an analogous version of Proposition 4.2.1.
The prescribed modulation P for Whitham deformations of solitons can be normalized, as
it was done in (4.2.9) for the generic case.

Lemma 4.3.3. The deformation T 7→ P (T ) given by

(4.3.3) P =

E−n−3

En+2 +
1

2

n∑
j=0

T2j+1E
j+1

2
≥0

5A suitable initial time τ exists, since T 7→ P (T ) is a surjective map to the monic polynomials of degree
n+ 1.
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induces a Whitham deformation of n-solitons with asymptotic behavior

(4.3.4) ydE =

2En+2 +
n∑
j=0

T2j+1E
j+1 +O(E0)

dξ .

Proof. Using y2 = −g and (dξ)2 = −1
4E
−3(dE)2 the square of (4.3.4) gives

(4.3.5) −g = −1

4
E−3

2En+2 +
n∑
j=0

T2j+1E
j+1

2

+O(En+2)

 .

If we write g = EnP +Q with P and Q polynomials of degree n+ 1 and n− 1, respectively,
then (4.3.5) determines P completely to be (4.3.3). According to Proposition 4.3.2 the
polynomial Q is uniquely determined by P and the condition that g can be written as
g = R2(E − γ), i.e. that g has generically only double zeros except for a single simple
zero. �

Example 4.3.4 (Whitham deformation of 1-solitons). In the case n = 1 the deformation
T 7→ P (T ) from (4.3.3) is given as

P = E2 + TE + 1
4T

2 +X

where we use the notation X = T1 and T = T3. In order to find Q(E) = q0 ∈ R such that
g = EP +Q has one real double zero and one real simple zero, we search for zeros of ∂Eg
and then choose Q such that g is zero there, too. We have 0 = ∂Eg = 3E2 +2TE+ 1

4T
2 +X

if and only if

E± = −T
3
± 1

6

√
T 2 − 12X .

Note here that these roots are real and simple if and only if T 2 − 12X > 0. Since we want
the smaller root of g to be double, we choose γ1 := γ2 := E−. Then Q is determined by
g(γ1) = 0, i.e. q0 = −γ1P (γ1). The simple root γ3 of g can be obtained from q0 = g(0) =
−γ2

1γ3 as

γ3 = −T
3

+
1

3

√
T 2 − 12X .

Altogether, (X,T ) 7→ (γ1, γ3) is a Whitham deformation of 1-solitons with normaliza-
tion (4.3.4).

As in the case with higher genus, Whitham deformations of solitons yield differential
forms

dΩi := ∂T2i+1 (ydE)

for i = 0, . . . , n − 1. They are defined on the compactification Γ0 of the double covering
{(E, υ)|υ2 = γ2n+1 − E} → CP1, (E, υ) 7→ E and holomorphic except for the point at
infinity 0 = ξ2 = −1/E. By construction

(4.3.6) ∂T2j+1dΩi = ∂T2i+1dΩj

holds for all i, j = 0, . . . , n − 1. If the deformation T 7→ P (T ) is normalized according to
Lemma 4.3.3, then dΩi has asymptotic behavior

(4.3.7) dΩi =
(
Ei+1 +O(E0)

)
dξ .

Conversely, ydE in (4.3.4) is one primitive of (4.3.7) among others. Only the differential
forms dΩi on Γ0 are uniquely determined by the asymptotic behavior and solely depend on
γ2n+1, the only parameter of Γ0.
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Proposition 4.3.5. The normalized differential forms for the Whitham deformation of
solitons are given by

(4.3.8) dΩi = −1

2

i∑
k=0

(
1/2

k

)
(−γ2n+1)k

Ei−kdE√
−E + γ2n+1

.

Proof. Meromorphic differentials on Γ0 with asymptotic behavior (4.3.7) can be writ-
ten in the form

(4.3.9) dΩi =

(
i∑
l=0

clE
l

)
dE

υ

with cl ∈ C. By using dξ = −ξ/(2E)dE and the expansion υξ =
√

1− γ2n+1/E =∑
k≥0

(1/2
k

)
(−γ2n+1/E)k this is equivalent to

(Ei +O(E−1))
∑
k≥0

(
1/2

k

)(
−γ2n+1

E

)k
= −2

(
i∑
l=0

ci−lE
i−l

)
.

By comparing the coefficients of Ei−k for k = 0, . . . , i we obtain
(1/2
k

)
(−γ2n+1)k = −2ci−k.

Substituting this into (4.3.9) then gives (4.3.8). �

Note that differential forms dΩi with asymptotic behavior (4.3.7) exist for all i ≥ 0,
although Whitham deformations only provide them for i = 0, . . . , n − 1. The most simple
non-trivial case n = 1 gives equations for the modulation of 1-solitons.

Example 4.3.6. The differential forms for the Whitham deformations of 1-solitons are
given by

dΩ0 = −1

2

dE√
−E + γ3

, dΩ1 = −1

2

E − 1
2γ3√

−E + γ3
dE .

Their compatibility equation (4.3.6) (in times X = T1 and T = T3) is equivalent to ∂Tγ3 =
1
2γ3∂Xγ3, which is just the dispersionless KdV equation (2.0.2). General generic solutions
for this equation were described in the introductory example of Chapter 2. One particular
solution is given by the second component of (X,T ) 7→ (γ1, γ3) in Example 4.3.4. The first
component is not involved. By a limit of higher genus Whitham deformation equations, the
equation ∂Tγ1 = 1

2 (2γ1 − γ3) ∂Xγ1 can be found, see Equation (2.90) in [22]. The Whitham
deformation from Example 4.3.4 satisfies this equation.

In more generality, the limiting case of KdV Whitham equations for solitons is going to
be discussed in Section 5.2.



CHAPTER 5

The KdV Whitham Hierarchy

The KdV Whitham hierarchy in its algebraic-geometric form takes values in the pa-
rameter space of hyperelliptic curves. In the present chapter, by applying a hydrodynamic
reduction we arrive at differential-geometric structures on this parameter space – a flat di-
agonal Riemannian metric with corresponding flat coordinates and, furthermore, particular
Euler-Poisson-Darboux equations (EPDs) that allow to characterize generating differential
forms for the KdV Whitham hierarchy.

We start by revising some basic constructions and definitions from the framework of
Krichever’s KP Whitham hierarchy that contains the KdV Whitham hierarchy as a spe-
cial type of algebraic orbits, see Section 2.2. Some minor changes are applied here. Let
g(E) =

∏2n+1
j=1 (E − γj) be a polynomial with real roots γ1 < · · · < γ2n+1 and consider the

hyperelliptic curve (2.2.23)

Γn =
{

(E, y) ∈ C2 | y2 + g(E) = 0
}
∪ {∞}

with coordinate ξ2 = −1/E at the point at infinity and fixed real a-cycles αj ⊆ Γn covering
the gaps [γ2j , γ2j+1] and oriented clockwise.

• The corresponding parameter space Mhyp
n of hyperelliptic curves has real coordi-

nates γ = (γ1, . . . , γ2n+1). By an affine transformation γ1 and γ2 could be normal-
ized to 0 and 1, respectively. However, unlike in the moduli spaces in Section 2.2
before, conformally equivalent curves are not identified with each other here.
• The coordinate ξ at the point at infinity is used as a reference that allows to

compare differential forms on varying curves Γn. It is related to the coordinate κ
in Example 2.2.4 by κ =

√
−2/ξ.

• On a hyperelliptic curve Γn of genus n there are meromorphic differential forms
(dΩi)i≥−n characterized uniquely by

– (dΩi)i=−n,...,−1 is a basis of the holomorphic differential forms on Γn normal-
ized by

∫
αj

dΩi = δ−i,j , and

– dΩi for i ≥ 0 is holomorphic except at the point at infinity where it is given
by (Ei+1 +O(E0))dξ and all a-periods of dΩi vanish 1.

For solely practical reasons their normalization and indexing differ from that of the
more general KP case. To avoid confusion about the normalization, Greek indizes
are used for KP and Latin indices are used for KdV.

As a specification of the universal Whitham hierarchy in Definition 2.2.1 to the KdV setting
we have the following.

Definition 5.0.1. The Whitham hierarchy for KdV is a system of PDEs for functions
T := (T2i+1)i≥−n 7→ γ(T ) such that for all i, j ≥ −n we have

(5.0.1) ∂T2j+1dΩi = ∂T2i+1dΩj .

1Oddness with respect to the hyperelliptic involution is implied by the expansion at the point at infinity.
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Remark 5.0.2. Recall from Section 2.2.2 that the sections Γn 7→ dΩi(Γn) in the bun-

dle of meromorphic differential forms over the parameter space Mhyp
n exist uniquely as a

consequence of Riemann’s theorem. Since these sections are also smooth and Γn can be
represented by γ, the Whitham equations (5.0.1) implicitly induce PDEs for T 7→ γ(T ).

We outline a proof that γ 7→ dΩi(γ) is smooth for i ≥ −n. First note that meromorphic
differential forms on Γn, which are odd with respect to the hyperelliptic involution σ :
(E, y) 7→ (E,−y) and holomorphic outside ξ = 0, are of the form

(5.0.2) dΩ = C(E)
dE

y

for some polynomial C and y =
√
−g. The pole order of dΩ at ξ = 0 is 2[degE(C)−(n−1)].

Let us consider the map Ξ that assigns to (g, C) the principal part of dΩ and the a-periods
of dΩ. This is a smooth surjective map (even for fixed g) and C-linear in C. Moreover, if
restricted to polynomials C with real coefficients and degree up to a fixed number k, where
k ≥ i + n if i ≥ 0 and k ≥ n − 1 if i < 0, then Ξ is a submersion to Rk−(n−1) × Rn (by
identifying polynomials with their coefficient vector). Hence, if i ≥ 0, then Ξ−1(Ei+1, 0)
(and if i < 0 then Ξ−1(0, e−i)) is a smooth submanifold. It can be parametrized as a graph
of g 7→ C = C(g), since (g, C) 7→ Ξ(g, C) is a submersion already, if g is kept constant.

Starting from the algebraic-geometric description using differential forms dΩi on hyper-
elliptic curves, we will study in Section 5.1 the differential-geometric aspects of the KdV
Whitham hierarchy that originate from its reduction to a Hamiltonian hydrodynamic sys-
tem. The geometry appearing here is that of flat and diagonal Riemannian metrics on the

real parameter space Mhyp
n . Corresponding orthogonal nets will be given. In Section 5.2 the

KdV Whitham hierarchy of solitons will be introduced and reduced to a semi-Hamiltonian
system. Finally, Section 5.3 is dedicated to characterizing generating differential forms for
the KdV Whitham hierarchy by solutions of EPDs.

5.1. A Flat Metric on the Parameter Space of Hyperelliptic Curves

The KdV Whitham hierarchy is a special case of an algebraic orbit, hence the hydrody-
namic reduction works in the same way as in Section 2.2.4. For the sake of completeness, the
statements and proofs are revisited here, using the more explicit representation of mero-
morphic differential forms dΩi on hyperelliptic curves by (5.0.2). Corresponding to the

hydrodynamic system there are Riemannian metrics on the parameter space Mhyp
n . The

goal of this section is to show flatness for one of these metrics, i.e. the hydrodynamic
reduction of the KdV Whitham hierarchy is a Hamiltonian system of hydrodynamic type.

As an intermediate step (parallel to Proposition 2.2.7 above), the following result ex-
plains how taking the derivative of some dΩi with respect to γk is related to evaluating at
γk.

Lemma 5.1.1. For the normalized differential forms dΩi (i ≥ −n) and all γ1, . . . , γ2n+1

holds that

(5.1.1) ∂γkdΩi

has vanishing a-periods, is holomorphic on Γn\{γk} and has principal part dΩi|E=γk/(2(γk−
E)). Conversely, these properties determine (5.1.1) uniquely. In particular we have

(5.1.2) dΩi|E=γk∂γkdΩj = dΩj |E=γk∂γkdΩi .
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Proof. By construction of dΩi its a-periods vanish and its principal part at the point
at infinity is constant. Therefore ∂γkdΩi has vanishing a-periods and vanishing principal
part at infinity. For describing the principal part at E = γk consider

(5.1.3) dΩi = Ci(E)
dE

y

for some uniquely given polynomial Ci of degree n + i if i ≥ 0 and degree up to n − 1 if
i < 0. The derivative of 1/y with respect to γk is

(5.1.4) ∂γk

(
1

y

)
= ∂γk

2n+1∏
j=1

(E − γj)−1/2

 =
1

2(E − γk)
1

y

and therefore we have

(5.1.5) ∂γkdΩi =

(
Ci

2(E − γk)
+ ∂γkCi

)
dE

y
=

(
1

2(E − γk)
+
∂γkCi
Ci

)
dΩi .

Now, the principal part at E = γk can be read off as dΩi|E=γk/(2(E − γk)). By Riemann’s
theorem the a-periods and principal parts determine (5.1.1) uniquely. Furthermore, the
factors in (5.1.2) are chosen such that the principal parts on both sides coincide (while all
a-periods still vanish). Hence, the differential forms are the same. �

As a corollary (parallel to Lemma 2.2.8 with identical proof) the Whitham equa-
tions (5.0.1) are equivalent to a system of first order quasi-linear PDE in diagonal form.

Corollary 5.1.2 (Hydrodynamic Reduction). The Whitham equation (5.0.1) is equivalent
to

(5.1.6) dΩi|E=γl∂T2j+1γl = dΩj |E=γl∂T2i+1γl

for all l = 1, . . . , 2n+ 1.

Under the genericity assumption dΩ0|E=γl 6= 0 for all l = 1, . . . , 2n + 1, the equa-
tions (5.1.6) for i = 0 and j ≥ −n imply the equations for all i, j ≥ −n. Hence, the KdV
Whitham hierarchy takes the form of a diagonal 1 + 1-dimensional system of hydrodynamic
type

(5.1.7) ∂T2k+1
γl = v

(k)
l ∂T1γl

for velocities v
(k)
l := v(k)(γl) given by the meromorphic functions v(k)(E) = dΩk/dΩ0 on

C. The ramification points γ1, . . . , γ2n+1 of the spectral curve are the Riemann invariants
here. They were found in [69] in the case of one phase (i.e. n = 1) and generalized to the
multiphase case in [25].

As a second consequence (partly parallel to Corollary 2.2.10) we get that the normalized
differential forms of the KdV Whitham hierarchy satisfy two types of Laplace equations.

Lemma 5.1.3. For each differential form dΩk with k ≥ −n and i 6= j we have the Laplace
equation

(5.1.8) ∂γi∂γjdΩk = ckj (γi)∂γidΩk + cki (γj)∂γjdΩk with ckj (E) :=
∂γjdΩk

dΩk
.

Furthermore, the velocities v(k)(E) = dΩk/dΩ0 satisfy

(5.1.9) ∂γiv
(k) = c0

i (E)
(
v

(k)
i − v

(k)
)
,
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so as a consequence, ∂γidΩk = v
(k)
i ∂γidΩ0 induces a Combescure transformation (as defined

in Section 2.1.3) from dΩ0 to dΩk. The Laplace equation

(5.1.10) ∂γi∂γjdΩk = cji(E)∂γidΩk + cij(E)∂γidΩk with cji(E) := c0
i (γj)

∂γjdΩ0

∂γidΩ0

has coefficients independent of the index k, but depending on the parameter E.

Proof. Under the genericity assumption dΩ0|γl 6= 0 for all l = 1, . . . , 2n+1 Lemma 5.1.1
gives for all k ≥ −n that dΩk|γl 6= 0 and

(5.1.11) v
(k)
i =

∂γidΩk

∂γidΩ0
.

Hence, a direct computation shows (5.1.9). In order to show the Laplace equation (5.1.8),
we want to show that the differential forms on the left and the right hand side have identical
a-periods and principal parts. The equality then follows by Riemann’s theorem. By con-
struction dΩk has constant a-periods and a constant principal part at the point at infinity,
thus its derivatives with respect to branch values γi have vanishing a-periods and at E =∞
they are holomorphic. It is left to be shown that the principal parts coincide. From the
representation dΩk = Ck(E)(dE)/y we have as in (5.1.5)

∂γjdΩk =

(
Ck

2(E − γj)
+ ∂γjCk

)
dE

y
=

(
1

2(E − γj)
+
∂γjCk

Ck

)
dΩk .

Taking the derivative of this expression with respect to γi and using (5.1.4) for the derivative
of 1/y gives

∂γi∂γjdΩk =

[
Ck

4(E − γi)(E − γj)
+

∂γiCk
2(E − γj)

+
∂γjCk

2(E − γi)
+ ∂γi∂γjCk

]
dE

y
.

By the help of partial fraction decomposition for 1
4(E−γi)(E−γj) this is

∂γi∂γjdΩk =

[
1

2(E − γi)

(
1

2(γi − γj)
+
∂γjCk

Ck

)
+

1

2(E − γj)

(
1

2(γj − γi)
+
∂γiCk
Ck

)]
dΩk .

The differential form ∂γi∂γjdΩk is therefore holomorphic on Γn \ {γi, γj} and its principal
part at E = γi is

1

2(E − γi)

(
1

2(γi − γj)
+
∂γjCk

Ck

∣∣∣∣
γi

)
dΩk|γi =

1

2(E − γi)
(
∂γjdΩk|γi

)
,

which is the same as the principal part of the differential form

∂γjdΩk

dΩk

∣∣∣∣
γi

∂γidΩk

at E = γi. In the the same way the principal parts at E = γj can be treated. For (5.1.8)
this gives that the left and the right hand side have identical principal parts. Hence, the
formula is shown. Finally, equation (5.1.10) follows by combining (5.1.9) and (5.1.8)

∂γi∂γjdΩk = ∂γi

(
v

(k)
j ∂γjdΩ0

)
= c0

i (γj)v
(k)
i ∂γjdΩ0 + c0

j (γi)v
(k)
j ∂γidΩ0 .

Equation (5.1.11) allows to identify this expression with (5.1.10). �
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As a consequence of (5.1.9) the hydrodynamic system of the KdV Whitham hierar-
chy (5.1.7) is semi-Hamiltonian. Comparing (2.1.2) with (5.1.9) we find c0

i (γj) as candidates
for Christoffel symbols. A possible corresponding Riemannian metric in (2.1.3) is

(5.1.12) gii = (dΩ0(∂ξi)|γi)
2 = 2 res

E=γi

(dΩ0)2

dE

with a chart ξi induced by ξ2
i = E − γi, see (2.2.36). For Riemannian metrics associated

with a semi-Hamiltonian system the Riemann curvature tensor is conveniently expressed in
terms of rotation coefficients, see Section 2.1.1. Given Lamé coefficients Hi by gii = (Hi)

2

the rotation coefficients are

βij =
∂γiHj

Hi

for i 6= j. In (5.1.12) the Lamé coefficients are Hi = dΩ0(∂ξi)|γi . The metric is said
to have the Egorov property, if the rotation coefficients are symmetric or, equivalently,
if ∂γigjj = ∂γjgii. In this case there is a potential c0 = c0(γ) for the metric such that
∂γiu0 = gii for all i = 1, . . . , 2n+ 1.

Lemma 5.1.4 (Assertion 4 in [16]). The Riemannian metric (5.1.12) has the Egorov prop-
erty.

Proof. By construction dΩ0 has an expansion at ξ2 = −1/E = 0 of the form

(5.1.13) dΩ0 =
(
E + u0E

0 +O(E−1)
)

dξ

for some function u0 = u0(γ). Hence, there is a primitive function of dΩ0 with the asymp-
totic Ω0 = ξ−1 + u0ξ + O(ξ3) near ξ = 0. Riemann’s period relations (see Chapter 11.3
in [33]) imply

(5.1.14)

n∑
j=1

∫
aj

∂γidΩ0

∫
aj

∂γidΩ0 −
∫
aj

∂γidΩ0

∫
aj

∂γidΩ0 = Res (∂γiΩ0) dΩ0 .

The left hand side of the relation is zero, since by construction dΩ0 has vanishing a-periods
and thus also the a-periods of ∂γidΩ0 vanish. From Lemma 5.1.1 we get that ∂γidΩ0 is
holomorphic on Γn \ {γi}, so (∂γiΩ0)dΩ0 can have poles only at E = γi and ξ = 0. The
expansions given above yield

(5.1.15) res
ξ=0

(∂γiΩ0)dΩ0 = −∂γiu0 .

Near E = γi a chart ξi is defined by ξ2
i = E − γi, which makes ξi depend on γi. Derivation

gives 2ξidξi = dE. Therefore the differential forms dΩ0 and ∂γidΩ0 as represented in (5.1.3)
and (5.1.5), respectively, read

dΩ0 =

 2C0(γi)√
−
∏
j 6=i(γi − γj)

+O
(
ξ1
i

) dξi ,

∂γidΩ0 =

 C0(γi)

ξ2
i

√
−
∏
j 6=i(γi − γj)

+O
(
ξ0
i

)dξi .
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Hence, the Abelian integral of ∂γidΩ0 has a first order pole at E = γi

∂γiΩ0 = − C0(γi)

ξi
√
−
∏
j 6=i(γi − γj)

+O
(
ξ0
i

)
and we obtain the following result

res
ξi=0

(∂γiΩ0)dΩ0 =
2C0(γi)

2∏
j 6=i(γi − γj)

= −gii .

Together with (5.1.15) and the vanishing of Riemann’s period relation (5.1.14), this gives
−∂γiu0 = gii. Hence, −u0 is a potential for the metric g which has thereby the Egorov
property. �

A metric associated to a semi-Hamiltonian system and with the Egorov property is flat
if (2.1.10) holds, that is if

∑2n+1
s=1 ∂γsβik = 0 for i 6= k.

Lemma 5.1.5 (Example 2 in [20]). The Riemannian metric (5.1.12) is flat.

Proof. It suffices to check equation (2.1.10) since g is already known to come from
a semi-Hamiltonian system and have the Egorov property. If s 6= i, k then ∂γsβik =∑2n+1

s=1 βisβsk by (2.1.8). For s = k we compute

(5.1.16) ∂γkβik =
1

H2
i

(Hi∂γi∂γkHk − ∂γiHk∂γkHi) =
1

Hi
∂γi∂γkHk −

Hk

Hi
βikβki .

Now we want to express ∂γkHk in terms of rotation coefficients as well. In order to do
this, we use that −u0 in the expansion (5.1.13) of dΩ0 is a potential for the metric g, i.e.
−∂γku0 = H2

k and thus −∂2
γk
u0 = 2Hk∂γkHk. On the other hand dΩ0 satisfies

(5.1.17) ∂EdΩ0 = −
2n+1∑
s=1

∂γsdΩ0

due to Riemann’s theorem, since both sides have vanishing a-periods and identical principal
parts. We see this as follows. For dΩ0 = (C0dE)/y the derivative with respect to E is

∂EdΩ0 =

(
−1

2

2n+1∑
s=1

1

E − γs
+
∂EC0

C0

)
dΩ0 .

Comparing this expansion to ∂γkdΩ0 in (5.1.5) we see that the principal parts at E = γk
are the negative of each other. By the fundamental theorem of calculus and since there
are no residues, ∂EdΩ0 has only trivial periods. Hence, (5.1.17) holds. Together with the

expansion of dΩ0 in (5.1.13) the relation 1 = −
∑2n+1

s=1 ∂γsu0 follows. Therefore we get

2Hk∂γkHk = −∂2
γk
u0 =

∑
s 6=k

∂γk∂γsu0 = −
∑
s 6=k

∂γkH
2
s = −2

∑
s 6=k

HsHkβks
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and more simply ∂γkHk =
∑

s 6=kHsβks. Inserted into (5.1.16) this yields

∂γkβik = − 1

Hi
∂γi

∑
s 6=k

Hsβks

− Hk

Hi
β2
ik

= − 1

Hi

∑
s 6=k

(∂γiHsβks +Hs∂γiβks)−
Hk

Hi
β2
ik

= −
∑
s 6=i,k

(
βisβks +

Hs

Hi
βkiβis

)
− 1

Hi
∂γiHiβki − ∂γiβki −

Hk

Hi
β2
ik .

The term ∂γiHi can be replaced by −
∑

s 6=i,kHsβis − Hkβik. After cancellation and re-
arrangement we find

∂γkβik + ∂γiβik +
∑
s 6=i,k

βisβsk = 0 .

hence, the metric g is flat. �

Remark 5.1.6. Another candidate for a Riemannian metric corresponding to Christoffel
symbols c0

i (γj) is given by

hii =
1

γi
(dΩ0(∂ξi)|γi)

2 = 2 res
E=γi

(dΩ0)2

EdE
.

It can be shown that this metric has the Egorov property and is flat as well. Additionally,

Theorem 1 in [17] provides flat coordinates for the metric g on the parameter space Mhyp
n

of hyperelliptic curves by

T0(γ) = res
ξ=0

ξdΩ0 ,

TSα (γ) =

∫
aα

Ω0dE , for α = 1, . . . , n

TQα (γ) =

∫
bα

dΩ0 , for α = 1, . . . , n .

Derivatives with respect to the branch values γi can be permuted with integration with
respect to E and also with taking the residue at ξ = 0. Hence, by Lemma 5.1.3 the
coordinates individually satisfy the Laplace equation (5.1.8) for k = 0, so the map γ 7→(
T0, T

S
α , T

Q
α

)
(γ) ∈ R2n+1 forms an orthogonal net.

5.2. The Whitham Hierarchy for Solitons

For spectral curves Γ0 of genus zero, the Whitham hierarchy from Definition 5.0.1 is set

on the 1-dimensional parameter space Mhyp
0 . However, when considering the hydrodynamic

reduction of the Whitham equations on Mhyp
n , that is (5.1.7), then in the “soliton limit” [22]

a more particular system of equations appears that additionally to γ2n+1 ∈ Mhyp
0 includes

n double points of the spectral curve.
Let us start by recalling the soliton limit γ2j−1 → γ2j (for j = 1, . . . , n) of the (2n+ 1)-

stationary KdV hierarchy with a time-independent spectral curve Γn. It yields a degenerate
spectral curve that has double points γ1 = γ2, . . . , γ2n−1 = γ2n, see Section 3.3. By normaliz-
ing the double points, we arrive at the genus zero curve Γ0 = {(E, y)|y2 = γ2n+1−E}∪{∞}.
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The space of such curves Mhyp
0 is parametrized by γ2n+1 ∈ R. On Mhyp

0 the Whitham
equations (5.0.1) involve differential forms (dΩi)i≥0 which are determined entirely by their
asymptotic behavior at E = ∞. By a hydrodynamic reduction the compatibility equa-
tions (5.0.1) are equivalent to

∂T2i+1γ2n+1 =
dΩi

dΩ0

∣∣∣∣
γ2n+1

∂Xγ2n+1 .

This is a generalization of the dispersionless KdV equation in the introductory example
of Chapter 2 and Example 4.3.6. More specifically, the hydrodynamic reduction allows to
include equations for the double points, that is for all r = 2, 4, . . . , 2n, 2n+ 1 we consider

(5.2.1) ∂T2i+1γr = v(i)
r ∂Xγr with v(i)

r :=
dΩi

dΩ0

∣∣∣∣
γr

=
i∑

k=0

(
1/2

k

)
(−γ2n+1)kγi−kr

and X = T1. The formula for v
(i)
r follows from Proposition 4.3.5. Ignoring that the parame-

ters γj are dependent variables in the KdV Whitham equations, heuristically, the system of
equations (5.2.1) is the soliton limit γ2j−1 → γ2j of the hydrodynamic reduction (5.1.7) of

the Whitham equations on Mhyp
n . In [32] and [22] this type of “soliton limit” is presented

in detail for the case n = 1. We do not give a formal derivation here and rather postulate
the system of equations (5.2.1) as the Whitham equations of n-solitons. In Lemma 4.3.3 we
have seen how some solutions of (5.2.1) can be obtained from the Whitham deformations
in Proposition 4.3.2.

Unlike the generic KdV Whitham equations, the Whitham equations of 1-solitons are
not Hamiltonian systems of hydrodynamic type, see Example 2.1.2. However, for n ≤ 2
the semi-Hamiltonian condition (2.1.1) is empty, so trivially the Whitham equations of 1-
solitons (2.1.11) are semi-Hamiltonian. For the KdV Whitham equations of n-solitons this
is still true as we will see now.

Proposition 5.2.1. For j, r = 2, 4, . . . 2n, 2n+ 1, i ≥ 1 and r 6= j we have

(5.2.2)
∂γjv

(i)
r

v
(i)
j − v

(i)
r

=

{
1

2(γr−γ2n+1) if j = 2n+ 1

0 if j 6= 2n+ 1
.

Proof. The case j 6= 2n+1 is clear, since v
(i)
r only depends on γ2n+1 and γr, but j 6= r.

In the case j = 2n+ 1 we use ak − bk = (a− b)
∑k−1

m=0 a
mbk−1−m to obtain

v
(i)
j − v

(i)
r = (γj − γr)

i−1∑
l=0

i−l−1∑
m=0

(
1/2

l

)
(−1)lγl+m2n+1γ

i−1−(l+m)
r

= (γj − γr)
i−1∑
l=0

i∑
k=l+1

(
1/2

l

)
(−1)lγk−1

2n+1γ
i−k
r ,

where k = l +m+ 1 has been substituted. Swapping the order of summation then gives

v
(i)
j − v

(i)
r = (γj − γr)

i∑
k=1

k−1∑
l=0

(
1/2

l

)
(−1)lγk−1

2n+1γ
i−k
r .
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The inner summation simplifies to
∑k−1

l=0

(1/2
l

)
(−1)l = (−1)k−1

(−1/2
k−1

)
= −(−1)k2

(1/2
k

)
k.

Hence,

v
(i)
j − v

(i)
r = −2(γj − γr)

i∑
k=1

(
1/2

k

)
(−k)(−γ2n+1)k−1γi−kr = 2(γr − γj)∂γjv(i)

r ,

which gives (5.2.2). �

As a consequence, the semi-Hamiltonian condition (2.1.1) is satisfied for the veloci-
ties (5.2.2) of the KdV Whitham hierarchy of solitons.

Corollary 5.2.2. The KdV Whitham equations of n-solitons (5.2.1) are semi-Hamiltonian.

Semi-Hamiltonian systems possess infinitely many commuting flows, see Section 2.1.2.
For the KdV Whitham hierarchy of n-solitons they are characterized as follows.

Lemma 5.2.3. All commuting flows of (5.2.1) are induced by wr = f(γr) for r = 2n + 1
and some function f : R→ R; and by

(5.2.3) wr = −
√
γ2n+1 − γr

(
1

2

∫
f(γ2n+1)

√
γ2n+1 − γr3 dγ2n+1 + fr(γr)

)
for r ∈ {2, 4, . . . , 2n} and some functions fr : R→ R.

Proof. A commuting flow is induced by wr satisfying the system of differential equa-
tions

∂γjwr = cjr(wj − wr)
with j 6= r and cjr defined by the right hand side of (5.2.2)

(5.2.4) cjr :=

{
1

2(γr−γ2n+1) if j = 2n+ 1

0 if j 6= 2n+ 1
.

For r = 2n + 1 this system simply reads ∂γjwr = 0 for j = 2, 4, . . . , 2n and henceforth wr
may only depend on γ2n+1. Similarly, if r, j 6= 2n + 1 we have ∂γjwr = 0 and therefore wr
may only depend on γr and γ2n+1. We are left with the case r 6= 2n+ 1 and j = 2n+ 1:

∂γjwr = −1

2

f(γj)− wr
γj − γr

,

where we have set w2n+1 = f for some function f : R → R. Nearby a starting point
γ2n+1,0 6= γr this ODE has a unique solution with starting value wr(γr, γ2n+1,0). Direct
inspection shows that (5.2.3) (which can be found by variation of constants) satisfies the
ODE. �

As a consequence, Tsarev’s hodograph method for multiple commuting flows (see Ex-
ample 2.2.11) provides a solution of the n-soliton Whitham hierarchy by solving a transcen-
dental equation.

Corollary 5.2.4. All solutions (γr)r of the Whitham hierarchy of n-solitons (5.2.1) are
(locally) given as roots of

wr = X +

n∑
i=1

v(i)
r T2i+1 ,

for some wr as in Lemma 5.2.3.



78 5. THE KDV WHITHAM HIERARCHY

In Example 2.1.5 hodograph solutions for the 1-soliton Whitham equation were con-

structed from velocities w2 = v
(2)
2 and w3 = v

(2)
3 .

Example 5.2.5 (Another solution for the Whitham hierarchy of 1-solitons). Let w3 =
f(γ3) = γ3 and f2(γ2) = 1 in Lemma 5.2.3. Then w2 = 2γ2 − γ3 +

√
γ3 − γ2. According to

Corollary 5.2.4 a solution (γ2, γ3) of

2γ2 − γ3 +
√
γ3 − γ2 =

1

2
(2γ2 − γ3)T +X , γ3 =

1

2
γ3T +X

gives a solution for the 1-soliton Whitham hierarchy (2.1.11). Explicitly, the solutions are
here γ3 = 2X/(2− T ) and γ2 = γ3 or γ2 = γ3 − 1/(2− T )2.

A further aspect of the semi-Hamiltonian property of the coefficients cjr defined in (5.2.4)
is that they serve as compatible coefficients of a conjugate net. How to obtain the conju-
gate net by an integration procedure was described in Section 2.1.3 right in front of Ex-
ample 2.1.7. In Example 2.1.7 conjugate nets for the 1-soliton Whitham equation were
given.

Example 5.2.6 (Conjugate nets for the n-soliton Whitham equations). The Whitham
equations of n-solitons yield a (n+ 1)-dimensional conjugate net by

(5.2.5) f =
∑

l∈{2,4,...2n}

∫
1√

γl − γ2n+1
Xl(γl)dγl

for some arbitrary pointwise linear independent functions Xl : R → Rn+1 and integration
constants that are constant in all γj . When we assume γl < γ2n+1 as usual, then the root
in (5.2.5) will be purely imaginary and so will be the resulting conjugate net. This issue
originates from the chosen normalization (4.3.7) of dΩi in the Whitham hierarchy and may
be resolved by replacing Ei+1 by (−E)i+1 there.

5.3. Generating Differential Forms and EPDs

In the present section, generating differential forms dS of the KdV Whitham hierarchy
are investigated more closely. They are given by the system of differential equations

(5.3.1) ∂T2j+1dS = dΩj .

It turns out that generating differential forms can be represented by solutions of particular

EPDs on the parameter space Mhyp
n . Once a generating differential form on Mhyp

n is given,
finding a solution of the KdV Whitham hierarchy reduces to solving a system of ODEs.

In Chapter 2 we have seen two versions of the generalized hodograph method that
provide solutions of the KP Whitham hierarchy. Let us revisit them in the context of the
KdV Whitham hierarchy.

• Tsarev’s generalized hodograph method in Theorem 2.1.3 describes all generic
solutions of the KdV Whitham hierarchy by commuting flows. By a result about
linear PDEs that goes back to Darboux, commuting flows are parametrized by
2n+ 1 (smooth) functions in one variable.
• Krichever’s generalized hodograph method in the special case formulated in Propo-

sition 2.2.12 uses

dS =
∑
l≥−n

T2l+1dΩl
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as an Ansatz for generating differential forms. This Ansatz is parametrized by a
sequence of coefficients (T2l+1)l≥−n such that the series converges. The coefficients
also serve as times.

Considering the parameter sets, Tsarev’s version appears vastly more general. In more

detail, the velocities v
(l)
j = (dΩl/dΩ0)|E=γj induce commuting flows for the KdV Whitham

hierarchy (see (5.1.9)), so Tsarev’s version of the hodograph method contains Krichever’s
version as a special case. On the other hand, the differential equations (5.3.1) for a generat-
ing differential form provide a compact expression for the system of equations for commuting
flows (2.1.15). This is due to their algebraic-geometric structure that originates from the
spectral curves.

The aim of the present section is to obtain a version of the generalized hodograph
method for the KdV Whitham hierarchy that is as general as Tsarev’s version and admits
the structure of a generating differential form. As the main result, Theorem 5.3.10 describes
generating differential forms of the KdV Whitham hierarchy by a series expansion

dS =
∑
l≥0

al(E)g(E)l−1/2dE

with coefficient polynomials al of degree up to 2n whose coefficients are functions in γ. The
lowest order term of this expansion is determined as a0 = 0 by the hodograph method. The
higher order terms that describe dS are determined by a particular Euler–Poisson–Darboux
equation (EPD) – a so called ε-system with ε in the half-integers. An EPD is the special
case of a Laplace equation (2.1.20) given by

∂γi∂γja =
1

γi − γj
(
εj∂γia− εi∂γja

)
for i 6= j and constants εi, εj ∈ C. If all constants are the same εj = ε, then the EPD
is called an ε-system. Solutions of ε-systems are described by generalized hypergeometric
functions (or, more specifically, by Lauricella functions). For a description of these solutions
and the claim that KdV Whitham equations correspond to an ε-system, see [59].

Remark 5.3.1. For his more general construction of integrable Whitham hierarchies in [56],
Odesskii uses hypergeometric functions and points out that they “can be constructed and
studied in two dual ways: as solutions of holonomic linear systems of PDEs and/or as peri-
ods of some multiple-valued differential forms.” The present section rather follows the first
way.

The structure of this section is as follows: Section 5.3.1 shows how EPDs appear in
Krichever’s hodograph method from Proposition 2.2.12. In Section 5.3.2 the factor repre-
sentation of generating differential forms will be introduced and then used as an Ansatz in
Section 5.3.3. This yields the main theorem. The final section then contains the proof for
the main theorem.

For genericity in all this, the conditions of Corollary 2.2.9 are assumed as fulfilled, i.e.
already 2n+ 1 different times suffice to make a map

(5.3.2) TJ 7→ γ(TJ)

satisfying the equations of the KdV Whitham hierarchy in Corollary 5.1.2 a submersion.
Here J ⊆ {l | l ≥ −n} denotes the index set of active times TJ := (T2j+1)j∈J and |J | ≥ 2n+1
is assumed. If not stated otherwise, TJ represents finitely many times such that |J | = 2n+1
and (5.3.2) becomes a local diffeomorphism.
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5.3.1. The Hodograph Method and EPDs. Krichever’s hodograph method (see
Section 2.2.5) relies on a Laurent expansion of the generating differential form at E =∞

(5.3.3) dS =

∑
j≥0

T2j+1E
j+1 +

n∑
k=1

HkE
k−n +O

(
E−n

) dξ .

Assuming only finitely many times T2j+1 are non-zero, then there is only a pole at infinity.
The positive powers Ej+1 are realized by dΩj = (Ej+1 + O(E0))dξ with j ≥ 0. Linear
combinations of the normalized holomorphic differential forms (dΩj)j=−n,...,−1, allow to

realize the powers Ek−n for k = 1, . . . , n. Accordingly, the coefficients Hk depend on times
that correspond to the holomorphic differential forms. If only terms related to dΩj with
j ≥ −n appear in the sum, then Krichever’s Ansatz for a solution of (5.3.1) reads

(5.3.4) dS (E;γ(TJ)) =
∑
l≥−n

T2l+1dΩl (E;γ(TJ))

which is defined everywhere on Γn. In this case, the hodograph method tells that the
Ansatz (5.3.4) solves (5.3.1), if and and only if TJ 7→ γ(TJ) satisfies

(5.3.5) dS (γj(TJ);γ(TJ)) = 0 ,

for all j = 1, . . . , 2n + 1, see Proposition 2.2.12. For a generating differential form dS
that is not defined on Γn, but rather on its universal covering, terms of order O(E−n)
appear in (5.3.3) that do not belong to the Laurent expansion of (5.3.4). In other words,
generating differential forms dS which have a pole at infinity, but are not defined on Γn can
not be constructed by only using the normalized differential forms dΩl with l ≥ −n in the
hodograph Ansatz.

In order to see an ε-system appear, let us consider a hodograph Ansatz of the most
simple form

(5.3.6) dSm = dΩn+m +

n∑
l=−n

T2l+1dΩl

for some m ≥ 1. The following result is a refined version of Corollary 2.2.14 and the
discussion after it.

Proposition 5.3.2. Given dSm in (5.3.6), then there are some uniquely determined poly-
nomials aj = aj(E) of degree up to 2n, whose coefficients depend on γ and TJ (with
J = {−n, . . . , n}) such that

(5.3.7) dSm = −i
k∑
j=0

aj(E)g(E)j−1/2dE

for k the least integer with k(2n + 1) ≥ m. Conversely, given (5.3.7) with polynomials
aj = aj(E) of degree up to 2n, whose coefficients depend on γ, then

T2l+1(γ) =

{∫
α−l

dSm for l = −n, . . . ,−1

(−1)l+1 resξ=0 ξ
2l+1dSm for l = 0, . . . , n

gives dSm in the form (5.3.6). The condition (5.3.5) for the hodograph Ansatz to provide a
solution of the KdV Whitham hierarchy is simply a0 = 0.
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Proof. Transforming (5.3.6) into (5.3.7) uses mainly polynomial long division. To start
with the proof, let each normalized differential form be represented by dΩl = (Cl(E)dE)/y
for some polynomial Cl of degree max(n+ l, n−1). The normalization determines the poly-
nomial uniquely. Hence, the generating differential form is given by dSm = (Pm(E)dE)/y
for the polynomial Pm = Cn+m +

∑n
l=−n T2l+1Cl. Since the hodograph method requires

evaluation at the branch values γj , which are the roots of g, we are going to factor Pm by
g. Polynomial long division gives

Pm(E) =
k∑
j=0

aj(E)g(E)j

for some polynomials aj and k as characterized in the statement of the proposition. The
generating differential form then takes the form

dSm =

k∑
j=0

aj(E)g(E)j
dE

y
= −i

k∑
j=0

aj(E)g(E)j−1/2dE

since y2 = −g(E). Represented like this, the condition (5.3.5) for the hodograph Ansatz to
provide a solution of the KdV Whitham hierarchy, simply becomes a0 = 0.

Conversely, let a differential form dSm be given by (5.3.7) with polynomials aj = aj(E)
of degree up to 2n whose coefficients depend on γ. Assuming (5.3.6) as an Ansatz allows
to determine T2l+1 = T2l+1(γ) by using the normalization of the differential forms dΩl∫

α−l

dSm =
n∑

j=−n
T2j+1

∫
α−l

dΩj = T2l+1

for l = −n, . . . ,−1 and

res
ξ=0

ξ2l+1dSm =
n∑

j=−n
T2j+1 res

ξ=0
ξ2l+1dΩj =

n∑
j=−n

T2j+1 res
ξ=0

ξ2l+1Ej+1dξ

=
n∑

j=−n
T2j+1 res

ξ=0
ξ2l+1(−1)j+1ξ−2(j+1)dξ = (−1)l+1T2l+1

for l = 0, . . . , n. The inverse function TJ 7→ γ(TJ) is a solution of the KdV Whitham
hierarchy if a0 = 0. �

Example 5.3.3 (m = 1). Studying adiabatic invariants of the stationary KdV hierarchy
led to the generating differential form dS = ydE in Chapter 4. Due to y2 = −g(E) we find

dS = ydE = ig(E)1/2dE

which is (5.3.7) for m = 1, k = 1, a0 = 0 and a1 = −1. This example can be seen as a
continuation of Example 2.2.16.

In the following example we see, how a1 induces an ε-system with ε = 1/2.

Example 5.3.4 (m = 3). In the case m = 3 the generating differential form (5.3.7) is given
by

dS3 = (a1g + a0)
dE

y

for a1 = α1E
2 + α2E + α3 with scalar coefficients αj . When we express dS3 by dΩn+3 +∑n

l=−n T2l+1dΩl it turns out that dΩn+3 alone determines the coefficients of a1 as functions
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in γ. In contrast, the coefficients of a0 depend on γ and TJ . The condition a0 = 0 imposes a
dependence between γ and TJ that makes γ(TJ) a solution of the KdV Whitham hierarchy.
We want to show now that hi := a1|γi satisfies the equation

(5.3.8) hl − hk = 2(γl − γk)∂γkhl .

In particular this means ∂γkhl = ∂γlhk, thus there is a function a = a(γ) with ∂γia = hi.
Inserted into (5.3.8) we then find that a satisfies an ε-system with ε = 1/2.

We start by comparing principal parts of dS3 and dΩn+3 +
∑n

l=−n T2l+1dΩl at E =∞.
When the differential forms dΩj are represented by dΩj = (CjdE)/y for some polynomial
Cj of degree n + j, then dS3 = dΩn+3 +

∑n
l=−n T2l+1dΩl implies Cn+3 = a1g + O(E2n).

Using the expansions

Cn+3 = c1E
2n+3 + c2E

2n+2 + c3E
2n+1 +O(E2n) and

g = E2n+1 −
2n+1∑
j=1

γjE
2n +

∑
1≤i<j≤2n+1

γiγjE
2n−1 +O(E2n−2)

this becomes equivalent to

c1E
2n+3 + c2E

2n+2 + c3E
2n+1 +O(E2n)

= α1E
2n+3 +

α2 − α1

∑
j

γj

E2n+2

+

α1

∑
i<j

γiγj − α2

∑
j

γj + α3

E2n+1 +O(E2n) .

Hence, in order to express α1, α2 and α3 in terms of γ, we are left to determine the
coefficients c1, c2 and c3. They follow from the normalization dΩn+3 =

(
En+4 +O(E0)

)
dξ

which by squaring both sides implies

C2
n+3

(dE)2

−g
=
(
E2n+8 +O(En+4)

)
(dξ)2 .

From ξ−2 = −E it follows that −2ξ−3dξ = −dE and (dE)2 = −4E3(dξ)2, so we arrive at

4C2
n+3 = g

(
E2n+5 +O(En+1)

)
and, by using the expansions for Cn+3 and g, equivalently

4
(
c2

1E
4n+6 + 2c1c2E

4n+5 + (c1c3 + c2
2)E4n+4 +O(E4n+3)

)
= E4n+6 −

∑
j

γjE
4n+5 +

∑
i<j

γiγjE
4n+4 +O(E4n+3) .

Hence, the principal part of dΩn+3 determines the coefficients c1, c2 and c3 of Cn+3 by

c1 = ±1

2
, c2 = ∓1

4

∑
j

γj and c3 = ±1

8

∑
i<j

γiγj −
1

2

∑
j

γ2
j

 .
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Now the coefficients αj can be expressed in terms of γ1, . . . , γ2n+1

α1 = c1 = ±1

2
, α2 = c2 + α1

∑
j

γj = ±1

4

∑
j

γj and

α3 = c3 + α2

∑
j

γj − α1

∑
i<j

γiγj = ±1

8

∑
i<j

γiγj ±
3

16

∑
j

γ2
j .

Therefore the functions hl = a1|γl defined above are given as

hl = ±1

2

γ2
l +

1

2
γl
∑
j

γj +
1

4

∑
i<j

γiγj +
3

8

∑
j

γ2
j

 .

Finally, direct inspection shows that the functions hl (with l = 1, . . . , 2n+1) satisfy (5.3.8).

More generally, we find an ε-system with ε = 1/2 when we consider in (5.3.6) instead
of dΩn+m a differential form dΩ =

∑
j≥−n kjdΩj with constants kj such that dΩ is defined

on Γn, see Theorem 4.2. in [64]. However, this still excludes generating differential forms
dS that are not defined on Γn (but rather on the universal covering of Γn). Therefore we
look for a representation of generating differential forms that does not require them to be
defined on Γn.

5.3.2. The Factor Representation of the Generating Differential Form. An
alternative to the Laurent expansion (5.3.3) of the generating differential form at E = ∞
is to consider a series expansion at the branch values γj given as the roots of g. For the
hyperelliptic curve Γn defined by y2 + g(E) = 0, at all branch points (E, y) = (γj , 0) ∈ Γn
simultaneously y is a chart. Hence, for any generating differential form there is an expansion
near (γ1, 0) of the form

(5.3.9) dS =
∑
k≥0

cky
kdy

for scalar coefficients ck = ck(γ). This expansion can be considered formally, but usually at
least local convergence is assumed for generating differential forms. When dS is multivalued
on Γn, the expansion converges only locally. Due to y = 0 at all branch points (γj , 0),
the series converges there as well, but does not necessarily represent the same generating
differential form. The expansion at (γ1, 0) determines dS entirely and by holomorphic
continuation the expansion coefficients at other branch points can be found.

Since dS is supposed to be a generating differential form, the equations (5.3.1) have to
hold. That is to say, the time derivatives of dS are related to the normalized differential
forms, which are represented as dΩl = (Cl(E)dE)/y. Accordingly, we want to express (5.3.9)
in the chart E again. Using 2ydy = −g′(E)dE gives

dS = −1

2

∑
k≥0

ckg
′(E)yk−1dE .

All normalized differential forms dΩl are odd with respect to the hyperelliptic involution σ,
i.e. σ∗dΩi = −dΩi. Decomposing dS into an even and an odd part gives

dS = (f1(E)y + f2(E)) dE
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with f1(E) = −1
2

∑
k≥0 c2kg

′(E)(−g(E))k−1 and f2(E) = −1
2

∑
k≥0 c2k+1g

′(E)(−g(E))k.

Due to the oddness of dΩj equation (5.3.1) implies for the even part of dS

∂T2j+1f2 = 0

for all j ∈ J . Hence, f2 is constant in TJ and also as a function in γ, since the map in (5.3.2)
is a local diffeomorphism. What this constant is, is not described by (5.3.1). Without loss of
generality we may assume f2 = 0 that is c2k+1 = 0 for all k ≥ 0 and arrive at the following
factor representation of generating differential forms.

Proposition 5.3.5. Any generating differential form dS for the KdV Whitham hierarchy
can be represented locally near (E, y) = (γ1, 0) by

(5.3.10) dS(E;γ) =
∑
k≥0

ak(E)g(E)k−1/2dE

with 2ak(E) = i(−1)k+1c2kg
′(E) a polynomial in E of degree 2n and coefficients that depend

on γ.

The system of differential equations (5.3.1) has to determine the coefficient polynomials
ak

2. Let dΩα = (Cα(E)dE)/y for a polynomial Cα of degree α+n in E that is determined by
the normalization of the differential dΩα. (To avoid confusion with the index of summation,
Greek letters are used to index the normalized differential forms of the KdV Whitham
hierarchy.)

Proposition 5.3.6. For the factor representation (5.3.10) of a generating differential form
dS the equations (5.3.1) take the form a0 = 0 and for all α ∈ J holds

(5.3.11) −iCα =
1

2
a1∂T2α+1g +

∑
l≥1

[
∂T2α+1al +

(
l +

1

2

)
al+1∂T2α+1g

]
gl .

Proof. Inserting the factor representation into the differential equation (5.3.1) gives

Cα
dE

y
= ∂T2α+1dS =

∑
k≥0

[
(∂T2α+1ak)g

k−1/2 + ak

(
k − 1

2

)
gk−3/2∂T2α+1g

]
dE .

This is equivalent to

(5.3.12) −iCα =
∑
k≥0

[
(∂T2α+1ak)g

k + ak

(
k − 1

2

)
gk−1∂T2α+1g

]
.

At all branch values γj (j = 1, . . . , 2n + 1) only the term for k = 0 on the right hand side
would have a pole, so its coefficient a0 has to vanish there. However, since a0 is a polynomial
of degree up to 2n, it is already 0. A shift in the index of summation for the second term
in the square brackets of (5.3.12) gives the formula in the statement of the proposition. �

In other words, for the factor representation the differential equation (5.3.1) implies
a0 = 0, which is the hodograph condition dS|γj = 0. By −2iCα|γj = a1|γj

(
∂T2α+1g

)
|γj the

next polynomial coefficient a1 turns out to provide an hydrodynamically reduced version
of the equations (5.3.1), i.e. it is free of the spectral parameter E (compare this to the
hydrodynamically reduced KdV Whitham equations in Corollary 5.1.2).

2The series expansions in Proposition 5.3.5 only contains polynomials ak of degree 2n and generally,
does not converge at E = ∞. In contrast, the Laurent expansion in Proposition 5.3.2 allows coefficient
polynomials of degree up to 2n and converges at E =∞. Therefore the two expansions are not the same in
general.
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Lemma 5.3.7. Any solution TJ 7→ γ(TJ) of the KdV Whitham hierarchy which is given by
a generating differential form dS that converges near (E, y) = (γ1, 0), is determined by the
system of ODEs

(5.3.13) dΩα|γj = −1

2

dS

E − γj

∣∣∣∣
γj

∂T2α+1γj

for all α ∈ J and j = 1, . . . , 2n+ 1. The initial values X = T1 7→ γ(X) for the PDEs of the
hydrodynamic reduction (5.1.6) correspond to a solution of the ODE (5.3.13) for α = 0.

Proof. Evaluating the differential equations (5.3.11) that describe dS at E = γj gives
−2iCα|γj = a1|γj∂T2α+1g|γj . By

∂T2α+1g = −
2n+1∑
k=1

∏
l 6=k

(E − γl)

 ∂T2α+1γl

then follows

(5.3.14) Cα|γj = − i
2
a1|γj

∏
l 6=j

(γj − γl)∂T2α+1γj .

On the other hand the factor representation (5.3.10) gives(
dΩα +

1

2

dS

E − γj
∂T2α+1γj

)∣∣∣∣
γj

=

(
Cα +

i

2
a1

g

E − γj
∂T2α+1γj

)
dE

y

∣∣∣∣
γj

=

Cα|γj +
i

2
a1|γj

∏
l 6=j

(γj − γl)∂T2α+1γj

 dE

y

∣∣∣∣
γj

.

The term in the bracket vanishes due to (5.3.14), thus we arrive at (5.3.13). From (5.3.13)
the KdV Whitham equations in their hydrodynamically reduced form (5.1.6) follow. �

Note that the factor representation (5.3.10) allows here to trade the derivation of dS
for an evaluation. For the differential forms dΩα this was shown before in Lemma 5.1.1.

Remark 5.3.8. When we compare the generating differential form dS of the KdV Whitham
hierarchy and the resolvent B̂ of the stationary KdV hierarchy, we notice that the system of
ODEs (5.3.13) plays the same role as the Drach-Dubrovin equations (3.2.17). However, the
resolvent is given by an ODE, while some generating differential form has to be assumed in
Lemma 5.3.7 in order to get an ODE.

Next we are going to see, how the higher coefficient polynomials ai with i ≥ 2 are
determined. The recursion scheme works similar to polynomial long division. Let the
polynomials Cα be represented by

Cα =
∑
l≥0

Cαlg
l

for polynomials Cαl = Cαl(E) of degree up to 2n. If J = {−n, . . . , n}, then degE Cα ≤ 2n
for all α ∈ J and therefore Cαl = 0 for all l ≥ 1. Given a solution TJ 7→ γ(TJ) for the
KdV Whitham hierarchy, then the evaluation of (5.3.11) at E = γj for j = 1, . . . , 2n + 1
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determines the coefficient polynomial a1 by (5.3.14), since a1 has degree up to 2n in E.
Hence, there is a unique polynomial f1

α in E of degree up to 2n− 1 such that

−iCα0 =
1

2
a1∂T2α+1g + f1

αg .

This turns (5.3.11) into

0 = g

−f1
α +

∑
l≥1

[
∂T2α+1al +

(
l +

1

2

)
al+1∂T2α+1g + iCαl

]
gl−1

 .

The expression in the bracket determines a2 by evaluation at all E = γj

0 =

(
−f1

α + ∂T2α+1a1 +
3

2
a2∂T2α+1g + iCα1

)∣∣∣∣
γj

.

Again, there is a unique polynomial f2
α in E of degree up to 2n− 1 such that

0 = −f1
α + ∂T2α+1a1 +

3

2
a2∂T2α+1g + iCα1 + f2

αg .

Iterating this process of evaluation and factoring g gives the following recursion.

Proposition 5.3.9. There are uniquely determined auxiliary polynomials f lα of degree up
to 2n− 1 (l ≥ 1) such that (5.3.11) takes the form

(5.3.15) 0 = −f lα + iCαl + ∂T2α+1al +

(
l +

1

2

)
al+1∂T2α+1g + f l+1

α g .

By setting f0
α = 0, this equation also holds for l = 0.

An alternative representation of the infinite system of equations (5.3.15) is

0 = ∂T2α+1a+ ∂T2α+1gAa+ (gF − I)fα + iCα

for a = (a0, a1, . . . )
t with a0 = 0, fα = (f0

α, f
1
α, . . . )

t
, Cα = (Cα0, Cα1, . . . )

t, F =
(δi+1,j)i,j≥0, I = (δi,j)i,j≥0 and A = 1

2 diag(2l + 1)l≥0F , i.e.

(5.3.16) F =

0 1 0 . . .
0 0 1
...

. . .
. . .

 and A =
1

2

0 1 0 . . .
0 0 3
...

. . .
. . .

 .

5.3.3. The Factor Ansatz for the Generating Differential Form. So far a gener-
ating differential form dS providing a solution TJ 7→ γ(TJ) for the KdV Whitham hierarchy
was assumed as given. For the factor representation of dS we have seen that the coeffi-
cient polynomials ak have to satisfy (5.3.11) or, equivalently, the recursion scheme (5.3.15).
Conversely, we now want to use the factor representation

(5.3.17) dS =
∑
k≥0

ak(E)g(E)k−1/2dE

as an Ansatz for finding solutions of the KdV Whitham hierarchy. This means we start with
an admissible coefficient polynomial al. The recursion scheme in Proposition 5.3.9 then de-
termines coefficient polynomials ak for k 6= l such that the factor Ansatz (5.3.17) (formally)
gives a generating differential form for the KdV Whitham hierarchy. Only such polynomials
al are considered admissible that yield coefficient polynomials 2ak(E) = i(−1)k+1c2kg

′(E)
such that the series in (5.3.9) converges near (E, y) = (γ1, 0).
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The system of differential equations for the generating differential form and the equiva-
lent recursion scheme for the factor representation have a version in coordinates γ instead
of coordinates TJ . In order to obtain this, let differential forms dΩγ

l = dΩγ
l (γ, ∂TJγ) for

l = 1, . . . 2n+ 1 be defined by

(5.3.18) dΩα =

2n+1∑
l=1

(∂T2α+1γl)dΩγ
l .

For the polynomials Cγl with dΩγ
l = (Cγl (E)dE)/y we have Cα =

∑2n+1
l=1 (∂T2α+1γl)C

γ
l . The

differential equations (5.3.1) for the generating differential form then yield

0 = dΩα − ∂T2α+1dS =

2n+1∑
l=1

(∂T2α+1γl)
[
dΩγ

l − ∂γldS
]
.

Since the Jacobian matrix ∂TJγ is invertible, the term in the square brackets has to vanish
that is

(5.3.19) ∂γldS = dΩγ
l

for all l = 1, . . . 2n + 1. Here dS and also the coefficient polynomials ak of its factor
representation depend on γ and ∂TJγ. Conversely, given some coefficient polynomials ak
(depending only on γ) such that the factor Ansatz solves (5.3.19), then (5.3.18) induces a
system of ODEs whose solution is a solution TJ 7→ γ(TJ) for the KdV Whitham hierarchy.
For example, assuming 0 ∈ J , the ODE for X = T1 7→ γ(X) reads

dΩ0(E;γ) =

2n+1∑
l=1

(∂Xγl)dΩγ
l (E;γ) .

A version of this equation without the spectral parameter E can be obtained by evaluation
of E at γ1, . . . γ2n+1 or by considering the coefficients of the Laurent expansion at E =∞.

The main result of the present section is about how to characterize those coefficient poly-
nomials ak that correspond to a generating differential form dS in (5.3.19). For simplicity
of the description it is assumed from now on that J = {−n, . . . , n}.

Theorem 5.3.10. Given a generating differential form dS, then coefficient polynomials
ak in Ansatz (5.3.17) are recursively determined such that

• a0 = 0 and
• there is a solution a for an EPD with ε = 3/2, which is related to a2 by

(5.3.20)
3

2
a2|E=γj = ∂γja

and all ak are determined by the recursion uniquely.

Conversely, let a solution a for an EPD with ε = 3/2 be given such that

• (5.3.20) induces a coefficient polynomial a2 of degree 2n and
• the recursively determined coefficient polynomials a1 and ak for k ≥ 3 yield a power

series in the factor Ansatz (5.3.17) converging locally near (E, y) = (γ1, 0),

then this series defines a generating differential form in (5.3.19).

A proof of Theorem 5.3.10 will be given in Section 5.3.4. It will be mostly about the
compatibility of a recursion scheme related to the one in Proposition 5.3.9. We end this
section with the following remarks.
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Remark 5.3.11. For the recursively determined coefficient polynomials ak with k ≥ 3 as
well, there are solutions ak for an ε-system with ε = (2k − 1)/2 such that

1

2
(2k − 1)ak|E=γj = ∂γjak .

Once indices α > n are considered as part of the index set J , then the corresponding
normalized differential forms dΩα will show up as Cαl in the recursion (5.3.15) beyond the
step l = 0. In this case, one of the ε-systems with ε > 3/2 can be used to formulate the
theorem.

Remark 5.3.12. Given a solution a for an EPD with ε = 3/2, it is difficult to see, whether
the induced sequence of coefficient polynomials 2ak(E) = i(−1)k+1c2kg

′(E) leads to a gener-
ating function in (5.3.17) that converges at least locally near (E, y) = (γ1, 0). This question
will not be addressed here. However, note that the following proof does not rely on the
convergence of dS. Without convergence Theorem 5.3.10 can be seen as an alternative ver-
sion of Tsarev’s generalized hodograph method in Theorem 2.1.3 with an ε-system taking
the place of equation (2.1.15) for commuting flows.

5.3.4. Proof of the Theorem. The proof of Theorem 5.3.10 relies on the use of
coordinates γ instead of TJ . In this section it is always assumed that J = {−n, . . . , n},
hence all normalized differential forms dΩα = (CαdE)/y are represented by polynomials Cα
of degree up to 2n. It follows that also the polynomials Cγl defined in (5.3.18) are of degree
up to 2n only.

For the recursion scheme of the factor representation there is a version in coordinates
γ. With the same proofs as for Proposition 5.3.6 and Proposition 5.3.9 (or as a corollary)
we get the following.

Proposition 5.3.13. For the factor representation (5.3.17) of a generating differential form
dS the equations (5.3.19) take the form a0 = 0 and for all k = 1, . . . , 2n+ 1 holds

(5.3.21) −iCγk =
1

2
a1∂γkg +

∑
l≥1

[
∂γkal +

(
l +

1

2

)
al+1∂γkg

]
gl .

Equivalently, there are uniquely determined auxiliary polynomials f lk of degree up to 2n− 1
(l ≥ 1) such that (5.3.21) takes the form

−iCγk =
1

2
∂γkga1 + gf1

k ,(5.3.22)

0 = −f lk + ∂γkal +

(
l +

1

2

)
al+1∂γkg + f l+1

k g .(5.3.23)

The first equation (5.3.22) can always be solved for some polynomials a1 and f1
k . For

the recursion in (5.3.23) there is the more compact form

(5.3.24) 0 = ∂γka+ ∂γkgAa+ (gF − I)fk

with a = (a1, a2, . . . )
t, fk = (f1

k , f
2
k , . . . )

t
, and F = (δi+1,j)i,j≥1, I = (δi,j)i,j≥1 and A =

1
2 diag(2l + 1)l≥1F . Note that the matrices F,A, I here are those defined in (5.3.16), but
with the first column and row deleted. The proof of Theorem 5.3.10 will be mainly about
the compatibility of equation (5.3.24), that is

(5.3.25) ∂γk∂γla = ∂γl∂γka
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for all k, l = 1, . . . , 2n+ 1. We begin by expressing the compatibility in terms of the vectors
of polynomials fk.

Proposition 5.3.14. The compatibility conditions (5.3.25) are equivalent to the existence

of some auxiliary coefficients f lk = (f1
lk, f

2
lk, . . . )

t
such that for all l, k = 1, . . . , 2n+ 1 holds

0 = ∂γkf l − ∂γlfk + ∂γl∂γkgf lk ,(5.3.26)

0 = (F −A) [(E − γl)f l − (E − γk)fk]− f lk .(5.3.27)

Proof. We consider the recursion scheme in the form (5.3.24) and express its derivative
with respect to γl by

0 = ∂γl∂γka+ ∂γl∂γkgAa+ ∂γkgA∂γla+ ∂γlgFfk + (gF − I)∂γlfk

= ∂γl∂γka+ ∂γl∂γkgAa− ∂γkgA (∂γlgAa+ (gF − I)f l) + ∂γlgFfk + (gF − I)∂γlfk .

The second equation is obtained by substituting ∂γla from the recursion (5.3.24). Now the
compatibility condition ∂γk∂γla = ∂γl∂γka of the recursion becomes equivalent to

(5.3.28) 0 = (−A(gF − I)− F ) (∂γkgf l − ∂γlgfk) + (gF − I) (∂γlfk − ∂γkf l) .

For r 6= k, l evaluating the previous equation at E = γr gives 0 = − (∂γlfk − ∂γkf l) |γr . The
polynomials in each f l are of degree strictly less than 2n, thus there are auxiliary scalar

coefficients f jlk such that for f lk = (f1
lk, f

2
lk, . . . )

t
it holds

0 = ∂γkf l − ∂γlfk + ∂γl∂γkgf lk .

This is the equation stated in (5.3.26). Inserting (5.3.26) into the compatibility equa-
tion (5.3.28) and using ∂γkg = −(E − γl)∂γl∂γkg yields

0 = (−A(gF − I)− F ) (−(E − γl)f l + (E − γk)gfk) + (gF − I)f lk .

By evaluation at E = γr for r = 1, . . . , 2n+ 1 this equation turns into

0 = (−A+ F ) [(γr − γl)f l|γr − (γr − γk)fk|γr ]− f lk .

The polynomials in each coefficient vector f j are of degree at most 2n− 1, so the previous
equation has to hold even without the evaluation at γr. Hence, the equation in (5.3.27) has
been shown under the assumption of the compatibility (5.3.25).

Conversely, when (5.3.26) and (5.3.27) are given, then (5.3.28) reduces to

0 = AF [(E − γl)f l − (E − γk)fk] + Ff lk .

This equation holds due to (5.3.27). �

There is another way to express the recursion (5.3.24) and its compatibility (5.3.25), as
we are going to see now in Proposition 5.3.15 and Proposition 5.3.16, respectively. Com-
bining both descriptions will then allow to eliminate the auxiliary coefficients f l and f lk,
see Lemma 5.3.17 below.

Since g =
∏2n+1
l=1 (E − γl) has only simple zeros its derivatives ∂γjg (j = 1, . . . , 2n + 1)

can be used as a basis for the polynomials of degree up to 2n. That is, for a polynomial
P with degP ≤ 2n there are linear coefficients pi ∈ C such that P (E) =

∑2n+1
j=1 pj∂γjg(E).

Likewise, each polynomial f lk of degree up to 2n− 1 can be expressed by

(5.3.29) f lk =
∑
r 6=k

φlkr∂γk∂γrg = −
∑
r 6=k

φlkr
∂γkg

E − γr
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for some auxiliary scalar coefficients φlkr. Define φkr = (φ1
kr, φ

2
kr, . . . )

t
. As a consequence,

the recursion scheme (5.3.24) can be rewritten as

(5.3.30) 0 = ∂γka+ ∂γkg

Aa− (gF − I)
∑
r 6=k

φkr
1

E − γr

 .

Proposition 5.3.15. There are auxiliary coefficients hk = (h1
k, h

2
k, . . . )

t
such that the re-

cursion (5.3.30) becomes

(5.3.31) 0 = ∂γka+ ∂γkg

hk +
∑
r 6=k

φkr
1

E − γr

 .

These coefficients are determined by hk = Aa|γk and satisfy

(5.3.32) 0 = hk − hr − ∂γrg|γrFφkr .

Proof. For j 6= k the polynomial ∂γkg has a zero of order one at E = γj , so evaluat-
ing (5.3.30) there gives

0 =

∂γka+ ∂γkg
∑
r 6=k

φkr
1

E − γr

∣∣∣∣∣∣
γj

.

The degree of the term in the bracket is strictly less than 2n+ 1. Hence, there are auxiliary

scalar coefficients hjk such that for hk = (h1
k, h

2
k, . . . )

t
it holds

0 = ∂γka+ ∂γkg
∑
r 6=k

φkr
1

E − γr
+ hk∂γkg .

This is the recursion scheme in the form (5.3.31). The difference with (5.3.30) then elimi-
nates ∂γka and yields

0 = hk −Aa+ gF
∑
r 6=k

φkr
1

E − γr
.

By evaluation at E = γk follows the first identity for the coefficients hk. Evaluation at
E = γr with r 6= k and ∂γrg = −g/(E − γr) imply the second identity. �

Now for the compatibility of the recursion in the form of (5.3.31) we have.

Proposition 5.3.16. The compatibility conditions (5.3.25) are equivalent to

0 = ∂γlhk − ∂γkhl ,(5.3.33)

0 = hl − hk + (γk − γl)∂γkhl −
∑
r 6=l

∂γkφlr +
∑
r 6=k

∂γlφkr ,(5.3.34)

0 = φlr − φkr − (γr − γk)∂γkφlr + (γr − γl)∂γlφkr for r 6= l, k .(5.3.35)
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Proof. Let us start by differentiating the recursion scheme in the form (5.3.31) with
respect to γl

0 = ∂γl∂γka+ ∂γl∂γkg

hk +
∑
r 6=k

φkr
1

E − γr


+ ∂γkg

∂γlhk + ∂γl

(
φkl

1

E − γl

)
+
∑
r 6=k,l

∂γlφkr
1

E − γr

 .

Then, by the help of ∂γkg = −(E−γl)∂γl∂γkg the compatibility condition ∂γk∂γla = ∂γl∂γka
is equivalent to

0 = hl − hk + φlk
1

E − γk
− φkl

1

E − γl
+
∑
r 6=k,l

(φlr − φkr)
1

E − γr

− (E − γk)

∂γkhl + ∂γk

(
φlk

1

E − γk

)
+
∑
r 6=k,l

∂γkφlr
1

E − γr


+ (E − γl)

∂γlhk + ∂γl

(
φkl

1

E − γl

)
+
∑
r 6=k,l

∂γlφkr
1

E − γr

 .

At E = γl and E = γk the poles in this equation cancel out, so we arrive at the simpler
version of the compatibility conditions

0 = hl − hk +
∑
r 6=k,l

(φlr − φkr)
1

E − γr
(5.3.36)

− (E − γk)

∂γkhl +
∑
r 6=l

∂γkφlr
1

E − γr


+ (E − γl)

∂γlhk +
∑
r 6=k

∂γlφkr
1

E − γr

 .

The asymptotic behavior for E → ∞ and the poles at E = γr determine this equation up
to a constant part in E.

- For E →∞ the compatibility equation (5.3.36) implies (5.3.33).
- Looking at the principal part of (5.3.36) at E = γr implies (5.3.35).
- The constant part of (5.3.36) is

0 = hl − hk + γk∂γkhl −
∑
r 6=l

∂γkφlr − γl∂γlhk +
∑
r 6=k

∂γlφkr

and implies together with (5.3.33) the equation (5.3.34).

Conversely, the compatibility conditions for the recursion scheme in the form (5.3.36) follow
from (5.3.33), (5.3.34) and (5.3.35). �

The equations (5.3.33) provide compatibility for the system of equations

(5.3.37) ∂γka = hk
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with a = (a1, a2, a3, . . . )
t

a vector of scalar-valued functions. We aim now at proving that

• the equations (5.3.37) for a1 are equivalent to the compatibility (5.3.25) of the
recursion scheme, and
• that each aj satisfies an ε-system with ε = (2j − 1)/2, respectively.

By eliminating the auxiliary coefficients fk,f lk,φkr and hk again, the compatibility of the
recursion scheme takes the following form.

Lemma 5.3.17. The compatibility conditions (5.3.25) are equivalent to

(5.3.38) (γk − γl)∂γl∂γka =
3

2
(∂γka− ∂γla)

for a := a1 and all l, k = 1, . . . , 2n+ 1 with l 6= k. Given compatibility, then

(5.3.39) (γk − γl)∂γl∂γka
j =

1

2
(2j + 1)

(
∂γka

j − ∂γla
j
)

holds for all j ≥ 2.

Proof. We start by comparing the two versions of the compatibility conditions in
Proposition 5.3.14 and Proposition 5.3.16 and conclude that compatibility implies the
equations in the statement. Equation (5.3.26) from Proposition 5.3.14 gives ∂γl∂γkgf lk =
∂γlfk − ∂γkf l. From the definition of the coefficients φkl in (5.3.29) we have

∂γlfk =
∑
r 6=k

∂γlφkr∂γk∂γrg +
∑
r 6=l,k

φkr∂γl∂γk∂γrg

=

∑
r 6=k

∂γlφkr
E − γl
E − γr

−
∑
r 6=l,k

φkr
1

E − γr

 ∂γl∂γkg .

Together this implies

f lk =
∑
r 6=k

∂γlφkr
E − γl
E − γr

−
∑
r 6=l

∂γkφlr
E − γk
E − γr

−
∑
r 6=l,k

(φkr − φlr)
1

E − γr
.

In the limit E →∞ we see that the auxiliary coefficients f lk and φjr are related by

f lk =
∑
r 6=k

∂γlφkr −
∑
r 6=l

∂γkφlr .

This turns (5.3.34) from Proposition 5.3.16 into

(5.3.40) 0 = hl − hk + (γk − γl)∂γkhl + f lk .

Furthermore, evaluating the second relation in Proposition 5.3.14 at E = γk yields

f lk = (F −A)(γk − γl)f l|γk = (F −A)(γk − γl)φlk∂γl∂γkg|γk .

For the second equality the definition of φlr in (5.3.29) has been used again. With (E −
γl)∂γl∂γkg = −∂γkg it follows that

f lk = −(F −A)φlk∂γkg|γk .

Due to A− F = 1
2 diag(2j − 1)j≥1F and (5.3.32), the previous equation simplifies to

f lk =
1

2
diag(2l − 1)l≥1 (hl − hk) .
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Together with (5.3.40) we then arrive at

0 = (γk − γl)∂γkhl +
1

2
diag(2j + 1)j≥1 (hl − hk) .

Substituting ∂γla = hl from (5.3.37) yields finally

(γk − γl)∂γl∂γka =
1

2
diag(2j + 1)j≥1 (∂γka− ∂γla) .

This equation implies the equations (5.3.38) and (5.3.39) from the statement of the lemma.
Conversely, let a solution a of (5.3.38) be given. Then ∂γka determines h1

k in (5.3.37).

Since we have hk = Aa|γk in Proposition 5.3.15, we set h1
k =: 3

2a2|γk , so a polynomial a2

of degree up to 2n is determined. Inserting a2 into (5.3.23) for l = 1 gives the system (for
unknowns f1

k , f2
k and a1)

f1
k − ∂γka1 =

3

2
a2∂γkg + f2

kg

which is compatible by construction. Hence, evaluation at E = γj for j = 1, . . . , 2n + 1
determines polynomials Pk := f1

k − ∂γka1 of degree up to 2n. It follows that

- there are polynomials f2
k of degree up to 2n− 1 such that (5.3.23)l=1 holds, and

- there are a scalar coefficient c2 and polynomials f1
k of degree up to 2n − 1 such

that

f1
k − ∂γk

(
i

2
c2g
′
)

= Pk .

The polynomial 2a1 = ic2g
′ is chosen such that it is of the form required by the

factor representation (5.3.10).

Inserting a2 and f2
k into (5.3.23) for l = 2 then gives the system (for unknowns f3

k and a3)

f2
k − ∂γka2 =

5

2
a3∂γkg + f3

kg

which is compatible by construction. Hence, evaluation at E = γj for j = 1, . . . , 2n + 1
determines a3. Then there are polynomials f3

k of degree up to 2n− 1 such that (5.3.23)l=2

holds.
Following the recursion scheme (5.3.23) for l ≥ 3 in the same way, determines suitable

polynomials al and f lk. The resulting data a := (a1, a2, . . . )
t, fk := (f1

k , f
2
k , . . . )

t
satisfies

the recursion equation (5.3.24) and is in particular compatible. �

Remark 5.3.18. When considering a general index set J ⊆ {−n, . . . , 0, 1, . . . } with |J | =
2n + 1 instead of J = {−n, . . . , n}, then (5.3.39) will be still valid starting from a higher
index than 1. This is due to the appearance of polynomials Cγkl for l ≥ 1 on the left hand
side of (5.3.23).

Now, the proof of Theorem 5.3.10 can be concluded as follows. Given a generating
differential form dS satisfying (5.3.19), then the recursion scheme for the coefficient poly-
nomials ak of the factor Ansatz (5.3.17) is compatible. By Lemma 5.3.17 there is a function
a = a1 satisfying an ε-system with ε = 3/2 such that (5.3.20) holds, i.e. 3

2a2|E=γj = ∂γja.
This determines the polynomial a2 uniquely. The other coefficient polynomials are uniquely
determined by the recursion scheme (5.3.24).

Conversely, let a solution a satisfying an ε-system with ε = 3/2 be given such that
the polynomial a2 determined by 3

2a2|E=γj = ∂γja has degree 2n. Then the recursion
scheme (5.3.24) provides further polynomials ak for k = 1 and k ≥ 3. Inserted into the factor
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Ansatz (5.3.17), the ak give a formal differential form dS. If this power series converges
locally near (E, y) = (γ1, 0), then dS defines a generating differential form in (5.3.19).
Altogether, the Theorem 5.3.10 has been shown.
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analytique, Les Grands Classiques Gauthier-Villars. [Gauthier-Villars Great Classics], Éditions Jacques
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9 (1975), no. 1, 69–70. MR 0390355

30. V. G. Kac and J. W. van de Leur, The n-component KP hierarchy and representation theory, vol. 44,
2003, Integrability, topological solitons and beyond, pp. 3245–3293. MR 2006751

31. A. M. Kamchatnov, Nonlinear periodic waves and their modulations, World Scientific Publishing Co.,
Inc., River Edge, NJ, 2000, An introductory course. MR 1785763

32. , Whitham theory for perturbed Korteweg–de Vries equation, Phys. D 333 (2016), 99–106.
MR 3523493

33. H. Koch, Introduction to classical mathematics. I, Mathematics and its Applications, vol. 70, Kluwer
Academic Publishers Group, Dordrecht, 1991, From the quadratic reciprocity law to the uniformiza-
tion theorem, Translated and revised from the 1986 German original, Translated by John Stillwell.
MR 1149600

34. Y. Kodama, B. Konopelchenko, and W. K. Schief, Critical points, Lauricella functions and Whitham-type
equations, J. Phys. A 48 (2015), no. 22, 225202, 15. MR 3355218

35. D. J. Korteweg and G. de Vries, On the change of form of long waves advancing in a rectangular canal,
and on a new type of long stationary waves, Philos. Mag. (5) 39 (1895), no. 240, 422–443. MR 3363408

36. I. M. Krichever, An algebraic-geometric construction of the Zaharov-Šabat equations and their periodic
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65. S. P. Tsarëv, Poisson brackets and one-dimensional Hamiltonian systems of hydrodynamic type, Dokl.

Akad. Nauk SSSR 282 (1985), no. 3, 534–537. MR 796577



98 BIBLIOGRAPHY

66. , The geometry of Hamiltonian systems of hydrodynamic type. The generalized hodograph method,
Izv. Akad. Nauk SSSR Ser. Mat. 54 (1990), no. 5, 1048–1068. MR 1086085

67. A. P. Veselov and S. P. Novikov, Poisson brackets that are compatible with the algebraic geometry and
the dynamics of the Korteweg-de Vries equation on the set of finite-gap potentials, Dokl. Akad. Nauk
SSSR 266 (1982), no. 3, 533–537, Translation from Russian original. MR 672377

68. , Poisson brackets and complex tori, Trudy Mat. Inst. Steklov 165 (1984), 49–61.
69. G. B. Whitham, Non-linear dispersive waves, Proc. Roy. Soc. London Ser. A 283 (1965), 238–261.

MR 176724


